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Abstract
This article addresses identification of nonlinear systems represented by Volterra series. To
improve the robustness of some existing methods, we propose a pre-processing stage that sep-
arates nonlinear homogeneous order contributions from which Volterra kernels can be identi-
fied independently. Unlike existing separation methods that use amplitude relations between
test signals, we propose another order separation method based on phase. This method gives
access to a new type of complex-valued output signals, which can be used to improve kernel
identification.
First, the underlying ideas are introduced via the presentation of a theoretical method using
complex-valued test signals. Second the proposed order separation method using real-valued
signals is described. Third, a new identification process is given, combining existing least-
squares identification method with the previous results. Finally, numerical experiments are
used to compare the proposed order separation method with state-of-the art, as well as to
evaluate the new Volterra series identification process.
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1. Introduction

Nonlinear system identification is a very challenging topic. One approach, using Volterra
series (Volterra, 1887), has begun in the 40’s with the seminal work of Wiener (1942). One
characteristic that led to the widespread use of Volterra series is the large class of models that
they can represent (Boyd & Chua, 1985). But this advantage comes with important difficulties
concerning identification, such as:

• the high number of kernels coefficients to estimate, which increases drastically with
respect to the truncation order and the kernels memory; this leads to high variance on
the estimated parameters.
• the simultaneous estimation of all kernels from the direct output (as shown in Fig. 1a);

indeed, for a system that allows a Volterra series representation, amplitudes generally
decreases as the order n increases, thus making estimation of the higher-order kernels
less reliable.

The first problem can be alleviated in different ways. Tensor decomposition (Batselier, Chen,
& Wong, 2017; Favier, Kibangou, & Bouilloc, 2012), polynomial kernel regression (Franz &
Schölkopf, 2006) or projections on orthogonal basis, such as Laguerre (Marmarelis, 1993),
Kautz (da Rosa, Campello, & Amaral, 2007) or Generalized Orthogonal Basis (Kibangou,
Favier, & Hassani, 2005), greatly reduces the number of parameters to estimate, and there-
fore the overall complexity. The system can also be approximated using a block structure
(Schoukens & Tiels, 2017) , e.g. Hammerstein, Wiener or Wiener-Hammerstein structure,
where the system is decomposed with only linear filters and static nonlinearities; for specific
structures, estimation methods with good results are available (Rébillat, Hennequin, Corteel,
& Katz, 2011; Tiels & Schoukens, 2014). Alternatively, regularization methods can be used
to improve kernels estimation (Birpoutsoukis, Csurcsia, & Schoukens, 2018; Birpoutsoukis,
Marconato, Lataire, & Schoukens, 2017).
The second problem is more difficult to circumvent. One approach is to divide the identifica-
tion into 2 steps (as shown in Fig. 1b):

1. Order separation: nonlinear homogeneous orders yn are separated from a set of output
signals;

2. Kernel identification: Volterra kernels hn are identified separately from each signal
yn.

This two-step approach decreases computational cost and increases robustness of the over-
all kernels estimation by splitting the identification process into N smaller and independent

Systemu
Identification

y
{h1, h2, · · · , hN}

(a) Direct identification

Systemu Order
Separation

y

IdentificationyN
hN

Identification
y1

h1
...

...

(b) Identification on separated order

Figure 1. Identification process of kernels {hn}n=1,...,N without (a) and with (b) prior order separation
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problems. Furthermore, this procedure is modular, meaning that any existing identification
methods can be used in step 2. But it has to be noted that, due to the fact that order separation
methods require specific user-defined input, this approach can not be used with any set of
measurements (e.g. pre-recorded datasets).
In the literature, order separation is processed by using a collection of amplitude gains applied
to a common input signal (Halme, Orava, & Blomberg, 1971; Simpson & Power, 1972); it has
been used for identification purposes in e.g. Bard and Sandberg (2007); Boyd, Tang, and Chua
(1983); Lee (1997); Zhang and Billings (2017). But this method relies on the inversion of a
real-valued Vandermonde matrix, which is ill-conditioned when its size grows (Pan, 2016). In
practice, this method requires numerous amplitude gains which have to be carefully chosen
in order to provide good separation.
Recently, a separation method using phase deviations and amplitude gains has been pro-
posed (Bouvier, Hélie, & Roze, 2017), for which previous remarks on conditioning of the
Vandermonde matrices still apply. Those ideas have been further developed in Bouvier, Hélie,
and Roze (2018) leading to another kind of separation into homophase signals, which has been
used to develop new identification processes. The use of phase deviations can be related to
the results of Gardner and Archer (1993), where, in a probabilistic framework, cyclostationary
signals are used to obtain orthogonality between orders1 (in a cross-correlation sense).

But even with those new developments, robust order separation can not yet been achieved:
the method of Bouvier et al. (2017) still uses a set of amplitude gains leading to conditioning
problems, and the method proposed in Bouvier et al. (2018) does not separate homogenous
orders. This paper presents a new parameter-free order separation method exclusively based
on phase deviation between excitation signals. This separation depends on the inversion of a
2D Discrete Fourier Transform and sparse matrices. Its contribution to Volterra series identi-
fication is illustrated with the introduction of a new Least-Squares identification method. All
presented algorithms are available in an open-source Python toolbox2.
This paper is organized as follows: in Section 2, we give some mathematical foundations
for the Volterra series paradigm and recall the existing separation method. Section 3 recalls
basics on the phase-based order separation for the abstract case of complex-valued input-
output signals; then, its robustness properties to noise and truncation error are analysed. Sec-
tion 4 presents the main result, that is, an adaptation of the separation method to real-valued
input-output signals to be used on physical systems. From this result, Section 5 derives a
new Volterra series identification method. Finally, evaluation and comparison between sev-
eral methods are made in Section 6, before giving some conclusions and perspectives.

2. Volterra series and order separation

2.1. Notations and functional setting

Introduce the following notations and definitions (with n ∈ N∗ where N∗ = N \ {0}):

• Lp(X,Y): standard Lebesgue-space of p-normed functions from vector spaces X to Y;
• T: set of times R, R+ or [0, T ] with T > 0;
• U = Y := L∞(T,R): sets of input and output signals;
• VS: set of series {hn}n∈N∗ with hn ∈ L1(Tn,R) such that

◦ ρh > 0 is a non zero convergence radius of

1The links between the notion of order separation and order orthogonality (which is the key basis of the Wiener series frame-
work) are not addressed here and deserve further study; for identification methods using orthogonalization approaches, see
(Kibangou & Favier, 2010; Tseng & Powers, 1995).

2Available at https://github.com/d-bouvier/pyvi
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◦ φh : x 7→
∑
n∈N∗

‖hn‖1xn, the gain bound function;

• Vn :=MLn
(
U ,Y

)
: set of bounded (continuous) n-linear operators Vn : Un → Y .

2.2. Volterra series

This section presents some recalls on Volterra series for bounded-input bounded-output
(BIBO) systems. More details can be found in e.g. Boyd, Chua, and Desoer (1984); Rugh
(1981).

Definition 2.1 (Volterra series). A BIBO causal time-invariant system is described around its
equilibrium y0 ∈ R by a Volterra series {hn}n∈N∗ ∈ VS if, for all inputs u ∈ U such that
‖u‖∞ < ρh, its output y is given by, for all t ∈ T,

y(t) = V [u] (t) := V0︸︷︷︸
=y0

+

∞∑
n=1

Vn [u, . . . , u] (t)︸ ︷︷ ︸
=yn(t)

, (1)

with V0 the constant operator of value y0, and the Volterra operators of order n ∈ N∗ defined
in Vn by

Vn [u1, . . . , un] (t) :=

∫
Tn

hn (τ1, . . . , τn)

n∏
i=1

ui (t− τi) dτi , (2)

where hn are called the Volterra kernels.

Note that equilibrium y0 is usually chosen as zero, using the change of output y → y− y0.
In the sequel, y0 is kept non zero for sake of completeness, and all the yn’s are called nonlin-
ear homogeneous order contributions (or orders for short).
It has been shown in Boyd and Chua (1985) that a Volterra series operator V can be used
to approximate any fading-memory time-invariant continuous nonlinear system. In practice,
bounds of convergence radius ρh can be computed for large classes of well-posed systems
(Brockett, 1977; Hélie & Laroche, 2014).
Volterra kernels of a system are not unique: permuting time variables in hn preserves yn in
(1). For identification issues, it is convenient to use uniquely-defined kernels (Rugh, 1981).
Symmetric ones are those invariant with respect to permutations, i.e. such that for all permu-
tations π of n variables,

hn
(
τπ(1), . . . , τπ(n)

)
= hn

(
τ1, . . . , τn

)
. (3)

To improve identification of V from measurements, this paper exploits the following straight-
forward properties.

Property 1 (Operator Vn). Let Vn ∈ Vn as defined in (2). Then the following properties
holds:

(i) Symmetry: if hn is symmetric (w.r.t. its time variables) then Vn is symmetric (w.r.t. its
input signals);
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(ii) n-linearity: for all signals u1, . . . , un, v and scalar α,

Vn [u1, . . . , uk + α v, uk+1, . . . , un] = Vn [u1, . . . , un]+αVn [u1, . . . , v, uk+1, . . . , un] ,
(4)

with 1 ≤ k ≤ n;
(iii) Homogeneity: for all signals u1, . . . , un and scalar α,

Vn [αu1, . . . , αun] = αn Vn

[
u1, . . . , un

]
. (5)

In the sequel, kernels hn and operators Vn are considered symmetric and convergence
conditions are assumed to be met.

2.3. Amplitude-based Separation (AS) Method

This section recalls the order separation method introduced in the 70’s in Halme et al. (1971);
Simpson and Power (1972).
Denote V ∈ VS the operator of a truncated Volterra series with degree N . Consider a ref-
erence input signal u ∈ U and a set of gains αk ∈ R \ {0}, k = 0, . . . , N . Introduce the
collection of input signals uk = αk u ∈ U output signals zk = V [uk] ∈ Y . From (1) and (5),
it follows that 

z0
z1
...
zN

 (t) =


1 α0 . . . αN0
1 α1 . . . αN1
...

...
. . .

...
1 αN . . . αNN

 ·

y0
y1
...
yN

 (t)

z(t) = A · y(t) ,

(6)

where the yn’s are the homogeneous orders of the truncated series in response to the input
signal u.
SinceA is a Vandermonde matrix, it is invertible if and only if the αk are all different. In this
case, it is possible to recover orders yn. In the following, this method will be referred as the
Amplitude-based Separation (AS) method.
In practice, inverting the Vandermonde matrix A poses numerical difficulties due to its bad
conditioning (Pan, 2016). Those can be partially alleviated by using Newton or Lagrange
Recursive methods (Golub & Van Loan, 2012, Algorithm 4.6.1 and 4.6.2), or considering
more than N + 1 gains (leading to more test signals) and using a pseudo-inverse matrix.
Also, making use of several amplitudes and a unique waveform poses several limitations: for
high amplitudes, the system can overload or be excited in a regime outside the Volterra series
convergence domain; for small ones, higher orders are more and more hidden in measurement
noise. Thus a trade-off has to be made between the condition number quality of A and the
amplitude range narrowing. To the knowledge of the authors, the truncation order N exceeds
5 in only one work (Zhang & Billings, 2017).

To design a robust identification, the main idea of this paper is to exploit phase deconstruc-
tion/reconstruction in a preliminary order separation step.
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3. Complex-valued Phase-based Separation (CPS)

This section first presents (§ 3.1) some recalls on the phase exploitation for order separation
in the case of ‘abstract’ (non physical) case of complex-valued inputs and outputs:

UC = YC := L∞(T,C).

Second, in § 3.2, the main properties of this method are analysed and stated.

3.1. Method presentation

Denote V ∈ VS the operator of a truncated Volterra series with degree N . Consider a ref-
erence input signal u ∈ UC and w = ej2π/(N+1) the first (N + 1)th root of unity. Replacing
gains αk by wk, k = 0, . . . , N in the AS method leads to

z0
z1
...
zN

 (t) =


1 1 . . . 1
1 w . . . wN

...
...

. . .
...

1 wN . . . wN
2

 ·

y0
y1
...
yN

 (t)

z(t) = W · y(t) ,

(7)

whereW is the Discrete Fourier Transform (DFT) matrix of order N + 1 with normalization
factor 1. Its optimal conditioning makes the recovery of orders y(t) = W−1z(t) robust,
contrary to the AS method. Note that in (7), the DFT is applied to homogeneous orders yn
(produced by the reference input signal u = u0) with respect to order variable n (and not the
time variable). This method is referred below as the Complex-valued Phase-based Separation
(CPS) method.

From the formal algebraic point view, AS and CPS methods look very similar. But from the
signal point of view, they operate in very different ways: AS exploits amplitudes (whatever
the signal shape) as a contrasting parameter of homogeneous orders on a validity range to be
maximal, whereas CPS exploits shape (whatever the amplitude) through phase deconstruction
and reconstruction. Differences on excitations can be summarized by comparing factors αk,
wk and their power in the complex plane (see Fig. 2): in CPS, all the factors and their power
lie on the unit circle and are one of the N + 1 unit-roots; in AS, they all lie on the real axis
and powers of αk converge towards 0 (if |αk| < 1) or diverge (if |αk| > 1) as the truncation
order N increases.

3.2. Properties of CPS method

Due to the properties of the DFT, the CPS method comes with interesting properties.

3.2.1. Zero-padding and number of phases

As will be shown in § 3.2.2 and § 3.2.3, the number of phases P has a positive impact on the
robustness of the CPS method. For a given maximal order N , it can be artificially increased
using zero-padding.
Let the number of phases P be greater than Pmin = N + 1. Introduce w = ej2π/P , and
the collection of input signals uk = wk u ∈ UC, k = 0, . . . , P − 1 and output signals zk =

7



Re
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α1 α2 α3 α4w0 = α0

w1

w2

w3

w4

Figure 2. Powers of typical factors used in AS and CPS methods, compared in the complex plane: (AS) red circles ( ) for
α > 1; (CPS) blue squares ( ) for w = ej2π/(N+1) with N = 4.

V [uk] ∈ YC. Then relation (7) remains valid, whereW is now the DFT matrix of order P and
the vector of orders is y =

[
y0 . . . yN 0 . . . 0

]T , with P −N − 1 zeros. Considering
more than Pmin phases increases the number of tests signals K (equal to P for CPS method).

3.2.2. Nonlinear order aliasing

Now, consider that V ∈ VS is the operator of an infinite Volterra series. Consider a number of
phases P ≥ Pmin = N + 1, where N is the chosen approximation order. Since wn+rP = wn

for any P th root of unity w and for all integers n and r, property (5) yields

V [wu] (t) =

P−1∑
n=0

wn
∞∑
r=0

yn+rP (t) , (8)

and (7) becomes

z(t) = W

(
y(t) +

∞∑
r=1

y(r)(t)

)
, (9)

with y =
[
y0 . . . yP−1

]T and y(r) =
[
yrP . . . yrP+P−1

]T . This reveals that order yn
is perturbed by a residual term

∑∞
r=1 yrP+n, which is structured as a nonlinear order aliasing.

This effect permits to use the amplitude as a contrast factor to control the Signal-to-Residual
Ratio (SRR).
Replacing gains wk by numbers γk = ρwk, with 0 < ρ < 1, leads to

z(t) = W ·R ·

(
y(t) +

∞∑
r=1

ρrPy(r)(t)

)
, (10)

withR := diag
(
ρ0, ρ1, . . . , ρP−1

)
.

Therefore, in estimated orders ỹ(t) = R−1W−1z(t), there is a ratio 1/ρP between the de-
sired signal and the first residual y(1)(t). This ratio permits to improve the SRR by choosing
a high P or a low contrast factor ρ. For example, a SRR gain of 20 dB is obtained by setting
P = 100 and ρ ≈ 0.977.
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3.2.3. Noise reduction

Suppose that each measured output zk is perturbed by an independent and identically dis-
tributed (i.i.d.) complex Gaussian noise, i.e.

ẑ(t) = z(t) + εr(t) + jεi(t) , (11)

where εr and εi are both multivariate i.i.d. Gaussian noise of null mean and covariance ma-
trices Σr/i = σ2r/iI , with I the identity matrix. The best estimator ŷ of y in a least mean-
squares sense is

ŷ(t) = R−1W−1ẑ(t) = ỹ(t) + ε̂r(t) + jε̂i(t) , (12)

where ε̂r/i are multivariate i.i.d. Gaussian noise of null mean and covariance matrices

Σ̂r/i =
σ2r/i

P
R−2 . (13)

Equation (13) shows that using CPS method, Signal-to-Noise Ratio (SNR) between estimated
order yn and error due to noise measurement is reduced by a factor ρn

√
P . For example,

setting P and ρ as in the previous example (§ 3.2.2) and considering a maximum order of
N = 9 leads to a SNR gain going from 20 dB (for the zeroth order) to 18.2 dB (for order
9). This illustrates how increasing the number of phases P (and therefore the number of test
signals K) only leads to a more robust order separation method.

But the CPS method is abstract and useless in practice since only real-valued signals can
be used on a physical system. Its recast from complex-valued to real-valued signals is not
possible because equation (7) cannot be recomposed using an independent processing of real
and imaginary parts.

4. Real-valued Phase-based Separation (RPS)

This section provides a method based on the phase exploitation, adapted to the use of real-
valued signals for handling real-life cases:

U = Y := L∞(T,R).

The main theoretical result of this paper is stated in Theorem 4.4 (§ 4.1). It allows the deriva-
tion of the main practical result (RPS method, § 4.2), the properties of which are detailed in
§ 4.3.

4.1. Preliminary results

In this section, let u ∈ UC be a complex-valued signal, and operators Vn ∈ Vn be associated
with symmetric real-valued Volterra kernels hn.

Definition 4.1 (Interconjugate signal). The interconjugate signals yn,q ∈ YC, q = 0, . . . , n,
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are defined by

yn,q(t) := Vn

[
u, . . . , u︸ ︷︷ ︸
n−q times

, u, . . . , u︸ ︷︷ ︸
q times

]
(t) , (14)

where a denotes the complex conjugate of a. By extension, we also denote y0,0(t) := y0.

Remark 1. Signals yn,0 (respectively yn,n) correspond to the output of order n of a series
excited by signal u (resp. u). Signals yn,q with 0 6= q 6= n do not have similar correspondence
in terms of input/output relationships.

Property 2. By symmetry of Vn, it is straightforward to show that yn,n−q(t) = yn,q(t), and
that for even n, signal yn,n/2 is real.

Interconjugate signals allows the rewriting of the output of order n for a real-valued input
signal, as the following lemma shows.

Lemma 4.2. Let r = Re [u] ∈ U . Then yn = Vn [r, . . . , r] ∈ Y is given by

yn(t) =
1

2n

n∑
q=0

(
n

q

)
yn,q(t) , (15)

where
(
n
q

)
= n!

q!(n−q)! is the binomial coefficient.

Proof. The proof stems from the symmetry and n-linearity of operators Vn fed by r(t) =
(u(t) + u(t)) /2.

Example 4.3. Consider the cosinusoidal signal r(t) = cos(2πft) and its analytic version
u(t) = ej2πft. Interconjugate signals yn,q are complex sinusoids of frequency (n − 2q)f ,
with phase and amplitude depending on operator Vn. Furthermore, if Vn is such that
Vn [r, . . . , r] (t) = r(t)n, (15) leads back to the Chebyshev expansion of cos(2πft)n.

Lemma 4.2 shows that separating orders yn could be achieved from the knowledge of all
terms yn,q. To this end, a first solution has been proposed in Bouvier et al. (2017). It combines
phase deviations (as in CPS) and amplitude gains (as in AS). In Bouvier et al. (2018), a notion
of homophase signals is introduced and used to derive an iterative identification method. To
reject numerical difficulties due to Vandermonde matrices and reserve the amplitude of inputs
as a free parameter, a better alternative for order separation is proposed below. It involves lin-
ear combinations of pairs of signals with various phase deviations, according to the following
theorem.

Theorem 4.4. Consider a Volterra series with a maximal order N ∈ N ∪ {+∞}. Denote
θi, i = 1, 2 two complex scalars on the unit circle, and let y ∈ Y be the output of the series
excited by 2 Re [(θ1 + θ2)u] ∈ U . Then

y(t) =
∑

|p1|+|p2|≤N

θp11 θ
p2
2 ψ

(N)
p1,p2(t) , (16)

10



with, ∀(p1, p2) ∈ Z2,

ψp1,p2(t) :=

N∑
n=|p1|+|p2|
n≡(p1+p2) [2]

κ
(n)
|p1|,|p2|yn,n−p1−p2

2

(t) , (17)

where where a ≡ b [k] stands for ‘a and b are congruent modulo k’ and where

κ(n)a1,a2
:=

n−a2∑
l=a1

l≡a1 [2]

(
n

l+a1

2 , n−l+a2

2 , l−a1

2 , n−l−a2

2

)
, (18)

with
(

n
q1,q2,q3,q4

)
= n!

q1!q2!q3!q4!
the multinomial coefficient.

Proof. See Appendix A.

Corollary 4.5 (Symmetries on ψp1,p2). Using Property 2 and κ(n)a1,a2 = κ
(n)
a2,a1 , the following

properties holds:

(i) equality: ψp1,p2 = ψp2,p1
(ii) conjugation: ψ−p1,−p2 = ψp1,p2 and ψp,−p is real.

Theorem 4.4 shows how the output of a Volterra series can be decomposed onto a 2-
dimensional phase plane (p1, p2) (see Fig. 3). This makes possible to separate signals ψp1,p2
using a 2-dimensional DFT. Furthermore, this repartition exhibits the tetrahedron structure of
a Pascal’s pyramid, which is due to the multilinearity of the Vn operators (see Fig. 4). This
property allows the extraction of signals yn,q from ψp1,p2 . Those two steps constitute the main
part of the proposed separation method, which is now detailed.

4.2. RPS Method

Denote V ∈ VS the operator of a truncated Volterra series with degree N , and u ∈ UC a
complex-valued reference signal. Let uR = Re [u] ∈ U the associated real-valued excitation
signal, and yn = Vn [uR] ∈ Y the homogeneous orders we want to separate.

(i) Creation of the signals collection: Let P = 2N + 1 and w = ej2π/P . Introduce the
collection of input signals Uk1,k2 = 2 Re

[(
wk1 + wk2

)
u
]
∈ U , k1, k2 = 0, . . . , P − 1, and

output signals Zk1,k2 = V[Uk1,k2 ] ∈ Y .

(ii) Separation of signals ψp1,p2: Introduce the matrix Ψ such that ψp1,p2(t) =
Ψp1[P ],p2[P ](t), ∀p1, p2 = −N, . . . , N . Let FP,P denote the 2D-DFT operator3 of or-
der (P, P ). Then Theorem 4.4 gives

Z(t) = FP,P {Ψ} (t) . (19)

3As for the one dimensional DFT, the normalization factor is put in the inverse operator, meaning that

FM,N {x}k,l =
M−1∑
m=0

N−1∑
n=0

xm,ne
−j2π( km

M
+ ln

N ) ,

where x is a two-dimensional signal in matrix form.
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Figure 3. Repartition of interconjugate signals yn,q up to order 3 in the 2D phase plane (p1, p2); the dashed line ( )
corresponds to the symmetry axis, and the dotted line ( ) to the hermitian symmetry axis; e.g. the gray circle corresponds to
the location of ψ1,0.

Signals ψp1,p2 are thus recovered using an inverse 2D-DFT.

(iii) Separation of interconjugate signals yn,q: Let φp =[
ψr0,rQ ψr1,rQ−1

. . . ψrQ,r0
]T regroup all signals ψp1,p2 on the anti-diagonal p1+p2 = p,

where Q = N if p ≡ N [2], Q = N − 1 otherwise, and rj =
⌊
p+N
2

⌋
− j, with b.c

denoting the integer part. Also let vp =
[
yQ,Q−p

2

yQ−2,Q−p

2
−1 . . . y|p|, |p|−p

2

]T
regroup all

interconjugate signals yn,q with q = n−p
2 . Then, using (17), the following relationship holds:

φp(t) = Λpvp(t) , (20)

where

Λp =



κ
(Q)
r0,rQ 0 . . . 0

κ
(Q)
r1,rQ−1 κ

(Q−2)
r1,rQ−1 . . . 0

...
...

. . .
...

κ
(Q)
rQ/2,rQ/2 κ

(Q−2)
rQ/2,rQ/2 . . . κ

(|p|)
rQ/2,rQ/2

...
... . .

. ...

κ
(Q)
rQ,r0 0 . . . 0


(21)
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Figure 4. Repartition of interconjugate signals yn,q up to order 3 in the 3D half-space (p1, p2, n), with p2 ≥ 0; the gray
cylinder of axis (p1 = 1, p2 = 0) regroups all terms constitutive of ψ1,0.

for p even, and

Λp =



κ
(Q)
r0,rQ . . . 0
...

. . .
...

κ
(Q)
r(Q−1)/2,r(Q+1)/2 . . . κ

(|p|)
r(Q−1)/2,r(Q+1)/2

κ
(Q)
r(Q+1)/2,r(Q−1)/2 . . . κ

(|p|)
r(Q+1)/2,r(Q−1)/2

... . .
. ...

κ
(Q)
rQ,r0 . . . 0


(22)

for p odd. Inverting (20) for all p = −N, . . . , N gives all signals yn,q, n = 0, . . . , N, q =
0, . . . , n.

(iv) Reconstruction of orders yn: Once the interconjugate signals yn,q are known, homoge-
neous orders yn can be reconstructed using (15).

Those four steps constitute the proposed method, which will be referred as the Real-valued
Phase-based Separation (RPS) method. In practice, one does not need to make P 2 mea-
surements, due to the symmetry Uk1,k2 = Uk2,k1 . So the number of test signals is only
K = P (P+1)

2 = (2N + 1)(N + 1) (number of terms in the triangular part of matrix Z),
and the remaining signals of matrix Z are found by symmetry.
Robustness of RPS method greatly depends on the numerical conditioning of matrices Λp.
This value is fixed for a given truncation order N and phase index p, and increases with N
and |p|. Therefore, as for AS method, RPS robustness will decrease when N is large.
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4.3. Properties of the RPS method

4.3.1. Zero-padding and number of signals

As in CPS method, it is possible to use a number of phases P greater than the required
minimum Pmin = 2N + 1. As long as P ≥ Pmin and the truncation hypothesis is valid,
retrieving signals ψp1,p2 from Ψ is possible.

4.3.2. Nonlinear order aliasing

Now consider that V ∈ VS is the operator of an infinite Volterra series. As in CPS, a nonlinear
order aliasing appears in step (ii). Here it is manifested by the fact that the desired signalψp1,p2
is mingled with all ψi,j such that p1 ≡ i [P ] and p2 ≡ j [P ], deteriorating its estimation. The
only way to minimize this aliasing is to choose P � 2N + 1.
It would also be interesting to diminish the effect of higher-order residuals yn,q, n > N in
signals ψp1,p2 . Unfortunately, the use of a contrast factor as described in § 3.2.2 is not feasible
for RPS. Indeed, because ψp1,p2 contains contributions from all orders n ≥ |p1| + |p2| such
that p1 + p2 ≡ n [2], the SRR gain would be 1/ρ2.

4.3.3. Number of phases and noise reduction

Suppose that each measured output Zk1,k2 is perturbed by an i.i.d. complex Gaussian noise.
Identical developments as in § 3.2.3 show that the use of a 2D-DFT improves the SNR in
estimation of signals ψp1,p2 by a factor P . But the independence hypothesis between noise
is false, since Zk1,k2 and Zk2,k1 comes from the same measurement (with the same noise).
Similar developments as in § 3.2.3 shows that the SNR improvement has the same order
of magnitude, but the error noise between signals ψp1,p2 is not independent (i.e. the noise
correlation matrix is not diagonal). This shows that, for a given maximal order N , a large
value of P allows a better estimation of signals ψp1,p2 in step (ii), and therefore of yn,q and
yn in steps (iii-iv). However a large P leads to a large number of test signals K.

4.3.4. Amplitude of the input collection

All signals in the input collection Uk1,k2 do not have the same amplitude. It greatly depends
on the chosen signal u, and also, for a given u, on the factor a = |2(wk1 + wk2)|.
The maximum amax is reached for k1 = k2 and is equal to 4. The minimum amin is reached
when the two values wk1 and wk2 are the furthest apart on the complex circle, i.e |k1 − k2| =
(P − 1)/2 for an odd4 P . Basic calculus shows that amin = 4 cos

(
π
2
P−1
P

)
.

Therefore the ratio between maximum and minimum amplitudes in the input collection will be
closely related to cos

(
π
2
P−1
P

)−1. Therefore, increasing the number of phases P also increases
the amplitude range needed for the excitation of the system5. For example, setting P = 19
(i.e. minimum number of phases when considering a maximum order N = 9) leads to an
amplitude range of ∼ 21.7 dB.

4An even P leads to amin = 0 and must be avoided.
5It is important to note that using RPS, the amplitude variations between all signals of the input collection are not wanted and

chosen (as in AS method) but are a side effect of the method.
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4.3.5. Computational complexity

Because RPS method relies only on linear algebra operations, it is easy to compute its com-
putational complexity6. In the following, we consider the case of a (discrete-time) signal of
length L� P ≥ 2N + 1 (i.e. the number of data points in the signal is much greater than the
number of phases used, which is a reasonable assumption).
Step (ii) consists of the application of an inverse 2D-DFT at each time step. Using an imple-
mentation relying on one-dimensional Fast-Fourier Transforms, the 2D-DFT has a complexity
of O

(
P 2 logP 2

)
. Therefore the complexity of step (ii) is O

(
2LP 2 logP

)
.

Step (iii) consists in solving (20) at each time step for all phases p = −N, . . . , N , i.e. 2N + 1
times. Matrices Λp have different sizes, but Λ0 is always the largest with size (N + 1) ×
(bN/2c+ 1). Because L� N , the pseudo-inversion of Λp is negligible in terms of complex-
ity compared to the products Λ†pφp(t) for all time steps, where Λ†p denotes the pseudo-inverse
of Λp. Therefore the complexity of step (iii) is O ((2N + 1) (N + 1) (bN/2c+ 1)L) =
O
(
LN3

)
. The reconstruction of orders in step (iv) can be shown to have a complexity of

O
(
LN2

)
, which is negligible compared to step (iii).

The total complexity of RPS method is therefore O
(
max

(
2LP 2 logP,LN3

))
. If logP >

N , this complexity is dominated by the first term and hence determined by the number of
phases P ; otherwise it is cubic in the truncation order N . In both cases, complexity is linear
with respect to the signal’s length. In comparison, AS method has a complexity of O

(
LN2

)
.

In practice, because N and P are not extremely large, computation times for RPS are very
short, and close to those of AS.

5. Least-squares identification based on separation

This section presents, in the Least-Square (LS) formalism, how the homogeneous orders yn
or the interconjugate signals yn,q can be used instead of the direct output y for discrete-time
Volterra kernel estimation. The ideas behind processes (A), (B) and (C) presented in § 5.2
could easily be conveyed to other identification methods.
Discrete-time signals and systems are now considered. All previous definitions and results
are available by replacing T by Td := Z, N or a subset [0, L]N with L ∈ N∗, and replacing
integrals in (2) by discrete sums.

5.1. Least-squares formulation and combinatorial matrix

Suppose that the system-to-be-identified has a finite memory of M samples. Given L
input-outputs measurements of the system to identify, relations (1) and (2) can be sum-
marized in vectorial form by y = Cf , where y is the column vector of output data,
f =

[
f0 . . . fN

]T a column vector regrouping all kernel coefficients, and C =[
C0 . . . CN

]
the input combinatorial matrix containing all the delayed-products of the

input signal (see Rugh (1981) for more details about construction of this matrix). In order
to reduce the number of coefficients to estimate, only non-redundant terms of the symmetric
form7 of kernels hn are considered in vectors fn.

6The memory usage of RPS method will not be addressed here; it is generally not an issue, and computation can be done
separately for each time step.

7Or equivalently the nonzero terms of the triangular form.
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Example 5.1. For an order 2 kernel of memory length M = 3, C2 and f2 are given by8

C2 =


u[0]2 u[1]2 u[2]2 . . .

0 u[1]u[0] u[2]u[1] . . .
0 0 u[2]u[0] . . .
0 u[0]2 u[1]2 . . .
0 0 u[1]u[0] . . .
0 0 u[0]2 . . .



T

and f2 =


h2 [0, 0]
h2 [0, 1]
h2 [0, 2]
h2 [1, 1]
h2 [1, 2]
h2 [2, 2]

 .

Similarly, a vectorial form of (14) is given by yn,q = Cn,qfn, where Cn,q is the input
combinatorial matrix corresponding to the column vector of interconjugate signal yn,q. Ma-
trix Cn,q is constructed in a similar way as Cn, but conjugated terms have to be taken into
account when doing symmetrization9.

Example 5.2. For an order 2 kernel of memory length M = 3, combinatorial matrix C2,1 is
given by

C2,1 =



|u[0]|2 |u[1]|2 |u[2]|2 . . .

0 u[1]u[0]+u[1]u[0]
2

u[2]u[1]+u[2]u[1]
2 . . .

0 0 u[2]u[0]+u[0]u[2]
2 . . .

0 |u[0]|2 |u[1]|2 . . .

0 0 u[1]u[0]+u[1]u[0]
2 . . .

0 0 |u[0]|2 . . .



T

5.2. Identification methods

(A) Direct estimation: Identifying kernels directly from the measured output comes down to
solving y = Cf . This requires that the data length L is larger than the number of coefficients
to estimate, i.e. L ≥

(
M+N
N

)
(see (Mathews & Sicuranza, 2000)).

(B) Estimation on homogeneous orders: If the homogeneous orders yn are available, ker-
nel estimation is done by solving yn = Cnfn for each order n. Signal length must fulfill the
condition L ≥

(
M+n−1

n

)
.

(C) Estimation on interconjugate signals: If the interconjugate signals yn,q are available,
kernel estimation is done by solving, for each order n,yn,0

...
yn,n

 =

Cn,0
...

Cn,n

fn . (23)

Signal length must fulfill the condition L ≥ 1
n+1

(
M+n−1

n

)
.

In those methods, computation time and memory usage directly depends on the size of the
matrix to be inverted (and also varies with the algorithm used for solving the linear problem).

8The lexicographical order is used here, but other choices can be made, without impact on the identification.
9For example, combinatorial terms u[l]u[l − 1] and u[l − 1]u[l] are both linked to the same kernel coefficient h2[0, 1], and

should thus contribute equally to the corresponding term in C2,1.
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Size of matrix C grows linearly with the data length L but exponentially with the truncation
order N and system memory M , which makes this method quite cumbersome (time and
memory-wise) when high nonlinearities and/or long memory are required.
Matrices Cn have the same number of rows as C, but the number of columns, which grows
with the current order n as well as memory M , is always smaller. Therefore, the inversion
of Cn has a computation time and memory usage reduced compared to the inversion of C.
Furthermore, we have observed in practice that method (B) in total (i.e. inversions of all Cn

done sequentially) is computationally quite faster than (A).
Each matrixCn,q has the same size asCn. But, for method (C), the matrix to invert for each
order has a number of rows n+ 1 times higher. Therefore the computation time and memory
usage of method (C) is higher than method (B). Compared to method (A), the augmentation
in the number of rows is accompanied by a reduction in the number of columns. In terms of
computation time, the latter compensates the former when M is large enough (for a given
N ). Furthermore, we have observed in practice that method (C) (i.e. resolution of (23) done
sequentially for each order n) is computationally quite faster than (A).

6. Evaluation and comparison

This section evaluates the proposed methods using numerical simulation experiments. The
code used for the separation and identification methods is available in an open-source Python
toolbox10.

6.1. Order separation evaluation

Experiment description The simulated system is a discrete-time Volterra series truncated
to order 9, with a finite memory length of M = 5 samples. Kernels values are set according
to the following formula:

hn [k1, . . . , kn] = 101−n (−1)
∑

i ki e−
max k

10 (24)

Those choices are arbitrarily made in order to have (a) exponentially decaying kernels, (b)
amplitude of orders yn decreasing w.r.t. n and (c) a relatively low number of parameters to
estimate (i.e. 2001). Real-life systems can be expected to meet criteria (a) and (b), but mem-
ory length is usually longer.
AS and RPS methods are compared using the standard relative Root-Mean-Square
(RMS) error value between true and estimated order, given for each order n by εn =
RMS (ỹn − yn) /RMS (yn), where ỹn is the estimation of order yn.
For RPS method, a complex white Gaussian noise of zero-mean and unit variance is used as
the reference input signal u, with a length of L = 5000 samples. For AS, the signal 4 Re [u] is
used as the input reference11. A perturbation noise (also white and Gaussian) is added to the
measured outputs, with a SNR of 60 dB w.r.t. to the maximum measured RMS level. For each
method, 10 experiments with different realization of the signal u are done; presented results
are the median over all experiments.
In order to have a meaningful comparison between AS and RPS, the same number of test
signals K = 190 is used for both methods. This corresponds to the required minimum

10https://github.com/d-bouvier/pyvi
11The factor 4 is here so that both collection of test signals have the same maximum amplitude.
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Figure 5. Comparison of separation error w.r.t order n for methods AS ( ) and RPS ( ). Median values over all experi-
ments are represented.

number by the RPS method. Furthermore, for AS method, gains αk are chosen such that
αk = (−1)kαbk/2c. Value α is set so that the minimum amplitude gain corresponds to the
minimum amplitude in the collection of RPS test signals (see § 4.3.4), i.e. α ' 0.974. This
choice was empirically observed to optimize AS method.

Results Fig. 5 displays the separation error for AS and RPS methods. It shows that, for both
methods, estimation of orders higher than 5 are unusable (due to a relative error exceeding
0 dB). Furthermore, error does not monotonically increases with n: even orders (6 and 8)
perform better than previous odd orders (respectively 5 and 7). This is due to the choice of an
odd truncation order, i.e. N = 9.
Fig. 5 also shows that AS method has lower error than RPS, with a difference between∼ 6 dB
(for order 1) and ∼ 3 dB (for order 9). If a smaller number K of test signals is used for AS,
or if gains αk are not properly tuned, separation error drastically increases.

6.2. Kernel identification evaluation

Experiment description The same system and experiment as before is used. The error for
kernel estimation is given by εn = RMS

(
h̃n − hn

)
/RMS (hn), where h̃n is the estimation

of order hn. Least-Squares identification methods are tested and compared, using either:

• method (A) on output y corresponding to the reference signal;
• method (B) on orders yn estimated via AS;
• method (B) on orders yn estimated via RPS;
• method (C) on signals yn,q estimated via RPS, i.e. RPS without step (iv).

The direct approach relies only on one measurement of L samples, and is therefore a far
quicker experiment than using separation methods. For a meaningful comparison, a mea-
surement of KL samples should be used; but this would drastically increase the size of the
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combinatorial matrix C, and consequently the memory and CPU usage12. For application on
real-life systems with longer memory M , this approach would lead to extremely large matrix
sizes and intractable computation.

Results Estimation errors are shown in Fig. 6. As for the separation, the same non-monotonic
behaviour is observed, which is still due to the choice of the truncation.
Direct identification (A) has an error similar to the SNR for order 1; when n increases, this
error grows rapidly. Previous observations on AS and RPS separation error still apply for
identification error of both (B)-AS and (B)-RPS. In comparison to (A), those methods have
lower error for kernels of orders 1 to 4, but worse estimation for orders 7 to 9.
Using interconjugate signals instead of homogeneous orders improves greatly the estimation
of Volterra kernels. Method (C)-RPS is ∼ 20 dB lower than (A) for all orders. In comparison
to (B)-RPS, this method ameliorates identification, especially for higher orders: this is the
only method where identification results are lower than 0 dB for orders higher than 7. This
is explained by the fact that, for the same number of coefficients to estimate, more data is
available when using signals yn,q (i.e. (n+ 1)L instead of L).

7. Conclusions and perspectives

In this paper, the exploitation of phase deviation in Volterra series output for separating ho-
mogeneous orders has been studied. These results have then been used to devise new kernel
identification methods in the Least-Squares formalism. Numerical experiments have been car-
ried out to illustrate the amelioration brought in terms of estimation error.
The concept of interconjugate signals has been introduced. This notion permits, when work-
ing with a real-valued input, to consider the effect of the Volterra series on the complex-valued

12For example, in the limited case of this experiment, increasing the number of samples from L toKL would make the memory
usage to store the matrix C alone going from 76MiB to 14.5GiB.
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analytic signal. Using this concept, a new separation method has been proposed, relying on
the 2-dimensional Discrete Fourier Transform. Furthermore, the use of interconjugate signals
has been shown to improve kernel identification for higher orders.
The new separation method presented in this paper has been successfully applied to a real-
life system (Bouvier, 2018; Lebrun, Bouvier, Hélie, & Roze, 2018). Future work will focus
on the use of this prior separation stage for identification of more structured systems, such as
block-structured or polynomial nonlinear state-space systems.

Appendix A. Proof of Theorem 4.4

Consider the hypothesis of Theorem 4.4.
Because 2 Re [(θ1 + θ2)u] = θ1u + θ1u + θ2u + θ2u, the n-linearity and symmetry of Vn

gives the following expression for the output of order n:

yn(t) =

n∑
k1,k2,k3,k4=0

k1+k2+k3+k4=n

(
n

k1, k2, k3, k4

)
θk1−k21 θk3−k42 yn,k2+k4(t) . (A1)

Consider the change of variables
l1 = k1 + k2
l2 = k3 + k4
p1 = k1 − k2
p2 = k3 − k4

⇔


k1 = (l1 + p1) /2
k2 = (l1 − p1) /2
k3 = (l2 + p2) /2
k4 = (l2 − p2) /2

(A2)

Then it is straightforward to show that the new variables li, pi, i = 1, 2 respect the following
conditions

n = l1 + l2

pi ≡ li [2] ⇒ p1 + p2 ≡ n [2]

|pi| ≤ li ⇒ |p1|+ |p2| ≤ n

Applying the change of variables (A2) to (A1) gives

yn(t) =
∑

|p1|+|p2|≤n
p1+p2≡n [2]

∑
l1≥|p1|
l2≥|p2|
l1+l2=n
l1≡|p1| [2]

yn,n−p1−p2
2

(t) θp21 θ
p2
2

(
n

l1+p1
2 , l2+p22 , l1−p12 , l2+p22

)
, (A3)

which can be simplified as

yn(t) =
∑

|p1|+|p2|≤n
p1+p2≡n [2]

θp21 θ
p2
2 yn,n−p1−p2

2

(t)

n−|p2|∑
l=|p1|
l≡|p1| [2]

(
n

l+p1
2 , n−l+p22 , l−p12 , n−l−p22

)
. (A4)
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The second summation is equal to κ(n)|p1|,|p2| as defined in (18). This is easily seen by observing
that the multinomial coefficient is invariant under any sign change of p1 and/or p2. The total
output is then

y(t) =

N∑
n=0

∑
|p1|+|p2|≤n
p1+p2≡n [2]

θp21 θ
p2
2 κ

(n)
|p1|,|p2|yn,n−p1−p2

2

(t) . (A5)

The two sums can be swapped as follows

y(t) =
∑

|p1|+|p2|≤N

θp21 θ
p2
2

N∑
n=|p1|+|p2|
n≡(p1+p2) [2]

κ
(n)
|p1|,|p2|yn,n−p1−p2

2

(t) , (A6)

which concludes the proof.
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