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Abstract

We present a semi-supervised algorithm to learn an interpolating function with
minimal Laplacian semi-norm on a graph. This algorithm is directly inspired by
the classical ‘method of relaxations’ used in physics to get discrete approximate
solutions to the Dirichlet problem. We argue that this method is actually a gradient
descent minimizing the energy of an interpolating function on the graph. Besides
it converges linearly in the number of steps, with a convergence constant bounded
with respect to simple characteristics of the graph. As opposed to inversion-based
kernel methods on graph, this algorithm can be efficiently implemented to deal
with large, complex graphs.

Keywords: Semi-supervised learning on graphs, method of relaxations, relaxation algorithms.

1 Introduction

We consider learning over a graph. Learning is a process involving training an algorithm (the learner)
on a number of given (pattern, label) pairs so that the learner can afterwards predict the labels
of unknown (unlabelled) patterns. Performance can be assessed by comparing the predicted labels
with the true labels and counting the number of mistakes, the goal being to minimize this number.
These settings however have to to take into account the reality of available data for classification
applications. Indeed in many real world datasets only a few labelled samples are available, whereas
unlabelled patterns are easier to get: labelling medical data, for example, often requires a long and
costly expertise. Intuitively we see that unlabelled data probably contains relevant information about
the underlying distribution of input samples, therefore it could be of interest to exploit it together
with labelled data samples. This framework is that of semi-supervised learning.

In order to exploit the inherent geometry of their underlying distribution, patterns can be represented
as vertices of a graph G which may either be given or be constructed from a similarity metric on
the objects [BN04, ZGL03]. Our approach stands within the frame of semi-supervised learning on a
graph, which has been studied from many perspectives; a common point of view in the literature is
to represent functions defined on a graph by a Hilbert space associated to the Laplacian of the graph.

In this paper we study graph learning from an optimization point of view rather than a learning
performance one. Our relaxation algorithm is a connectionist model of a proven semi-supervised
technique. Although based on a classical descent algorithm, its update steps are surprisingly very



simple and intuitive. Therefore it is reasonable to think that something similar might already be
implemented in nature; indeed the consensus concept can be seen in group behaviors for example.change

The maximum number of steps to perform to reach the solution within a tolerance ε is of order
O(n4), whereas for the regularized version of the algorithm, it is O(n2). The study of convergence,
in addition to providing bounds on the maximum error after a certain number of steps, leads to a
better understanding of the system.

The network/graph model has several implementation implications. Memory used for the computa-
tions at each step is O(d) for the consensus algorithm, whereas it is O(n − l) for standard gradient
descent, and O((n − l)2) for inversion-based methods (d denotes the degree of the updated vertex,
l is the number of known vertices, and n is the total number of vertices). Since the simple update
rule for the consensus algorithm only requires the values of the vertices of one neighborhood, it can
be implemented in a a wholly parallel fashion, for example by assigning a processor to a vertex or
a group of vertices and having the parallel processors communicate locally with their neighbors. An
efficient implementation for very large graphs can be done on sequential architectures, using a heap
data structure to keep track of the steepest direction. Finally, if after having run the algorithm the
graph is slightly modified and we run the algorithm again, convergence might be very fast: indeed
the impact of a slight modification would in most cases be significant in a small area surrounding it
and thus we expect our function to be still very close to the optimal point.

We quickly review some concepts from graph theory in Sect. 4 and the Hilbert space of functions on
graphs in Sect. 5. In Sect. 6 we develop an analysis of the l1-norm steepest descent algorithm used
to minimize a strongly convex function in the general case. These considerations are used in Sect. 7
to develop and analyze learning algorithms based on sequential simple updates of an interpolating
function. We propose simple bounds for the convergence in Sect. 7.5, depending on characteristic
values of the graph G. Finally, although these algorithms are better fit to parallel architectures, we
discuss an efficient implementation on sequential architectures using a heap data structure for very
large graphs in Sect. A.7.

2 The Discrete Dirichlet Problem

Let us consider an electric network of resistors of equal resistance. We connect some points of this
network (the ‘boundary’) to either a positive or a negative voltage source, and would like to guess
the voltage at every other point of the network (interior points, see Fig. 1). By Kirchoff’s and Ohm’s
laws the solution is given by the following averaging property

vi =

 ∑
(i,j) connected

R−1
ij

−1 ∑
(i,j) connected

vj

Rij
=

∑
(i,j) connected vj∑
(i,j) connected

.

Such a voltage distribution is called harmonic. The Uniqueness Principle for this Dirichlet problem
asserts that there can not be two different harmonic voltage distributions corresponding to one setting
of boundary values. Other interesting properties are described in details in [DS00]. In particular this
harmonic function minimizes energy dissipation through the resistors,

E =
∑

(i,j) connected

1
Rij

(vi − vj)
2

.

A general Dirichlet Problem is the problem of finding a harmonic (continuous) function given its
boundary values, for example finding a distribution of temperature across a piece of metal with
known boundary temperature. However continuous cases can often be approximated by an appro-
priate discrete array of lattice points. In this context a well-known method used by physicists to find
a good approximate of the solution is the so-called method of relaxations. It consists into iteratively
picking a point among interior points and update it with the weighted average of its neighbors,
thus locally meeting the averaging property above. Repeating this averaging process, going through
interior points again and again, is resulting in a better and better estimate of the harmonic solution.

In the following we will consider algorithms similar to the method of relaxations, running on graphs
such as the one in Fig. 2 (presented here with the harmonic solution to the Dirichlet Problem).



Fig. 1. Electrical network Fig. 2. Equivalent graph and harmonic solution

3 Notation

Let us define the nomenclature used throughout this paper: we denote vectors by bold letters, e.g. x
and vector coordinates using an index, e.g. xi for coordinate i of vector x. Matrices are capital bold
letters, e.g. A, and matrix entries use a double indexation, e.g. Aij for entry (i, j) of matrix A. The
transposition operator is noted >. The k× k identity matrix is Ik, the k× 1 vector of ones (zeros) is
1k (0k), and the k × l matrix of ones (zeros) is 1k,l (0k,l).

The dimensionality of the space we consider is n, except when stated. The Euclidian base of IRn

is made of vectors e1 = [1, 0, . . . , 0], e2 = [0, 1, . . . , 0], . . ., en. In this space, l1,l2 and infi-
nite norm are respectively denoted by ‖x‖1 :=

∑n
i=1 |xi|, ‖x‖2 :=

√∑n
i=1 x2

i ,and ‖x‖∞ :=
maxi∈{1,...n} xi. The dimensionality (number of elements) of a discrete set S is noted |S|.

4 Graphs and Laplacian Spectrum

In this article we consider undirected simple graphs, connected, without loops (self-edges). That
means, there can not be more than one edge between two vertices, there exists a path between any
two vertices, and no edge is linking one vertex to itself. Let G be such a graph with vertex set
V = {1, . . . n}, edge set E(G) := E ⊆ {(i, j)}i,j∈V, i<j and n × n weight matrix A such that
Aij = 1 if (i, j) ∈ E and zero otherwise. This setting corresponds to an unweighted graph, but
most results presented in this paper can easily be extended to weighted graphs. The graph Laplacian
L(G), which we denote L when it is not ambiguous, is the n × n matrix defined as L := D −A,
where D = diag(d1, . . . , dn) and di is the degree of vertex i, di =

∑n
j=1 Aij . In Fig. 2 we have

shown a simple graph composed of 4 vertices and 4 edges. Its weight matrix and Laplacian matrix
are respectively

A =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 and L =

 2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

 .

L is symmetric positive semi-definite with real eigenvalues λ1 ≤ λ2 ≤ . . . λn.A number of proper-
ties have been proven, linking eigenvalues of the Laplacian matrix and properties of the graph (see
[Moh91] for a detailed survey). Among them, the following give a good intuition of the role played
by the smallest non-zero and the largest eigenvalue.

1. The smallest eigenvalue of L is λ1 = 0 and correspond to eigenvectors which are piece-
wise constant on the components of G. The multiplicity of the 0 eigenvalue is equal to the
number of components of G so if G is connected (1 component), λ2 > 0.

2. λ2 ≥
4

n diam(G)
where diam(G) denotes the diameter of G, that is the largest distance

between any two vertices of G.

3. if G is connected, λ2 ≥ 2µ(G)(1− cos π
n ) where µ(G) is the edge-connectivity of G, that

means, the number of edges whose deletion would disconnect G.

4. λn ≤ max {du + dv, (u, v) ∈ E(G)},



5. if G is a simple graph then λn ≤ n with equality if and only if the complement of G is not
connected.

As we can guess from the lower bounds, λ2 (often called algebraic connectivity of G, or Fiedler
constant) represents how ‘connected’ G is. The higher the value of λ2 is, the more connected G is.
On the other hand, the lower λ2 is, the better partitioned G can be. For example, the path graph with
n vertices has an algebraic connectivity of λ2 = O( 1

n2 ), a n-dimensional hypercube has a λ2 = 2,
whereas for a fully connected graph with n vertices (often called a complete graph), λ2 = n.

5 Hilbert Space of Functions on a Graph

LetR(G) be the linear space of real-valued functions defined on the graph G, i.e., an n-dimensional
vector space whose elements are the real vectors g = (g1, . . . , gn)>. As seen in [HPW05], we
can define a linear subspace H(G) of R(G) which is orthogonal to the eigenvectors of L with zero
eigenvalue, that is,H(G) := {g : g>ui = 0, i = 1, . . . , r}. Since we consider a G that is connected,
L has only one eigenvector with eigenvalue zero (the constant vector) and therefore

H(G) := {g :
n∑

i=1

gi = 0}. (1)

On R(G) we define a semi-inner product 〈f ,g〉L := f>Lg =
∑

(i,j)∈E(G) Aij(fi − fj)(gi − gj)
with its associated semi-norm

‖g‖2L = g>Lg =
∑

(i,j)∈E(G)

Aij(gi − gj)2. (2)

On H(G), < ., . > is an inner-product and ‖.‖L is a norm. An obvious analogy with the electrical
energy dissipation can be noticed, where the edges are replaced with resistors Rij = A−1

ij .

6 Minimization Using Coordinate Descent

6.1 Properties of Strongly Convex Quadratic Forms

We now consider strongly convex quadratic forms of IRn. This means that such functions can be
written

f : IRn → IR, f(x) = x>Hx + b>x + c (3)
where the Hessian H is a positive definite real matrix, with positive eigenvalues. Note: we only
consider functions which are not identically equal to +∞. Strongly convex functions have some
remarkable properties, described in detail in [BV04]. In particular, [BV04, §9.1.2] and well-known
results of algebra yields:

Theorem 1. A strongly convex quadratic form f with domain dom f = IRn has got one unique
minimum f(x∗) on IRn, satisfying ‖∇f(x∗)‖2 = 0.

Theorem 2. Let f : IRn → IR, f(x) be a strongly quadratic form, and let 0 < µ1 ≤ . . . ≤ µn be
the eigenvalues of its Hessian matrix H. Then for all (x,y) in IRn × IRn

µ1

2
‖y − x‖22 ≤ f(y)− f(x)−∇f(x)>(y − x) ≤ µn

2
‖y − x‖22 . (4)

This can be used to bound the distance between an input x and the optimal input x∗ minimizing f :Insert
Com-
ments
about
these
in-
equal-
i-
ties
?

Corollary 1. Under the same assumptions as Theorem 2

f(x)− 1
2µ1

‖∇f(x)‖22 ≤ f(x∗) ≤ f(x)− 1
2µn

‖∇f(x)‖22

and
µ1

2
‖x∗ − x‖22 ≤ f(x)− f(x∗) ≤ µn

2
‖x∗ − x‖22



6.2 Steepest Coordinate Descent Algorithm

We now want to find the unique solution x∗ to the minimization problem

min
x∈IRn

f(x) := x>Hx + b>x + c (5)

where f is a strongly convex quadratic form as described previously. We use a steepest coordinate
descent algorithm producing a minimizing sequence x(k), k = 1, 2, . . . , recursively obtained from
the starting point x(0) by the update rule

x(k+1) = x(k) + t(k)∆x(k) (6)

where the search direction ∆x(k) is chosen to be the steepest descent direction corresponding to
l1-norm, that is, the coordinate direction along which the gradient of f is the biggest:

∆x(i) = −∂f(x)
∂xi

ei where i = arg max
i=1,...,n

∣∣∣∣∂f(x)
∂xi

∣∣∣∣ (7)

We assume that an exact line search is done, that means, at every update, t(k) is chosen to minimize
f along the ray {x + t∆x(i) | t ≥ 0}.

Theorem 3. The steepest coordinate descent algorithm with exact line search converges linearly in
the number of steps k:

f(x(k))− f(x∗) ≤ ck
[
f(x(0))− f(x∗)

]
(8)

where c = 1− m
n M and m (resp. M ) is any lower (upper) bound of the smallest (largest) eigenvalue

of the Hessian matrix ∇2f(.) = H. Besides the maximum squared error made on a coordinate of
x(k) is bounded:

‖x(k) − x∗‖2∞ ≤ ‖x(k) − x∗‖22 ≤
M

m
ck‖x(0) − x∗‖22 ≤

√
nM

m
ck‖x(0) − x∗‖2∞

Proof. The proof of this theorem can be derived similarly to the proof for simple gradient descent
in [BV04, §9.3.1], by noticing that the norms ‖.‖2 and ‖.‖∞ are equivalent and in particular that for
all x in IRn, ‖x‖2 ≥ ‖x‖∞ ≥ 1√

n
‖x‖2. ut

Corollary 2. The maximum number of steps to perform in order to reach f(x∗) within a tolerance
ε (that means, so that f(x(k)) ≤ f(x∗) + ε ) is:

kmax = log
[
f(x(0))− f(x∗)

ε

]
log (1/c)−1

Similarly, the number of steps to perform in order for the maximum error on a node to be less than
ε′ := η‖x(0) − x∗‖2 is

k′max = log
[
M‖x(0) − x∗‖22

mε′2

]
log (1/c)−1 = log

[
mη2

M

]
log (c)−1

The expression of kmax in both formulae suggests that the number of iterations depends on how
close to x∗ the initial point is, and what the final required accuracy is. It also depends of M/m –
which is an upper bound of the condition number of ∇2f(x) = H over IRn – and of the dimension-
ality n of the space.

7 Relaxation Algorithms

Now that we have seen some remarkable convergence properties of steepest coordinate descent
algorithm when used to minimize strongly convex quadratic forms of IRn, we use these results on
three learning problems on a graph G.



7.1 Learning on a Graph

We consider a graph G built from a collection of n samples {x1, . . . ,xn}. Each vertex represents a
sample, and edges represent some similarity concept between two vertices. We assume that some of
the samples are labelled, say the first l, with labels {y1, . . . , yl}, and that other samples come without
labels. Let G(K) be the subgraph of G containing only labelled vertices, and G(U) the subgraph
containing only unlabelled vertices; we assume that G(U) is connected. We define L(K) and L(U) to
be their respective Laplacians. Finally let E(K, U) be the set of edges between G(K) and G(U) in G.
We consider the problem of learning a function g on the graph G, such that gi = yi,∀i = 1, . . . , l.

Batch algorithms have been proposed to learn functions on a graph [BN04, ZGL03]. These methods
compute g by solving a squared linear system of n and n − l equations respectively. Labels can
then be obtained by traditional methods such as harmonic threshold or class mass normalization. An
online implementation using the Laplacian kernel has also been proposed in [HPW05], and involves
computing the pseudo-inverse of L offline and solving a linear system of l equations. In this paper
we use an algorithm based on steepest coordinate gradient descent.

We consider the problem of learning a function g∗ on G, solution to one of the following constrained
optimization problems:

(P1) min
g∈IRn

{g>Lg : gi = yi, i = 1, . . . , l}

(P2) min
g∈IRn

{g>(L + a In)g : gi = yi, i = 1, . . . , l, a > 0}

(P3) min
g∈H(G)

{g>Lg : gi = yi, i = 1, . . . , l}

These problems all correspond to finding a smooth functional g realizing an exact interpolation on
known vertices 1, . . . , l. The smoothness is defined for problem (P1) and (P3) by the Laplacian
semi-norm of g on G ; for (P2) it is a combination of the Laplacian semi-norm and the standard
l2-norm with a factor a. Finally, recent papers have underlined the interest of finding a functionexplain

bet-
ter

compatible with the Hilbert space H(G) defined on the graph: this supplementary constraint is
present here in problem (P3). We now prove in the following that these problems are equivalent to
minimization of quadratic forms with positive definite Hessian. In 7.4 we derive a steepest coordinate
descent algorithm as a series of simple updates ‘on the vertices of G’.

7.2 Problems (P1) and (P2)

Equivalent Unconstrained Problems.

For problems (P1) and (P2) we prove that F is equivalent to a quadratic form IRn−l. To achieve
this we express the equality constraints in a matrix form: Cg = y where y is a l × 1 vector y =
[y1 . . . yl]

> and C is a l × n matrix C = [ Il 0l,n−l ]. A particular solution of this equation is
q = [y1 . . . yl 0 . . . 0]>. Constrained problems (P1) and (P2) can then be written as unconstrained
problems:

(P1′) min
z∈IRn−l

{FR(z) := (q + Rz)>L(q + Rz)} (9)

(P2′) min
z∈IRn−l

{FaR(z) := (q + Rz)>(L + a In)(q + Rz), a > 0} (10)

where R ∈ IRn×(n−l) is any matrix whose range is the nullspace of C. We choose R =
[0l,n−l In−l ]

>. The functions FR and FaR are quadratic forms of IR(n−l). We show in the next
paragraph that their respective Hessian matrices are positive definite.

Eigenvalues of the Hessian Matrix.

Let L|U := R>LR be the (n − l) × (n − l) matrix containing the entries of L corresponding to
unknown samples. Let λ1 ≤ . . . ≤ λn and µ1 ≤ . . . ≤ µn−l be the eigenvalues of L and L|U
respectively. L|U is diagonally dominant and positive semi-definite so µ1 ≥ 0. L is a real n × n
symmetric matrix and R is a n× (n− l) matrix with orthonormal columns. We recall the following
well-known theorem:



Theorem 4. (Interleaving eigenvalues theorem.) Let A be a real p × p symmetric matrix with
eigenvalues a1 ≤ . . . ≤ ap. Let X be a p× q matrix with orthonormal columns (q ≤ p), and let the
q× q matrix B = X>AX have eigenvalues b1 ≤ . . . ≤ bq. Then ∀i = 1, . . . , q, ai ≤ bi ≤ ai+p−q.

We are now able to characterize eigenvalues of L|U with respect to the Laplacian eigenvalues:

Lemma 1. The extreme eigenvalues of L|U are bounded according to µ1 ≥ l
n+l λ2 and µn−l ≤ λn.

Proof. Let z1 be a non-zero eigenvector of L|U associated with the smallest eigenvalue µ1. Let
g1 := Rz1 − z̃1n be the orthogonal projection of Rz1 on H(G). g1 is found simply by removing
the mean z̃ := 1

n (1>n Rz1) of Rz1 from every coordinate of Rz1. Since (Rz1)i = 0 for i = 1, . . . , l ,

g1
>g1 =

n∑
i=1

(g1i)2 = lz̃2 +
n∑

i=l+1

(g1i)2 ≥ lz̃2 (11)

Besides Pythagorean theorem states that (Rz1)>(Rz1) = g1
>g1 + 1

n (u1
>Rz1)2, so from inequal-

ity (11) we get
z>1 z1 = (Rz1)>(Rz1) ≤

(
1 +

n

l

)
g1
>g1 (12)

And therefore

µ1 =
z1
>L|Uz1

z1
>z1

=
g1
>Lg1

(Rz1)>(Rz1)
≥ l

n + l

g1
>Lg1

g1
>g1

(13)

The Rayleigh-Ritz characterization of eigenvalues of L states that for all g in H(G) non-zero,

λn ≥
g>Lg
g>g

≥ λ2 (14)

Because z1 is non-zero, it is straightforward to see that g1 is non-zero. Therefore, we can combine
(13) and (14) to obtain

µ1 ≥
l

n + l
λ2 (15)

The second part of the proof is directly obtained from Theorem 4. ut

Note: we can prove that this bound is semi-tight by considering the case where G is a complete graph
(λ2 = n). In that case G(U) is a complete graph as well (eigenvalues 0, (n−l), . . . , (n−l)), and L|U
can be decomposed in L(U) + l In−l.The eigenvalues of L|U are 0 + l, (n− l) + l, . . . , (n− l) + l:
µ1 = l. The bound is then l ≥ l n

n+l so we can immediately notice that we can make the right hand
side as close as we want to the left hand side by using increasing values of n.

Finally we prove that both problems (P1) and (P2) are quadratic forms of IR(n−l) with positive
definite Hessians. Indeed the respective Hessian matrices are ∇2FR(z) = 2L|U with eigenvalues
{2µ1, . . . , 2µn−l} and∇2FaR(z) = 2(L|U+a In−l) with eigenvalues {2(µ1+a), . . . , 2(µn−l+a)}.

7.3 Problem (P3)

Equivalent Unconstrained Problem.

We express problem (P3) as an unconstrained problem. To achieve this we express the equality in

a matrix form: C+g = [y1 . . . yl 0]> where C+ is the (l + 1) × n matrix C+ =
[

Il 0l,n−l

1>n

]
. Let

s ∈ IRn be a solution to this constraint and Q ∈ IRn×(n−l) any matrix whose range is the nullspace
of C+. Problem (P3) can then be written as an unconstrained problem:

(P3′) min
z∈IRn−l

{FH(z) := (s + Qz)>L(s + Qz)} (16)

Let ȳ := 1
n−l

∑l
k=1 yk. For the following we choose s =

[
y> −ȳ, . . . ,−ȳ

]>
, and

Q =
[

0l,n−l

In−l − 1
n−l1n−l,n−l

]
. The function FH is a quadratic form of IR(n−l).



Since the dimensionality of the problem is n− l−1, an even simpler form can be found in IRn−l−1,
with a Q ∈ IRn×(n−l−1). However in order to keep the balance between all vertices and in particular
to have a nicer coordinate descent step we have chosen to add an useless dimension to the problem.
Hence the reader might guess that the resulting function’s Hessian is NOT positive definite and that
we might not be able to use previous results. Nevertheless we remark that FH(z+α1n−l) = FH(z)
for any z ∈ IRn−l and α ∈ IR, so we can equivalently study the restriction of FH to the lower
dimensional space H(U) := H(G(U)) = {z ∈ IRn−l : z>1n−l = 0}. We show in the next
paragraph that its Hessian matrix has only positive eigenvalues on this subspace.

We immediately notice that a coordinate descent on FH will necessarily end up outside of H(U). As
we have seen previously the problem is invariant by translation along the direction 1n−l, so we are
going to use a projection onto H(U) along this direction after each step of the descent algorithm. We
find out that the resulting method is behaving as expected in terms of speed (see Sect. 7.5).

Eigenvalues of the Hessian Matrix.

Note: For readability issues we keep the notation µi to denote eigenvalues of the matrix we consider.

Lemma 2. The first and last eigenvalues of Q>LQ associated with eigenvectors in H(U) are
bounded according to µ2 ≥ λ2 and µn−l ≤ λn.

Proof. For any z in
[
H(U)

]⊥
, Q>LQz = 0n so the smallest eigenvalue of Q>LQ is µ1 = 0, and

the associated eigenvectors are constant vectors. We observe that (Q>Q) = In−l− 1
n−l1n−l,n−l so

for any z ∈ H(U), (Q>Q)z = z and

z>(Q>LQ)z
z>z

=
(Qz)>L(Qz)
(Qz)>(Qz)

(17)

Finally for all z ∈ IRn−l, Qz is in H(G) so from the Rayleigh-Ritz inequalities (14) we obtain
µ2 ≥ 1× λ2 and µn−l ≤ 1× λn. ut

Note: we can prove that this bound is semi-tight. We consider a complete graph; the eigenvalues of
L are 0 with multiplicity 1, and n with multiplicity (n − 1). Then for any z in H(U), Qz ∈ H(G)
so necessarily Qz2 is an eigenvector of L of eigenvalue n.

Finally the Hessian matrix ∇2FH(z) = 2Q>LQ has only positive eigenvalues {2µ2, . . . , 2µn−l}
on H(U). To conclude this Section we proved that all three problems (P1), (P2) and (P3) are
equivalent to minimization of strongly convex quadratic forms. We can now apply Theorem 1 for
(P1) and (P2), and a similar theorem holding for strongly convex closed functions in the case of
(P3). Therefore they all have a unique optimal solution on their respective domains. This solution
can be approached by using any classic descent method, e.g. steepest descent.

7.4 Update Rules of the Relaxation Algorithms

We now work out the value of the gradient for each problem, so that we can find the g which sets
coordinate k of the gradient to zero (this is coordinate gradient descent with exact line search).

Problems (P1) and (P2).

The kth coordinate of the gradient of the energy for the equivalent unconstrained problem (P1′) is
(∇FR)k = 2(R>L(q + Rz))k.

(∇FR)k = 2dk+lzk −
∑

j:(k+l,j)∈E(G(U))

2zj −
∑

j∈G−G(U)
:(k+l,j)∈E(G)

2yj (18)

Setting the (i − l)th coordinate to zero and using g = [y1 . . . yl z1 . . . zn−l]>, we find a simple
update formula:

gi =
1
di

∑
j:(i,j)∈E(G)

gj (19)



Similarly from problem (P2′) we obtain

gi =
1

di + a

∑
j:(i,j)∈E(G)

gj (20)

Hence one step of coordinate descent with exact line search consists in setting coordinate gi of the
current vector g to the average of its neighbors for problem (P1), and to a regularized average of
its neighbors for (P2). We point out that the resulting algorithm for (P1) is exactly the algorithm
applied in the so-called method of relaxations to solve the Dirichlet problem.

Problem (P3).

Let ȳ = 1
n−l

∑l
i=1 yi and z̄ = 1

n−l

∑n−l
i=1 zi. Let d

(K)
i when i > l denote the number of ex-

isting edges between the unknown vertex i and known vertices j ∈ {1, . . . , l} ; let δ(K, U) =∑n
i=l+1 d

(K)
i = |E(K, U)| be the total number of edges between known vertices and unknown

vertices. Finally let Φi = 2d
(K)
i − δ(U,K)

n−l . Φi is the difference between two times the number of
edges between the unknown vertex i and known vertices, and the average of this number across
all unknown vertices. We assume that before performing the update, z is such that z̄ = 0, that is,
g ∈ H(G). For example we start with g = s. The following two-steps update rule can be derived
similarly to the ones in 7.4:

- update gi with

g+
i =

∑
(i,j)∈E(G)

gj −
Φigi

n− l
− 1

n− l

∑
(p,q)∈E(K,U)

(gp − gq)

di −
Φi

n− l

(21)

- update all the unknown vertices j in {l + 1, . . . , n} (including vertex i) with

g+
j = gj −

1
n− l

n∑
k=1

gk (22)

The first part of this update rule is quite close to what we have found in previous problems, except
that here we take the average of the neighbors AND the vertex i itself – with a coefficient depending
on its connectivity. A constant term is also present ; it depends on the continuity of the labels at the
border between known vertices and unknown vertices. It is interesting to note that for a large number
(n− l) of unknown vertices we tend to the same update rule than for problem (P1).

Conclusion: Finally, coordinate descent with exact line search consists for these three problems in
setting coordinate gi of the current vector g to the average of its neighbors, a regularized average, or
a simple function of other vertices. Of course, g is only updated on the unknown part of the graph.

7.5 Convergence of the Relaxation Algorithms

Now that we have found how to implement steepest coordinate descent algorithms in order to solve
these three learning problems, we provide simple bounds for their convergence.

Theorem 5. The steepest coordinate descent algorithms with exact line search described in Sect. relaxation?
replace
c
by
(1-
c)
ev-
ery-
where
?

7.4 converge linearly in the number of steps k:

‖g+‖2L − ‖g∗‖2L ≤ ck
(
‖g‖2L − ‖g∗‖2L

)
where c = 1− l λ2

(n2−l2) λn
for (P1), c = 1−

l
n+l λ2+a

(n−l) λn+a for (P2), and c = 1− λ2
(n−l−1) λn

for (P3).

Corollary 3. The maximum number of steps to perform in order to reach ‖g∗‖2L within a tolerance
ε is:

kmax =
log
(
‖g(0)‖2L − ‖g∗‖2L

ε

)
log (1/c)

(23)



Proof. Problems (P1) and (P2). We apply the bounds found in Sect. 6 for the function
FR : z 7→ F (q + Rz), with domFR = IRn−l. From the Rayleigh-Ritz inequalities (14) applied
to L|U the following holds:

∀z ∈ S, m z>z ≤ z>∇2FR(z)z ≤ M z>z (24)

with m = 2µ1 and M = 2µn. We then proceed as in the proof of Theorem 3 with
c = 1− µ1

(n− l)µn−l
. It is possible to iterate recursively – the coordinate descent is done only

on coordinates (l + 1, . . . n) – to find the equivalent of equation (8):

‖g(k)‖2L − ‖g∗‖2L ≤ ck
(
‖g(0)‖2L − ‖g∗‖2L

)
(25)

From Lemma 1 we finally derive an upper bound of c with respect to eigenvalues of L. The proof is
similar for (P2). ut

Proof. Problem (P3). The function FH is not strongly convex, only its restriction to H(U) is. We
perform a steepest coordinate gradient descent with exact line search on the function FH . Recall that
the current point is such that z̄ = 0 (see Sect. 7.4, item 3.) so z ∈ H(U). From current point z, we
go to point z+(t) = z − t∂FH(z)

∂zi
ei. However the strong convexity result in Theorem 2 holds only

if both y and x are in H(U). In order to use it, we consider the projection z′(t) of z+(t) onto H(U):

z′(t) =
(
In−l −

1
n− l

1n−l,n−l

)
z+(t) (26)

This projection is done by translating z+(t) along the invariance direction, so FH(z′(t)) =
FH(z+(t)). We now start from Theorem 2, replacing y with z′(t) and x with z:

FH(z′(t)) ≤ FH(z) +∇FH(z)>(z′(t)− z) +
M

2
‖z′(t)− z‖22 (27)

The difference between z′ and z is

z′(t)− z = t
∂FH(z)

∂zi

(
1

n− l
1n−l − ei

)
(28)

and the squared norm of that difference is

‖z′(t)− z‖22 = t2‖∇FH(z)‖2∞
(

n− l − 1
n− l

)
. (29)

The function FH is invariant by translation along the direction 1n−l so its gradient is necessarily in
H(U). Therefore, the scalar product between (z′(t)− z) and the gradient of FH is:

∇FH(z)>(z′(t)− z) = −t
∂FH(z)

∂zi
∇FH(z)>ei = −t‖∇FH(z)‖2∞ (30)

so combining with (27) and writing F̃H(t, i) for FH(z′(t)) we obtain

F̃H(t, i) ≤ FH(z)− t ‖∇FH(z)‖2∞ +
Mt2

2
‖∇FH(z)‖2∞

(
n− l − 1

n− l

)
(31)

the following is similar to the standard proof, with M
(

n−l−1
n−l

)2

instead of M , see [BV04]. So the
convergence results are still valid and in particular Theorem 5 holds for problem (P3), with the
following simpler upper bound for c: c = 1− (n−l)λ2

(n−l−1)2 λn
≤ 1− λ2

(n−l−1) λn
.

ut

To conclude, in this Section we proved that all three minimization problems (P1), (P2), and (P3)
can be solved by a simple steepest coordinate descent algorithm, converging linearly with a rate
depending on characteristic eigenvalues of L.



Table 1. Relaxation Algorithms

Pb. Objective Constraints Update Rule (i ∈ {l + 1, . . . , n}) Ref.Function (dimensionality)

P1 g>Lg
Cg = y
(n− l) gi =

S(i)

di

(19)

P2 g>(L + a In)g
Cg = y
(n− l) gi =

S(i)

di + a
(20)

P3 g>Lg
H(G),Cg = y

(n− l − 1)
g+

i =

S(i)− Φigi

n− l
− 1

n− l

X

(p,q)∈E(K,U)

(gp − gq)

di −
Φi

n− l

∀j ∈ (l + 1, . . . , n), g+
j = gj − 1

n−l

Pn
k=1 gk

(21)

Table 2. Convergence Constants

Pb. Convergence Ref. Upper bound of c (1) Upper bound of c (2)Constant (c)

P1 1− l λ2

(n2 − l2) λn
Th. 5 1− 4l

(n2 − l2) n2D
1− 4l

(n2 − l2) n2(n− 1)

P2 1−
l

n+l
λ2 + a

(n− l) λn + a
Th. 5 1−

4l
(n+l)nD

+ a

(n− l) n + a
1−

4l
(n+l)(n−1)n

+ a

(n− l) n + a

P3 1− λ2

(n− l − 1) λn
Th. 5 1− 4

(n− l − 1) n2D
1− 4

(n− l − 1) n2(n− 1)

7.6 Summary

The update rules and bounds of the four algorithms are summarized in tables 1 and 2. Note: Cg = y
denotes the constraint on labelled vertices gi = yi, i = 1, . . . , l ; S(i) :=

∑
(i,j)∈E(G) gj denotes

the sum of values of the neighbors of vertex i. D denotes the diameter of G, i.e. the largest distance
between any two vertices of G. Finally, Φi = 2d(K)

i − δ(U,K)
n−l .

8 Discussion and Remarks

Complexity. The expressions for the convergence constants in Sect. 7.6 seem to be consistent with
the meaning of λ2: we can see that c decreases when λ2 increases. This is not surprising because
the more connected a graph is, the easier the information can flow from known vertices to unknown
vertices, and the faster the algorithm should converge. From Theorem 5, the maximum number of
steps, kmax, is of order 1

1−c . It is interesting to note that if we keep the ratio l/n (quota of labelled
vertices) constant, the worst case for problem (P1) is kmax = O(n4), whereas for problem (P2)
it is only kmax = O(n2): it seems that the presence of an other smoothness measure prevents the
algorithm to be too slow when n is large. For problem (P3), the worst case is kmax = O(n4).

Bounding the Maximum Value of a Vertex. In problems (P1) and (P2) we choose to start the
execution of the algorithm with z(0) such that ‖z(0)‖∞ ≤ ‖y‖∞. In such case the maximum value
of g(k) on the vertices is bounded: at any step k > 0:

‖g(k)‖∞ ≤ max
i=1,...,l

|yi| = ‖y‖∞ (32)

Indeed, every update on a vertex is an average of the neighbors, and therefore will result in smaller
absolute value than the one of the maximum known vertex.



Bounding the Maximum Squared Error. The application of Theorem 3 in Sect. 6.2 also provides
us with a bound on the maximum squared error made on a vertex:

‖g(k) − g∗‖2∞ ≤ ‖g(k) − g∗‖22 ≤
√

n ck

d(1− c)
‖g(0) − g∗‖2∞ (33)

where d stands for the dimensionality of the problem (resp. n− l, n− l and n− l− 1 for problems
(P1), (P2) and (P3)). To prove this we note that M/m = 1

d(1−c) when c = 1 − m
d M , so if we

use a bigger c (cf. the values of c using the λs) we obtain M/m ≤ 1
d(1−c) . We then can use (32) to

eliminate g∗ for problems (P1) and (P2):

‖g(k) − g∗‖2∞ ≤ ‖g(k) − g∗‖22 ≤
4
√

n ck

d(1− c)
‖y‖2∞ (34)

*POTENTIALLY INSERT EQUIVALENT OF 34 FOR P3*

Generalization to Non-connected Graphs. Most results in this paper can easily be extended to
the general case where G is not necessarily connected. The minimum requirement is that there is a
path between every vertex in G(U) and at least one labelled vertex in G(K) In other words if every
unknown vertex has at least one way to ‘receive’ the information coming from the known vertices.
In particular, λ2 is replaced by the first non-zero eigenvalue of L in Lemmas 1, and 2.

9 Conclusion

We have presented and analyzed a new semi-supervised algorithm on graphs that fits labelled data
exactly. The simplicity of the consensus algorithm makes it a natural and intuitive way of learning
a function on large graphs, specially with a highly parallel architecture. On a sequential machine,
an efficient implementation using a heap might outperform inverse-based and gradient methods for
very large graphs.
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A Discussion and Remarks

A.1 Bounding the Maximum Value of a Vertex

Theorem 6. For problem (P3),

‖g‖∞ ≤ ‖y‖∞

√
2ld

λ2
(35)

where d = 1
l

∑l
i=1 di is the average degree of the known vertices.

Proof. All unknown vertices are initially assigned to value −ȳ. Using the Rayleigh-Ritz characteri-
zation of eigenvalues we get

‖g‖2L ≥ λ2‖g‖22 ≥ λ2‖g‖2∞ (36)

Besides g(0) = s =
[
y> −ȳ, . . . ,−ȳ

]>
so, recalling that d

(U)
i is the number of edges between

vertex i and unknown vertices, we have

‖g(0)‖2L =
∑

(i,j)∈E(G)

(gi − gj)2 =
∑

(i,j)∈E(G)\E(G(U))

(gi − gj)2

=
∑

(i,j)∈E(G(K))

(yi − yj)2 +
l∑

i=1

d
(U)
i (yi + ȳ)2

≤
[
#(E(G)\E(G(U)))

]
(2 ‖y‖∞)2 (37)

≤

[
1
2

n∑
i=1

di −
1
2

n∑
i=l+1

di

]
(2 ‖y‖∞)2 (38)

≤ 2

(
l∑

i=1

di

)
‖y‖2∞ = 2ld‖y‖2∞ (39)

(40)

*MISSING : prove that ‖g(k+1)‖∞ ≤ ‖g(k)‖∞*
so finally

‖g‖∞ ≤ 1√
λ2

‖g‖L ≤
1√
λ2

‖g(0)‖L

‖g‖∞ ≤ ‖y‖∞

√
2ld

λ2
(41)

ut

Claim 1 (not proven) For problem (P3), if l < n
2

‖g‖∞ ≤ ‖y‖∞ (42)

Counter-example when l ≥ n
2 : the path graph with 5 vertices, vertices 1, 4 and 5 being labelled

with the same label x. In that case the solution to (P3) is labels 2 and 3 labelled both with −3x
2 .

A.2 Performance of a Pass Through Each Vertex

For problem (P1), surprisingly enough, if we update every unknown vertex once (1 pass in any
order, without taking into account which vertex is the ‘steepest’–we denote this vertex by s), the
progress is not necessarily bigger than one single step of steepest descent.

However, the following holds (for algorithms (P1) and (P2)):



Claim 2 If we sequentially update every unknown vertex once, in any particular order, either one of
these updates will correspond to a steepest step (vertex with maximum tension), or at the end of the
pass through the n−l vertices we will have made more progress that the progress that we would have
made with one steepest step. The tension of vertex i denotes the absolute value of the ith coordinate
of the gradient of the objective function FR; Ti := |digi − S(i)| where S(i) =

∑
(i,j)∈E(G) gj is

the sum over the neighbors of vertex i.

Proof. to be rewritten more formally We prove this by showing that during the update process, either
the vertex that we update now is the steepest, or the steepest (we denote this vertex by s) keeps being
in the set of vertices that we have not updated yet, or we have already made more progress than the
steepest descent progress. In other words we prove that the steepest vertex (s) can not become one
of the vertices that we have already updated (i) unless we have made more progress than the one
we would make by updating i again. We will use upper scripts (k−) and (k+) to refer to the value of
a quantity just before and just after updating vertex k (this makes sense only if k has already been
updated).
The vertex that we just updated is noted j. Let us consider a vertex i which has already been updated

g
(j+)
i =

S(i)(i−)

di
(43)

Now let us compute the tension of vertex i after updating j:

T
(j+)
i =

∣∣∣dig
(j+)
i − S(i)(j+)

∣∣∣ (44)

but some neighbors of i might have been updated since we updated i:

S(i)(j+) = S(i)(i−) −
∑

k∈Up(i→j)
(k,i)∈E(G)

(
g
(k−)
k − S(k)(k−)

dk

)
(45)

so finally

T
(j+)
i =

∣∣∣∣∣∣∣
∑

k∈Up(i→j)
(k,i)∈E(G)

(
g
(k−)
k − S(k)(k−)

dk

)∣∣∣∣∣∣∣ (46)

and

T
(j+)
i ≤

 ∑
k∈Up(i→j)
(k,i)∈E(G)

T
(k−)
k

dk

 ≤
∑

k∈Up(i→j)
(k,i)∈E(G)

T
(k−)
k (47)

So the tension of vertex i, that we have already updated and can not update any more in this pass, is
less than the sum of the tensions of all its neighbors that we have updated since. Now let us look at
the progress that each update is making. For one (not necessarily steepest) step along direction p we
have a similar inequality than (88):

‖g(p+)‖2L − ‖g∗‖2L ≤

(
1− m

M

(T (p−)
p )2

‖∇FR(g(p−))‖22

)(
‖g(p−)‖2L − ‖g∗‖2L

)
(48)

so finally

‖g(j+)‖2L − ‖g∗‖2L
‖g(i+)‖2L − ‖g∗‖2L

≤
∏

k∈Up(i→j)
(k,i)∈E(G)

1− m

M

T
(k−)
k

2

‖∇FR(g(k−))‖22



≤ 1− m

M

(∑
k∈Up(i→j)
(k,i)∈E(G)

T
(k−)
k

)2

‖∇FR(g(i+))‖22

≤ 1− m

M

T
(j+)
i

2

‖∇FR(g(i+))‖22
(49)



Therefore, if the new steepest descent vertex becomes one that we already updated (e.g. i in this
proof), then the progress that we can not make by updating the steepest has necessarily been already
done on the neighbors of i.

ut

An alternative theorem based on probabilities:

Theorem 7. Consider a coordinate gradient descent algorithm, where at each step the vertex to be
updated is chosen randomly. This algorithm converges linearly in expectation, with a convergence
constant c1/n where c is the convergence constant of the corresponding steepest coordinate descent
algorithm (can be (P1) or (P2)).

Proof. (sketch) At each step there is a probability of 1
n of choosing the direction of steepest descent,

therefore every n steps we expect to choose the steepest direction. ut

A.3 Combining the Laplacian Distance with Another Distance Measure

Using a kernel matrix K instead of In in g>(L + a In)g (problem (P2)) allows to use a combi-
nation of smoothness along the graph and with respect to the corresponding kernel. However, the
corresponding update step becomes more complex since not only the neighborhood of considered
vertex is used but also every other vertex:

gi =
1

di + aKii

 ∑
j:(i,j)∈E(G)

gj − a
n∑

k=1
k 6=i

Kikgk

 (50)

A.4 Minimum Norm Interpolation (MNI)

Problem (P3) can be solved directly by Minimum norm interpolation (MNI). The reproducing ker-
nel of H(G) is the pseudo-inverse of the Laplacian K = L+. With the representer theorem, we
express the coordinates of g as

gi =
l∑

j=1

Kijcj (51)

The solution of (P3) is given by c = K̃+y where K̃ = (Kij)
l
i,j=1, see [HPW05]. However we

need to compute K = L+ first so the complexity is O(n3) and the amount of memory used is
O(n2). CHECK

A.5 Adding a Second Smoothness Measure to (P3)

Similarly to problem (P2) we can come up with a problem adding a second smoothness measure to
(P3):

min
g∈H(G)

{g>(L + a In)g : gi = yi, i = 1, . . . , l} (52)

The corresponding update rule is similar, with

g+
i =

∑
(i,j)∈E(G)

gj −
(Φi + a)gi

n− l
− 1

n− l

∑
(p,q)∈E(K,U)

(gp − gq)− aȳ

di + a− Φi + a

n− l

(53)



instead of (21). In order to find a convergence bound, we replace all the λ by λ+a in Lemma 2, and
the convergence constant c becomes:

c = 1− λ2 + a

(n− l − 1) (λn + a)
(54)

c ≤ 1−
4

nD + a

(n− l − 1) (n + a)
(55)

c ≤ 1−
4

n(n−1) + a

(n− l − 1) (n + a)
(56)

so we notice that the maximum number of steps, kmax, to perform in order to reach a chosen maxi-
mum error ε, is O(n2), like the algorithm for (P2).

A.6 Regularization and Vertex Duplication

We consider vertex duplication on the graph G: through this process, a chosen known vertex i in
G, with label yi, is linked to a new vertex with the same label, with weight 1

α . The latter, called
the duplicate, is considered as fixed (known), whereas the original vertex i becomes free (unknown)
(see Fig. 3).

Fig. 3. Vertex duplication

α tunes how strongly the prior (label of the duplicate) is taken into account. α →∞ is equivalent to
not taking into account duplicate vertices at all, whereas α → 0 means the same than no duplication
(i.e. the original node stays fixed). By extension we also consider the case where we associate a
duplicate to an unknown node (i > l): in that case the label of the duplicate is chosen to match the

one of the initial guess g(0) (remember that for (P1) and (P2), g(0) = q =
[

y
0n−l,1

]
, whereas for

(P3) it is g(0) = s =
[
y> −ȳ, . . . ,−ȳ

]>
).

Now we consider the following scenarios :

1. Only unknown nodes in G are duplicated, hence the total number of nodes is now 2n − l.
We define g′′D a function on the new graph G′′

D. g′′D
> = [g>|yD

(U)>] where y(U)
D is the

vector of initial guesses for unknown nodes. The expression of the energy becomes:

‖g′′D‖2L′′D =
1
α

n∑
i=l+1

(y(U)
D i − gi)2 + g>Lg (57)

We consider the minimum energy problem (P1):

min
g′′D∈IR2n−l

{
‖g′′D‖2L′′D

∣∣∣∣∣ g′′Di = yi, i = 1, . . . , l

g′′Di+n = y
(U)
D i, i = 1, . . . , (n− l)

}
(58)

If we take the same initial guess as we did previously for (P1) (that is, y(U)
D = q = 0n−l),

the energy becomes

‖g′′D‖2L′′D =
1
α

n∑
i=l+1

g2
i + g>Lg (59)



Hence the minimum energy problem is equivalent to

min
g∈IRn

{
g>
(
L + α−1In

)
g | gi = yi, i = 1, . . . , l

}
(60)

We can easily recognize problem (P2) with a = α−1 here. It is a minimum Laplacian
semi-norm problem regularized by the standard l2 norm.
Finally, duplicating only unknown nodes in G and solving the minimum energy problem
(P1) is equivalent to solving (P2) without any node duplication.

2. Every vertex in G is duplicated, hence the total number of nodes is now 2n. We define gD

a function on the new graph GD. gD
> = [g>|yD

>] where g = gD1,...,n is the part of gD

corresponding to the original graph G, and yD = g(0) is the vector of labels given to the
duplicates. Then the expression of the energy becomes:

‖gD‖2LD
= gD

>LDgD =
1
α

n∑
i=1

(yDi − gi)2 + g>Lg (61)

Hence the minimum energy problem (P1):

min
gD∈IR2n

{
‖gD‖2LD

|gDi+n = yDi, i = 1, . . . , n
}

(62)

is equivalent to

min
g∈IRn

{
n∑

i=1

(yDi − gi)2 + αg>Lg

}
(63)

This is a least squares problem, regularized by the Laplacian semi-norm.
3. Only known nodes in G are duplicated, hence the total number of nodes is now n + l. We

define g′D a function on the new graph G′
D. g′D

> = [g>|y>] where y is the vector of
known labels that we used throughout this paper. The expression of the energy becomes:

‖g′D‖2L′D =
1
α

l∑
i=1

(yi − gi)2 + g>Lg (64)

Hence the minimum energy problem (P1):

min
g′D∈IRn+l

{
‖g′D‖2L′D |g

′
Di+n = yi, i = 1, . . . , l

}
(65)

is equivalent to

min
g∈IRn

{
l∑

i=1

(yi − gi)2 + αg>Lg

}
(66)

This is a least squares problem as well, regularized by the Laplacian semi-norm. However,
here the least squares term only takes into account the error made on previously known
nodes (1, . . . , l) and not any more the error between unknown nodes (l + 1, . . . , n) and
their initial guess.

Scenario 3 is of particular interest because in that case regularization provides us with an important
noise tolerance. Actually if the labels in y are not error-free (that is, if the expert who gives us TO

QUAN-
TIFY

the labels beforehand has some non-zero probability of making mistakes), our standard consensus
algorithms – presented in previous sections – forces an exact interpolation leading to a function with
high Laplacian semi-norm. On the contrary, using regularization by node duplication we allow for
a compromise between an exact interpolation and a small semi-norm, which lowers the impact of
errors on the solution.

A.7 Implementation for Large Graphs

For large graphs we consider an implementation based on a ‘heap’ data structure. This structure
is well-known in computer science and used to implement efficient priority queues. The ‘heap’ is a
nearly complete binary tree where each vertex represents a vertex of G, and contains three attributes:



the index of the vertex (e.g. i ∈ V (G)), the value of the ‘tension’ at that vertex (absolute value of
the partial derivative |digi −

∑
(i,j)∈E(G) gj |) , and the value taken at that vertex by the current

interpolating function gi (see Fig. 4, the tension value is represented in green). The definition of the
‘tension’ chosen here is a measure of the progress that we could make when updating this particular
vertex with the learning algorithm. Here it has been chosen to fit the algorithm for (P1).

Fig. 4. Heap structure used for the simple graph

This structure allows us to implement steepest coordinate descent efficiently. Indeed, the heap is
chosen to be a max-heap on the tension values, which means that every vertex of the heap has a
tension higher or equal to any of its children. Then the steepest descent is done by updating the
vertex (m) of the graph towards which the vertex at the top of the heap points. This vertex has
maximum tension:

1. update vertex m indicated by the top vertex with the chosen update rule (cf. summary Sect.
7.6 for a comparison of the algorithms): its tension goes to zero and its value gm changes.

2. Max-heapify the heap: this procedure reorganizes the heap so that the max-heap property
is valid again (every vertex of the heap must have a tension higher or equal to any of its
children). This operation is O(log2 n).

3. For all the neighbors of vertex m, update their corresponding pointers in the heap, taking
into account the new value gm to compute the new tension value. Max-heapify the heap
after each of these updates.

The total update step is O(dm log2 n) where dm is the degree of vertex m. Therefore this implemen-
tation might be more efficient than an implementation cycling through all gis (non-steepest descent)
for large, sparse graphs.

Note: for problem (P3), the tension measure would be different (it is the absolute value of the partial
derivative), and besides we would have to add an extra step between steps 1. and 2. to update the
pivot. Step 3. would act on both the neighborhood of vertex m and the pivot, since both changed
values.

B Useful Results from Graph Theory

A number of properties have been proven in the field of Graph theory, linking eigenvalues of the
Laplacian matrix and properties of the graph. Here is a summary of useful results (see [Moh91] for
a detailed survey):

Theorem 8. Let G be a graph of order n (n nodes). Then

1. L(G) only has real eigenvalues λ1 ≤ λ2 ≤ . . . λn,

2. L(G) is positive semidefinite,



3. its smallest eigenvalue is λ1 = 0 and correspond to eigenvectors which are piece-wise
constant on the components of G. The multiplicity of the 0 eigenvalue is equal to the number
of components of G so if G is connected (1 component), λ2 > 0.

4. λ2 ≥ 4
n diam(G)

where diam(G) denotes the diameter of G, i.e. the largest distance

between any two vertices of G. The distance d(u, v) between two vertices u and v is defined
as being the length of the shortest path on G between u and v.

5. λ2 ≥
2

n− 1

[
ρ̄(G)− n− 2

2(n− 1)

]−1

where ρ̄(G) is the mean distance, i.e. the average of

all distances between distinct vertices of the graph.

6. if G is connected, λ2 ≥ 2µ(G)(1 − cos π
n ) where µ(G) is the edge-connectivity of G, i.e.

the number of edges whose deletion would disconnect G.

7. λ2 ≤
n

n− 1
min {dv, v ∈ V (G)},

8. λn ≤ max {du + dv, (u, v) ∈ E(G)},

9. if G is a simple graph then λn ≤ n with equality if and only if the complement of G is not
connected.

Most of these results simply extend to the non connected case when replacing λ2 with the first
non-zero eigenvalue of the Laplacian matrix.

As we can guess from the lower bounds, λ2 (often called algebraic connectivity of G, or Fiedler
constant) represents how ‘connected’ G is. The higher the value of λ2 is, the more connected G is.
On the other hand, the lower λ2 is, the better partitioned G can be. For example, the path graph with
n vertices has an algebraic connectivity of λ2 = O( 1

n2 ), a n-dimensional hypercube has a λ2 = 2,
whereas for a fully connected graph with n vertices (often called a complete graph), λ2 = n.

C On Consensus and Social Networks
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One can see social networks as a set of pairwise relations between people: person A knows person
B who does not know person C etc. We could represent this by a graph where vertices are people
and there is an edge between two people if they know each other. When two people know each other
they have the possibility to influence each other, up to a certain level (depending on the nature of
the relation, etc.). Now, we consider the opinion of people about some topic. People can have any
opinion, between strongly in favor(+1) and strongly against(-1)). If they do not have any opinion
about that event, the corresponding value is zero (see Fig. 5).

Fig. 5. Social network

On Fig. 5 for example person 2 does not have an opinion. Now let us consider that some people can
be influenced by their neighbors (say, people 2 and 3), and that others (the ‘leaders’) cannot because
their opinion is too strong (1 and 4). We expect that everybody who can be influenced will reach a
consensus between all the opinions of the people he/she knows, in other words that the opinion of



everybody who can be influenced will tend to the average of the opinions of its neighbors (see Fig.
6).group
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Fig. 6. Consensus

The algorithm presented in this paper implements such a consensus on graphs in order to learn an
interpolating function.intuitive

and
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na-
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D Strong Convexity and Implications

Note: The reader should refer to [BV04] for an interesting review on optimization methods and
convergence, extensively used throughout this section.

First let us recall some notions on convexity of functions. Then we will see that strong convexity of
a function f implies many interesting inequalities, which can be used to bound the distance between
an input x and the optimal input x∗ minimizing f . Note: in the following set of definitions and
theorems, we consider only functions which are not identically equal to +∞.

D.1 Basic Definitions

In the following we will use the following notation: a vector interval, [x,y], is the set of all possible
convex combination of x and y:

[x,y] := {αx + (1− α)y, α ∈ [0, 1]}

Definition 1. [BV04] A set C is convex if the line segment between any two points in C lies in C,
i.e., if for any (x1, x2) ∈ C2 and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C

Definition 2. [HUL93] Let U be a nonempty convex set in IRn. A function h : U 7→ R is said to be
convex on U when for all pairs (x,y) ∈ U2, and all 0 < θ < 1, there holds

h(θx + (1− θ)y) ≤ θh(x) + (1− θ)h(y) (67)
We say that h is strictly convex when strict inequality holds whenever x 6= y. An even stronger
property is that there exists c > 0 such that for all (x,y) ∈ U2 and 0 < θ < 1, there holds

h(θx + (1− θ)y) ≤ θh(x) + (1− θ)h(y)− c

2
θ(1− θ)‖x− y‖22 (68)

In this case, h is said to be strongly convex on U (with modulus of strong convexity c).

So in other words, a function h is convex if every chord lies above the graph of h. Strict convexity is
obtained when every non-trivial chord lies strictly above the graph of h. We note that some functions
are strictly convex but not strongly convex, e.g. x 7→ ex because the closer x gets to−∞ the smaller
a valid candidate for c has to be, so that we can not find a c > 0 verifying inequality (68).

Theorem 9. [BV04] A function is convex if and only if it is convex when restricted to any line that
intersects its domain.

Note: a similar theorem holds for strict and strong convexity.



D.2 First-order Condition

Theorem 10. [HUL93] Let U be a convex open subset of IRn and h : U 7→ R a function con-
tinuously differentiable on U . Then h is strongly convex on U if and only if its gradient is strongly
monotone on U , that is, if there ∃c > 0 such that

∀(x,y) ∈ U2, (∇h(y)−∇h(x))>(y − x) ≥ c‖y − x‖22

D.3 Second-order Conditions

Theorem 11. [HUL93] Let h be twice differentiable on an open convex set U ⊂ IRn. Then

1. h is convex on U if and only if ∇2h(x0) is positive semi-definite for all x0 ∈ U ;

2. if ∇2h(x0) is positive definite for all x0 ∈ U , then h is strictly convex on U .

3. h is strongly convex with modulus c > 0 on U if and only if the smallest eigenvalue of
∇2h(.) is minorized by c on U , hence for all x0 ∈ U and all d ∈ IRn,

d>∇2h(x0)d ≥ c‖d‖2

D.4 Closed Functions

Definition 3. A set S is closed if it contains its boundary. It is open if it contains no boundary points.

Definition 4. [BV04] A function h : IRn 7→ R is said to be closed if, for each α ∈ IR, the sublevel
set {x ∈ dom h |h(x) ≤ α} is closed. If h is continuous, and dom h is closed, then h is closed.
If h is continuous with dom h open, then h is closed if and only if h converges to ∞ along every
sequence converging to a boundary point of dom h.

Theorem 12. [BV04] Continuous functions with dom h = IRn are closed.

D.5 Minima

Theorem 13. Let h be a convex function, continuous on U ⊂ IRn. If h is strictly or strongly convex
then it admits at most one minimum on U .

Theorem 14. Let h be a closed strongly convex function, C1 on IRn. Then h admits one unique
minimum in IRn.

Proof. From Theorem 13, h admits at most one minimum on U . Now we consider a point x0 ∈ IRn

and a direction d ∈ IRn, such that ‖d‖22 = 1. From Theorem 10, for any α ∈ IR,

(∇h(x0 + αd)−∇h(x0))>(αd) ≥ c‖αd‖22 (69)

So

α > 0 (∇h(x0 + αd)−∇h(x0))>d ≥ cα (70)
α < 0 (∇h(x0 + αd)−∇h(x0))>d ≤ cα (71)

and we have the following limits:

lim
α→+∞

∇h(x0 + αd)>d = +∞ (72)

lim
α→−∞

∇h(x0 + αd)>d = −∞ (73)

Since the gradient is continuous, necessarily there exists a value of α for which it is zero, so h admits
at least one minimum in direction d. This is valid for any possible direction, therefore h admits at
least one minimum on Rn. ut



D.6 Minimizing a Strongly Convex Function

Note: all results in this section are either taken directly or derived from results in [BV04].

We consider the problem (5) of minimizing a function f : IRn → R twice continuously differen-
tiable on dom f (thus, dom f has to be open):

min
x∈dom f

f(x)

We assume that this problem has a solution x∗. For x0 ∈ dom(f), we define the sublevel set S:

S = {x ∈ dom f |f(x) ≤ f(x0)}

We want to prove Theorem 1:

Theorem 1 1 If f is twice continuously differentiable, strongly convex on the sublevel set S, and if
S is closed, then if problem (5) has a solution x∗ in S, it is unique and ‖∇f(x∗)‖2 = 0, and besides
∃(m,M) ∈ IR2 such that ∀x ∈ S

f(x)− 1
2m

‖∇f(x)‖22 ≤ f(x∗) ≤ f(x)− 1
2M

‖∇f(x)‖22

and
m

2
‖x∗ − x‖22 ≤ f(x)− f(x∗) ≤ M

2
‖x∗ − x‖22

m (resp. M ) is any lower (upper) bound of the smallest (largest) eigenvalue of the Hessian ∇2f(.)
on S.
Note: if f is a closed function, any sublevel set S is closed so we don’t need to check this condition.
Besides in that case the existence of the solution is guaranteed by Theorem 14.

Proof. We assume that f is twice continuously differentiable, strongly convex on the sublevel set
S. From Theorem 14, f admits one unique minimum on S so problem (5) has a unique solution x∗.
From Theorem 11,

∀(x, z) ∈ S2, x>∇2f(z)x ≥ mx>x (74)
Besides for (x,y) ∈ S2 there exists some z in [x,y] such that (Taylor expansion around x)

f(y) = f(x) +∇f(x)>(y − x) +
1
2
(y − x)>∇2f(z)(y − x) (75)

so from the strong convexity assumption (74),

f(y) ≥ f(x) +∇f(x)>(y − x) +
m

2
‖y − x‖22 (76)

This can be used to bound f(x) − f(x∗), the suboptimality of point x, in terms of ‖∇f(x)‖2:
minimizing the right-hand side of (76) with respect to y is done for y = x − 1

m∇f(x) and then
considering the particular case of y = x∗ in the left-hand side, we obtain

f(x∗) ≥ f(x)− 1
2m

‖∇f(x)‖22 (77)

Inequality (76) implies that S is bounded. Therefore the maximum eigenvalue of∇2f(x) is bounded
above on S, i.e. ∃M > 0 such that

∀x ∈ S, x>∇2f(x)x ≤ Mx>x (78)

Thus, for all (x,y) ∈ S2,

f(y) ≤ f(x) +∇f(x)>(y − x) +
M

2
‖y − x‖22 (79)

which is the counterpart of inequality (76). Minimizing the right-hand side of (79) with respect to y
is done for y = x − 1

M∇f(x) and then considering the particular case of y = x∗ in the left-hand
side, we obtain

f(x∗) ≤ f(x)− 1
2M

‖∇f(x)‖22 (80)



from which, considering x = x∗, we get ‖∇f(x∗)‖2 = 0: the gradient is necessarily zero at the
optimal point x∗. Replacing y = x∗ in equation (76) we have

m

2
‖x∗ − x‖22 ≤ f(x∗)− f(x)−∇f(x)>(x∗ − x)

m

2
‖x∗ − x‖22 ≤ f(x∗)− f(x) + ‖∇f(x)‖2‖x∗ − x‖2

We used Cauchy-Schwarz inequality here. Then, using f(x∗)− f(x) ≤ 0

‖x∗ − x‖2 ≤
2
m
‖∇f(x)‖2 (81)

which relates how close a point is to the solution and how small the gradient at this point is. One
consequence of (81) is that the optimal point x∗ is unique. Finally, replacing y = x and x = x∗
(∇f(x∗) = 0) in equations (76) and (79) we also have

m

2
‖x∗ − x‖22 ≤ f(x)− f(x∗) ≤ M

2
‖x∗ − x‖22 (82)

This last inequality expresses the relationship between how close an input is to the optimal input,
and how close their corresponding values through f are. ut

D.7 Steepest Coordinate Descent Algorithm

Note: the proof in this section is similar to the proof for simple gradient descent in [BV04].

We now use a steepest coordinate descent algorithm to find the unique solution x∗ in the sublevel
S to the optimization problem (5). We note that the strong convexity assumption, associated to the
assumption that S is closed, ensures that there exists one unique minimum f(x∗). The algorithm
produces a minimizing sequence x(k), k = 1, 2, . . . , recursively obtained from the starting point
x(0) = x0 by the update rule

x(k+1) = x(k) + t(k)∆x(k) (83)

where the search direction ∆x(k) is chosen to be the steepest descent direction corresponding to
l1-norm, that is, the coordinate direction along which the gradient of f is the biggest:

∆x(i) = −∂f(x)
∂xi

ei where i = arg max
i=1,...,n

∣∣∣∣∂f(x)
∂xi

∣∣∣∣ (84)

We assume that an exact line search is done, that means, at every update, t(k) is chosen to minimize
f along the ray {x + t∆x(i) | t ≥ 0}. Then, the following convergence result holds:

Theorem 15. The steepest coordinate descent algorithm with exact line search converges linearly
in the number of steps k:

f(x(k))− f(x∗) ≤ ck
(
f(x(0))− f(x∗)

)
(85)

where c = 1− m

n M
and m (resp. M ) is any lower (upper) bound of the smallest (largest) eigenvalue

of the Hessian ∇2f(.) on S. Thus, the maximum number of steps to perform in order to reach f(x∗)
within a tolerance ε (i.e., so that f(x(k)) ≤ f(x∗) + ε) is: proof

moved
to
ap-
pendixkmax =

log
(

f(x(0))− f(x∗)
ε

)
log (1/c)

Besides the maximum squared error made on a coordinate of x(k) is bounded:

‖x(k) − x∗‖2∞ ≤ ‖x(k) − x∗‖22 ≤
M

m
ck‖x(0) − x∗‖22 ≤

√
nM

m
ck‖x(0) − x∗‖2∞



Proof. In the following we will use the notation x+ to denote the next value of x found by the
algorithm. Replacing y with

(
x− t∂f(x)

∂xi
ei

)
in equation (79) and writing f̃(t, i) for f(x+ t∆x(i))

we obtain

f̃(t, i) ≤ f(x)− t
∂f(x)
∂xi

∇f(x)>ei +
Mt2

2

(
∂f(x)
∂xi

)2

f̃(t, i) ≤ f(x)− t ‖∇f(x)‖2∞ +
Mt2

2
‖∇f(x)‖2∞ (86)

The left side is lower bounded by x+ = f̃(texact, i); minimizing over t the right side of inequality
(86) we find t = 1/M and so

f(x+) ≤ f(x)− 1
2M

‖∇f(x)‖2∞ (87)

Subtracting f(x∗) from both sides, and combining with (77), we get

f(x+)− f(x∗) ≤
(

1− m

M

‖∇f(x)‖2∞
‖∇f(x)‖22

)
(f(x)− f(x∗)) (88)

But the norms ‖.‖2 and ‖.‖∞ are equivalent and in particular ∀z ∈ IRn

‖z‖2 ≥ ‖z‖∞ ≥ 1√
n
‖z‖2 (89)

so finally using the right part of previous inequality,

f(x+)− f(x∗) ≤
(
1− m

n M

)
(f(x)− f(x∗)) (90)

applying this inequality recursively we find that

f(x(k))− f(x∗) ≤ ck
(
f(x(0))− f(x∗)

)
(91)

where c = 1− m
n M . Besides, with inequality (82) and left part of inequality (89),

‖x(k) − x∗‖2∞ ≤ ‖x(k) − x∗‖22 ≤
M

m
ck‖x(0) − x∗‖22 ≤

√
nM

m
ck‖x(0) − x∗‖2∞ (92)

ut

D.8 Proof of Gradient for (P3)

Problem (P3).

Let ȳ = 1
n−l

∑l
i=1 yi and z̄ = 1

n−l

∑n−l
i=1 zi. Let d

(K)
i when i > l denote the number of existing

edges between the unknown vertex i and known vertices j ∈ {1, . . . , l}. Finally, let δ(K, U) =∑n
i=l+1 d

(K)
i = |E(K, U)| be the total number of edges between known vertices and unknown

vertices. We assume that before performing the update, z is such that z̄ = 0 (that is, g ∈ H(G), e.g.
we start with g = s). The kth coordinate of the gradient of the energy function for the equivalent
unconstrained problem (P3′) is (∇FH)k = 2 (Q>L (s + Qz))k. Setting this expression to zero,
and making z+

k (the new value of zk) appear, we obtain

0 =

(
dk+l −

2d
(K)
k+l

n− l
+

δ(U,K)
(n− l)2

)
(z+

k − ȳ)−
∑

(k+l,j)∈E(U,K)

yj −
∑

(k+l,j)∈E(G(U))

(zj−l − ȳ)

+
1

n− l

∑
(i,j)∈E(K,U)

(yi − zj−l + ȳ) +
1

n− l

(
2d

(K)
k+l −

δ(K, U)
n− l

)
(zk − ȳ) (93)

The update rule then becomes

z+
k =

 ∑
(k+l,j)∈E(U,K)

yj +
∑

(k+l,j)∈E(G(U))

(zj−l − ȳ)− 1
n− l

∑
(i,j)∈E(K,U)

(yi − zj−l + ȳ)

− 1
n− l

(
2d

(K)
k+l −

δ(K, U)
n− l

)
(zk − ȳ)

](
dk+l −

2d
(K)
k+l

n− l
+

δ(U,K)
(n− l)2

)−1

+ ȳ (94)



Now we rewrite this using the gis. Remember that gi = yi if i ≤ l, g+
i = z+

i−l − z̄ − ȳ =
z+
i−l(

n−l−1
n−l ) − zi−l

n−l − ȳ for the node to update, and gj = zi−l − z̄ − ȳ = zi−l − ȳ otherwise. We
also use

Φi = 2d
(K)
i − δ(U,K)

n− l
(95)

Φi is the difference between two times the number of edges between the unknown vertex i and
known vertices, and the average of this number across all unknown vertices. We finally obtain the
following two-steps update rule:

- update gi with

g+
i =

∑
(i,j)∈E(G)

gj −
Φigi

n− l
− 1

n− l

∑
(p,q)∈E(K,U)

(gp − gq)

di −
Φi

n− l

(96)

- update all the unknown vertices (including gi) with ∀j ∈ (l + 1, . . . , n)

g+
j = gj −

1
n− l

n∑
k=1

gk (97)

The first part of this update rule is quite close to what we have found in previous problems, except
that here we take the average of the neighbors AND the vertex i itself – with a coefficient depending
on its connectivity. A constant term is also present ; it depends on the continuity of the labels at the
border between known vertices and unknown vertices. It is interesting to note that for a large number
(n− l) of unknown vertices we tend to the same update rule than for problem (P1).


