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Abstract

The key management is the central element of network security. In fact, key distribution is necessary
for securing applications in the context of Internet of Things (IoT). However, existing key management
protocols are not directly applicable on IoT due, among other things, to severe and high resource con-
straints of some devices that make up the IoT network. Therefore, it is necessary that the proposed
key management protocols takes in charge these features and constraints. Most existing solutions didn’t
focus on optimizing, at the same time, all performance criteria, like communication, computation and
storage. Some of them put special emphasis on minimizing one criteria but ignore the others. In this
paper, we propose a new lightweight matrix based key management protocol for Iot network, which is
not only flexible, scalable and resilient to many types of attacks, but also can reduce the communication,
computation and storage overheads at constrained nodes side. The security properties like authentication,
integrity and secrecy have been checked by using the formal verification tool AVISPA. Moreover, security
and performance analysis show that our scheme protects user’s sensitive data from several types of attacks
by achieving secure end-to-end communications, and optimizes the energy consumption, which is suitable
for resource-limited networks.

Keywords: Key management, Security, Internet of Things, Dynamic networks

1. Introduction

The concept of Internet of Things (IoT) was initially introduced by Kevin Ashton in 1999 [1]. The
IoT system is made up of various types of heterogeneous devices, called objects or things. These objects
are interconnected and have the capability to communicate with each other and with their environment.
IoT devices can be accessible and managed at anytime and anywhere, since they are connected to the
Internet through an Internet Protocol (IP) router [2]. Sensors, actuators and RFID tags for instance,
have the ability to sense their environment by acquiring measurements, to store and process the gathered
data, and communicate with each other by exchanging data over the network. This interaction between
devices is performed without human intervention [3].

To make the communication between these IoT devices more secure, a key management service is
needed. However, key management in the context of IoT is more challenging than in traditional networks.
This is because of many reasons such as the use of wireless links that are vulnerable to eavesdropping
attacks; lack of a central authority; mobility and heterogeneity of devices in terms of resources such as
memory, computing and energy capacity; high resource constraints of many devices, like sensors that have
limited battery, computation and memory capability; accessibility to the objects via the Internet, which
exposes them to several types of attacks, in particular denial-of-service (DoS), etc. For all these reasons,
integrating security for IoT system is a real challenge and new key management solutions must take in
charge these inherent features.

In order to meet these challenges, several key management approaches have been proposed in the
literature for securing IoT networks, which can be classified into two main categories: preshared and
public key approaches. The main drawback of most of them is they focus primarily on optimizing some
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performance criteria, but completely neglect the others. For instance, some protocols put special emphasis
on decreasing communication overhead, but ignore the storage and/or the computation costs.

In this paper, we propose a new lightweight key management scheme for Iot networks that is based on
matrix, which is not only flexible, scalable and resilient to many types of attacks, but also can considerably
reduce the amount of information to be exchanged and processed at constrained nodes side without
ignoring the storage overhead.

The main contributions of this paper are the following:

• The number of keys to be stored in node’s memory is very small since a node stores at most only
the pairwise keys of its direct neighbors with the group key;

• The approach offers a negligeable communication overhead. In other words, no much communication
is required during key establishment phase because the keys are generated in a distributed manner.

• Low computation cost because no complex operation is required to establish secret keys so the
computation of symmetric keys betwen two neighbors is efficient.

• The proposed approach is flexible since it allows the addition of new devices to the network after
the deployment phase.

• The security goals such as secrecy, integrity and authentication are guaranteed.

• The proposed scheme is resistant to several types of attacks such as eavesdropping, compromising,
sybil, forward, backward and replay attacks.

• The secret keys are established in a distributed manner. Therefore, it avoids a central entity that
could be a point of failure or weakness.

• The proposed scheme allows gateway and constrained nodes belonging to the same group to com-
municate securely by using one group key.

• The security analysis and performance evaluation show that the proposed scheme can protect user’s
data privacy and saves energy which is suitable for the resource-limited network.

The organization of the rest of this paper is as follows. Related work on IoT security and key manage-
ment is summarized in Section 2. In Section 3, we present the proposed matrix based key management
scheme, which consists of a set of protocols for initialization, pairwise and group key establishment, node
addition, key revocation and periodic key renewal phase. In Section 4, we describe both informal and
formal analysis of our protocol. Section 5 presents the performance analysis wherin a comparative and
an experimental studies are described. Finally, Section 6 concludes the paper and gives future directions.

2. Related work

According to [4], the key management protocols proposed in the literature for IoT networks can be
classified into two main categories: (1) preshared approaches, which are based on the predistribution of
shared context that is used to generate a secret shared key between two communicating entities; and (2)
public key approaches, which are based on asymmetric encryption to generate a commun secret between
two entities having no previous preshared context.

Among the schemes belonging to the first category, we find a matrix-based scheme for establishing
pairwise keys that was initially proposed by Blom [5]. This scheme allows any pair of nodes to be able to
compute a commun pairwise key. It is based on the use of a set of matrices : a (λ+ 1) ·N public matrix,
called G, known to everyone, a (λ+1) ·(λ+1) random symmetric matrix, called D, and a N ·(λ+1) secret
matrix, called A = (D ·G)T . Since A is a symmetric matrix, the key matrix K = A ·G is also symmetric.
Therefore, the element (i, j) of K is equal to the element (j, i) that correspond to the pairwise key shared
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betwen the nodes i and j. Every node i maintains in its memory the ith row and ith column of the private
and public matrix respectively as key material. When two nodes i and j want to communicate, they first
exchange their public column vector of G then each node calculates separately the same commun key
Kij = Kji, which is obtained by the product of the private row vector of A of one node and the public
column of the other node. In this scheme, since nodes never exchange their private rows, no adversary
can compute any pairwise key by simply listening to the communications. In addition, it has been shown
in [5] that the above scheme is λ-secure when all the columns of the matrix G are linearly independent.
However, if the number of compromised nodes exceeds the threshold λ, the whole secret matrix K could
be calculated, thus the entire network becomes unsecure.

Based on the above Blom’s scheme, Du et al. [6] proposed a new key pre-distribution scheme that
uses multiple-space key in order to acheive better resilience of the network to node capture attack. In
fact, to be able to break at least one key space, an adversary must capture a significant number of nodes
equals to λ + 1 that all share the same key space’s information. In this scheme, every node needs to
store a row vector of λ + 1 elements of its private information for each selected key space and a single
element (a seed) of its public information. To be able to compute a commun pairwise key, two nodes must
share at least one key space. Compared to Blom’s scheme, this scheme is more resilient to node capture
attack and more efficient in terms of communication, but less in terms of computation and storage. In
fact, nodes do not need to exchange their public column, which reduces the communication overhead, but
it is regenerated by the node itself, which increases computation overhead (2 modular multiplications).
Moreover in blom’s scheme, a node needs only to store 2(λ + 1) elements, but here it stores a seed and
λ + 1 elements for each key space, so (λ + 1) · t, where t is the number of key spaces. Furthermore, this
scheme does not address node addition, revocation and key refresh.

Yu and Guan in [7]. proposed a key management scheme using deployment knowledge based on Blom’s
scheme. In their protocol, a deployment area is partionned into grids (hexagons, squares or triangles)
and sensor nodes are arranged into groups where the number is the same as that of grids. After that,
each group of sensors is deployed into a single grid. The authors show that hexagonal grids are best in
terms of security and memory requirement compared with the others. During key predistribution phase,
all groups share the same global matrix G and each one is assigned a unique secret matrix A and a set of
B matrices. During discovery phase, each pair of neighbors that belong to the same group, generate the
pairwise key from the common matrix A and G as in Blom’s scheme. The nodes that are not from the
same group but share at least one common B matrix, can also compute a common key from one choosen
matrix B and the matrix G using Blom’s scheme too. The other nodes that can not compute pairwise
keys between them may use another key discovery mechanism to establish pairwise keys. In this scheme,
each node stores one column of matrix G, one row of matrix A, and, at most, w rows of B matrices, where
each row has λ + 1 elements. Moreover, if more than λ nodes of a group are compromised, the matrix
A and some B matrices will be broken. However, their scheme achieves higher connectivity with much
lower memory requirement and shorter transmission range. Furthermore, it is more resilient against node
capture attack.

Another scheme based on Blom’s scheme has been proposed by Rahman et al. [8]. The authors
have improved the original Blom’s scheme so that it becomes suitable for use in resource-constrained
environment like wireless sensor networks. In this scheme, two nodes are able to generate a common key
without any messages exchange between them, but by knowing only the identifier of the other. In fact, a
node does not need to store or exchange its public column of the matrix G, but generates it by using the
node’s identifier, which significantly reduces the storage and the communication overhead. In addition,
the authors proposed mechanisms for updating keys, adding new nodes after deployment, and revoking
compromised nodes. They also presented a dynamic mechanism for establishing secure group keys that
uses pairwise keys. This makes their model more flexible. However, the public matrix G is generated by
the node itself, which increases the computation overhead on the node side, and affects the resilience of
the scheme to node capture attack. Indeed, when an attacker compromises a single node, he is not only
able to compute all its keys shared with the other nodes, but also obtains more information about the
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secret matrix.
The authors Y. Zhang et al in [9]. have presented a matrix-based cross-layer key establishment protocol

for smart homes with no prior secret sharing. This is motivated by the fact that domestic devices are
heterogeneous and are not necessarily produced by the same factory. The protocol is based on [10] and
uses the multiple key-spaces idea proposed in [6]. Two kinds of keys are used in this protocol: the secret
master key ki and the secret session key Kij. The first key is extracted by using the physical layer key
extraction algorithm [11] when the device joins the network, and shared between a device and a home
gateway. The second one is established at higher levels and shared between two appliances Pi and Pj.
Thus, the proposed protocol allows any pair of devices to be able to compute a common secret session key
with light energy consumption by delegating the heavy operations to the home gateway that is powerful.
It also achieves key refresh and network scalability. In addition to this, the storage cost is very low since
home appliances have no need to pre-load any secrets and store only the key seed sent by the home
gateway. However, each appliance needs to compute 2λ+ 1 multiplications to establish a session key and
the communication cost of the proposed protocol is relatively higher compared with the previous ones.

Messai and Seba in [12]. presented a new key management scheme for hierarchical wireless sensor
networks, called EAHKM+. This scheme is composed of two phases: the key pre-distribution phase and
the cluster formation and key establishment phase. In the first phase, each sensor node is pre-assigned
with three keys before its deployment in the sensing environment: the network key known to all sensor
nodes in the network, which is deleted after the second phase, and two pairwise keys used to secure the
communication channel that separates sensor node from the base station. In the second phase, clusters
are securely formed and two new keys are established: the cluster key shared between all cluster members
and a pairwise key shared between the sensor node and its cluster head. This scheme provides a secure
cluster creation and it is flexible since it allows adding and removing sensor nodes after deployment. In
addition to this, it is scalable and can support a large number of nodes. However, the rekeying process is
costly in terms of communication and computation since it requires the re-run of clustering algorithm.

S. Mesmoudi et al in [13] have quite recently, proposed a smart and dynamic key management scheme
for hierarchical wireless sensor networks, called SKWN. The scheme includes key establishment, key
renewal and new node addition. The proposed protocol is based on machine learning to supervise the
network activity and choose the appropriate security level. It particularly uses ISA component to detect
intrusions that occur in the network and deal with in real time. It is therefore not necessary to use a
high security level in the absence of intruder. SKWN is scalable, flexible and provides reliable security
mechanism. However, the number and the size of exchanged messages during different phases remain
high.

To overcome the limitations of current key distribution and management approaches, we propose an
efficient and a new matrix-based key management scheme.

3. Overview of the proposed scheme

In this section, we describe our matrix-based key management system for Iot networks that aims to
minimize the computation, communications and storage overhead. First of all, we begin by presenting
the network model that we are considering, then we give some assumptions. After that, we summarize
the notations used in this paper. Finally, we describe in detail the differents phases of our scheme.

3.1. Network model

We adopt the network architecture that consists of three main components: constrained nodes, gateway
nodes and remote server node (command node), as shown in Figure 1.

3.1.1. Constrained nodes

In this category, we can find all nodes that are highly constrained in terms of resources (energy,
memory and computation), such as sensors, RFID Tags, wearable devices (like watch) that can be carried
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by a human, etc. The role of these devices consists of monitoring or sensing the environment so that they
collect and transmit the collected data to gateway nodes via bluetooth, ZigBee or wifi technologies. For
example, in healthcare application, sensors can be planted in or on a human’s body in order to collect
health related data (e.g. blood pressure, blood glucose level, temperature level, etc.). Another examples
of constrained nodes are MICAz and TelosB that are really constraining. Both platforms run TinyOS.
The MICAz is based on the low-power 8-bit microcontroller ATmega128L running at 7.37 MHz and the
TelosB is based on the 16-bit microcontroller running at 4 MHz [14].

3.1.2. Gateway nodes

The gateway nodes have significantly higher energy resources and are equipped with high performance
processors and more memory compared to nodes belonging to the previous category (constrained nodes),
but they have less resources when compared to remote server node. The gateway nodes fuse the received
data collected by the different constrained nodes, process and send or forward it to the remote server
(command node). The communication between the gateway node and the constrained nodes may be via
Bluetooth or ZigBee, and the one between the gateway node and the remote node may be done through
cellular (3G, 4G) or WiFi networks.

3.1.3. Remote server node (command node)

It can be assumed that the server node has no limitations in terms of power, computation and storage
compared to the two previous ones. For instance, the medical specialists or doctors at remote server node
side can continuously follow patient’s health status based on the data received in order to intervene in
time.

 
Constrained  

nodes 

Gateway  
nodes

Remote  
server node 

Processing 

Data storage

Data analysis 

Data aggregation

Sensing 

Data acquisition 

Sensors (Heartbeat, Blood sugar, Blood pressure, etc), Wearable devices (Watches, Bracelets, etc), Weightscales, RFID Tags, etc.

Cloudlet,  
Tablet, laptop, 
Smart phones, etc.

Figure 1: Network Model

3.2. Assumptions

• We have not made any trust assumptions about the constrained nodes. They can therefore be
captured and compromised. This means that the adversary can read all the information from the
node’s memory, including the keys.

• Constrained nodes are only able to perform symmetric encryption to avoid high computation since
they are limited in resources.

• We assume that the gateway nodes can also be captured by the attacker and are supposed to be
able to perform symmetric and asymmetric encryption. So, we propose to include TPM (Trusted
Platform Module)[15, 16] to secure the keys stored in their memory.

• The remote server node is powerful enough to support symmetric and asymmetric cryptography.

The notations used in this paper are listed in Table 1.
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Notation Description

Idi Identification number of the node Ni.
M Square matrix of order n, where n refers to the size of the network

during the deployment
Mi Matrix of the node Ni
vi Neighbors vector of the node Ni
a ‖ b Information a is concatenated with b’s one
Hash(Msg, k) One way keyed-hash function
|x| Absolute value of the number x
det(M) Determinant of the matrix M
Sij Positive secret value computed by two neighbors Ni and Nj
Kij Pairwise secret key shared betwen two neighbors Ni and Nj

Ki/K
−1
i Public/Private key of the gateway node GNi

Kgi Group key generated by the gateway node GNi
Si Random positive secret value generated by the gateway GNi
{M} k Message M is encrypted with the key k
T i Timer of the node Ni
Noncei Nonce (random value) generated by the node Ni
Listi List kept by the node Ni

Table 1: Notations

3.3. Phases of our scheme

The proposed scheme is composed of six phases: initialization, pairwise and group key establishment,
new node addition, key revocation and key refresh phase. These phases are described in detail in the
following section.

3.3.1. Initialization phase

During this phase, all of the following information is preloaded into nodes’ memories just before their
deployment in the network:

1. An identification number Idi that is unique in the network.

2. A square matrix M of order n, where the elements are generated randomly and strictly positives,
and n represents the number of nodes in the network during the deployment phase: M [i, j] > 0,
with i, j = 1..n. This matrix can be stored in the flash RAM and hence will be erased from the
nodes’ memories later.

3. A one way keyed-hash function Hash(msg, k) that takes as input a message of arbitrary length msg
and a secret key k. The initial message will be compressed into a short fixed length hash value, so
it will take up less space.

With the matrix M and the hash function Hash(), every node Ni is able to compute the symmetric
key Kij that will be shared with its direct neighbor Nj. Moreover, each gateway node has a timer
initialized to a value which decrements with time. When it reaches zero, the key renewal process will be
launched.

3.3.2. Pairwise key establishment phase

The pairwise key generation phase contains the two following steps:
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a) Neighbor discovery
As soon as the deployment is done, every node Ni identifies its direct neighbors (1-hop) by sending

them a Helloi message along with its identifier, a nonce and a hash value (digest), which is computed by
the preshared one way function that uses the diagonal element of the sender as secret value.

Ni→ GNj : Helloi, Idi ‖ Noncei, Hash(Idi ‖ Noncei,M [i, i]) (1)

Upon the reception of this message, the recipients that are within the radio range of the sender check
the authenticity and integrity of the message. In fact, they calculate the hash value H of the first part
of the received message by using the diagonal element M [i, i] of the sender as secret value as follows:
H = Hash(Idi ‖ Noncei,M [i, i]). The obtained result will then be compared to the second part ie
Hash(Idi ‖ Noncei,M [i, i]), which corresponds to the hash value computed by the sender node Ni. If
both digests are different, then this message will be ignored and rejected, otherwise it is authentic, so it
has not been altered by an adversary during its transmission. As a result, this message will be accepted
by the recipient node and the latter updates its neighbors vector vj by adding the identifier Idi of Ni
and arranges the vector in ascending order. After that, the gateway node replies to the sender node Ni
with the Helloj message that contains its identifier, the succesor of the received nonce and a digest.

GNj → Ni : Helloj, Idj ‖ Noncei + 1, Hash(Idj ‖ Noncei + 1,M [j, j]) (2)

At the end of this step, each node has its neighbors vector completely updated that contains all the
identifiers of its 1-hop neighbors arranged in ascending order.

b) Pairwise key computation
During this step, each node computes its square matrix Mi, which is obtained from the initial one M

by keeping only the elements M [k, l], where ∀ k, l ∈ vi.
Moreover, it computes a positive secret value Sij , which is equal to the absolute value of the determinant
of the 2 by 2 matrix Mij, where the elements are:

Mij =

[
Mi [i, i] Mi [i, j]
Mi [j, i] Mi [j, j]

]
=

[
Mj [i, i] Mj [i, j]
Mj [j, i] Mj [j, j]

]
, with i < j

Sij = |det (Mij)| (3)

Finally, it obtains a shared secret key Kij by applying the hash function that uses Sij as secret value as
follows:

Kij = Hash(Idi ‖ Idj ‖ Sij , Sij), with i < j (4)

This pairwise key will be used by the two nodes in order to secure their communications by encrypting
and decrypting the messages exchanged between them. Note that keys can or not be stored in nodes’
memories according to their capacity. In fact, a node with low storage and high processing capacity may
store few or no keys. The other keys will be calculated during communication, which reduces storage
costs. On the other hand, a node with high storage and low processing capability can store all or a large
number of pairwise keys. This allows the node to avoid recalculating them during the next communication
session with the same node, which reduces the calculation cost. Thus, a node can store a set of keys whose
number is between one and d+ 1 where d is the number of its neighbors.
In addition, each gateway node GNi computes its private/public keys K−1i /Ki that will be used to secure
the communication channel separated him to the server node. The private key is computed as follows:

K−1i = Hash(Sij ‖ Sik ‖ ... ‖ Sil,M [i, i]) (5)

where j, k, .., l ∈ vi and j < k < .. < l.
The public key is obtained from the last private key as follows:
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Ki = Hash(K−1i ,M [i, i]) (6)

The key Ki is public and known by everyone. It can be specially used by the server node when he wants
to send messages securely to that gateway node. However, the key K−1i is private and must be kept
secret and known only by the gateway node itself. It can be used to sign/decrypt messages sent/received
to/from the server node.

After the computation of the public keys, each gateway node computes the hash value H = Hash(Idi ‖
Ki ‖ M [i, i] ,M [i, i]) and puts the couple (Ki, H) in its public repository so that the server node can
have access to it. When the latter intends to communicate with that gateway node, it takes the first part
of the couple, namely the public key Ki, and computes the hash value H ′ by using the identity, the first
part of the couple (public key), and the corresponding diagonal element of the initial square matrix. The
result is then compared with the second part of the couple, namely H. If the verification is successful,
the server node stores this public key in its memory, otherwise, the public key is not authentic so it will
be ignored. The server node sends its public key encrypted with the authentic public key of each gateway
node. These latter use their private key so as to decrypt the message and stores the public key of the server.

The complete process of establishing of the symmetric key between the gateway node j and its direct
neighbor i is described in the Figure 2 below.

Constrained Node i Gateway Node j 
a) Neighbor discovery a) Neighbor discovery

Send Helloi message Receive Helloi
message

Helloi authenticity
and integrity?

Update its neighbors
vector Vj

Vj  = Vj + Idi message ignored

replay by  sending
Helloj message

Receive Helloj
message

Helloj authenticity
and integrity?

Update its neighbors
vector Vi

Vi  = Vi + Idj 
message ignored

b) Computation of secret values
and pairwise keys 

b) Computation of secret values
and pairwise keys 

Compute the square
matrix Mi

Compute the secret
value Sij 

Compute the
pairwise key Kij

Compute the
pairwise key Kij

Compute the secret
value Sij 

Compute the square
matrix Mj

Arrange Vj in
ascending order

Yes No

Yes No

Arrange Vi in
ascending order

Figure 2: Process of establishing of the pairwise key between two nodes
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3.3.3. Group key establishment phase

The group communication can significantly improve performance and energy efficiency. In fact, when
nodes intend to send or broadcast the same data to a set of devices in a secure manner, it is suitable to
use one key, called group key. Thus, all group members share and use this common secret key in order to
secure their communications within the group. In our scheme, these group keys are generated by gateway
nodes since they are trustworthy and have more resources. These keys are then distributed to group
members in a secure manner. Indeed, each gateway node randomly chooses one pairwise key Kir among
these it shares with its direct neighbors, and use it as input to the hash function in order to generate one
group key as follows:

Kgi = Hash(Kij ‖ Kik ‖ ... ‖ Kil,Kir) (7)

where j, k, .., l, r ∈ vi
Every gateway node sends the generated group key along with a nonce, to each of its direct neighbors
encrypted with the appropriate pairwise key.

GNi→ Nj : {Kgi, Noncei}Kij (8)

Upon receiving the last message, each group member uses the appropriate pairwise key to decrypt it.
Then it stores the received group key in its memory and reponds with the following acknowledgement
message.

Nj → GNi : {Ack,Noncei + 1}Kij (9)

This way, all nodes that are neighbors of the same gateway node form a group and can use the group key
to secure their communications within the group.

Example
The network depicted in the Figure 3 is composed of four nodes: three sensors and one gateway node.

During the initialization phase, all nodes are assigned a unique identifier(number) and pre-loaded with
the hash function Hash() and the square matrix M of order 4 (a 4 by 4 matrix).

3 

2

4

1 

M =

Figure 3: Network with four nodes

During the neighbor discovery stage, the nodes of the network exchange hello messages betwen them
so that they update their neighbors vector and compute their square matrix as follows:
The gateway node 1 has three neighbors (nodes 2, 3 and 4). Therefore, its neighbors vector v1 has four
identifiers arranged in ascending order (its identifier and the identifier of each neighbor). So the vector
v1 = [1, 2, 3, 4] and its square matrix M1 is equal to the initial matrix M because all the nodes are
neighbors with the node 1.
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The node 2 has one neighbor (node 1). Hence, its neighbors vector v2 has two identifiers (the identifier of
the node 1 and its identifier in this order) arranged in ascending order v2 = [1, 2] and its square matrix
M2 is obtained as follows:

M2 =

[
M [1, 1] M [1, 2]
M [2, 1] M [2, 2]

]
=

[
1 2
5 6

]
The nodes 3 and 4 have the same neighbors (nodes 1, 3, 4), thus they have the same neighbors vector
v3 = v4 = [1, 3, 4] and they share the same 3 by 3 matrix (M3 = M4) obtained from the matrix M as
follows :

M3 = M4 =

 M [1, 1] M [1, 3] M [1, 4]
M [3, 1] M [3, 3] M [3, 4]
M [4, 1] M [4, 3] M [4, 4]

 =

 1 3 4
9 2 3
4 6 7


In the next step, each pair of neighbors compute the secret value in the following way:
The nodes 1 and 2 compute the secret value:

S12 = |det (M12)| =
∣∣∣∣det( M [1, 1] M [1, 2]

M [2, 1] M [2, 2]

)∣∣∣∣ =

∣∣∣∣det( 1 2
5 6

)∣∣∣∣ = |6− 10| = 4

The nodes 1 and 3 compute the secret value:

S13 = |det (M13)| =
∣∣∣∣det( M [1, 1] M [1, 3]

M [3, 1] M [3, 3]

)∣∣∣∣ =

∣∣∣∣det( 1 3
9 2

)∣∣∣∣ = |2− 27| = 25

The nodes 1 and 4 compute the secret value:

S14 = |det (M14)| =
∣∣∣∣det( M [1, 1] M [1, 4]

M [4, 1] M [4, 4]

)∣∣∣∣ =

∣∣∣∣det( 1 4
4 7

)∣∣∣∣ = |7− 16| = 9

The nodes 3 and 4 compute the secret value:

S34 = |det (M34)| =
∣∣∣∣det( M [3, 3] M [3, 4]

M [4, 3] M [4, 4]

)∣∣∣∣ =

∣∣∣∣det( 2 3
6 7

)∣∣∣∣ = |14− 18| = 4

Finally, in the last stage, every two neighboring nodes are able to generate the common pairwise key as
follows:
The nodes 1 and 2 compute the secret symmetric key:
K12 = Hash(1 ‖ 2 ‖ 4, 4) = Hash(124, 4)
The nodes 1 and 3 compute the secret symmetric key:
K13 = Hash(1 ‖ 3 ‖ 25, 25) = Hash(1325, 25)
The nodes 1 and 4 compute the secret symmetric key:
K14 = Hash(1 ‖ 4 ‖ 9, 9) = Hash(149, 9)
The nodes 3 and 4 compute the secret symmetric key:
K34 = Hash(3 ‖ 4 ‖ 4, 4) = Hash(344, 4)
The gateway nodes 1 also computes its private/public keys as follows:
K−11 = Hash(S12 ‖ S13 ‖ S14,M [1, 1]) = Hash(4253, 1), K1 = Hash(K−11 ,M [1, 1]).
Moreover, it randomly chooses a pairwise key among K12, K13 and K14, let’s say K12, and computes the
group key Kg1 as follows:
Kg1 = Hash(K12 ‖ K13 ‖ K14,K12).
This group key is then transmitted to each group member within message encrypted with the appropriate
pairwise key. In fact, the messages {Kg1, Nonce1}K12, {Kg1, Nonce1}K13 and {Kg1, Nonce1}K14 are sent
to members 2, 3 and 4 respectively. Finally, the latter decrypt the received message and store the group key
before they respond with the acknowledgement messages: {Ack,Nonce1 + 1}K12, {Ack,Nonce1 + 1}K13

and {Ack,Nonce1 + 1}K14 respectively.
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3.3.4. New node addition phase

To add a new node Nn to the network, the gateway node GNi that is close to this new node, randomly
generates a new positive secret value Si and broadcasts it to its neighboring nodes encrypted with the
group key. Each node that receives this message, decrypts it with the group key, extracts and saves
the secret value, and encrypts a message in which it inserts the new secret value Si and transmits it
to its direct neighbors. This process is repeated until all the nodes obtain this new value. This value
and the hash function Hash() are also stored in the memory of the new node Nn before deploying it in
the network so that they will be used to calculate the secret keys that the new node will share with its
neighbors.

GNi→ ∗ : {Si,Noncei}Kgi (10)

where Kgi is the group key.

After deployment, the new node broadcasts a join message along with its identifier, a random number
(nonce) and a digest.

Nn→ ∗ : Join, Idn ‖ Noncen, Hash(Idn ‖ Noncen, Si) (11)

The adjacent devices that are within the radio range of that new node, receive it then check its au-
thenticity and integrity. If this verification fails, the message will be ignored, otherwise all the neighboring
nodes will update their neighbors vector by adding the new node’s identifier Idn, and their matrices will
also be updated by creating, at the end, a new row and a new column, where the elements are equals to
zero except the main diagonal element that equals to Mj [k + 1, k + 1] = Noncen, with k represents the
order of the square matrix Mj just before adding the new node. After that, each neighboring node Nj
will respond with an acknowledgement message that contains its diagonal element M [j, j] of the matrix
M and the group key Kgi.

Nj → Nn : Ack, Idj ‖ Noncej ‖M [j, j] ‖ Noncen+1 ‖ Kgi, Hash(Idj ‖ Noncej ‖M [j, j] ‖ Noncen+1 ‖ Kgi, Si)
(12)

Upon the reception of the last message, the new node checks it. If this verification is successful, the
new node stores the group key and updates its neighbors vector by adding the identifier of node Nj.
When this neighbor vector is completly updated, the new node updates its square matrix in the following
way: Mn[i, j] = M [vn[i], vn[i]], with i = j, Mn[i, j] = 0, otherwise.

When the matrix Mn is fully updated, the new node can start to generate all the symmetric keys Kni
that will be shared with each of its neighbor Ni by executing the step b) of the pairwise key establishment
phase. After that, it replies to the node Nj with a message containing the succesor of the received nonce
Noncej, encrypted with the obtained pairwise key Knj.

Nn→ Nj : {Noncej + 1}Knj (13)

At the end, the node Nj responds to the gateway node GNi with the message that contains the succesor
of the nonce of Ni encrypted with the pairwise key Kij .

Nj → Ni : {Noncei + 1}Kij (14)

The process of adding a new node to the network is described in the Figure 4 below.
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New node Nn Gateway node GNi Node Nj

{ Si, Noncei } Kij

Join, Idn || Noncen, Hash ( Idn||Noncen, Si)

Ack, Idj || Noncej|| M[j,j] || Noncen+1,Kgi, Hash (Idj|| Noncej|| M[j,j] || Noncen+1,Kgi, Si)

{ Noncej+1 } Knj

{ Noncei+1 } Kij

Figure 4: New node addition process

Example
The Figure 5 shows an example of adding a new node to the network. The network is initially

composed of six nodes. The gateway node 1 and the node 2 are neighbors to each others and have the
same neighbor (node 3), therefore, they share the same neighbors vectors vi = [1, 2, 3] , with i = 1, 2, and
the same square Matrix Mi = [1 2 3; 4 5 6; 7 8 9] , with i = 1, 2. The node 4 wants to join the
network. So, the gateway node 1 close to this new node, generates a random secret value S1 and sends
it to its neighboring nodes 2 and 3 encrypted with the group key Kg1. The new node 4 is preloaded with
this secret value S1 and the hash function Hash() before its deployment, then it generates a random
number(Nonce4 equals to 55 for example) and sends a same join message to its 1 hop neighbors (node
1 and 2). The nodes 1 and 2 check the authenticity of the join message by computing the hash value of
the first part of the message and compares it with the second part. If the verification succeed, then both
nodes add the identifier 4 to their neighbors vectors vi = [1, 2, 3, 4], with i = 1, 2. After that the nodes 1
and 2 add a new forth row where Mi(4, j) = 0, with i = 1, 2 and j = 1, 2, 3 and Mi(4, j) = Nonce4 = 55
else (with i = 1, 2 and j = 4), and a new forth column where Mi(j, 4) = 0, with i = 1, 2 and j = 1, 2, 3
and Mi(j, 4) = nonce4 = 55 else (with i = 1, 2 and j = 4). The nodes 1 and 2 respond with the
acknowledgement messages containing the group key Kg1 and the diagonal elements M(1, 1) = 1 and
M(2, 2) = 5, respectively. Upon the reception of the ACK messages, the new node 4 ckecks if they are
authentic. if yes then it saves the group key Kg1 and adds the identifiers 1 and 2 to its neighbors vector
v4 = [1, 2, 4] ordered and updates its square matrix M4 = (1 0 0; 0 5 0; 0 0 55). The new node
4 has its 3 by 3 matrix fully updated, so it is able to generate the symmetric keys K14 and K24 by
executing the step b) of the pairwise key establishment phase as follows:
The node 1 and 4 compute the secret value:
S14 = |det(M14)| = |det(1 0; 0 55)| = |55| = 55, and then generate the common key: K14 = Hash(1 ‖
4 ‖ 55, 55) = Hash(1455, 55).
The node 2 and 4 compute the secret value:
S24 = |det(M24)| = |det(5 0; 0 55)| = |275| = 275, and then compute the common key: K24 =
Hash(2 ‖ 4 ‖ 275, 275) = Hash(24275, 275)
The new node 4 sends to node 1 and 2 the message containing the succesor of the nonce of node 1 and 2
encrypted with the corresponding pairwise key K14 and K24 respectively.
Finally, the node 2 replies to the gateway node 1 with the message containning the successor of the
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received nonce encrypted with the symmetric key K12.
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a) Before b) After

Vi=[1, 2, 3] ;  Mi=[1 2 3;4 5 6;7 8 9], with i=1,2 Vi'=[1, 2, 3, 4];  Mi'=[1 2 3 0;4 5 6 0;7 8 9 0;0 0 0 55], with i=1,2

JOIN
JOINACK

ACK

V4=[1, 2, 4]; M4=[1 0 0;0 9 0;0 0 55]

Figure 5: Example of addition of node 4 to the network

3.3.5. Key revocation phase

Two cases may arise: either the node leaves after it has been detected as compromised, or it leaves
with its proper willingness.

Case 1 : A gateway node GNi that detects a bad or suspicious behavior (does not forward correctly
messages for example) from its neighboring node Nj does the following tasks:

a) deletes from its memory the pairwise key that it shares with it.

b) updates its square matrix by deleting the row and the column that correspond to that node.

c) updates its neighbors vector by removing the identifier of the compromised node.

d) executes the group key establishment phase in order to generate a new group key K ′gi by using the
pairwise keys of the remaining members.

e) informs its nearby nodes Nk by sending them a message encrypted with the appropriate pairwise
keys. The message contains the identifier of the compromised node, a nonce and a new group key.

GNi→ Nk :
{
Idj ‖ Noncei,K ′gi

}
Kik (15)

When a node receives the last message that comes from its close gateway, it does the following actions:

1. decrypts it with the appropriate pairwise key and replaces the old group key by the new one.

2. compares the identifier received with its identifier and with the identifier of the sender. If it is
different from both identifiers then it checks if the compromised node belongs to its neighbors. In
other words, it verifies whether the identifier of the compromised node appears in its neighbors
vector. If it is not the case, the message will be ignored by the recipient, otherwise the node does
the operations a), b) and c) described above.

3. replies to the sender by an acknowledgment message Ack encrypted with the appropriate symmetric
key that contains the successor of the received nonce.

Nk → GNi : {Ack,Noncei + 1}Kik (16)
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Case 2 : A node Ni that leaves the network with its own will, broadcasts a Leave message encrypted
with the group key in order to inform its 1-hop neighbors.

Ni→ ∗ : {Leave, Idi ‖ Noncei}Kgi (17)

A node Nj who receives that message, decrypts it with the group key, responds with an acknowl-
edgment message Ack and carries out the operations a), b) and c) described above. The gateway node
executes the task d) on top of the three operations a), b) and c).

Nj → Ni : {Ack, Idj ‖ Noncei + 1}Kji (18)

All the neighboring nodes delete the pairwise keys that they shared with the outgoing or compromised
node. As a result, the latter can no longer communicate with its neighbors afterwards. In other words,
the neighbors of the leaving or compromised node will avoid to transmit messages to him since they dont
hold appropriate symmetric keys.

Example
We consider the network depicted in the Figure 6 below. The node 2 leaves the network with its own

will, so it informs its neighboring nodes (node 1 and 4) by broadcasting a Leave message encrypted with
the group key Kg1.
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a) Before b) After

Vi=[1, 2, 3, 4] ;  Mi=[1 2 3 4;5 6 7 8;9 1 2 3;4 5 6 7], with i=1,4 Vi'=[1, 3, 4];  Mi'=[1 3 4;9 2 3;4 6 7], with i=1,4

LEAVE
LEAVEACK

ACK

Figure 6: Example of deletion of node 2 from the network

Before the departure of the node 2, we assume that the neighbors vectors and the square matrices of
the node 1 and 4 are equals to:

v1 = v4 =
[

1, 2, 3, 4
]

; M1 = M4 =


1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7


When receiving the Leave message, the nodes 1 and 4 do the following operations:
- decrypt the message with the group key Kg1.
- reply to the leaving node by anAck messages: {Ack, 1 ‖ Nonce2 + 1}K12 and {Ack, 4 ‖ Nonce2 + 1}K24
respectively.
- delete from their memories the pairwise keys K12 and K24 respectively.
- update their square matrices M1 and M4 by deleting the second row and the second column that
correspond to the node 2.
- update their neighbors vectors v1 and v4 by deleting the identifier 2 of the node 2.

After the deletion of the node 2, the neighbors vectors and the square matrices of the nodes 1 and 4
become:
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v′1 = v′4 =
[

1, 3, 4
]

;M ′1 = M ′4 =

 1 3 4
9 2 3
4 6 7


Furthermore, the gateway node 1 reruns the group key establishment phase so as to renew the old group
key and sends it, in a secure manner, to nodes 3 an 4 within a messages encrypted with the pairwise keys
K13 and K14 respectively.

3.3.6. Key refresh phase

This phase aims to improve security because the new keys will be completly different from the old
ones, which add difficulties to cryptanalytic attack. In fact, if the same keys are kept for a long time, the
attacker may be able to obtain these keys by traffic analysis. Therefore, all the keys should be updated.
The refresh process is initiated periodically by the gateway nodes after the expiration time is reached.
This process can be devided into two subphases that are detailled as follows:

a) The goal of this first subphase is that the neighboring gateway nodes agree about a small secret
value. During this subphase, each gateway node GNi generates a random positive number Si as secret
and it sends the message below, encrypted with the appropriate pairwise key Kij , to its 1-hop neighboring
gateway node GNj.

GNi→ GNj : {Refresh, Idi ‖ Si}Kij (19)

Upon the reception of the above message, the recipient uses the appropriate pairwise key Kij to
decrypt it. After that, it extracts and saves the secret value Si in its list Listj := Listj + Si.

At the end of this subphase, each gateway node GNi determines the smalest secret value Mini among
all the values belonging to its list.

Mini = min(Sk), with Sk ∈ Listi.

b) In this second subphase, each gateway node GNi perfoms the following operations:

1. generates a nonce Noncei and broadcasts the following refresh message that contains the smallest
secret value Mini, encrypted with the current group key Kgi.

GNi→ ∗ : {Refresh, Idi ‖ Noncei ‖Mini}Kgi (20)

2. updates its square matrix by multiplying the main diagonal elements times the smalest positive
value Mini. So Mj [k, k] = Mini ∗Mj [k, k] with k = 1, .., n, and n represents the order of the
square matrix Mj .

3. executes the step b) of the pairwise key establishment phase in order to generate new symmetric
keys, which can be used for further communication.

4. carries out the group key establishment phase to generate a new group key K ′gi.

5. deletes the old or prior keys from its memory and replaces them with the new ones.

Each constrained node who receives the above refresh message for the first time, it uses the current
group key Kij to decrypt it, then it extracts the secret value and executes the steps 2) 3) and 5) above.
After that, it replies to the sender by the following acknowledgment message, which contains the successor
of the received nonce, encrypted with the new pairwise key. Note that constrained nodes that have more
than one gateway node nearby, accept the first refresh message received and disregard the others.

Nj → GNi : {Ack, Idj ‖ Noncei + 1}K ′ij (21)
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4. Security analysis

In this section, we first give an informal analysis of our scheme by showing its resistance against several
types of attacks. After that, we present a formal analysis by using AVISPA (Automated Validation of
Internet Security Protocols and Applications) tool [17].

4.1. Informal analysis

The proposed approach is resilient to the following types of attacks.

• Eavesdropping attack
IoT devices generally use wireless links to communicate with each other. An adversary can easily
listen to messages when they are clearly transmitted over wireless links.
In our scheme, during the key generation phase between two neighbors, an adversary can have
access to the first part of the Hello message because it is not encrypted. However, he is not able
to compute the symmetric pairwise key since he knows neither the initial square matrix M nor the
one way hash function Hash() that are used. After the key estalishment phase, all communications
betwen nodes are secured with the established pairwise and group keys. As a result, an attacker
could not read the content of exchanged messages. Thus, our system is resilient to this kind of
attack.

• Compromising (Node capture) attack
An adversary who captures and compromises an IoT device can have access to all the information
stored in its memory (secret keys, square matrix and the hash function). A node stores one group
key and at most a number of pairwise keys equals to the number of its neighbors. Therefore, the
attacker can only read, alter and/or delete messages transmitted over the communication channels
shared between the compromised node and its direct neighbors. The other channels will not be
affected and will remain safe. We assume that this type of attack does not occur before the deletion
of initial square matrix M, otherwise an adversary will be able to compute all the secrets keys. In
other words, if the initial matrix M is compromised before the expiration of the timer then all the
secret keys will be revealed. However, if an adversary captures and compromises a node after the
expiration of the timer, then only the node’s symmetric keys will be discovered because the initial
matrix M has been deleted from its memory. On the other hand, an adversary that captures a
gateway node dont have access to the information stored in its memory since it is protected by the
use of TPM [15, 16]. Thus, the communication links betwen the gateway nodes and the server could
not be compromised.

• Sybil attack
In a Sybil attack, a malicious node provides several identities to other nodes in the network. To
protect against such attack, the identity of each node needs to be checked. This can be performed
directly by a neighboring node or indirectly by another trusted entity.
In our system, this verification is performed directly by a neighboring node since a node shares a
unique symmetric key with each of its neighbors. So every node checks the identity of its neighbor
by using the appropriate symmetric key when they want to establish a link betwen them. Thus,
a malicious node cannot claim to be another node without prior knowledge of all the secret keys
stored in the memory of the latter. On the other hand, in neighbor discovery and join phases for
example, a node inserts its identity then generates a MAC (Message Authentication Code), which
is added to the message before sending it. The recipient then uses this MAC to verify the identity
and authenticate the sender. Therefore, the proposed system offers a certain robustness against this
attack.

• Forward and backward secrecy
Forward secrecy ensures that a node is unable to decipher new messages by using an old key. As
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for backward secrecy, it is the opposite. That means, a node is unable to decrypt previous messages
encrypted with old keys by using the new key. Both forward and backward secrecy are used to
defeat node capture attacks.
In the proposed scheme, when a node is compromised or leaves the network, all its neighbors remove
from their memories the symmetric key that they shared with it and update their neighbor vectors
and square matrices. Therefore, the leaving node cannot use the old symmetric keys to establish a
new communication with its neighbors because these latter have already removed this old shared key
from their memories. Furthermore, these neighbors cannot establish any more new communications
with this leaving node since they cannot generate a new secret key for this latter because of the
deletion of the row and the column corresponding to this node from their square matrices. A node
that has left the network is unable to decrypt the new messages by using the old keys, because all
its neighborings nodes have removed these keys from their memories. Similarly, when a node joins
the network again, it can not decipher the previous messages, because the new keys differ from the
old ones. Thus, our scheme ensures forward and backward secrecy.

• Replay attack
In a replay attack, the attacker first does passive eavesdropping by capturing the data exchanged
over the network, and later uses this obsolete data to violate integrity or authentication.
Freshness is introduced into our scheme by using a random and unpredictible numbers such as secret
values and nonces in order to defeat this kind of attack. In addition, an attacker is not able to reuse
the messages of an old session in another new session since keys are periodically refreshed. Of course,
in the key refresh phase for instance, if the attacker does passive eavesdropping and captures the
refresh message sent by a gateway node GNi to its constrained nodes, the attacker will not be able
to decrypt that message since he does not know the group key Kgi. When the attacker replays such
rekeying message captured in the previous session, the recipient node Nj remarks that the new
group key K ′gi does not match with the old one, with which the message is encrypted. In fact, the
node Nj has already received a fresh message comming from the close gateway node GNi or from
another one, and thus it has already updated its pairwise and group keys and deleted the old ones
from its memory. As a result, the recipient node detects such replay attack.

• Man in the middle attack
In a man in the middle attack, the attacker is placed between two communicating entities in order
to intercept and/or modify the exchanged messages. The sender and the recipient are unaware of
the existance of the middleman.
In our scheme, all the messages are exchanged directly between any pair of IoT neighbors without
any intermediate entity. Both IoT nodes detect the presence of the adversary since they receive
the messages sent by this unauthorised user. Furthermore, only Hello and Join messages are
not encrypted, but they contain MAC part so that any modification of the messages during their
transmission will be detected by the recipient. All of the other exchanged messages in our scheme
are encrypted with the appropriate keys, so the attacker is not able neither to read nor to alter their
content. In others words, the attacker can not launch any attack on confidentiality and integrity.
Thus our scheme is robust against man in the middle attack.

Furthermore, our scheme ensures the following properties that must be taken into consideration to
assess key management protocols:

• Extensibility since it allows new devices to be added to the network after the deployment phase
by going through the node addition phase. Thus, our scheme is flexible and allows dynamism.

• Scalability because each node stores one group key and at most only the pairwise keys of its
neighbors, thus sensors are assigned with a small number of keys to save their memories. As a

17



result, the number of keys stored in a constrained node’s memory does not increase linearly or
exponnentially with the add of new devices.

• Resilience since the corruption of a given node has limited consequences on the whole of the system.
Indeed, an attacker who compomises a node will only have access to the information (keys) stored
in its memory and as the node stores few keys (one group key and at most only these of its direct
neighbors), by consequence such an attack will have little influence on the whole of the system. In
other words, if a given node is compromised, less number of keys will be revealed to the adversary.

• Authentication through the use of initial shared secret such as hash function, initial matrix and
nonces in the key management.

• Distribution since the initial context used in the key establishment process is distributed in an
offline mode before the deployment.

On the other hand, the secret keys are established in a distributed manner, thus avoiding a central entity
that could be a point of failure or weakness.

4.2. Formal analysis

In this subsection, we give a formal analysis of our scheme by using AVISPA tool [17]. AVISPA
(Automated Validation of Internet Security Protocols and Applications) is a modeling tool for building
and analyzing formal models of the security protocols. It includes four back-ends: OFMC (On-the-fly
Model-Checker)[18], CL-AtSe (Constraint-Logic-based Attack Searcher)[19], SATMC (SAT-based Model-
Checker) [20] and TA4SP (Tree Automata based on Automatic Approximations for the Analysis of Secu-
rity Protocols).
Our protocols are first written in Alice-Bob notation then specified in High Level Protocol Specification
Language HLPSL [21]. After that their security properties like secrecy, integrity and authentication are
analyzed by the four back-ends of the AVISPA tool.
As an example, the Alice-Bob notation for the JOIN protocol is given below.

1. S− > A : {Ss,Ns}Ksa
2. B− > A : B,Nb,Hash(B,Nb, Ss)
3. A− > B : A,Na, Sa, Succ(Nb),Kg,Hash(A,Na, Sa, Succ(Nb),Kg, Ss)
4. B− > A : {Succ(Na)}Kab
5. A− > S : {Succ(Ns)}Ksa
where S is a gateway node, A a node and B a new node.

The obtained results show that all protocols are SAFE under the OFMC and CL-AtSe, INCONCLU-
SIVE under SATMC and SAFE or INCONCLUSIVE under TA4SP back-ends. That means that the
security goals stated in the environment roles (secrecy, integrity and authentication) are satisfied and
could not be violated. In other words, the back-ends found no attacks as shown in Table 2.
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Phase/Back-end OFMC CL-AtSe SATMC TA4SP

KEP Version of 2006/02/13
SUMMARY SUMMARY SUMMARY SUMMARY
SAFE SAFE INCONCLUSIVE INCONCLUSIVE

JOIN SUMMARY SUMMARY SUMMARY SUMMARY
SAFE SAFE INCONCLUSIVE INCONCLUSIVE

LEAVE SUMMARY SUMMARY SUMMARY SUMMARY
Case1 SAFE SAFE INCONCLUSIVE INCONCLUSIVE

LEAVE SUMMARY SUMMARY SUMMARY SUMMARY
Case2 SAFE SAFE INCONCLUSIVE SAFE

REFRESH SUMMARY SUMMARY SUMMARY SUMMARY
SAFE SAFE INCONCLUSIVE SAFE

Table 2: Results of protocols specifications verified in AVISPA

Therefore, we can affirm that an attacker is not able to launch an attack against the authentication,
the integrity and the secrecy on our protocols. Of course, the mutual authentication betwen a node and
its neighbors is satisfied by exchanging their nonces. The secrecy of the sensitive data, like shared key
is also guaranteed. The integrity is guaranteed by using hash function. In fact, for instance when an
intruder intercepts the message M , Hash(M,k) and substitutes the message M by Ḿ, he will not be
able to compute H(Ḿ,k) since he does not know the secret key K. Whenever he sends Ḿ, H(M,k), the
recipient immediately notices that the message has been modified since the hash value of the received
message H(Ḿ,k) is different from the hash value sent H(M,k).

5. Performance analysis

In this section, we first make a comparative study of the solutions presented in related work section.
After that, we evaluate the performance of our scheme by simulations. We especially estimate the energy
consumption of constrained node as Mica2dot sensor node since its energy capacity is very limited. We
mainly focus on communication and computation overheads during pairwise key establishment and key
refresh phases.

5.1. Comparative study

A comparative study of our scheme with the key establishment protocols seen in related work section
according to the memory (storage), computation and communication requirements during key establish-
ment phase, is shown in Table 3 below.
In our scheme, each node needs to store a group key and at most only the pairwise keys of its direct
neighbors. The gateway nodes also store their public/private keys and the public key of the server node.
In addition, a node also stores a square matrix of order d (d is the number of neighbors) and a neighbors
vector of d elements. Thus, one node stores d(d + 1) elements. If the size of one element is four bytes,
then the total space required to store the key material is 4 ∗ d(d + 1). In the network of 1000 nodes for
instance, each node has about 14 neighbors according to [22]. Hence, one node needs to store 840 bytes
that is negligible compared with the capacity of the very constrained node like Mica2dot, which is about
512 kB.

In the other hand, our scheme needs less computation than the others. In fact, to compute one
pairwise key, a node carries out only two multiplications and one substraction (addition), unlike most of
the other schemes which require at least λ + 1 multiplications and λ additions and, it depends on the
security parameter λ.

Furthermore, to establish one pairwise key betwen a constrained node and a gateway node, they need
to exchange only two Hello messages, whereas in Messai et al scheme, to compute one secret key between
a sensor and its cluster head, the sensor node has to send one and receive d Hello messages from its
neighbors.
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Schemes Memory Computation Communication

Blom [5] 2(λ+ 1) (λ+ 1) multiplications Colj(G)
λ additions (λ+ 1)

Du et al [6] 1 + t · (λ+ 1) 2λ+ 1 multiplications the seed of G
t key space λ additions and indices of t

Yu et al [7] (λ+ 1)(2 + w) λ+ 1 multiplications Colj(G)
w rows of B λ additions

Rahman et al. [8] (λ+ 2) 2λ+ 1 multiplications -
λ additions

Y. Zhang et al [9] key seed si 2λ+ 1 multiplications request and
λ additions rowi(Ac)

Messai et al [12] (n+ 4) keys MAC + (d+ 1) Hello
n: number of cluster members Encryption messages

Mesmoudi et al [13] (n+ 2) keys MAC + Hello + Hello Rep
Encryption messages

Our scheme d(d+ 1) 2 multiplications 2 Hello
d neighbors 1 substraction + MAC messages

Table 3: Comparative study of the schemes

5.2. Experimental study (Simulation results)

We perform simulations by using the MATLAB environment to assess the performance of our scheme
with respect to the two related protocols, EAHKM+ [12] and SKWN [13] . In the simulation, we consider
a network in which nodes are randomly deployed within a square area of 100m × 100m. The number of
nodes varies from 10 to 100. We assume that the rate of gateway nodes and cluster heads is 10% of the
network size. The communication range of nodes is 10m. We use the energy model presented in [23]. In
this model, the cost of receiving one byte is about (28.6µJ) and sending a byte is about (59.2µJ) for the
Mica2dot node.
In this subsection, we present the average obtained results for 1000 runs of the simulation in each case.
We first evaluate the resilience of our scheme against node capture attack. After that, we estimate
the comunication and computation energy consumed by constrained nodes during both pairwise key
establishment and key refresh phases.

5.2.1. Resilience against node capture

The resilience is computed as the fraction of links compromised Fx when x nodes are captured. In
our scheme, when an adversary captures a constrained node, he could read all the keys stored in its
memory. Since each node stores a group key and, at most, the symmetric keys of its neighbors, the
number of links that will be compromised is equal to twice the number of its neighbors (the degree d
of the compromised node) because when an attacker gets the symmetric key Kij for example, he is able
to decrypt all messages exchanged between nodes i and j in both directions, i.e from i to j and vice
versa. However, if a gateway node is captured, the number of links that will be compromised is zero
because the adversary gets no key since the memory of this type of node is protected by a TPM [15, 16].
Figure 7 shows the obtained results in terms of resilience to node capture attack of our scheme. We
assume that the adversary compromises one to twenty constrained nodes randomly, and the network
considered is composed of 1000 nodes (constrained and gateways nodes). We note that the proportion of
compromised links increases with increasing the number of compromised nodes, which remains negligible
in our protocol.
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Figure 7: Resilience to node capture attack

5.2.2. Communication overhead

Since the communication cost is closely related on the number and the size of each message exchanged
betwen two communicating neighboring nodes, we first evaluate the length of each message sent or received
by a constrained node during the differents phases of our scheme, then we give the estimation of energy
consumption by sending or receiving such messages according to the energy model given in [23], after that
we discuss the simulation results. We assume that the size of the parameters within messages are 1 byte
for message type, 4 bytes for identity of node, 4 bytes for nonce, E bytes for encryption and H bytes for
hash value. The energy consumption on communications of our scheme is given in Table 4.

Phase Message Message Length Energy consumption
sent received (byte) (µJ)

Init - - - -

KEP (1) 1+4+4+H=9+H (9+H)*59.2
(2) d*(1+4+4+H)=d*(9+H) d*(9+H)*28.6

JOIN (10) E E*28.6
(11) 1+4+4+H (9+H)*28.6

(12) 1+4+4+4+4+16+H (33+H)*59.2
(13) E E*28.6

(14) E E*59.2

LEAVE (15) or (17) E E*28.6
(16) or (18) E E*59.2

REFRESH (20) E E*28.6
(21) E E*59.2

Table 4: Length of messages sent or received by a constrained node

Figure 8 illustrates the average communication energy (in joules) consumed by all constrained nodes
during pairwise key establishment phase in function of hash algorithm. We note that the communication
overhead increases for the compared schemes when the size of hash value increases. As the energy con-
sumption is closely related to the amount of data exchanged, the quantity generated during this phase
depends on the hash algorithm used and therefore on the size of hash value. We notice that this quantity
is more important in SKWN and EAHKM+ than in our scheme. As a result, the performance of our
scheme are higher.
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Figure 8: Communication energy consumed by constrained nodes during pairwise key establishment

Figure 9 presents the average energy (in joule) dissipated in communication by all constrained nodes
during pairwise key establishment phase according to the network size. As shown in this Figure, the
communication cost of our scheme is better than the other protocols. Although the number of messages
exchanged during this phase in our scheme and EAHKM+ is the same, but their size in EAHKM+ is
greater than ours. As we know, the energy consumption depends directly on the amount of data sent
and/or received.
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Figure 9: Communication energy consumed by constrained nodes during key establishment

Figure 10 plots the average communication energy (in joule) consumed by all constrained nodes during
key refresh phase in function of the network size. We assume that the encryption algorithm used here
is AES-128 and the size of hash value is 16 bytes. This Figure indicates clearly that our scheme saves
more energy than the other protocols. This is because in our system, during the rekeying process, each
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constrained node only needs to receive few encrypted message while in EAHKM+ for instance, each sen-
sor must receive (d+ 1), which significantly increases the communication overhead. Moreover, we notice
that the consumed energy increases more slowly in our scheme than in EAHKM+ and SKWN. This can
be explained by the fact that the quantity of messages received by sensors, in both schemes EAHKM+
and SKWN, depends mainly on the number of neighbors or cluster members, which also depends on the
network size.
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Figure 10: Communication energy consumed by constrained nodes during key refresh

5.2.3. Computation overhead

The computation overhead mainly depends on encryption, decryption and authentication cost. To
evaluate this cost, we consider the total number of encryption, decryption and hash operations performed
by a constrained node in each phase of our scheme. After that, we estimate the energy consumption,
then we discuss the simulation results. According to authors in [14], the energy cost of one AES-128
encryption (or decryption) and hash operation in TelosB platform is 9µJ and 40mJ respectively. The
obtained results are summerized in Table 5.

Phase Number of AES-128 Number of Hash Energy
encryption (decryption) operations consumption (µJ)

Init 0 0 0

KEP 0 1+2*d (1 + 2 ∗ d) ∗ 40 ∗ 103

JOIN 1 + (1+1) 2 03 ∗ 9 + 2 ∗ 40 ∗ 103

LEAVE 01 + (01) 0 02*9=18

REFRESH 01 + (01) 0 02*9=18

Table 5: Number of encryption, decryption and hash operations performed by a constrained node

Figure 11 plots the average energy consumption (in joules) during the computation of the pairwise keys
shared betwen constrained nodes with their gateway nodes in our scheme and sensors with their cluster
heads in EAHKM+ and SKWN. Our scheme outperforms the others and our results are slightly better
than those of EAHKM+ and SKWN. This is because, in our scheme, constrained nodes only perform hash
operations to establish pairwise keys, but in the other protocols, sensors do encryption and decryption in
addition to hash operations, which increases slightly the computation overhead.
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Figure 11: Computation cost in the constrained node side during key establishment

Figure 12 compares the computation cost in terms of the average energy consumed by all constrained
nodes during key refresh phase in function of the network size. In our scheme, we considered the worst
case where each constrained node computes all the new pairwise keys of its neighbors, while in the schemes
EAHKM+ and SKWN, each sensor computes only one key with its cluster head. In spite of this, the ob-
tained results show that our scheme consumes less energy than the other protocols. Indeed, in EAHKM+
and SKWN, sensors carry out more encryption, decryption and hash operations. Furthermore, in our
scheme to update keys, constrained nodes only reexecute the step b) of pairwise key establishment phase,
but in EAHKM+ for example, sensors rerun the whole cluster formation and key establishment algorithm.
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Figure 12: Computation cost in the constrained node side during key refresh
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6. Conclusion

In this paper, we have proposed a lightweight matrix based key management scheme for securing
communications betwen IoT devices. The proposed scheme uses matrix to allow any node to be able to
compute a distinct pairwise key with its neighbors. Security analysis shows that the proposed scheme
ensures the security goals like secrecy, integrity and authentication and can protect the sensitive data
from various types of attacks. In addition, the proposed system allows extensibility, scalability, resilience,
authentication and distribution. Furthermore, the simulation results show that our scheme resists well to
node capture attack and consumes less energy when compared to two recent protocols proposed in the
literature.
As future work, we propose to explore the use of blockchain technology in order to improve performance
and achieve better efficiency of our scheme. In fact, the blockchain can allow the network members to
authenticate each others without going through an intermediate entity. For example, during new node
addition phase, members will be able to authenticate new nodes without the need of gateway nodes. In
other words, the addition process will be decentralized.
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C. Héam, O. Kouchnarenko, J. Mantovani, et al., The avispa tool for the automated validation
of internet security protocols and applications, in: International conference on computer aided
verification, Springer, pp. 281–285.
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