
HAL Id: hal-02920469
https://hal.science/hal-02920469v1

Submitted on 24 Aug 2020 (v1), last revised 6 Sep 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matrix-based key management scheme for IoT networks
Mohammed Nafi, Samia Bouzefrane, Mawloud Omar

To cite this version:
Mohammed Nafi, Samia Bouzefrane, Mawloud Omar. Matrix-based key management scheme for IoT
networks. Ad Hoc Networks, 2020, 97, pp.102003. �10.1016/j.adhoc.2019.102003�. �hal-02920469v1�

https://hal.science/hal-02920469v1
https://hal.archives-ouvertes.fr

Matrix-Based Key Management Scheme for IoT networks

Mohammed NAFIa, Samia BOUZEFRANEb, Mawloud Omarc

aLaboratoire d’Informatique Médicale, Faculté des Sciences Exactes, Université de Bejaia,06000 Bejaia, Algérie
bCEDRIC Lab, Conservatoire National des Arts et Métiers -CNAM, Paris, France
cLAMOS, Faculté des Sciences Exactes, Université de Bejaia,06000 Bejaia, Algérie

Abstract

The key management is the central element of network security. In fact, key distribution is necessary
for securing applications in the context of Internet of Things (IoT). However, existing key management
protocols are not directly applicable on IoT due, among other things, to severe and high resource con-
straints of some devices that make up the IoT network. Therefore, it is necessary that the proposed key
management protocols takes in charge these constraints.

In this paper, we propose a new lightweight Matrix based key management protocol for Iot net-
work. The formal verification tool AVISPA has been used in order to check these security properties like
authentication, integrity and secrecy.

Security and performance analysis show that the proposed scheme protects user’s sensitive data from
several types of attacks by achieving secure end-to-end communication, and is suitable for resource-limited
networks.

Keywords: Key management, Security, Internet of Things, Dynamic networks

1. Introduction

The concept of Internet of Things (IoT) was initially introduced in 1999 [1]. It is a system that inter-
connects variety of heterogeneous devices. The devices, like RFID tags, sensors, actuators for instance,
have the ability to sense their environment by acquiring measurements, to comunicate with each others
by exchanging data over the network, and to process the gathered data, etc. The interaction between
devices is performed without human intervention [2]
To make the communication between these IoT devices more secure, a key management service is needed.
However, key management in the context of IoT is more challenging than in traditional networks. This is
because of many reasons, such as the use of wireless links that are vulnerable to eavesdropping attacks;
lack of a central authority; mobility of some IoT devices and heterogeneity of devices in terms of resources
such as memory, computing and energy capacity and bandwith availability; high resource constraints of
some devices, like sensor that have limited battery, computation and memory capacity, etc. For all these
reasons, integrating security for IoT is a real challenge and new key management solutions must take in
charge these inherent features. In this paper, we propose a new key management scheme for Iot that is
based on Matrix.
The main contributions of this paper are the following:

• The number of keys to be stored in a node’s memory is very small since a node stores at most only
the keys of its direct neighbors;

• The approach offers a negligeable communication overhead. In other words, no much communication
is requiered during key establishment phase because the keys are generated in a distributed manner.

• Low computation cost because no complex operation is requiered to estabilish secret keys so the
computation of symmetric keys betwen two neighbors is efficient.

Preprint submitted to Ad Hoc Networks April 14, 2019

• The security goals such as secrecy, integrity and authentication are guaranteed.

• The proposed scheme is resistant to several types of attacks such as eavesdropping, compromising,
sybil, forward and backward and replay attacks.

• The secret keys are estabilished in a distributed manner. therefore, it avoids a central entity that
could be a point of failure or weakness.

• The security analysis and performance evaluation show that the proposed scheme can protect user’s
data privacy and is suitable for the resource-limited network.

The organization of the rest of this paper is as follows. Related work on IoT security and key manage-
ment is summarized in Section 2. In Section 3, we present the proposed matrix based key management
scheme, which consists of a set of protocols for initialization phase, key establishment phase, node addi-
tion phase, key revocation phase and periodic key renewal phase. In Section 4, we describe the security,
analytical and performance analysis of our protocol. Finally, Section 5 concludes the paper and gives
future directions.

2. Related work

According to [3], the key management protocols proposed in the literature for IoT networks can be
classified into two main categories: (1) preshared approaches, which are based on the predistribution of
shared context used to generate a secret shared key between the two communicating entities; and (2)
public key approaches, which are based on asymmetric encryption to generate a commun secret between
two entities having no previous preshared context.

Among the schemes belonging to the first category, we find a matrix-based scheme for establishing
pairwise keys that was initially proposed by Blom [4]. This scheme allows any pair of nodes to be able to
compute a commun pairwise key. It is based on the use of a set of matrices : a (λ+ 1) ·N public matrix
called G, known to everyone, a (λ+1) · (λ+1) random symmetric matrix called D, and a N · (λ+1) secret
matrix called A = (D ·G)T . Since A is a symmetric matrix, the key matrix K = A ·G is also symmetric.
Therefore, the element (i, j) of K is equal to the element (j, i) that correspond to the pairwise key shared
betwen the nodes i and j. Every node i maintains in its memory the ith row and ith column of the private
and public matrix respectively as key material. When two nodes i and j want to communicate, they first
exchange their public column vector of G then each node calculates separately the same commun key
Kij = Kji, which is obtained by the product of the private row vector of A of one node and the public
column of the other node. In this scheme, since nodes never exchange their private rows, no adversary
can compute any pairwise key by simply listening to the communications. In addition, it has been shown
in [4] that the above scheme is λ-secure when all the columns of the matrix G are linearly independent.
However, if the number of compromised nodes exceeds the threshold λ, the whole secret matrix K could
be calculated, thus the entire network becomes unsecure.

Based on the above Blom’s scheme, Du et al. [5] proposed a new key pre-distribution scheme that uses
multiple-space key in order to acheive better resilience of the network to node capture attack. In fact, to
be able to break at least one key space, an adversary must capture a significant number of nodes equals
to λ+ 1 that all share the same key space’s information. In this scheme, every node needs to store a row
vector of λ+1 elements of its private information for each selected key space and a single element (a seed)
of its public information in its memory. To be able to compute a commun pairwise key, two nodes must
share at least one key space. Compared to Blom’s scheme, this scheme is more resilient to node capture
attack and more efficient in terms of communication, but less in terms of computation and storage. In
fact, nodes do not need to exchange their public column, which reduces the communication overhead but
it is regenerated by the node itself, which increases computation overhead (2 modular multiplications).
Moreover in blom’s scheme, a node needs only to store 2(λ + 1) elements but here it stores a seed and

2

λ + 1 elements for each key space, so (λ + 1) · t, where t is the number of key spaces. Furthermore, this
scheme does not address node addition, revocation and key refresh.

Yu and Guan in [6]. proposed a key management scheme using deployment knowledge based on Blom’s
scheme. In their scheme, a deployment area is partionned into grids (hexagons, squares or triangles) and
sensor nodes are arranged into groups where the number is the same as that of grids. After that, each
group of sensors is deployed into a single grid. The authors show that hexagonal grids are best in terms
of security and memory requirement compared with the others. During key predistribution phase, all
groups share the same global matrix G and each one is assigned a unique secret matrix A and a set of
B matrices. During discovery phase, each pair of neighbors that belong to the same group, generate the
pairwise key from the common matrix A and G as in Blom’s scheme. The nodes that are not from the
same group but share at least one common B matrix, can also compute a common key from one choosen
matrix B and the matrix G using Blom’s scheme too. The other nodes that can not compute pairwise
keys between them may use another key discovery mechanism to establish pairwise keys.
In this scheme, each node stores one column of matrix G, one row of matrix A, and, at most, w rows of B
matrices, where each row has λ+1 elements. Moreover, if more than λ nodes of a group are compromised,
the matrix A and some B matrices will be broken. But their scheme achieves a higher connectivity with
a much lower memory requirement and a shorter transmission range. It is more resilient against node
capture attacks.

Another scheme based on Blom’s scheme have been proposed by Rahman et al. [7]. The authors
have improved the original Blom’s scheme so that it becomes suitable for use in resource-constrained
environment like wireless sensor networks. In this scheme, two nodes are able to generate a common key
without any exchange of messages between them but only by knowing the identifier of the other. In fact,
a node does not need to store or exchange its public column of the matrix G, but generates it by using the
node’s identifier, which significantly reduces the storage and the communication overhead. In addition,
the authors proposed mechanisms for updating keys, adding new nodes after deployment, and revoking
compromised nodes. They also presented a dynamic mechanism for establishing secure group keys that
uses pairwise keys. This makes their model more flexible. However, the public matrix G is generated by
the node itself, which increases the computation overhead on the node side, and affects the resilience of
the scheme to node capture attack. Indeed, when an attacker compromises a single node, he is not only
able to compute all its keys shared with the other nodes, but also obtains more information about the
secret matrix.

The authors Y. Zhang et al in [8]. have presented a matrix-based cross-layer key establishment protocol
for smart homes with no prior secret sharing. This is motivated by the fact that domestic devices are
heterogeneous and are not necessarily produced by the same factory. The protocol is based on [9] and
uses the multiple key-spaces idea which is proposed in [5]. Two kinds of keys are used in this protocol:
the secret master key ki and the secret session key Kij. The first key is extracted by using the physical
layer key extraction algorithm [10] when the device joins the network, and shared between a device and
the home gateway. The second one is established at the higher levels and shared between two appliances
Pi and Pj . Thus, the proposed protocol allows any pair of devices to be able to compute a common
secret session key with light energy consumption by delegating the heavy operations to the home gateway
that is powerful. It also achieves key refresh and network scalability. In addition to this, the storage cost
is very low since home appliances have no need to pre-load any secrets and store only the key seed sent
by the home gateway. However, each appliance needs to compute 2λ + 1 multiplications to establish a
session key and the communication cost of the proposed protocol is relatively higher compared with the
previous ones.

Messai and Seba in [11]. presented a new key management scheme for hierarchical wireless sensor
networks called EAHKM+. This scheme is composed of two phases: the key pre-distribution phase and
the cluster formation and key establishment phase. In the first phase, each sensor node is pre-assigned
with three keys before its deployment in the sensing environment: the network key known to all sensor
nodes in the network, which is deleted after the second phase, and two pairwise keys used to secure the

3

communication channel that separates sensor node from the base station. In the second phase, clusters
are securely formed and two new keys are established: the cluster key shared between all cluster members
and a pairwise key shared between the sensor node and its cluster head. This scheme provides a secure
cluster creation and it is flexible since it allows adding and removing sensor nodes after deployment. In
addition to this, it is scalable and can support a large number of nodes. However, the rekeying process is
costly in terms of communication and computation since it requies the re-run of clustering algorithm.

To overcome the limitations of current key distribution and management schemes, we propose an
efficient and a new matrix-based key management scheme.

3. Overview of the proposed scheme

In this section, we describe our matrix-based key management system for Iot networks that aims to
minimize the computation, communications and storage overhead. First of all, we begin by presenting
the network model that we are considering, then we give some assumptions. After that, we summarize
the notations used in this paper. Finally, we describe in detail the differents phases of our scheme.

3.1. Network model

We adopt the network architecture that consists of three main components: constrained nodes, gateway
nodes and remote server node (command node), as shown in Figure 1.

3.1.1. Constrained nodes

In this category, we can find all the nodes that are highly constrained in terms of resources (energy,
memory and computation), such as sensors, RFID Tags, wearable devices (like watch) that can be carried
by a human, etc. The role of these devices consists of monitoring or sensing the environment so that they
collect and transmit the collected data to the Gateway nodes via bluetooth, ZigBee or wifi technologies.
For example, in healthcare application, sensors can be planted in or on a human’s body in order to collect
health related data (e.g. blood pressure, blood glucose level, temperature level, etc.). Another examples
of constrained nodes are MICAz and TelosB that are really constraining. Both platforms run TinyOS.
The MICAz is based on the low-power 8-bit microcontroller ATmega128L running at 7.37 MHz and the
TelosB is based on the 16-bit microcontroller running at 4 MHz [12].

3.1.2. Gateway nodes

The gateway nodes have significantly higher energy resources and are equipped with high performance
processors and more memory compared to nodes belonging to the previous category (constrained nodes),
but they have less resources when compared to remote server node. The gateway nodes fuse the received
data collected by the different constrained nodes, process and send or forward it to the remote server
(command node). The communication between the gateway node and the constrained nodes may be via
Bluetooth or ZigBee, and the one between the gateway node and the remote node may be done through
cellular (3G, 4G) or WiFi networks.

3.1.3. Remote server node (command node)

It can be assumed that the server node has no limitations in terms of power, computation and storage
compared to the two previous ones. For instance, the medical specialists or doctors at remote server node
side can continuously follow patient’s health status based on the data received in order to intervene in
time.

3.2. Assumptions

• We have not made any trust assumptions about the constrained nodes. They can therefore be
captured and compromised. This means that the adversary can read all the information from the
node’s memory, including the keys.

4

Constrained

nodes

Gateway
nodes

Remote
server node

Processing

Data storage

Data analysis

Data aggregation

Sensing

Data acquisition

Sensors (Heartbeat, Blood sugar, Blood pressure, etc), Wearable devices (Watches, Bracelets, etc), Weightscales, RFID Tags, etc.

Cloudlet,
Tablet, laptop,
Smart phones, etc.

Figure 1: Network Model

• Constrained nodes are only able to perform symmetric encryption to avoid high computations since
they are limited in resources.

• We assume that the gateway nodes can also be captured by the attacker and are supposed to be
able to perform symmetric and asymmetric encryption. So, we propose to include TPM (Trusted
Platform Module)[13, 14] to secure the keys stored in their memory.

• The remote server node is powerful enough to support symmetric and asymmetric cryptography.

The notations used in this paper are listed in Table 1.

Notation Description

Idi Identification number of the node Ni.
M Square matrix of order n, where n refers to the size of the network

during the deployment
Mi Matrix of the node Ni
vi Neighbors vector of the node Ni
a ‖ b Information a is concatenated with b’s one
Hash(Msg, k) One way keyed-hash function
|x| Absolute value of the number x
det(M) Determinant of the matrix M
Sij Positive secret value computed by two neighbors Ni et Nj
Kij Pairwise secret key shared betwen two neighbors Ni etNj

Ki/K
−1
i Public/Private key of the gateway node Ni

Si Random positive secret value generated by the gateway GNi
{M} k Message M is encrypted with the key k
T i Timer of the node Ni
Noncei Nonce (random value) generated by the node Ni
Listi List kept by the node Ni

Table 1: Notations

3.3. Phases of our scheme

The proposed scheme is composed of fives phases: initialization, key establishment, adding new node,
key revocation and key refresh phase. These phases are described in detail in the following section.

5

3.3.1. Initialization Phase

During this phase, all of the following information is preloaded into the node’s memory just before
they are being deployed:

1. An identification number Idi that is unique in the network.

2. A square matrix M of order n, where the elements are generated randomly and are strictly positives,
and n represents the number of nodes in the network during the deployment phase: M [i, j] > 0,
with i, j = 1..n. This matrix can be stored in the flash RAM and hence will be erased from the
node’s memory later.

3. A one way keyed-hash function Hash(msg, k) that takes as input a message of arbitrary length msg
and a secret key k and compresses the message into a short fixed length hash value, so it will take
up less space.

With the Matrix M and the hash function Hash(), every node Ni is able to compute the symmetric
key Kij that will be shared with its direct neighbor Nj. Each gateway node has a timer initialized to a
value which decrements with time. When it reaches zero, the key renewal process will be launched.

3.3.2. Key establishment phase

The key generation phase contains the two following steps:
a) Neighbor discovery
As soon as the deployment is done, every node Ni identifies its direct neighbors (1-hop) by sending them
a Helloi message along with its identifier, a nonce and a hash value (digest), which is computed by the
preshared one way function that uses the diagonal element of the sender as secret value.

Ni→ GNj : Helloi, Idi ‖ Noncei, Hash(Idi ‖ Noncei,M [i, i]) (1)

When a node that is within the radio range of the sender, receives this message, it checks its authenticity
and integrity by calculating the hash value H of the first part of the Helloi message by using the diagonal
element M [i, i] of the sender as secret value as follows: H = Hash(Idi ‖ Noncei,M [i, i]). The obtained
result will then be compared to the second part ie Hash(Idi ‖ Noncei,M [i, i]), which corresponds to the
hash value computed by the sender node Ni. If both digests are different, then this message is ignored
and rejected, oherwise it is authentic, so it has not been altered by an adversary during its transmission.
As a result, this message will be accepted by the recipient node GNj and the latter updates its neighbors
vector vj by adding the identifier of Ni(Idi) and arranges the verctor in ascending order. After that,
the gateway node replies to the sender node Ni with the Helloj message that contains its identifier, the
succesor of the received nonce and a digest.

GNj → Ni : Helloj, Idj ‖ Noncei + 1, Hash(Idj ‖ Noncei + 1,M [j, j]) (2)

At the end of this step, each node has its neighbors vector completely updated that contains all the
identifiers of its 1-hop neighbors arranged in ascending order.

b) Computation of the secret values and pairwise keys
During this step, each node computes its square matrix Mi, which is obtained from the initial one M by
keeping only the elements M [k, l], where ∀ k, l ∈ vi.
Moreover, it computes a positive secret value Sij , which is equal to the absolute value of the determinant
of the 2 by 2 matrix Mij, where the elements are:

Mij =

[
Mi [i, i] Mi [i, j]
Mi [j, i] Mi [j, j]

]
=

[
Mj [i, i] Mj [i, j]
Mj [j, i] Mj [j, j]

]
, with i < j

Sij = |det (Mij)| (3)

6

Finally, it obtains a shared secret key Kij by applying the hash function that uses Sij as secret value as
follows:

Kij = Hash(Idi ‖ Idj ‖ Sij , Sij), with i < j (4)

This pairwise key will be used by the two nodes in order to secure their communications by encrypting
and decrypting the messages exchanged between them. Note that keys can or not be stored in node’s
memory according to the capacity of the node. In fact, a node with low storage and high processing ca-
pacity may store few or no keys. The other keys will be calculated during communication, which reduces
storage costs. On the other hand, a node with high storage and low processing capacity can store all
or a large number of pairwise keys. This allows the node to avoid recalculating them during the next
communication session with the same node, which reduces the calculation cost. Thus, a node can store a
set of keys whose number is between zero and d where d is the number of its neighbors.

In the other hand, each gateway node GNi computes its private/public keys K−1i /Ki that will be
used to secure the communication channel separated him to the server node. The private key is computed
as follows:

K−1i = Hash(Sij ‖ Sik ‖ ... ‖ Sil,M [i, i]) (5)

where j, k, .., l ∈ vi and j < k < .. < l.
The public key is obtained from the last private key as follows:

Ki = Hash(K−1i ,M [i, i]) (6)

The key Ki is public and known by everyone. It can be specially used by the server node when he wants
to send messages securely to that gateway node. However, the key K−1i is private and must be kept
secret and known only by the gateway node itself. It can be used to sign/decrypt messages sent/received
to/from the server node. The server node sends its public key encrypted with the public key of each
gateway node. This latter uses its private key K−1i to decrypt the messages encrypted with its public key
Ki.

The complete process of establishing of the symmetric key between the gateway node j and its direct
neighbor i is described in the Figure 2 below.

7

Constrained Node i Gateway Node j
a) Neighbor discovery a) Neighbor discovery

Send Helloi message Receive Helloi
message

Helloi authenticity
and integrity?

Update its neighbors
vector Vj

Vj = Vj + Idi message ignored

replay by sending
Helloj message

Receive Helloj
message

Helloj authenticity
and integrity?

Update its neighbors
vector Vi

Vi = Vi + Idj
message ignored

b) Computation of secret values
and pairwise keys

b) Computation of secret values
and pairwise keys

Compute the square
matrix Mi

Compute the secret
value Sij

Compute the
pairwise key Kij

Compute the
pairwise key Kij

Compute the secret
value Sij

Compute the square
matrix Mj

Arrange Vj in
ascending order

Yes No

Yes No

Arrange Vi in
ascending order

Figure 2: Process of establishing of the symmetric key between two nodes

Illustrative example
The network depicted in the Figure 3 is composed of four nodes: three sensors and one gateway node.
During the initialization phase, all nodes are assigned a unique identifier(number) and pre-loaded with
the hash function Hash() and the square matrix M of order 4 (a 4 by 4 matrix).

3

2

4

1

M =

Figure 3: Network with four nodes

8

During the neighbor discovery stage, the nodes of the network exchange hello messages betwen them
so that they update their neighbors vector and compute their square matrix as follows:
The gateway node 1 has three neighbors (nodes 2, 3 and 4). Therefore, its neighbors vector v1 has four
identifiers arranged in ascending order (its identifier and the identifier of each neighbor). So the vector
v1 = [1, 2, 3, 4] and its square matrix M1 is equal to the initial matrix M because all the nodes are
neighbors with the node 1.
The node 2 has one neighbor (node 1). Hence, its neighbors vector v2 has two identifiers (the identifier of
the node 1 and its identifier in this order) arranged in ascending order v2 = [1, 2] and its square matrix
M2 is obtained as follows:

M2 =

[
M [1, 1] M [1, 2]
M [2, 1] M [2, 2]

]
=

[
1 2
5 6

]
The nodes 3 and 4 have the same neighbors (nodes 1, 3, 4), thus they have the same neighbors vector
v3 = v4 = [1, 3, 4] and they share the same 3 by 3 matrix (M3 = M4) obtained from the matrix M as
follows :

M3 = M4 =

 M [1, 1] M [1, 3] M [1, 4]
M [3, 1] M [3, 3] M [3, 4]
M [4, 1] M [4, 3] M [4, 4]

 =

 1 3 4
9 2 3
4 6 7

In the next step, each pair of neighbors compute the secret value in the following way:
The nodes 1 and 2 compute the secret value:

S12 = |det (M12)| =
∣∣∣∣det(M [1, 1] M [1, 2]

M [2, 1] M [2, 2]

)∣∣∣∣ =

∣∣∣∣det(1 2
5 6

)∣∣∣∣ = |6− 10| = 4

The nodes 1 and 3 compute the secret value:

S13 = |det (M13)| =
∣∣∣∣det(M [1, 1] M [1, 3]

M [3, 1] M [3, 3]

)∣∣∣∣ =

∣∣∣∣det(1 3
9 2

)∣∣∣∣ = |2− 27| = 25

The nodes 1 and 4 compute the secret value:

S14 = |det (M14)| =
∣∣∣∣det(M [1, 1] M [1, 4]

M [4, 1] M [4, 4]

)∣∣∣∣ =

∣∣∣∣det(1 4
1 7

)∣∣∣∣ = |7− 4| = 3

The nodes 3 and 4 compute the secret value:

S34 = |det (M34)| =
∣∣∣∣det(M [3, 3] M [3, 4]

M [4, 3] M [4, 4]

)∣∣∣∣ =

∣∣∣∣det(2 3
6 7

)∣∣∣∣ = |14− 18| = 4

Finally, in the last stage, every two neighboring nodes are able to generate the common symmetric secret
key as follows:
The nodes 1 and 2 compute the secret shared symmetric key:
K12 = Hash(1 ‖ 2 ‖ 4, 4) = Hash(124, 4)
The nodes 1 and 3 compute the secret shared symmetric key:
K13 = Hash(1 ‖ 3 ‖ 25, 25) = Hash(1325, 25)
The nodes 1 and 4 compute the secret shared symmetric key:
K14 = Hash(1 ‖ 4 ‖ 3, 3) = Hash(143, 3)
The nodes 3 and 4 compute the secret shared symmetric key:
K34 = Hash(3 ‖ 4 ‖ 4, 4) = Hash(344, 4)
The gateway nodes 1 also computes its private/public keys as follows:
K−11 = Hash(S12 ‖ S13 ‖ S14,M [1, 1]) = Hash(4253, 1), K1 = Hash(K−11 ,M [1, 1]).

9

3.3.3. Adding new node Phase

To add a new node Nn to the network, the gateway node Ni that is close to this new node, randomly
generates a new positive secret value Si and sends it to each of its neighboring nodes encrypted with
the corresponding pairwise key. Each node that receives this message, decrypts it with the appropriate
symmetric key, extracts and saves the secret value, and encrypts a message in which it inserts the new
secret value Si and transmits it to its direct neighbors except to the one who sent him the last message.
This process is repeated until all the nodes obtain this new value. This value and the hash function
Hash() are also stored in the memory of the new node Nn before deploying it in the network so that
they will be used to calculate the secret keys that the new node will share with its neighbors.

Ni→ Nj : {Si,Noncei}Kij (7)

where Kij is the pairwise key shared between the gateway node Ni and its neighbor node Nj.
After deployment, the new node sends a join message along with its identifier, a random number (nonce)
and a digest.

Nn→ ∗ : Join, Idn ‖ Noncen, Hash(Idn ‖ Noncen, Si) (8)

The adjacent devices that are within the radio range of the new node, receive it then check its
authenticity and integrity. If this verification fails, the join message will be ignored, otherwise all the
neighboring nodes update their neighbors vectors by adding the identifier Idn of the new node and their
matrices are also updated by creating, at the end, a new row and a new column, where the elements
are equals to zero except the main diagonal element that equals to Mj [k + 1, k + 1] = Noncen, with k
represents the order of the square matrix Mj just before adding the new node. After that, each neighboring
node Nj will respond with an acknowledgement message that contains its diagonal element M [j, j] of the
matrix M .

Nj → Nn : Ack, Idj ‖ Noncej ‖M [j, j] ‖ Noncen + 1, Hash(Idj ‖ Noncej ‖M [j, j] ‖ Noncen + 1, Si)
(9)

Upon the reception of the last message, the new node checks it. If this verification is successful,
the new node will update its neighbors vector by adding the identifier of node Nj. When this neighbor
vector is completly updated, the new node updates its square matrix in the following way: Mn[i, j] =
M [vn[i], vn[i]], with i = j, Mn[i, j] = 0, otherwise.

When the matrix Mn is fully updated, the new node can start to generate all the symmetric keys
Kni that will be shared with each of its neighbor Ni by executing the step b) of the key establishment
phase. After that, it replies to the node Nj by sending a message containing the succesor of the received
nonce Noncej and encrypted with the obtained pairwise key Knj.

Nn→ Nj : {Noncej + 1}Knj (10)

At the end, the node Nj responds to the gateway node Ni by sending the message that contains the
succesor of the nonce of Ni encrypted with the pairwise key Kij .

Nj → Ni : {Noncei + 1}Kij (11)

The process of adding a new node to the network is described in the Figure 4 below.

10

New node Nn Gateway node Ni Node Nj

{ Si, Noncei } Kij

Join, Idn || Noncen, Hash (Idn||Noncen, Si)

Ack, Idj || Noncej|| M[j,j] || Noncen+1, Hash (Idj|| Noncej|| M[j,j] || Noncen+1, Si)

{ Noncej+1 } Knj

{ Noncei+1 } Kij

Figure 4: Process of adding a new node to the network

Example
The Figure 5 shows an example of adding a new node to the network. The network is initially

composed of six nodes. The gateway node 1 and the node 2 are neighbors to each others and have the
same neighbor (node 3), therefore, they share the same neighbors vectors vi = [1, 2, 3] , with i = 1, 2,
and the same square Matrix Mi = [1 2 3; 4 5 6; 7 8 9] , with i = 1, 2. The node 4 wants to
join the network. So, the gateway node 1 close to this new node, generates a random secret value S1
and sends it to its neighboring nodes 2 and 3 encrypted with the corresponding pairwise keys K12 and
K13 respectively. The new node 4 is preloaded with this secret value S1 and a hash function Hash()
before its deployment then it generates a random number(Nonce4 equals to 55 for example) and sends
a same join message to its 1 hop neighbors(node 1 and 2). The nodes 1 and 2 check the authenticity of
the join message by computing the hash value of the first part of the message and compares it with the
second part. If the verification succeed, then both nodes add the identifier 4 to their neighbors vectors
vi = [1, 2, 3, 4], with i = 1, 2. After that the nodes 1 and 2 add a new forth row where Mi(4, j) = 0, with
i = 1, 2 and j = 1, 2, 3 and Mi(4, j) = Nonce4 = 55 else (with i = 1, 2 and j = 4) and a new forth column
where Mi(j, 4) = 0, with i = 1, 2 and j = 1, 2, 3 and Mi(j, 4) = nonce4 = 55 else (with i = 1, 2 and
j = 4) . The nodes 1 and 2 respond with the acknowledgement messages containing the diagonal element
M(1, 1) = 1 and M(2, 2) = 5, respectively. Upon the reception of the ACK messages, the new node 4
ckecks if they are authentic. if yes then it adds the identifiers 1 and 2 to its neighbors vector v4 = [1, 2, 4]
ordered and updates its square matrix M4 = (1 0 0; 0 5 0; 0 0 55). The new node 4 has its 3 by
3 matrix fully updated, so it is able to generate a symmetric keys K14 and K24 by executing the step b)
of the key estabilishment phase as follows:
The node 1 and 4 compute the secret value:
S14 = |det(M14)| = |det(1 0; 0 55)| = |55| = 55, and then generate the common key: K14 = Hash(1 ‖
4 ‖ 55, 55) = Hash(1455, 55).
The node 2 and 4 compute the secret value:
S24 = |det(M24)| = |det(5 0; 0 55)| = |275| = 275, and then compute the common key: K24 =
Hash(2 ‖ 4 ‖ 275, 275) = Hash(24275, 275)
The new node 4 sends to node 1 and 2 the message containing the succesor of the nonce of node 1 and 2
encrypted with the corresponding pairwise key K14 and K24 respectively.

11

Finally, the node 2 replies to the gateway node 1 with the message containning the successor of the
received nonce encrypted with the symmetric key K12.

4

2

1

3
5

6

7

4

1

3

2

5

6

7

a) Before b) After

Vi=[1, 2, 3] ; Mi=[1 2 3;4 5 6;7 8 9], with i=1,2 Vi'=[1, 2, 3, 4]; Mi'=[1 2 3 0;4 5 6 0;7 8 9 0;0 0 0 55], with i=1,2

JOIN
JOINACK

ACK

V4=[1, 2, 4]; M4=[1 0 0;0 9 0;0 0 55]

Figure 5: Example of adding the node 4 to the network

3.3.4. Key revocation phase

Two cases may arise: either the node leaves after it has been detected as compromised, or it leaves
with its proper willingness.
Case 1 :
A node Ni that detects a bad or suspicious behavior (does not forward correctly messages for example)
from its neighboring node Nj does the followings tasks:

a) informs its neighboring nodes Nk by sending a message encrypted with the pairwise keys that it
shares with them. The message contains the identifier of the compromised node and a nonce.

Ni→ Nk : {Idj ‖ Noncei}Kik (12)

b) deletes from its memory the pairwise key that it shares with the compromised node.

c) updates its square matrix by deleting the row and the column that correspond to the compromised
node.

d) updates its neighbors vector by removing the identifier of the compromised node.

When the neighboring node receives this message that comes from its neighbor, it does the following
actions:

1. decrypts it with the appropriate pairwise key.

2. compares the identifier received with its identifier and with the identifier of the sender. If it is
different from both identifiers then it checks if the compromised node belongs to its neighbors. In
other words, it verifies whether the identifier of the compromised node appears in its neighbors
vector. If it is not the case, the message will be ignored by the recipient, otherwise the node does
the operations b), c) and d) described above.

3. replies to the sender by an acknowledgment message Ack encrypted with the appropriate symmetric
key that contains the successor of the received nonce.

Nk → Ni : {Ack,Noncei + 1}Kik (13)

12

Case 2 :
A node Ni that leaves the network with its own will, sends a Leave message to inform its 1-hop neighbors
Nj.

Ni→ Nj : {Leave, Idi ‖ Noncei}Kij (14)

A neighbor who receives that message decrypts it with the appropriate pairwise key, responds with
an acknowledgment message Ack and carries out the operations b), c) and d) described above.

Nj → Ni : {Ack, Idj ‖ Noncei + 1}Kji (15)

All the neighboring nodes delete the pairwise keys that they share with the outgoing or compromised
node. As a result, the latter can no longer communicate with its neighbors afterwards. In other words,
the neighbors of the leaving or compromised node will avoid to transmit messages to him since they dont
hold appropriate symmetric keys.

Example
We consider the network depicted in the Figure 6 below. The node 2 leaves the network with its own
will, so it informs its neighboring nodes (node 1 and 4) by sending a Leave message encrypted with the
appropriate pairwise key. In fact, the message {2 ‖ Nonce2}K12 is sent to the node 1 and the message
{2 ‖ Nonce2}K24 is sent to the node 4.

4

1

3
5

6

7

2

1

3

4

5

6

7

a) Before b) After

Vi=[1, 2, 3, 4] ; Mi=[1 2 3 4;5 6 7 8;9 1 2 3;4 5 6 7], with i=1,4 Vi'=[1, 3, 4]; Mi'=[1 3 4;9 2 3;4 6 7], with i=1,4

LEAVE
LEAVEACK

ACK

Figure 6: Example of Node 2 leaving the network

Before the departure of the node 2, we assume that the neighbors vectors and the square matrices of
the node 1 and 4 are equals to:

v1 = v4 =
[

1, 2, 3, 4
]

; M1 = M4 =

1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7

When receiving the Leave message, the nodes 1 and 4 do the following operations:
- decrypt the message with the appropriate keys K12 and K24 respectively.
- reply to the leaving node by anAck messages: {Ack, 1 ‖ Nonce2 + 1}K12 and {Ack, 4 ‖ Nonce2 + 1}K24
respectively.
- delete from their memories the pairwise keys K12 and K24 respectively.
- update their square matrices M1 and M4 by deleting the second row and the second column that
correspond to the node 2.
- update their neighbors vectors v1 and v4 by deleting the identifier 2 of the node 2.

After the deletion of the node 2, the neighbors vectors and the square matrices of the nodes 1 and 4
become:

13

v′1 = v′4 =
[

1, 3, 4
]

;M ′1 = M ′4 =

 1 3 4
9 2 3
4 6 7

3.3.5. Key refresh phase

This phase aims to improve security because the new keys will be completly different from the old
ones, which add difficulties to cryptanalytic attack. In fact, if the same keys are kept for a long time, the
attacker may be able to obtain these keys by traffic analysis. Therefore, all the keys should be updated.
The refresh process is initiated periodically by the gateway nodes after the expiration time is reached.
This process can be devided into two subphases that are detailled as follows:

a) The goal of this first subphase is that the neighboring gateway nodes agree about a small secret
value. During this subphase, each gateway node GNi generates a random positive number Si as secret
and it sends the message below, encrypted with the appropriate pairwise key Kij , to its 1-hop neighboring
gateway node GNj.

GNi→ GNj : {Refresh, Idi ‖ Si}Kij (16)

Upon the reception of the above message, the recipient GNj uses the appropriate pairwise key Kij to
decrypt it. After that, it extracts and saves the secret value Si in its list Listj := Listj + Si.

At the end of this subphase, each gateway node GNi determines the smalest secret value Mini among
all the values belonging to its list.
Mini = min(Sk), with Sk ∈ Listi.

b) In this second subphase, each gateway node GNi perfoms the following operations:

1. generates a nonce Noncei and sends the following refresh message along with the smallest secret
value Mini to its one hop constrained nodes Nj encrypted with the appropriate old secret keys.

GNi→ Nj : {Refresh, Idi ‖ Noncei ‖Mini}Kij (17)

2. updates its square matrix by multiplying the main diagonal elements times the smalest positive
value Mini. So Mj [k, k] = Mini ∗Mj [k, k] with k = 1, .., n, and n represents the order of the
square matrix Mj .

3. executes the step b) of the key establishment phase in order to generate new symmetric keys, which
can be used for further communication.

4. deletes the old or prior keys from their memories and replaces it with the new ones.

Each constrained node who receives the first above refresh message, it uses the appropriate symmetric
key Kij to decrypt it, then it extracts the secret value and executes the steps 2) 3) and 4) above. After
that, it replies to the sender by the following acknowledgment message, which contains the successor of
the received nonce, encrypted with the new symmetric key. Note that constrained nodes that have more
than one gateway node nearby, accept the first refresh message received and disregard the others.

Nj → GNi : {Ack, Idj ‖ Noncei + 1}K ′ij (18)

4. Analysis

4.1. Security analysis

In this section, we first give an informal analysis of our scheme by showing its resistance against several
types of attacks. After that, we present a formal analysis by using AVISPA (Automated Validation of
Internet Security Protocols and Applications) tool [15].

14

4.1.1. Informal analysis

The proposed approach is resilient to the following types of attacks.

• Eavesdropping attack
IoT devices generally use wireless links to communicate with each other. An adversary can easily
listen to messages when they are clearly transmitted over wireless links.
In our scheme, during the key generation phase between two neighbors, an adversary can have
access to the first part of the Hello message because it is not encrypted. However, he is not able
to compute the symmetric pairwise key since he knows neither the initial square matrix M nor the
one way hash function Hash() that are used. After the key estalishment phase, all communications
betwen nodes are secured with the established pairwise keys. As a result, an attacker could not
read the content of the exchanged messages. Thus, our system is resilient to this kind of attack.

• Compromising (Node capture) attack
An adversary who captures and compromises an IoT device can have access to all the information
stored in its memory (secret keys, square matrix and the hash function). Since a node stores at
most a number of keys equals to the number of its neighbors. Therefore, the attacker can read,
alter and/or delete messages transmitted over the communication channels shared between the
compromised node and its neighbors. The other channels will not be affected and will remain safe.
We assume that this type of attack does not occur before the deletion of the initial square matrix
M, otherwise an adversary will be able to compute all the secrets keys. In other words, if the initial
matrix M is compromised before the expiration of the timer then all the secret keys will be revealed.
But if an adversary captures and compromises a node after the expiration of the timer then only
the node’s symmetric keys will be discovered because the initial matrix M has been deleted from
its memory. On the other hand, an adversary that captures a gateway node dont have access to
the information stored in its memory since it is protected by the use of TPM [13, 14]. Thus, the
communication links betwen the gateway nodes and the server could not be compromised.

• Sybil attack
In a Sybil attack, a malicious node provides several identities to other nodes in the network. To
protect against such attack, the identity of each node needs to be checked. This can be performed
directly by a neighboring node or indirectly by another trusted entity.
In our system, this verification is performed directly by a neighboring node since a node shares a
unique symmetric key with each of its neighbors. So every node checks the identity of its neighbor
by using the appropriate symmetric key when they want to establish a link betwen them. Thus,
a malicious node cannot claim to be another node without prior knowledge of all the secret keys
stored in the memory of the latter. On the other hand, in neighbor discovery and join phases for
example, a node inserts its identity then generates a MAC (Message Authentication Code), which
is added to the message before sending it. The recipient then uses this MAC to verify the identity
and authenticate the sender. Therefore, the proposed system offers a certain robustness against this
attack.

• Forward and backward secrecy
Forward secrecy ensures that a node is unable to decipher new messages by using an old key. As
for backward secrecy, it is the opposite. That means, a node is unable to decrypt previous messages
encrypted with old keys by using the new key. Both forward and backward secrecy are used to
defeat node capture attacks.
In the proposed scheme, when a node is compromised or leaves the network, all its neighbors remove
from their memories the symmetric key that they share with it and update their neighbor vectors
and also their square matrices. Therefore, the leaving node cannot use the old symmetric keys to
establish a new communication with its neighbors because these latter have already removed this

15

old shared key from their memories. Furthermore, these neighbors cannot establish any more new
communications with this leaving node since they cannot generate a new secret key for this latter
because of the deletion of the row and the column corresponding to this node from their square
matrices. A node that has left the network is unable to decrypt the new messages by using the old
keys, because all its neighborings nodes have removed these keys from their memories. Similarly,
when a node joins the network again it can not decipher the previous messages, because the new
keys differ from the old ones. Thus, our scheme ensures forward and backward secrecy.

• Replay attack
In a Replay attack, the attacker first does passive eavesdropping by capturing the data exchanged
over the network, and later uses this obsolete data to violate integrity or authentication.
Freshness is introduced into our scheme by using a random and unpredictibles values such as secret
values and nonces in order to defeat this kind of attacks. In addition, an attacker is not able to
reuse the messages of an old session in another new session since keys are periodically refreshed. Of
course, in the key refresh phase for instance, if the attacker does passive eavesdropping and captures
the refresh message sent by a gateway node i to the node j, The attacker is not able to decrypt
the message since he does not know the pairwise key Kij . When the attacker replays such rekeying
message captured in the previous session, the recipient node j remarks that the new pairwise key
K ′ij does not match with the old one Kij with which the message is encrypted. In fact, the node
j has already received a fresh message comming from the gateway node i or from another one and
thus it has already updated its pairwise keys and deleted the old ones from its memory. As a result,
the recipient node j detects such replay attack.

• Man in the middle attack
In a Man-in-the-Middle attack, the attacker is placed between the two communicating entities in
order to intercept and/or modify the exchanged messages. The sender and the recipient are unaware
of the existance of the middleman.
In our scheme, all the messages are exchanged directly between any pair of IoT neighbors without
any intermediate entity. Both IoT nodes detect the presence of the adversary since they receive
the messages sent by this unauthorised user. Furthermore, only Hello and Join messages are
not encrypted but they contain MAC part so that any modification of the messages during their
transmission will be detected by the recipient. All of the other messages exchanged in our scheme
are encrypted with the appropriate keys, so the attacker is not able neither to read nor to alter their
content. In others words, the attacker can not launch any attack on confidentiality and integrity.
Thus our scheme is robust against Man in the middle attack.

Furthermore, our scheme ensures the following properties that must be taken into consideration to
assess key management protocols:

• extensibility since it allows to new nodes to be added to the network after the deployment phase
by going through the add phase. Thus, our scheme is flexible and allows dynamism.

• scalability because each node stores at most only the keys of its neighbors, thus sensors are assigned
with a small number of keys to save their memories. As a result, the number of keys stored in a
constrained node’s memory does not increase linearly or exponnentially with the add of new nodes.

• resilience since the corruption of a given node has limited consequences on the whole of the system.
Indeed, an attacker who compomises a node will only have access to the information (keys) stored
in its memory and as the node stores few keys (at most only these of its direct neighbors) by
consequence such an attack will have little influence on the whole of the system. In other words, if
a given node is compromised, less number of keys would be revealed to the adversary.

16

• authentication through the use of initial shared secret such as hash function, initial matrix and
nonces in the key management.

• distribution since the initial context used in the key estabilishment process is distributed in an
offline mode before the deployment.

On the other hand, the secret keys are established in a distributed manner, thus avoiding a central entity
that could be a point of failure or weakness.

4.1.2. Formal analysis

In this subsection, we give a formal analysis of our scheme by using AVISPA tool [15]. AVISPA
(Automated Validation of Internet Security Protocols and Applications) is a modeling tool for building
and analyzing formal models of the security protocols. It includes four back-ends: OFMC (On-the-fly
Model-Checker)[16], CL-AtSe (Constraint-Logic-based Attack Searcher)[17], SATMC (SAT-based Model-
Checker) [18] and TA4SP (Tree Automata based on Automatic Approximations for the Analysis of Secu-
rity Protocols).
Our protocols are first written in Alice-Bob notation then specified in High Level Protocol Specification
Language HLPSL [19]. After that their security properties like secrecy, integrity and authentication are
analyzed by the four back-ends of the AVISPA tool.
As an example, the Alice-Bob notation for the JOIN protocol is given below.

1. S− > A : {Ss,Ns}Ksa
2. B− > A : B,Nb,Hash(B,Nb, Ss)
3. A− > B : A,Na, Sa, Succ(Nb), Hash(A,Na, Sa, Succ(Nb), Ss)
4. B− > A : {Succ(Na)}Kab
5. A− > S : {Succ(Ns)}Ksa
where S is a gateway node, A a node and B a new node.

The obtained results show that all protocols are SAFE under the OFMC and CL-AtSe, INCONCLU-
SIVE under SATMC and SAFE or INCONCLUSIVE under TA4SP back-ends. That means that the
security goals stated in the environment roles (secrecy, integrity and authentication) are satisfied and
could not be violated. In other words, the back-ends found no attacks as shown in Table 2.

Phase/Back-end OFMC CL-AtSe SATMC TA4SP

KEP Version of 2006/02/13
SUMMARY SUMMARY SUMMARY SUMMARY
SAFE SAFE INCONCLUSIVE INCONCLUSIVE

JOIN SUMMARY SUMMARY SUMMARY SUMMARY
SAFE SAFE INCONCLUSIVE INCONCLUSIVE

LEAVE SUMMARY SUMMARY SUMMARY SUMMARY
Case1 SAFE SAFE INCONCLUSIVE INCONCLUSIVE

LEAVE SUMMARY SUMMARY SUMMARY SUMMARY
Case2 SAFE SAFE INCONCLUSIVE SAFE

REFRESH SUMMARY SUMMARY SUMMARY SUMMARY
SAFE SAFE INCONCLUSIVE SAFE

Table 2: Results of protocols specifications verified in AVISPA

Therefore, we can affirm that an attacker is not able to launch an attack against the authentication,
the integrity and the secrecy on our protocols. Of course, the mutual authentication betwen a node and
its neighbors is satisfied by exchanging their nonces. The secrecy of the sensitive data like shared key
is also guaranteed. The integrity is guaranteed by using hash function. In fact, for instance when an
intruder intercepts the message M , Hash(M,k) and substitutes the message M by Ḿ, he will not be
able to compute H(Ḿ,k) since he does not know the secret key K. Whenever he sends Ḿ, H(M,k), the

17

recipient immediately notices that the message has been modified since the hash value of the received
message H(Ḿ,k) is different from the hash value sent H(M,k).

4.2. Analytical analysis

In this subsection, we evaluate the resilience of our scheme against node capture attack. The resilience
is computed as the fraction of links compromised Fx when x nodes are captured. In our scheme, when an
adversary captures a constrained node, he could read all the keys stored in its memory. Since each node
stores, at most, only the symmetric keys of its neighbors, the number of links that will be compromised
is equal to twice the number of its neighbors (the degree d of the compromised node) because when an
attacker gets the symmetric key Kij for example, he is able to decrypt all messages exchanged between
nodes i and j in both directions, i.e from i to j and vice versa. However, if a gateway node is captured, the
number of links that will be compromised is zero because the adversary gets no key since the memory of this
type of node is protected by a TPM [13, 14]. Figure 7 shows the obtained results in terms of resilience to
node capture attack of the compared schemes. We note that the proportion of compromised links increases
with increasing the number of compromised nodes. We assume that the adversary compromises one to
twenty constrained nodes randomly. The network considered here is composed of 1000 nodes (constrained
and gatways nodes). Thus, each node has about 14 neighbors according to [20]

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of constrained nodes captured

F
ra

ct
io

n
of

li
n

k
s

co
m

p
ro

m
is

ed

our scheme

Figure 7: Resilience to node capture attack

4.3. Performance analysis (experimental study)

In this subsection, we present a performance evaluation of our scheme by focusing on the communi-
cation, storage and computation overhead during the several phases. We especially estimate the energy
consumption of constrained node as Mica2dot sensor node, since the energy of this sensor is very limited.
We assume that the rate of gateway nodes is 10% of the network size.

The Table 3 below shows a comparative study of our scheme with the key establishment protocols seen
in related work section according to the memory (storage), computation and communication requirements
during key establishment phase.
In our scheme, each node needs to store at most only the pairwise keys of its direct neighbors. The
gateway nodes also store their public/private keys and the public key of the server node. In addition, a
node also stores a square matrix of order d (d is the number of neighbors) and a neighbors vector of d
elements. Thus, one node stores d(d+ 1) elements. If the size of one element is four bytes, then the total
space required to store the key material is 4 ∗ d(d + 1). In the network of 1000 nodes for instance, one

18

Schemes Memory Computation Communication

Blom [4] 2(λ+ 1) (λ+ 1) multiplications Colj(G)
λ additions (λ+ 1)

Du et al [5] 1 + t · (λ+ 1) 2λ+ 1 multiplications the seed of G
t key space λ additions and indices of t

Yu et al [6] (λ+ 1)(2 + w) λ+ 1 multiplications Colj(G)
w rows of B λ additions

Rahman et al. [7] (λ+ 2) 2λ+ 1 multiplications
λ additions

Y. Zhang et al [8] key seed si 2λ+ 1 multiplications request and
λ additions rowi(Ac)

Messai et al [11] 4 + number of cluster members MAC (d+ 1) Hello messages
Our scheme d(d+ 1) 2 multiplications 2 Hello messages

d neighbors 1 substraction (addition)+ MAC

Table 3: Comparative study of the schemes

node needs to store 840 bytes that is negligible compared with the capacity of the very constrained node
like Mica2dot which is about 512 kB.

In the other hand, our scheme needs less computation than the others. In fact, to compute one
pairwise key, a node carries out only two multiplications and one substraction (addition), unlike the other
schemes which require at least λ+ 1 multiplications and λ additions and, thus, it depends on the security
parameter λ.

Furthermore, to establish one pairwise key betwen a constrained node and a gateway node, they need
to exchange only two Hello messages, whereas in Messai et al scheme, to compute one secret key between
a sensor and its cluster head, the sensor node has to send one and receive d Hello messages from its
neighbors.

A. Communication Overhead
Since the communication cost is closely related on the number and the size of each message exchanged
betwen two communicating neighboring nodes, we first evaluate the length of each message sent or received
by a constrained node during the differents phases of our scheme, then we give the estimation of energy
consumption by sending or receiving such messages according to the energy model given in [21]. The cost
of receiving one byte is about (28.6µJ) and sending a byte is about (59.2µJ) for the Mica2dot node [21].
We assume that the size of the parameters within messages are 4 bytes for identity of the node, 4 bytes
for nonce, E bytes for encryption, H bytes for hash value. The energy consumption on communications
of our scheme is given in Table 4.

19

Phase Message Message Length Energy consumption
sent received (byte) (µJ)

Init - - - -

KEP (1) (4+4+H)=(8+H) (8+H)*59.2
(2) d*(4+4+H)=d*(8+H) d*(8+H)*28.6

JOIN (7) E E*28.6
(8) 4+4+H (8+H)*28.6

(9) 4+4+4+4+H (16+H)*59.2
(10) E E*28.6

(11) E E*59.2

LEAVE (12) or (14) E E*28.6
(13) or (15) E E*59.2

REFRESH (16) E E*28.6
(17) E E*59.2

Table 4: Length of messages sent or received by a constrained node

Figure 8 illustrates the communication energy (in joules) consumed by all constrained nodes during
key establishment phase in function of hash algorithm. We note that the communication overhead in-
creases for both compared schemes when the size of hash value increases. As the energy consumption is
closely related to the amount of data exchanged, the quantity generated during this phase depends on
the hash algorithm used and therefore on the size of hash value. We notice that this quantity is more
important in EAHKM+ than in our scheme. As a result, the performances of our scheme are higher.

16 20 32 48 64
0

2

4

6

8

10

Hash value (Bytes)

C
om

m
u

n
ic

at
io

n
en

er
gy

(J
ou

le
) our scheme

EAHKM+

Figure 8: Communication energy consumed by the constrained nodes during key establishment

Figure 9 presents the energy (in joule) dissipated in communication by all constrained nodes during
key establishment phase according to the network size. As shown in this Figure, the communication cost
of our scheme is better than EAHKM+. Although the number of messages exchanged during this phase
in both schemes is the same, but their size in EAHKM+ is greater than ours. As we know, the energy
consumption depends directly on the amount of data sent and/or received.

20

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Network size

C
o
m

m
u

n
ic

a
ti

on
en

er
g
y

(J
o
u

le
) our scheme

EAHKM+

Figure 9: Communication energy consumed by the constrained nodes during key establishment

Figure 10 plots the communication energy (in joules) consumed by all constrained nodes during key
refresh phase in function of the network size. We assume that the encryption algorithm used here is
AES-128 and the size of hash value is 16 bytes. This Figure indicates clearly that our scheme saves more
energy than EAHKM+. This is because in our system, during the rekeying process, each constrained
node only needs to receive one encrypted message while in EAHKM+, each sensor receives (d+ 1), which
significantly increases the communication overhead. Moreover, we notice that the consumed energy in-
creases more slowly in our scheme than in EAHKM+. This can be explained by the fact that the quantity
of messages received by sensors, in EAHKM+, depends mainly on the number of neighbors which also
depends on the network size.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Network size

C
om

m
u

n
ic

at
io

n
en

er
gy

(J
ou

le
) our scheme

EAHKM+

Figure 10: Communication energy consumed by the constrained nodes during key refresh

B. Computation Overhead
The computation overhead mainly depends on encryption, decryption and authentication cost. To evalu-

21

ate this cost, we consider the total number of encryption, decryption and hash operations performed by a
constrained node in each phase of our scheme. After that, we estimate the energy consumption. Accord-
ing to authors in [12], the energy cost of one AES-128 encryption (or decryption) and hash operation in
TelosB platform is 9µJ and 40mJ respectively. The obtained results are summerized in Table 5.

Phase Number of AES-128 Number of Hash Energy
encryption (decryption) operations consumption (µJ)

Init 0 0 0

KEP 0 1+2*d (1 + 2 ∗ d) ∗ 40 ∗ 103

JOIN 1 + (1+1) 2 03 ∗ 9 + 2 ∗ 40 ∗ 103

LEAVE 01 + (01) 0 02*9=18

REFRESH 01 + (01) 0 02*9=18

Table 5: Number of encryption, decryption and hash operations performed by a constrained node

Figure 11 plots the energy consumption (in joules) during the computation of the pairwise keys shared
betwen constrained nodes with the gateway nodes in our scheme and sensors with their cluster heads in
EAHKM+. We notice that our results are slightly better than those of EAHKM+. In fact, in our scheme,
constrained nodes only perform hash operations, but in EAHKM+, sensors do encryption and decryption
in addition to hash oparations which increases the computation overhead.

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Network size

C
om

p
u

ta
ti

on
co

st
(J

ou
le

)

our scheme
EAHKM+

Figure 11: Computation cost in the constrained node side during key establishment

Figure 12 compares the computation cost in terms of energy consumed by all constrained nodes during
key refresh phase in function of the network size. The results show that our scheme consumes less en-
ergy than EAHKM+. Indeed, in our scheme, constrained nodes just perform encryption and decryption
in order to update the old keys, but in EAHKM+, sensors carry out encryption, decryption and hash
operations. Furthermore, in our scheme to update keys, constrained nodes only reexecute the second
step of key establishment phase, but in EAHKM+, sensors rerun the whole cluster formation and key
establishment algorithm.

22

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Network size

C
o
m

p
u

ta
ti

on
co

st
(J

ou
le

)

our scheme
EAHKM+

Figure 12: Computation cost in the constrained node side during key refresh

5. Conclusion

In this paper, we have proposed a lightweight matrix based key management scheme for securing com-
munications betwen IoT devices. Security analysis shows that the proposed scheme ensures the security
goals like secrecy, integrity and authentication and can protect the sensitive data from various types of
attacks. In addition, the proposed system allows extensibility, scalability, resilience, authentication and
distribution.
In our future work, we propose to explore the use of blockchain technology for securing the internet of
things networks.

References

[1] S. Li, L. Da Xu, S. Zhao, The internet of things: a survey, Information Systems Frontiers 17 (2015)
243–259.

[2] Z. Bi, L. Da Xu, C. Wang, Internet of things for enterprise systems of modern manufacturing, IEEE
Transactions on industrial informatics 10 (2014) 1537–1546.

[3] R. Roman, C. Alcaraz, J. Lopez, N. Sklavos, Key management systems for sensor networks in the
context of the internet of things, Computers & Electrical Engineering 37 (2011) 147–159.

[4] R. Blom, An optimal class of symmetric key generation systems, in: Workshop on the Theory and
Application of of Cryptographic Techniques, Springer, pp. 335–338.

[5] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, A. Khalili, A pairwise key predistribution scheme
for wireless sensor networks, ACM Transactions on Information and System Security (TISSEC) 8
(2005) 228–258.

[6] Z. Yu, Y. Guan, A key management scheme using deployment knowledge for wireless sensor networks,
IEEE Transactions on Parallel and Distributed Systems 19 (2008) 1411–1425.

[7] M. Rahman, S. Sampalli, An efficient pairwise and group key management protocol for wireless
sensor network, Wireless Personal Communications 84 (2015) 2035–2053.

23

[8] Y. Zhang, Y. Xiang, X. Huang, X. Chen, A. Alelaiwi, A matrix-based cross-layer key establishment
protocol for smart homes, Information Sciences 429 (2018) 390–405.

[9] L. Xu, Y. Zhang, Matrix-based pairwise key establishment for wireless mesh networks, Future
Generation Computer Systems 30 (2014) 140–145.

[10] Q. Wang, H. Su, K. Ren, K. Kim, Fast and scalable secret key generation exploiting channel phase
randomness in wireless networks, in: 2011 Proceedings IEEE INFOCOM, IEEE, pp. 1422–1430.

[11] M.-L. Messai, H. Seba, Eahkm+: energy-aware secure clustering scheme in wireless sensor networks,
International Journal of High Performance Computing and Networking 11 (2018) 145–155.

[12] G. De Meulenaer, F. Gosset, F.-X. Standaert, O. Pereira, On the energy cost of communication and
cryptography in wireless sensor networks, in: Networking and Communications, 2008. WIMOB’08.
IEEE International Conference on Wireless and Mobile Computing,, IEEE, pp. 580–585.

[13] W. Arthur, D. Challener, A practical guide to TPM 2.0: using the Trusted Platform Module in the
new age of security, Apress, 2015.

[14] S. L. Kinney, Trusted platform module basics: using TPM in embedded systems, Elsevier, 2006.

[15] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H. Drielsma, P.-
C. Héam, O. Kouchnarenko, J. Mantovani, et al., The avispa tool for the automated validation
of internet security protocols and applications, in: International conference on computer aided
verification, Springer, pp. 281–285.

[16] D. Basin, S. Mödersheim, L. Vigano, An on-the-fly model-checker for security protocol analysis, in:
European Symposium on Research in Computer Security, Springer, pp. 253–270.

[17] M. Turuani, The cl-atse protocol analyser, in: International Conference on Rewriting Techniques
and Applications, Springer, pp. 277–286.

[18] A. Armando, L. Compagna, Satmc: a sat-based model checker for security protocols, in: European
workshop on logics in artificial intelligence, Springer, pp. 730–733.

[19] Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma, J. Mantovani, S. Mödersheim, L. Vigneron, A
high level protocol specification language for industrial security-sensitive protocols, in: Workshop on
Specification and Automated Processing of Security Requirements-SAPS’2004, Austrian Computer
Society, pp. 13–p.

[20] H. Chan, A. Perrig, D. Song, Random key predistribution schemes for sensor networks, in: Security
and Privacy, 2003. Proceedings. 2003 Symposium on, IEEE, pp. 197–213.

[21] A. S. Wander, N. Gura, H. Eberle, V. Gupta, S. C. Shantz, Energy analysis of public-key cryptog-
raphy for wireless sensor networks, in: Pervasive Computing and Communications, 2005. PerCom
2005. Third IEEE International Conference on, IEEE, pp. 324–328.

24

	Introduction
	Related work
	Overview of the proposed scheme
	Network model
	Constrained nodes
	Gateway nodes
	Remote server node (command node)

	Assumptions
	Phases of our scheme
	Initialization Phase
	Key establishment phase
	Adding new node Phase
	Key revocation phase
	Key refresh phase

	Analysis
	Security analysis
	Informal analysis
	Formal analysis

	Analytical analysis
	Performance analysis (experimental study)

	Conclusion

