
HAL Id: hal-02920384
https://hal.science/hal-02920384

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime enforcement of timed properties using games
Matthieu Renard, Antoine Rollet, Yliès Falcone

To cite this version:
Matthieu Renard, Antoine Rollet, Yliès Falcone. Runtime enforcement of timed properties using
games. Formal Aspects of Computing, 2020, 32 (2-3), pp.315-360. �10.1007/s00165-020-00515-2�.
�hal-02920384�

https://hal.science/hal-02920384
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

Runtime Enforcement of Timed

Properties using Games
Matthieu Renard1, Antoine Rollet1 and Yliès Falcone2

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France. �rst.last@labri.fr
2 Univ. Grenoble Alpes, CNRS, Inria, Laboratoire d'Informatique de Grenoble, F-38000 France. ylies.falcone@univ-grenobles-alpes.fr

Abstract. This paper deals with runtime enforcement of timed properties with uncontrollable events.
Runtime enforcement consists in de�ning and using an enforcement mechanism that modi�es the execu-
tions of a running system to ensure their correctness with respect to the desired property. Uncontrollable
events cannot be modi�ed by the enforcement mechanisms and thus have to be released immediately. We
present a complete theoretical framework for synthesising such mechanism, modelling the runtime enforce-
ment problem as a Büchi game. It permits to pre-compute the decisions of the enforcement mechanism, thus
avoiding to explore the whole execution tree at runtime. The obtained enforcement mechanism is sound,
compliant and optimal, meaning that it should output as soon as possible correct executions that are as
close as possible to the input execution. This framework takes as input any timed regular property modelled
by a timed automaton. We present GREP, a tool implementing this approach. We provide algorithms and
implementation details of the di�erent modules of GREP, and evaluate its performance. The results are
compared with another state of the art runtime enforcement tool.

1. Introduction

Runtime Veri�cation (RV) ([LS09, FHR13, BFFR18, BF18]) is a powerful technique aiming at checking that
the current execution of a running system conform to a given speci�cation. In RV, one uses a monitor that
acts as a decision procedure giving verdicts from a sequence of events gathered from the execution of the
system under scrutiny. The monitor is usually synthesised from a property formalising the speci�cation (e.g.
an automaton or a temporal logic formula). This sequence is obtained via instrumentation. RV ressembles
passive testing ([CGP03, ACC+04]) and permits to obtain alerts in case of wrong behaviour while the system
is running.

This paper deals with Runtime Enforcement (RE, [Sch00, LBW09, FMFR11, BJKZ13]) of properties,
an extension of Runtime Veri�cation. While RV deals with sequence observation, RE deals with sequence
transformation. In RE, one uses a so-called enforcement mechanism/monitor (EM) which modi�es the se-
quence of events produced by the system, if needed. According to a set of rules, the EM transforms a possibly
incorrect input sequence into another one verifying the required property. Most works on RE abstract away
implementation details. Then, it generally consists in de�ning an input-output relation describing how to
transform a (possibly incorrect) input sequence of events into an output sequence of events using an EM (see
Fig. 1). This transformation is done according to the required property which is used in order to synthesise
the EM. One of the advantages of RE is that the whole speci�cation of the system under scrutiny is not

Correspondence and o�print requests to: M. Renard, A. Rollet and Y. Falcone

2 M. Renard, A. Rollet and Y. Falcone

σ
EM

EM (σ)

ϕ

Figure 1. Conceptual view of the runtime enforcement problem.

necessary to generate an EM, only a property that should be satis�ed by its output is needed. Depending
on the speci�cation formalism of properties, various classes of properties can be enforced on systems, safety
properties and transactions for instance; see [Fal10, FFM12, KT12, FMRS18] for overviews and surveys.

Usually, the input-output relation realised by the EM should be sound and transparent. Soundness and
transparency mean that the output sequence should satisfy the required property and that the output should
be as close as possible to the input sequence (implying that a correct input sequence should not be modi�ed),
respectively. This notion of transparency is rather general since it depends on the de�nition of �closeness�,
and contains an implicit notion of optimality (which may also be considered separately as in [PFJM14b]).

In case of timed properties, the EM acts as a delaying �lter on the input ([PFJ+13, PFJM14b, PFJM15]) ;
see [FP19] for a recent overview. It uses a bu�er in order to store input events and releases them only at an
instant where the satisfaction of the property is ensured (possibly never).

Motivations. This paper deals with RE of timed properties with uncontrollable events. In some situations
events should be observed by the EM, permitting initiating a reaction if necessary, but without the pos-
sibility to modify it. This may happen e.g. in case of a broadcast of an alert, or in case of an interruption
message in a system. Such an event is said to be uncontrollable. They naturally arise in many concrete
scenarios. Uncontrollable events can indeed model some physical event (coming from the environment) that
is impossible to prevent, but that the system under scrutiny should observe to react correctly. For instance,
in an autonomous car control system, the �crossing line� event could be seen as an uncontrollable event, i.e.
only observable by the EM, permitting initiating the necessary trajectory correction. More formally, it is
necessary to consider two sets of events: the controllable ones that can be modi�ed by the EM (e.g. stored
in a bu�er as in [PFJ+14]), and the uncontrollable ones which cannot.

Challenges. Considering uncontrollable events in the framework implies new challenges. Indeed, the occur-
rence of uncontrollable events, which should be released instantaneously, may have an impact on the release
date of stored events. Thus it is necessary to recompute all of them in such a situation. Moreover, it is
necessary to anticipate uncontrollable events, i.e. to compute all the possible reachable (bad) states for any
sequence of uncontrollable events. This computing may be costly. Since an EM should react in a reasonable
time laps, optimisation strategies should be investigated. Finally, with the classical de�nitions (e.g. used in
[Sch00, LBW09, PFJ+13, PFJM14b, PFJM15]) some properties may never be enforceable. This may arise
for instance in case of a sequence of uncontrollable events leading directly in a forbidden state from the
initial one. Thus new enforcement approaches are necessary.

Contributions. The �rst proposition of RE framework for timed properties with uncontrollable events has
been proposed in [RFR+17]. Now, we introduce a new RE framework for timed properties using Büchi games
(see [GT02] for a detailed description of in�nite games, including Büchi games) for generating the EM. This
kind of game is adapted since it corresponds to games in which one tries to always be able to reach some
nodes called Büchi nodes. An EM tries to always be able to reach an accepting state of the automaton
representing the property, even if some uncontrollable events are received, thus it is similar to solving a
Büchi game. Using games permits to pre-compute some of the decisions of the EM. It permits to avoid the
exploration of the whole execution tree at runtime, thus improving the time overhead of an implementation.
A �rst RE framework using games has been proposed in [RRF17b]. We generalise this approach in case of
timed properties. The generated EM is sound, compliant and optimal. Compliance is a weakened variant of

Runtime Enforcement of Timed Properties using Games 3

transparency adapted for uncontrollable events. This framework has been implemented in the GREP tool1.
Performance analysis and comparison with a state-of-the-art tool, TiPEX [PFJM15], show satisfying results.

This paper extends [RRF17a] in which we presented GREP, by providing the complete theoretical frame-
work which has been implemented in GREP. De�nitions of soundness, compliance and optimality are given.
We also detail the EM synthesis using Büchi games in a timed context. All the proofs of soundness, com-
pliance, optimality and equivalence between the di�erent descriptions of the enforcement mechanism are
provided, and we detail implementation aspects of the di�erent modules composing GREP.

Outline. Section 2 introduces preliminary concepts and notations. Section 3 describes the theoretical frame-
work used for the EM generation, based on game theory. Section 4 presents GREP, a tool implementing
the approach given in Section 3, providing algorithms, implementation details and performance evaluation.
Section 5 discusses some related work. Conclusions and perspectives are drawn in Section 6. Proofs are in
appendix A.

2. Preliminaries and Notation

In this section, we describe the notation used in the following parts, and give formal de�nitions of elements
we use, such as words, automata, traces, timed words, and timed automata.

2.1. Untimed Notions

Let Σ be a �nite alphabet of actions. We use the standard de�nitions and notations over �nite words and
languages. The concatenation of two words w and w′ is noted w · w′ (or ww′ when clear from the context).
For two words w and w′ of Σ∗, w′ is a pre�x of a word w, noted w′ 4 w, if there exists a word w′′ ∈ Σ∗

such that w = w′ · w′′. Word w′′ is then called the residual of w after reading the pre�x w′. Formally, we
de�ne 0 6∈ Σ such that for any w ∈ Σ ∪ {0}, w · 0 = 0 · w = 0, and we write w′−1 · w = w′′ if w′ · w′′ = w
for some unique element w′′, or w′−1 · w = 0 otherwise. In the remaining of the paper, this notation will
only be used with pre�xes, meaning that the result is never 0, thus it will not be used anymore. Note that

w′ · w′′ = w′ · w′−1 · w = w. These de�nitions are extended to languages in the natural way. A language
L ⊆ Σ∗ is extension-closed if for any words w ∈ L and w′ ∈ Σ∗, w ·w′ ∈ L. Given a word w = a1 · a2 . . . a|w|
and an integer i such that 1 ≤ i ≤ |w|, we note w(i) the i-th element of w, i.e. w(i) = ai. We also note w[..i]

the pre�x of w of size i: w[..i] = a1 · a2 . . . ai.
Given a tuple e = (e1, e2, . . . , en) of size n, for an integer i such that 1 ≤ i ≤ n, we note Πi the projection

on the i-th coordinate, i.e. Πi(e) = ei. The tuple (e1, e2, . . . , en) is sometimes noted 〈e1, e2, . . . , en〉 in order
to help reading. It can be used, for example, if a tuple contains a tuple. Given a word w ∈ Σ∗ and Σ′ ⊆ Σ,
we de�ne the restriction of w to Σ′, noted w|Σ′ , as the word w′ ∈ Σ′

∗
whose letters are the letters of w

belonging to Σ′ in the same order. Formally, ε|Σ′ = ε and for any σ ∈ Σ∗, and any a ∈ Σ, (w · a)|Σ′ = w|Σ′ · a
if a ∈ Σ′, or (w · a)|Σ′ = w|Σ′ otherwise. We also note =Σ′ the equality of the restrictions of two words to
Σ′: for σ and σ′ in Σ∗, σ =Σ′ σ′ if σ|Σ′ = σ′|Σ′ . We de�ne in the same way the operator 4Σ′ by : σ 4Σ′ σ′

whenever σ|Σ′ 4 σ′|Σ′ .

2.2. Timed Languages

Let R≥0 be the set of non-negative real numbers, and Σ a �nite alphabet of actions. An event is a pair
(δ, a) ∈ R≥0 × Σ. We de�ne delay((δ, a)) = δ and act((δ, a)) = a the projections of events on delays and
actions respectively. A timed word over Σ, is a �nite sequence of events of (R≥0×Σ). The set of timed words
over Σ is denoted tw(Σ). For σ = (δ1, a1) · (δ2, a2) · · · (δn, an), δi (2 ≤ i ≤ n) is the delay between action
ai−1 and action ai, and δ1 is the time elapsed before the �rst event (i.e. the delay between the beginning of
the enforcement process and the occurrence of the �rst action a1). We naturally extend the notions of pre�x
and residual to timed words.

1 https://github.com/matthieurenard/GREP

https://github.com/matthieurenard/GREP

4 M. Renard, A. Rollet and Y. Falcone

We denote the total time needed to read a timed word σ by time(σ). Formally, time(σ) =
∑|σ|
i=1 δi. The

observation of σ at time t is the timed word noted obs(σ, t) and de�ned as: obs(σ, t) = max4({σ′ | σ′ 4
σ ∧ time(σ′) ≤ t}). It corresponds to the word that would be observed at date t when reading σ. We also
de�ne the remainder of the observation of σ at date t as nobs(σ, t) = (obs(σ, t))−1 · σ, which corresponds to
the events that are to be received after obs(σ, t) when reading σ. Note that the �rst delay of nobs(σ, t) is
relative to the �nal action of obs(σ, t) and not to t itself.

The untimed projection of a timed word σ is noted ΠΣ(σ), and is de�ned as: ΠΣ((δ1, a1)·(δ2, a2) · · · (δn, an))
= a1 · a2 · · · an. It is the sequence of actions of the timed word with dates ignored. For a timed word
σ = (δ1, a1) · (δ2, a2) · · · (δn, an), and a delay t ∈ R≥0, σ delayed by t is the word noted σ +t t and such that
t is added to the �rst delay of σ: σ +t δ = (δ1 + t, a1) · (δ2, a2) · · · (δn, an). Similarly, we de�ne σ −t t, when
δ1 ≥ t, as σ −t δ = (δ1 − t, a1) · (δ2, a2) · · · (δn, an). We also extend the de�nition of the restriction of σ to
Σ′ ⊆ Σ to timed words, such that only actions belonging to Σ′ remain. This operation keeps the dates of
the events unchanged, not the delays, thus, it is formally de�ned by induction as follows:

ε|Σ′ = ε,

and for σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ,

(σ · (δ, a))|Σ′ =

{
σ|Σ′ · (time(σ · (δ, a))− time(σ|Σ′), a) if a ∈ Σ′

σ|Σ′ otherwise.

Note that to concatenate two restrictions, it is also needed to adjust the delay at the beginning of the second
word: for σ ∈ tw(Σ) and σ′ ∈ tw(Σ), (σ · σ′)|Σ′ = σ|Σ′ · (σ′|Σ′ +t (time(σ)− time(σ|Σ′))). The notations =Σ′

and 4Σ′ are then naturally extended to timed words.
A timed language is any subset of tw(Σ). The notion of extension-closed languages is naturally extended

to timed languages, i.e. if L ⊆ tw(Σ) is a timed language, L is extension-closed if L = L · tw(Σ). We also
extend the notion of extension-closed languages to sets of elements composed of a timed word and a date:
a set S ⊆ tw(Σ)× R≥0 is time-extension-closed if for any (σ, t) ∈ S, for any w ∈ tw(Σ), and for any t′ ≥ t,
(σ · w, t′) ∈ S. In other words, S is time-extension-closed if for every σ ∈ tw(Σ), there exists a date t from
which σ and all its extensions are in S, that is, associated with a date greater or equal to t.

Moreover, we de�ne an order on timed words: we say that σ′ is a delayed pre�x of σ, noted σ′ 4d σ,
whenever ΠΣ(σ′) 4 ΠΣ(σ) and for any i ∈ [1; |σ′| − 1], time(σ[..i]) ≤ time(σ′[..i]). Intuitively, σ

′ 4d σ if σ′ is

a pre�x of σ whose actions have been delayed, considering dates. Note that the order is not the same in the
di�erent constraints: ΠΣ(σ′) is a pre�x of ΠΣ(σ), but dates in σ′ exceed dates in σ. As for the equality = and
the pre�x order 4, we note σ′ 4dΣ′ σ whenever σ′|Σ′ 4d σ|Σ′ , and σ′ ≺d σ whenever σ′ 4d σ and σ′ 6= σ. We

also de�ne a lexical order ≤lex on timed words with identical untimed projections, such that ε ≤lex ε, and
for two words σ and σ′ such that ΠΣ(σ) = ΠΣ(σ′), and two events (δ, a) and (δ′, a), (δ′, a) · σ′ ≤lex (δ, a) · σ
if δ′ < δ ∨ (δ = δ′ ∧ σ′ ≤lex σ).

Consider for example the timed word σ = (1, a) · (1, b) · (1, c) · (2, a) over the alphabet Σ = {a, b, c}. Then,
ΠΣ(σ) = a · b · c · a, obs(σ, 4) = (1, a) · (1, b) · (1, c), nobs(σ, 4) = (2, a), and if Σ′ = {b, c}, σ|Σ′ = (2, b) · (1, c),
and for instance (1, a) · (1, b) · (3, c) 4d σ, and σ ≤lex (1, a) · (0, b) · (3, c) · (3, a). Moreover, if w = (1, a) · (1, b),
then w−1 · σ = (1, c) · (2, a).

2.3. Timed Automata as Timed Properties

In the following part we recall some notions on timed automata ([AD92]). These notions are classical. A
reader not familiar with timed automata may �nd more details and explanations in [AD92].

Let X = {X1, X2, . . . , Xn} be a �nite set of clocks, i.e. variables that increase regularly with time. A
clock valuation is a function ν from X to R≥0. The set of clock valuations for the set of clocks X is noted
V(X), i.e. V(X) = {ν | ν : X → R≥0}. We consider the following operations on valuations:

• for any valuation ν ∈ V(X), ν + δ is the valuation representing the elapse of δ time units from ν, such
that for any Xi ∈ X, (ν + δ)(Xi) = ν(Xi) + δ;

• for any subset X ′ ⊆ X, ν[X ′ ← 0] is the valuation representing ν with clocks in X ′ reset, such that:

(ν[X ′ ← 0]) : Xi 7→
{

0 if Xi ∈ X ′

ν(Xi) otherwise.

Runtime Enforcement of Timed Properties using Games 5

l0 l1 l2

click
x := 0

click
x > 2
x := 0 click

x ≤ 2

click
x := 0

(a) Timed automaton modelling double-clicks

l0 l1 l2

click
x := 0

click
x > 2
x := 0

click
x ≤ 2
x := 0

click
x ≤ 2
x := 0

click
x > 2
x := 0

(b) Timed automaton modelling double-clicks with
overlaps

Figure 2. Timed automata modelling double-clicks, without and with overlaps

G(X) denotes the set of guards consisting of boolean combinations (i.e. conjunctions or disjunctions) of
constraints of the form Xi ./ c with Xi ∈ X, c ∈ N, and ./∈ {<,≤,=,≥, >}. Given g ∈ G(X) and a
valuation ν, we write ν |= g when g holds according to ν.

Timed automaton [AD92] A timed automaton (TA) is a tuple A = 〈L, l0, X, Σ, ∆, G〉, such that L
is a set of locations, l0 ∈ L is the initial location, X is a set of clocks, Σ is a �nite set of events, ∆ ⊆
L × G(X) × Σ × 2X × L is the transition relation, and G ⊆ L is a set of accepting locations. A transition
(l, g, a,X ′, l′) ∈ ∆ is a transition from l to l′, labelled with event a, with guard g, and with the clocks in X ′

to be reset.
The semantics of a timed automaton A is a timed transition system JAK = 〈Q, q0,Γ, →, FG〉 where Q =

L×V(X) is the (in�nite) set of states, q0 = (l0, ν0) is the initial state, with ν0 = ν[X ← 0], FG = G×V(X)
is the set of accepting states, Γ = R≥0 ∪ Σ is the set of transition labels, that can be either a number
representing a delay, or an action. The transition relation → ⊆ Q × Γ × Q is made of transitions of two
possible kinds:

• Delay transitions: for δ ∈ R≥0 and (l, ν) ∈ Q, 〈(l, ν), δ, (l, ν + δ)〉 ∈→.

• Action transitions: for a ∈ Σ, (l, ν) ∈ Q, 〈(l, ν), a, (l′, ν′)〉 ∈→ if there exists (l, g, a, Y, l′) ∈ ∆, such that
ν |= g and ν′ = ν[Y ← 0].

A timed automaton A = 〈L, l0, X,Σ,∆, G〉 is deterministic if for any (l, g1, a, Y1, l
′
1) and (l, g2, a, Y2, l

′
2) in

∆, g1 ∧ g2 is unsatis�able, meaning that only one transition can be �red at any time. A is complete if for
any l ∈ L and any a ∈ Σ, the disjunction of the guards of all the transitions leaving l and labelled by a holds
for any clock valuation.

Example 1. Examples of timed automata are given in Fig. 2. In Fig. 2a, L = {l0, l1, l2}, X = {x},
Σ = {click}, ∆ = {(l0,>, click, {x}, l1), (l1, x > 2, click, {x}, l1), (l1, x ≤ 2, click, ∅, l2), (l2,>, click, {x}, l1)},
and G = {l2}, where > evaluates to true for any clock valuation. This automaton models a double click:
considering that the click event is a mouse click, the automaton only accepts sequences of clicks that ends
with a double-click. The condition for two clicks to be considered as a double-click is that the second one is
made less than two time units after the �rst one. Note that with this modelling, double-clicks can not overlap,
i.e. clicking three times in less than two time units will not be considered as ending with a double-click, since
only the �rst two clicks will be considered as a double-click. Allowing overlaps would only require splitting
the transition from l2 to l1 in two, as described in Fig. 2b.

A run ρ from q ∈ Q is a valid sequence of transitions in JAK starting from q, of the form ρ = q
δ1−→ q1

a1−→
q2

δ2−→ q3 . . .
an−−→ q2n

δn+1−−−→ q2n+1, where δi ∈ R≥0 and ai ∈ Σ, for any i. We can consider runs that alternate
between delay and action transitions, since two consecutive delay transitions can be merged into one whose
value is the sum of the delays of the original transitions, and two consecutive actions can be separated by a
null delay transition (i.e. a delay transition whose delay is 0). The set of runs from q0 is noted Run(A) and
RunFG

(A) denotes the subset of runs accepted by A, i.e. ending in a state in FG.
The trace of the run ρ previously de�ned is the timed word σ = (δ1, a1) · (δ2, a2) . . . (δn, an). Note that

6 M. Renard, A. Rollet and Y. Falcone

δn+1 does not appear in the trace, meaning that all runs with di�erent values for δn+1 share the same trace as

ρ. We allow ourselves to denote by q
(δ,a)−−−→ q′ if q

δ−→ q′′
a−→ q′, and thus ρ can be denoted q

σ−→ q2n
δn+1−−−→ q2n+1.

A regular timed property is a timed language ϕ ⊆ tw(Σ) that is accepted by a timed automaton. For
a timed word σ, we say that σ satis�es ϕ, noted σ |= ϕ whenever σ ∈ ϕ. We only consider regular timed
properties whose associated automaton is complete and deterministic.

2.4. Traces Manipulation

Given a deterministic timed automaton A = 〈L, l0, X,Σ,∆, F 〉 whose semantics is JAK = 〈Q, q0,Γ,−→, FG〉,
and a timed word σ ∈ tw(Σ), for q ∈ Q, we note q after σ = q′, where q′ is such that q

σ−→ q′, i.e.
q′ is the state reached from q after reading word σ. Since A is deterministic, there exists only one such
q′. We also note Reach(σ) = q0 after σ. We extend these de�nitions to languages: if L is a language,
q after L =

⋃
σ∈L{q after σ} and Reach(L) = q0 after L. We also allow ourselves to use after with actions

or delays, with the same de�nition: for δ ∈ R≥0, q after δ = q′, if q
δ−→ q′, and for a ∈ Σ, q after a = q′ if

q
a−→ q′.
We allow the use of the operators after and Reach with an extra parameter, representing an observation

time, such that if t ∈ R≥0, then q after (σ, t) = q after obs(σ, t) after (t− time(obs(σ, t))), and Reach(σ, t) =
q0 after (σ, t). Moreover, for q = 〈l, ν〉 ∈ Q, we note up(q) = {〈l, ν + t〉 ∈ Q | t ∈ R≥0}, it is the set of states
that will be reached from q as time elapses if no action occurs. This de�nition is extended to sets of states:
for S ⊆ Q, up(S) =

⋃
q∈S up(q).

Example 2. Consider the property accepting sequences of clicks ending by a double-click, described in
Fig. 2a. Let us consider that the set Q of states of the semantics of this TA is Q = L × R≥0, with L =
{l0, l1, l2}, and where the valuations are replaced by the value of the unique clock x. Then, for instance,
Reach((1, click)) = (l0, 0) after (1, click) = (l1, 0), and (l1, 1) after ((1, click), 3) = (l2, 4), since x = 2 when
the action click occurs, enabling the transition to l2, and then 2 time units remain to wait, giving a �nal
value of 4 for x.

2.5. Büchi Games

We recall some general notions on Büchi games in an informal way. More details and formal notations may
be found in [GT02]. Considering a directed graph 〈V,E〉 such that V is a set of vertices, and E ⊆ V × V a
set of edges. V is partitioned into two subsets: V0 the player P0 vertices, and V1 the player P1 ones. As usual
in game graphs, we assume that there always exists an outgoing edge from a vertex. The two players play a
game on the graph by forming a (in�nite) path from the initial vertex in the graph by moving a token along
edges. If the token is in V0 (resp. V1), the player P0 (resp. P1) moves the token following an edge going out
of the vertex. The resulting (in�nite) path in the graph is called a play. A strategy for a player is a way to
extend plays. Formally, a strategy for player P0 is a mapping σ : V ∗V0 → V that, given a �nite sequence of
vertices (the history of the play) ending in a player P0 vertex, chooses the next vertex. In order to ensure
that strategies always exist, we will consider that the graph is strongly connected. A play π = v0, v1, . . . is
consistent with the strategy σ if for any vi ∈ V0, vi+1 = σ(v0 · v1 · · · · · vi), meaning that the strategy was
followed for any vertex in V0. The goal of a game can be, for example, to reach a state in a given subset of
V (reachability game), or to ensure that a given subset of V is visited an in�nite number of times (Büchi
games). Thus, given a subset FG ⊆ V of vertices, the Büchi game for P0 consists in �nding a winning strategy
σ such that all plays π consistent with σ visit an in�nite number of times the set FG. We refer to the nodes
in FG as Büchi nodes.

It is known that it is possible ([CHP08]) to compute the set W0 of winning vertices for P0 (i.e. the set
of vertices from where there exists a winning strategy for P0), and the associated winning strategy from all
these vertices. From all the other vertices (in V \W0), there exists a winning strategy for P1, i.e.W1 = V \W0,
thus P0 can not win the game if P1 plays perfectly from one of these vertices. Moreover, it is possible to
�nd a strategy that is memoryless, meaning that the only the last vertex is needed to compute the next.
Formally, a memoryless strategy for P0 is a strategy σ : V0 → V . Such strategies are easier to compute, since
they do not require to read the entire history before choosing the transition to follow.

Runtime Enforcement of Timed Properties using Games 7

2.6. Functions

In all this paper, we use functions to describe the input/output behaviour of EMs. We then use input and
output to refer to �argument� and �image� of such functions, respectively.

3. Enforcing Timed Properties using a Büchi Game

In this section, we present the theoretical framework for enforcing timed properties using games. This ap-
proach has been implemented in the GREP tool. A �rst approach has been published in [RRF17b], but for
untimed properties only.

Given a timed regular property described by a TA, the objective is to synthesise an EM which is sound
according to this property, compliant and optimal. To synthesise the EM, we propose to build a two-player
game graph representing the possible actions of the EM and the system under scrutiny. Each edge of this
graph corresponds to a possible action of a player. The last step consists in computing the set of nodes of the
graph from which there exists a winning strategy, i.e. solving a Büchi game. More precisely, the approach
is divided into three steps: �rst, it computes a symbolic graph, which is a �nite abstraction of the (in�nite)
semantics of the TA; then it computes the game graph and the winning strategy for the EM; �nally the
EM follows the strategy to enforce the property. Using this approach permits to pre-compute some of the
decisions of the EM, thus avoiding to explore all paths of the execution tree at runtime.

GREP is a tool designed to produce EMs, such as the ones described in [RFR+17]. However, the formal
de�nitions from [RFR+17] did not �t well with an e�ective implementation, thus we propose EMs that are
formally equivalent, but that are built in a more implementation-friendly way.

We �rst introduce enforcement functions and their requirements, namely soundness, compliance and
optimality. Enforcement functions are functional descriptions of EMs that represent their input/output
behaviour, as depicted in Fig. 1. Enforcement functions serve as abstract non-operational descriptions of EMs
which can possibly be reused to obtain alternative operational descriptions of EMs. In addition, enforcement
functions facilitate the expression of requirements on EMs. Then, we give details about the EM synthesis
framework using games, and show that the obtained EM is sound, compliant and optimal. Then, we provide
another operational description of the EM, based on transition systems, and show their equivalence.

3.1. Enforcement Functions and their Properties

In the rest of this section, we consider an alphabet of actions Σ. We give formal de�nitions of enforcement
functions and the requirements of such functions, i.e. soundness, compliance, and optimality. The de�nitions
in this section are equivalent to the ones in [RFR+17]. In the following, ϕ is a timed property de�ned by a
timed automaton Aϕ = 〈L, l0, X,Σ,∆, F 〉 with semantics JAϕK = 〈Q, q0,Γ,−→, FG〉, and the set of actions Σ
is partitioned into a set of uncontrollable actions Σu, (which can not be modi�ed by the EM) and a set of
controllable actions Σc (the other actions). As in [PFJ+14], the EM is equipped with a bu�er permitting to
store (only controllable) actions and release them later. The EM is modelled by a function from tw(Σ)×R≥0

to tw(Σ). Before detailing the de�nitions, we provide some intuitions about the synthesis of the EM. For
this purpose, we illustrate its desired behaviour on an example.

Example 3. Consider property ϕt (Fig. 3) which models the use of a shared writable device with a cent-
ralised controller. To be able to Write to the device, one must �rst authenticate (uncontrollable event
Auth), then wait 2 time units for synchronisation. Uncontrollable events LockOn and LockO� are used
by the controller to notify that someone is writing, meaning that the lock has been taken by someone
else, and that the lock has been released, respectively. While the lock is held by someone else, writings
are not allowed. And after the lock has been released, one must wait 2 time units before writing. In-
deed, in ϕt all transitions arriving in location l1 reset the clock x. From l1, emitting event Write after
2 time units loops on the same location, whereas emitting it before 2 time units leads to location l3,
which is a non-accepting state. Consider an EM aiming to enforce this property with the input σ =
((1,Auth) · (1,LockOn) · (2, Write) · (1,LockO�) · (1,LockOn) · (1, Write) · (1,LockO�)). At time t = 1,
the uncontrollable event Auth occurs. It has to be released immediately since it is an uncontrollable event,
then ϕt goes to l1. At t = 2, the uncontrollable event LockOn is received. It is also emitted instantaneously,

8 M. Renard, A. Rollet and Y. Falcone

l0 l1

l3

l2

Auth
x := 0

Auth,
LockO� x := 0,
Write x ≥ 2

LockOn

Auth
LockOn

LockO�
x := 0Write

LockOn
LockO�

Write
x < 2 Write

Σ

Figure 3. Property ϕt

leading ϕt to l2. At t = 4, the controllable event Write occurs. It should not be emitted since it would make
the system go to l3 which is a non-accepting state. It is stored in the bu�er. Note that it is not necessary to
store the corresponding delay, since while no other uncontrollable event occurs, it is not possible to compute
an output time for Write. At time t = 5, the uncontrollable event LockO� occurs. It has to be released im-
mediately, and ϕt goes to l1. Now it is possible to emit the stored action Write, but it is necessary to wait for
2 time units before. This value is associated to Write pending output (as described in [PFJ+14]), and should
be de�nitely released if no other uncontrollable event happens meanwhile. At t = 6, the uncontrollable event
LockOn occurs, then ϕt goes to l2. It is no longer possible to emit Write, which is again not associated to
an output instant anymore. At time t = 7, the second Write event occurs, and it is also stored in the bu�er
without a possibility to compute its output instant. The occurrence at t = 8 of the uncontrollable event
LockO� unblocks the situation, leading ϕt to l1, and the two stored actions Write are again associated with
output delays, 2 and 0 respectively, meaning that they should be emitted at t = 10 if no other uncontrollable
happens in the mean time.

Finally, given the input σ = ((1,Auth) · (1,LockOn) · (2, Write) · (1,LockO�) · (1,LockOn) · (1, Write) ·
(1,LockO�)), the output of the EM should be (1,Auth) ·(1,LockOn) ·(3,LockO�) ·(1,LockOn) ·(2,LockO�) ·
(2, Write) · (0, Write). Consider now the situation where the uncontrollable event LockOn is received at the
beginning of the process (i.e. in location l0). It leads inevitably ϕt to location l3 which is a non-accepting
state without any possibility to go back to an accepting one. This illustrates the fact that ϕt is not always
enforceable as we shall discuss later.

An enforcement function is a functional representation of the input/output behaviour of an EM, thus an
enforcement function takes a timed word and the current time as input, and outputs a timed word:

De�nition 1 (Enforcement Function). An enforcement function (over Σ) is a function E : tw(Σ) ×
R≥0 → tw(Σ) that satis�es the two following constraints:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t, E(σ, t) 4 E(σ, t′),

2. ∀σ ∈ tw(Σ),∀δ ∈ R≥0,∀a ∈ Σ, E(σ, time(σ · (δ, a))) 4 E(σ · (δ, a), time(σ · (δ, a))).

We note Fenf(Σ) (or Fenf when clear from the context) the set of all enforcement functions over Σ.

The requirements in De�nition 1 model physical constraints (i.e. the irreversibility of time): an enforcement
function can only append events to its output as the input grows. The �rst constraint (E(σ, t) 4 E(σ, t′))
corresponds to the elapse of time, whereas the second one (E(σ, time(σ ·(δ, a))) 4 E(σ ·(δ, a), time(σ ·(δ, a))))
corresponds to the read of a new event. They require the new output to be an extension of the previous one.

An enforcement function should ful�l the three following requirements: soundness, compliance and optim-
ality. These notions are usual in the RE literature (see e.g. in [LBW09, FMFR11]), but have to be adapted
to a timed context and uncontrollable events. More precisely, the de�nitions proposed in this section are
adapted from [PFJ+14] (RE framework in a timed context, only with controllable events) and [RRF17b]

Runtime Enforcement of Timed Properties using Games 9

(RE framework in an untimed context, with uncontrollable events). Soundness states that the output of an
enforcement function should satisfy the desired property. This means that the corresponding EMs should
modify executions in order to keep the property satis�ed. Compliance indicates which operations are allowed
on the executions, i.e. how the EM can modify the output. Compliance is a weaker version of the usual
notion of transparency (e.g. used in [FMFR11, PFJ+13, PFJM14b, PFJM15]). Indeed, the framework con-
siders controllable and uncontrollable events. Since uncontrollable events have to be released immediately,
it may happen that the order of input events is di�erent from the output ones. Moreover, contrary to the
usual notion of transparency which contains an implicit notion of optimality, we distinguish explicitly the
two notions. Then, optimality requires the EM to emit as many events as possible, while preserving the
property from being violated.

We give formal de�nitions of these requirements as constraints on enforcement functions. In a timed
context, soundness states that the output of an enforcement function should eventually always satisfy the
desired property (here, ϕ):

De�nition 2 (Soundness). An enforcement function E ∈ Fenf is sound with respect to ϕ in a time-
extension-closed set S ⊆ tw(Σ)× R≥0 if:

∀(σ, t) ∈ S, ∃t′ ≥ t,∀t′′ ≥ t′, E(σ, t′′) |= ϕ.

We note Fsnd(ϕ, S) the set of all enforcement functions that are sound with respect to ϕ in S.

An enforcement function is sound with respect to ϕ in S if for any (σ, t) ∈ S, the output of the enforcement
function with input σ from date t eventually always satis�es ϕ. Notice that in some situations, the occurrence
of some words may inevitably lead the system to a non-accepting state. Considering e.g. ϕt in Fig. 3, the
occurrence of the uncontrollable action LockOn in q0 would inevitably lead the system to the non-accepting
state q3. For this reason, similarly to [RRF17b] in the untimed case, soundness is restricted to an extension-
closed set S.

Compliance states that an EM can only delay controllable events, without modifying uncontrollable
events (i.e. keeping their dates unchanged). This is a direct adaptation of the choice made in [PFJ+14]
where the EM acts as a delaying �lter on the input. We recall that Σc and Σu are the sets of controllable
and uncontrollable actions respectively, and that Σu ∩ Σc = ∅:

De�nition 3 (Compliance). An enforcement function E ∈ Fenf is compliant with respect to Σu and
Σc, noted compliant(E,Σu,Σc) (or compliant(E) when clear from the context), if it satis�es the following
constraints:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0, E(σ, t) 4dΣc
obs(σ, t),

2. ∀σ ∈ tw(Σ),∀t ∈ R≥0, E(σ, t) =Σu
obs(σ, t),

3. ∀σ ∈ tw(Σ),∀(δ, u) ∈ R≥0 × Σu,
E(σ, time(σ · (δ, u))) · (time(σ · (δ, u))− time(E(σ, time(σ · (δ, u)))), u) 4 E(σ · (δ, u), time(σ · (δ, u))).

We note Fcpl(Σu,Σc) (or Fcpl when clear from the context) the set of all enforcement functions that are
compliant with respect to Σu and Σc.

In De�nition 3, the �rst constraint allows the EM to delay controllable events without changing their order;
the second constraint requires that uncontrollable events are not modi�ed; and the third constraint requires
that the EM does not react to the reception of an uncontrollable event before outputting it.

For a compliant enforcement function E ∈ Fenf and a timed word σ ∈ tw(Σ), we say that E(σ,∞) is
the output of E with input σ at in�nite time (i.e. when it has stabilised). More formally, E(σ,∞) = E(σ, t),
with t ∈ R≥0 such that for all t′ ≥ t, E(σ, t′) = E(σ, t). Since the input σ is �nite, and E is a compliant
function (guaranteeing that the size of the output is lower or equal than that of the input), the output of E
with input word σ is �nite, thus such a t exists, and E(σ,∞) is well-de�ned.

Another objective of an EM is to provide an output as close as possible to the input. Then, a notion of
optimality has to be de�ned. It requires that an EM outputs as many events as possible, without breaking
compliance and avoiding the possibility of breaking soundness:

De�nition 4 (Optimality). A sound and compliant enforcement function E ∈ Fsnd(ϕ, S) ∩ Fcpl(Σu,Σc)

10 M. Renard, A. Rollet and Y. Falcone

is optimal in S if:

∀E′ ∈ Fcpl(Σu,Σc),∀σ ∈ tw(Σ),∀(δ, a) ∈ R≥0 × Σ,

(σ, time(σ · (δ, a))) ∈ S ∧ E(σ, time(σ · (δ, a))) = E′(σ, time(σ · (δ, a))) ∧ E(σ · (δ, a),∞) ≺d E
′(σ · (δ, a),∞)

=⇒ ∃σu ∈ tw(Σu), E′(σ · (δ, a) · σu,∞) 6|= ϕ.

Intuitively, a sound and compliant enforcement function is optimal if at any moment, it outputs the longest
possible word, with the lowest possible delays, ensuring soundness and compliance. In De�nition 4, we
suppose that a compliant enforcement function outputs a greater word (with respect to 4d) than an optimal
one, and then conclude that it is not sound (since the other function is optimal).

3.2. Synthesising Timed Enforcement Functions

In this part, we de�ne a sound, compliant and optimal inductive enforcement function Eϕ. This function is
equivalent to the one described in [RFR+17], the di�erence residing in the use of a Büchi game to compute
the safe states. The interest of this approach is twofold: it permits to simplify the de�nition of the EM,
and to obtain globally better performance than in [RFR+17] by precomputing some decisions of the EM.
First, we need to compute the set of words that can be emitted by an enforcement function while ensuring
compliance and soundness. This set depends on the current state in JAϕK, and on the controllable actions of
the input that have not been output yet. These actions are the actions that can be output, in the same order
as they were received, with arbitrary delays, by the EM. This sequence of actions is called the bu�er of the
EM. At any moment, the EM has to select the �best� sequence that should be emitted when an event occurs.
For this purpose, it is necessary to design a set Safe containing the set of words that it is possible to emit at
a given instant, while staying sound, then identify the �best� one. Since Safe depends on the sequence that
has already been emitted, it needs two parameters: the state q reached by the sequence already released, and
the current state of the bu�er, i.e. a word in Σ∗c . Then Safe contains all the pre�xes of the bu�er verifying
soundness, i.e. leading to �safe� states. However, this notion of �safe� state is not simple. It nearly corresponds
to accepting states of the property, from which any sequence of uncontrollable events, or letting the time
elapse, leads to accepting states. Thus we de�ne the safe emitting function Safe : Q × Σ∗c → tw(Σc) such
that Safe(q, w) is the set of timed words whose actions are the actions of w, associated with some delays,
such that outputting such a word from q ensures compliance and soundness.

To compute this set of words, we use a Büchi game played on a graph representing the possible actions
of the EM, as in [RRF17b]. We represent the EM as player P0, and the environment as the other player, P1.
The nodes of this graph should be taken in the set Q×Σ∗c×{0, 1}, where node (q, w, p) belongs to player Pp,
and represents the state of the EM where q is the corresponding state of ϕ, and w the bu�er. Considering
all such nodes, the graph would have an in�nite number of nodes, �rst because the size of the bu�er is not
bounded, but also because the semantics of a timed automaton has itself an in�nite number of states (i.e.
Q is also in�nite). We then reduce the number of possible bu�ers to a �nite set Σnc . Intuitively, since the
validity of a sequence only depends on the location that is reached after reading it, Σnc is composed of all
the controllable actions that can allow the EM to reach a new location. Then, we de�ne Σnc as follows:

Σnc =
{w ∈ Σ∗c | ∃q ∈ Q,∃c ∈ Σc,∀σ ∈ tw(Σ),∀σ′ ∈ tw(Σ),

ΠΣ(σ) = w · c ∧ΠΣ(σ′) 4 w ∧ (l′, ν′) = q after σ ∧ (l′′, ν′′) = q after σ′ =⇒ l′ 6= l′′}
Σnc is de�ned as the set of sequences of controllable actions that can be used to form a word that allows

to reach a new location, the length of a word in Σnc can not be greater than the number of locations in the
timed automaton. Thus, Σnc is �nite since L is �nite. The other component Q is also in�nite since in our
de�nition of the semantics of a TA time is continuous. We reduce it to a �nite set using a �nite symbolic
abstraction of the semantics of Aϕ.

3.2.1. A Symbolic Graph

Several abstractions for timed automata exist to reduce their semantics to a �nite representation. The
simplest, that satis�es all the requirements we need, is the region graph (see [AD92]) of the timed automaton.
Unfortunately, this region graph is often very large, thus some more e�cient abstractions have been studied.
A very common abstraction is the zone graph used to compute reachability in a timed automaton ([BY04]).

Runtime Enforcement of Timed Properties using Games 11

A zone is a convex set of clock valuations, usually represented by clock constraints of the form x ./ n,
where x is a clock, ./ ∈ {<,≤,=,≥, >}, and n is a (rational) number, or more generally by x−y ./ n, where
y is another clock. This graph is usually small compared to the region graph. Nevertheless, this graph only
preserves information about the existence of a state in the zones (i.e. a transition in the graph represents the
existence of a location and a valuation in the source node to a location and a valuation in the destination
node). This is not su�cient for our needs, i.e. to play a Büchi game. Indeed, when computing reachability,
the used zones ensure that it is possible to reach a state in another zone from a source zone. However,
when considering enforcement, the reception of an uncontrollable event can force a transition, disabling the
possibility to wait a desired amount of time. Thus, it is needed to re�ne zones in such a way that all states
in a zone behave the same, with respect to the emission of actions, and with respect to the elapse of time. In
other words, the zones need to prevent players from �cheating�, for example doing �time leaps�. A time leap
could be, for instance, starting in a zone x ≤ 2 and going from that zone to the zone x > 4. To play a Büchi
game, it is needed that zone x ≤ 2 leads �rst to zone 2 < x ≤ 4 that then leads to zone x > 4. The zone
graph we use is thus di�erent from the one used to compute reachability, since zones are divided in such a
way that they prevent time leaps and �t well the purpose of playing a Büchi game.

The graph described in [ACH+92] �ts our needs and seems to be a good choice. However, we give a list
of constraints that are su�cient for a graph to �t our needs. Any symbolic graph satisfying these constraints
could be used to generate the game graph, on which we can play a Büchi game. We say that such symbolic
graphs are compatible with Büchi games according to the following de�nition (we use the standard notation
∃! for �unique-existence�):
De�nition 5 (Compatible symbolic graph). A symbolic graph Gs = 〈Vs, Es〉, with Es ⊆ Vs×(Σ∪{t})×
Vs is compatible (with Büchi games) if it satis�es the following constraints:

1. Vs ⊆ Q is a �nite set such that ∀v ∈ Vs,∃l ∈ L, v ⊆ l × 2V(X),

2. ∀q ∈ Q,∃!v ∈ Vs, q ∈ v,
3. Es = Ea

s ∪ Eδs ,
4. ∀v ∈ Vs,∀a ∈ Σ,∃!v′ ∈ Vs, (∀q ∈ v,∀q′ ∈ Q, q

a−→ q′ =⇒ q′ ∈ v′),
and Ea

s = {(v, a, v′) ∈ Vs × Σ× Vs | ∃(q, q′) ∈ v × v′, q
a−→ q′},

5. ∀(v, v′) ∈ V 2
s ,∀(q, q′) ∈ v × v′,∀δ ∈ R≥0, q

δ−→ q′ =⇒ (∀q ∈ v,∃δ′ ∈ R≥0,∃q′ ∈ v′, q
δ−→ q′),

6. ∀v ∈ Vs,up(v) 6= v =⇒ ∃!v′ ∈ Vs, v 6= v′ ∧∀(q, q′) ∈ v× v′,∃δ ∈ R≥0, q
′ = q after δ ∧∀δ′ ≤ δ, q after δ′ ∈

v ∪ v′,
and Eδs = {(v, t, v′) ∈ Vs × {t} × Vs | v 6= v′ ∧ ∀(q, q′) ∈ v × v′,∃δ ∈ R≥0, q

′ = q after δ ∧ ∀δ′ ≤ δ, q after
δ′ ∈ v ∪ v′}.
Constraint (1) imposes that all the states of the semantics that are in a node of the symbolic graph share

the same location. This allows us to easily de�ne accepting nodes (as nodes whose locations are accepting).
Constraint (2) allows us to match each state of the semantics with a unique node in the symbolic graph.
Constraint (3) splits the set of edges between edges corresponding to actions and edges corresponding to

delays. Each of these sets has its own constraints, described in (4) and (6).
Constraint (4) propagates the reachability and determinism of the timed automaton to the symbolic

graph for actions, and de�nes the set Ea
s of edges corresponding to actions. The edges in Ea

s are labelled
with the corresponding action from Σ.

Constraint (5) states that if a state of the semantics leads to another with a delay, and they are not in
the same node, then all states in the �rst node can reach a state in the second node with a delay.

Constraint (6) requires that each node of the graph has at most one direct time successor, with which it
is linked by an edge in the set Eδs of edges corresponding to delays. The edges in Eδs are labelled with the
special action t, which is supposed not to belong to Σ.

The graph de�ned in [ACH+92] is a graph that is compatible with Büchi games, as per De�nition 5. This
graph is the one that has been used as symbolic graph in the implementation of GREP (see Section 4).

Example 4. Consider again property ϕt (Fig. 3). The corresponding symbolic compatible graph of ϕt as
per [ACH+92] is given in Fig. 4. In the graph of Fig. 4, the nodes are labelled with a location and a zone,
represented as a set of clock constraints. Edges can represent an event transition or the elapse of time. Red
edges with �lled diamond heads () represent transitions with uncontrollable events, whereas orange

12 M. Renard, A. Rollet and Y. Falcone

l0, T

l3, T

l1, {x < 2}

l2, T

l1, {x >= 2}

Figure 4. A symbolic compatible graph of ϕt as per [ACH
+92].

edges with empty diamond heads () represent transitions with controllable events. Purple edges with
�vee� heads () represent the elapse of time.

Thus, in Fig. 4, orange edges correspond to transitions labelled by Write, since it is the only controllable
event. Red edges can represent transitions of any other event, LockOn, LockO� , or Auth. Edges are not
duplicated, meaning that two events with the same controllability that label the same transition will appear
as a unique edge in the graph. For example, from node (l0,>), events LockO� and LockOn lead to (l3,>),
but only one red edge is drawn.

From this symbolic graph, we de�ne another graph, as in [RRF17b], on which we play a Büchi game.
This graph is called game graph.

3.2.2. The Game Graph

This part describes how to construct the graph on which a Büchi game is played. Let us consider Gs = (Vs, Es),
a symbolic graph compatible with Büchi games. We use Σnc and a compatible symbolic graph Gs to de�ne a
game graph G, the �nite graph on which to play the Büchi game:

De�nition 6 (Game graph). A graph G = 〈V,E〉 is a game graph if:

• V = Vs × Σnc × {0, 1},
• E =

⋃6
i=1Ei, with

� E1 = {(〈v, w, 0〉, 〈v, w, 1〉) ∈ V 2},
� E2 = {(〈v, c.w, 0〉, 〈v after c, w, 0〉) ∈ V 2 | c ∈ Σc},
� E3 = {(〈v, w, 1〉, 〈v after u,w, 0〉) ∈ V 2 | u ∈ Σu},
� E4 = {(〈v, w, 1〉, 〈v, w.c, 0〉) ∈ V 2 | c ∈ Σc ∧ w.c ∈ Σnc },
� E5 = {(〈v, w, 1〉, 〈v′, w, 0〉) ∈ V 2 | (v, t, v′) ∈ Eδs },
� E6 = {(〈v, w, 1〉, 〈v, w, 0〉) ∈ V 2 | up(v) = v},

As per De�nition 6, a node in a game graph G is composed of a node of a symbolic graph Gs, a bu�er,
and a player it belongs to. The two players are the enforcement mechanism P0, whose associated number is

Runtime Enforcement of Timed Properties using Games 13

0, and the environment P1, whose associated number is 1. The set of edges is partitioned into six sets, each
representing a di�erent type of action. E1 contains the edges corresponding to P0 letting P1 play; edges in
E2 represent P0 emitting the �rst event of its bu�er; E3 and E4 contain edges corresponding to receiving an
uncontrollable or controllable event, respectively, both of which being actions of P1. Edges in E5 represent
time elapse: it changes the node of the symbolic graph to its time successor if it has one. E6 contains edges
that allow us to consider �nite inputs. Since plays are in�nite, such edges are needed to allow the environment
to receive nothing (it can be seen as adding an empty event to the input). Since time elapses when no event
is received, these edges exist only from nodes that have no time successor, i.e. nodes that are stable by elapse
of time.

On this graph, we play a Büchi game with the set of Büchi nodes being de�ned as:

B = {〈(l, Z), w, 0〉 ∈ V | l ∈ F}
We can now consider W0 the set of winning nodes of this game for player P0.

Example 5. Consider again property ϕt (Fig. 3) whose symbolic graph was represented in Fig. 4. The game
graph associated with ϕt is given in Fig. 5. In this graph, the initial node is the square node, the Büchi nodes
are the double-circled nodes, and the winning nodes (the nodes in W0) are the rounded rectangular ones.
The two �rst members represent a node of the corresponding compatible symbolic graph Gs (see Fig. 4),
and the third member is a pre�x of the bu�er of the EM, where w stands for the Write event, which is the
only controllable event. As in the untimed setting, edges are represented di�erently according to the set they
belong to:

• blue edges, with empty triangular heads () belong to E1 (the EM skips its turn),

• green edges, with �lled triangular heads () belong to E2 (the EM emits the �rst event of its
bu�er),

• orange edges, with empty diamond heads () belong to E4 (a controllable event is received),

• red edges, with �lled diamond heads () belong to E3 (an uncontrollable event is received) or E6

(no more event is to be received),

• purple edges, with �vee� heads () belong to E5 (elapse of time).

For example in Fig. 5, let us consider that the node (l1, {x < 2},−, 1) has been reached. This node belongs
to P1, meaning that the environment is now playing. To leave this node, there are four cases:

• receiving the uncontrollable event LockOn (red edge), which leads to the node (l2, T,−, 0) corresponding
to the location l2 of the TA.

• receiving the uncontrollable events LockO� or Auth (red edge), which leads to node (l1, { x < 2},−, 0).

• receiving the controllable event Write (orange edge), which leads to node (l1, {x < 2}, w, 0), meaning that
the event Write has been added to the bu�er.

• letting time elapse (purple edge), which leads to node (l1, {x ≥ 2},−, 0), thus updating the symbolic
state.

In these four situations, the Environment (P1) gives back the turn to the EM (P0).

From this game graph, knowing the winning set W0 for P0 allows to compute the �safe� states of an EM.

3.2.3. The Enforcement Function

Now, we can �nally de�ne safe emitting function Safe, and use it to de�ne function Eϕ, through function
storeϕ. Then, we show that Eϕ is an enforcement function that is sound, compliant and optimal.

We use W0, the set of winning nodes of this game for player P0, to de�ne, for q ∈ Q and w ∈ Σ∗c , safe
emitting function Safe(q, w), computing the set of words that can be output by an EM from state q with
bu�er w, ensuring compliance and soundness. We also de�ne the notion of maximal safe word κϕ(q, w) that
will be used for de�ning storeϕ.

Safe emitting function (Safe) For q ∈ Q, and w ∈ Σ∗c , the safe emitting function Safe is de�ned by:

Safe(q, w) = {σ ∈ tw(Σ) | ΠΣ(σ) 4 w ∧ q after σ ∈ FG∧
∀t ∈ R≥0,∀v ∈ Vs, (q after (σ, t) ∈ v) =⇒ 〈v,maxbuffer(ΠΣ(obs(σ, t))−1 · w), 1〉 ∈W0},

14 M. Renard, A. Rollet and Y. Falcone

(l0, T, -, 0)

(l0, T, -, 1)

(l0, T, w, 0)

(l3, T, -, 0)

(l1, {x < 2}, -, 0)

(l0, T, w, 1)

(l0, T, ww, 0)

(l3, T, w, 0)

(l1, {x < 2}, w, 0)

(l0, T, ww, 1)

(l3, T, ww, 0)

(l1, {x < 2}, ww, 0)

(l2, T, -, 0)

(l2, T, -, 1)

(l2, T, w, 0)

(l2, T, w, 1)

(l2, T, ww, 0)

(l2, T, ww, 1)

(l3, T, -, 1)

(l3, T, w, 1)

(l3, T, ww, 1)

(l1, {x >= 2}, -, 0)

(l1, {x >= 2}, -, 1)

(l1, {x >= 2}, w, 0)

(l1, {x >= 2}, w, 1)

(l1, {x >= 2}, ww, 0)

(l1, {x >= 2}, ww, 1)

(l1, {x < 2}, -, 1)

(l1, {x < 2}, w, 1)

(l1, {x < 2}, ww, 1)

Figure 5. Game graph associated with property ϕt

Runtime Enforcement of Timed Properties using Games 15

with:

maxbuffer(w) = max
4

({w′ 4 w | w′ ∈ Σnc }).

Maximal safe word (κϕ) For q ∈ Q, and w ∈ Σ∗c , the maximal safe word κϕ is de�ned by:

κϕ(q, w) = min
lex

(max
4

({ε} ∪
⋃

t′∈T(q,w)

{w′ +t t
′ | w′ ∈ Safe(q after (ε, t′), w)}))

where:

T(q, w) = {t′ ∈ R≥0 | ∀t′′ < t′,Safe(q after (ε, t′′), w) = ∅},

Now that the safe emitting function and the maximal safe word have been de�ned, they can be used to
de�ne function Eϕ. For this purpose, an intermediate function (storeϕ) is necessary:

De�nition 7 (Eϕ). Let storeϕ : tw(Σ)→ tw(Σ)× Σ∗c be the function de�ned inductively by:

storeϕ(ε) = 〈ε, ε〉,

and for σ ∈ tw(Σ), (δ, a) ∈ R≥0 × Σ, if t = time(σ · (δ, a)), (σ∞, σc) = storeϕ(σ), and σs = obs(σ∞, t), then

storeϕ(σ · (δ, a)) =

{〈σs · (t− time(σs), a) · σ′s, σ′c〉 if a ∈ Σu

〈σs · σ′′s , σ′′c 〉 if a ∈ Σc

where,

bufc = ΠΣ(nobs(σ∞, t)) · σc,

and

σ′s = κϕ(Reach(σs · (t− time(σs), a)), bufc) σ′c = ΠΣ(σ′s)
−1 · bufc,

σ′′s = κϕ(Reach(σs, t), bufc · a) +t (t− time(σs)) σ′′c = ΠΣ(σ′′s)−1 · (bufc · a).

We then de�ne function Eϕ as follows: For σ ∈ tw(Σ) and t ∈ R≥0,

Eϕ(σ, t) = obs(Π1(storeϕ(obs(σ, t))), t).

Function storeϕ takes a timed word σ as input, and outputs two words: σ∞ and σc. σ∞ is a timed
word corresponding to the output of the EM at in�nite time, i.e. the events already emitted followed by the
controllable events expected to be released according to the fact that no other event occurs meanwhile. σc
is an untimed word representing the controllable events stored in order not to break the property. Note that
contrary to [PFJ+14] when an event is in σ∞, there is no guarantee that it will be emitted. Indeed, if an
uncontrollable event occurs meanwhile, the latter has to be emitted immediately, and the state of the TA is
updated. At this moment, it is necessary to check again if the events in σ∞ may be emitted without violating
the property. storeϕ is de�ned in an inductive way, distinguishing the occurrence of an uncontrollable event
and a controllable one. In both cases, it is necessary to compute the �best� correct sequence using the safe
emitting function Safe. In the de�nition of Safe(q, w), the last condition requires that all nodes of the game
graph G that are reached by a word in Safe(q, w) from q belong to W0. This is a strong condition, that is
required to ensure that it is always possible to compute a word leading to an accepting state. Nevertheless, if
the source node is not in W0, it is possible that letting time elapse leads to a node in W0, because it disabled
some transition in the timed automaton. This explains why we de�ned the set T(q, w), that allows us to
consider words as potential outputs of the EM if it becomes sound (i.e. can ensure that the property will be
satis�ed) before the emission of the �rst event of this word, even if it is not at the time when the last event
was received. Intuitively, T(q, w) contains all the delays t such that an EM must wait at least t time units
to be able to be sound. In other words, the EM can not ensure that the property will eventually always be
satis�ed from state q with bu�er w, and it can not ensure it either by waiting less than t time units, for every
t in T(q, w). Then, κϕ(q, w) is the word that is to be output by the EM from state q with bu�er w provided
that the input does not change. It is the maximal word (with respect to 4d) that belongs to Safe(q, w).
If Safe(q, w) is empty, then κϕ(q, w) is the maximal word that belongs to Safe(q after (ε, t), w), where t is
the minimal time for which Safe(q after (ε, t), w) is not empty. If Safe(q after (ε, t), w) is empty for every

16 M. Renard, A. Rollet and Y. Falcone

Table 1. Table showing the evolution of σ∞ and σc in storeϕ and the output of the EM for the input
σ = ((1,Auth) · (1,LockOn) · (2, Write) · (1,LockO�) · (1,LockOn) · (1, Write) · (1,LockO�)).

t Output of the EM at time t σ∞ σc

1 (1,Auth) (1,Auth) ε

2 (1,Auth) · (1,LockOn) (1,Auth) · (1,LockOn) ε

4 (1,Auth) · (1,LockOn) (1,Auth) · (1,LockOn) Write

5 (1,Auth) · (1,LockOn) · (3,LockO�) (1,Auth) · (1,LockOn) · (3,LockO�) ·
(2, Write)

ε

6 (1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn)

(1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn)

Write

7 (1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn)

(1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn)

Write ·
Write

8 (1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn) · (2,LockO�)

(1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn) · (2,LockO�) · (2, Write) ·
(0, Write)

ε

10 (1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn) · (2,LockO�) · (2, Write) ·
(0, Write)

(1,Auth) · (1,LockOn) · (3,LockO�) ·
(1,LockOn) · (2,LockO�) · (2, Write) ·
(0, Write)

ε

t ∈ R≥0, then κϕ(q, w) = ε, meaning that the EM does not output anything. Thus, when the enforcement
function is not sound, it outputs nothing but uncontrollable events.

Example 6. We can follow in Table 1 the output of function Eϕ and the values of σ∞ and σc over time
with input word σ = (1,Auth) · (1,LockOn) · (2, Write) · (1,LockO�) · (1,LockOn) · (1, Write) · (1,LockO�).
As depicted before, at time t = 4 the controllable event Write occurs but can not be emitted. It is stored in
σc. At t = 5, the occurrence of the uncontrollable event LockO� leads the TA into location l1 and permits to
consider Write to be released. Then �(3,LockO�) · (2, Write)� is added at the end of σ∞, which means that
LockO� should be emitted immediately, followed by the emission of Write expected 2 time units after. The
occurrence at t = 6 of LockOn leads the TA to l2. Emitting Write is not possible anymore, thus the latter is
stored again in σc, and so on. To understand the behaviour of storeϕ, note that in the associated game graph,
shown in Fig. 5, 〈l1, Z, w, p〉 ∈W0 and 〈l2, Z, w, p〉 ∈W0, for any 〈l1, Z, w, p〉 ∈ V and 〈l2, Z, w, p〉 ∈ V .

As mentioned previously, an EM may not be sound from the beginning of an execution, but some
uncontrollable events may lead to a state from which it becomes possible to be sound. In De�nition 7,
function Eϕ is sound whenever T(q, w) is empty, with q the state reached by the output of Eϕ at date t and
w its bu�er at this date. If T(q, w) is empty, then the last value of σ′s (or σ

′′
s depending on the controllability

of the last input action) is in Safe(q, w), meaning that the node in the game graph G reached by the EM is
in W0, therefore it is always possible to compute a word that leads to a state in FG. This leads us to the
de�nition of the stabilised set of inputs Pre(ϕ), which is the time-extension-closed set of inputs in which
function Eϕ is sound (i.e. the S set from the de�nition of soundness, see De�nition 2):

De�nition 8 (Stabilised set of inputs (Pre(ϕ))). Considering a property ϕ to enforce, the stabilised set
of inputs Pre(ϕ) is de�ned by:

Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)},
where, for σ ∈ tw(Σ) and t ∈ R≥0:

Pre(ϕ, t) = {σ ∈ tw(Σ) | ∃t′ ≤ t,Safe(Reach(σ|Σu
, t′),ΠΣ(obs(σ, t′)|Σc

)) 6= ∅} · tw(Σ)

Note that Pre(ϕ) is time-extension-closed, meaning that once Eϕ is sound, its output will always eventu-
ally satisfy ϕ in the future. Considering that the output of function Eϕ was only containing uncontrollable
events so far, if Safe(Reach(σ|Σu

, t),ΠΣ(obs(σ, t)|Σc
)) is not empty, this means that function Eϕ becomes

sound with input σ from time t, since there is a word that is safe to emit. Thus, Pre(ϕ, t) is the set of inputs
for which Eϕ is sound after date t, and then Eϕ is sound for any input in Pre(ϕ) after its associated date.

Runtime Enforcement of Timed Properties using Games 17

3.2.4. Properties of function Eϕ

We list the di�erent propositions stating that Eϕ ful�ls all the requirements of enforcement functions: it is
an enforcement function, which is sound with respect to ϕ in Pre(ϕ), compliant with respect to Σu and Σc,
and optimal in Pre(ϕ). Proofs can be found in appendix A.

Proposition 1. Eϕ as per De�nition 7 is an enforcement function, as per De�nition 1.

Proposition 2. Eϕ is sound with respect to ϕ in Pre(ϕ) as per De�nition 2.

Proposition 3. Eϕ is compliant, as per De�nition 3.

Proposition 4. Eϕ is optimal in Pre(ϕ) as per De�nition 4.

3.3. Enforcement Monitors

In this part, we give an operational description of an EM whose output is exactly the output of Eϕ, using a
transition system obeying to a set of rules.

De�nition 9. An enforcement monitor E for ϕ is a transition system 〈CE , cE0 ,ΓE , ↪→E〉 such that:

• CE = tw(Σ)× Σ∗c ×Q× R≥0 is the set of con�gurations.

• cE0 = 〈ε, ε, q0, 0〉 ∈ CE is the initial con�guration.
• ΓE = ((R≥0 × Σ) ∪ {ε}) × Op × ((R≥0 × Σ) ∪ {ε}) is the alphabet, composed of an optional input, an
operation and an optional output.
The set of operations is {dump(.),pass-uncont(.), store-cont(.),delay(.)}.
Whenever (σ, ./, σ′) ∈ ΓE , it will be noted σ/ ./ /σ′.

• ↪→E is the transition relation de�ned as the smallest relation obtained by applying the following rules
given by their priority order:

� Dump: 〈(δ, a) · σb, σc, q, δ〉 ↪
ε/ dump((δ,a))/(δ,a)−−−−−−−−−−−−−→E 〈σb, σc, q′, 0〉, with q′ = q after a,

� Pass-uncont: 〈σb, σc, q, δ〉 ↪
u/ pass-uncont(u)/(δ,u)−−−−−−−−−−−−−−−→E 〈σ′b, σ′c, q′, 0〉, with q′ = q after u, σ′b = κϕ(q′,ΠΣ(σb)·

σc), and σ
′
c = ΠΣ(σ′b)

−1 · (ΠΣ(σb) · σc),

� Store-cont: 〈σb, σc, q, δ〉 ↪
c/ store-cont(c)/ε−−−−−−−−−−−→E 〈σ′b, σ′c, q, δ〉, with σ′b = κϕ(q, ΠΣ(σb) · σc · c) +t δ and

σ′c = ΠΣ(σ′b)
−1 · (ΠΣ(σb) · σc · c),

� Delay: 〈σb, σc, (l, v), δ〉 ↪ε/ delay(δ′)/ε−−−−−−−−→E 〈σb, σc, (l, v + δ′), δ + δ′〉.
In a con�guration (σb, σc, q, δ), σb is the word of controllable events waiting to be emitted (at in�nite time),
which corresponds to σ∞ of storeϕ, but without the events already emitted. σc is the word of controllable
events stored to avoid to break the property (similar to σc in storeϕ), q is the current state in the TA of the
property, and δ is the time elapsed since the emission of the last event. For each rule, the elements composing
a con�guration are updated. In the notation σ/ ./ /σ′, σ and σ′ can be seen as an input/output snapshot
of the EM. σ corresponds to the occurrence of an event as input of the EM, and refers to the �rst event of
the green input sequence in Fig. 6. Similarly, σ′ corresponds to the EM releasing an event, and refers to the
last event of the red output sequence in Fig. 6

Example 7. An example of execution of an enforcement monitor as per De�nition 9 enforcing property
ϕt (see Fig. 3) is given in Fig. 6. We use the following notation: in each line, the input is on the right,
the output on the left, and the middle is the current con�guration of the enforcement monitor. Variable t
de�nes the global time of the execution. The input used for the monitor in Fig. 6 is the same as in Table 1:
(1,Auth) ·(1,LockOn) ·(2, Write) ·(1,LockO�) ·(1,LockOn) ·(1, Write) ·(1,LockO�). In Fig. 6, valuations are
represented as integers, giving the value of the only clock x of the property; LockO� is abbreviated as o� ,
LockOn as on, and Write as w. First column depicts the dates of events, red text is the current output (σs)
of the enforcement monitor, blue text shows the evolution of the �rst member of the con�guration (σb) of the

18 M. Renard, A. Rollet and Y. Falcone

t = 0 ε/〈ε, ε, (l0, 0), 0〉/(1,Auth).(1, on).(2, w).(1, o�).(1, on).(1, w).(1, o�)
↓ delay(1)

t = 1 ε/〈ε, ε, (l0, 1), 1〉/(0,Auth).(1, on).(2, w).(1, o�).(1, on).(1, w).(1, o�)
↓ pass-uncont(Auth)

t = 1 (1,Auth)/〈ε, ε, (l1, 0), 0〉/(1, on).(2, w).(1, o�).(1, on).(1, w).(1, o�)
↓ delay(1)

t = 2 (1,Auth)/〈ε, ε, (l1, 1), 1〉/(0, on).(2, w).(1, o�).(1, on).(1, w).(1, o�)
↓ pass-uncont(on)

t = 2 (1,Auth).(1, on)/〈ε, ε, (l2, 1), 0〉/(2, w).(1, o�).(1, on).(1, w).(1, o�)
↓ delay(2)

t = 4 (1,Auth).(1, on)/〈ε, ε, (l2, 3), 2〉/(0, w).(1, o�).(1, on).(1, w).(1, o�)
↓ store-cont(w)

t = 4 (1,Auth).(1, on)/〈ε, w, (l2, 3), 2〉/(1, o�).(1, on).(1, w).(1, o�)
↓ delay(1)

t = 5 (1,Auth).(1, on)/〈ε, w, (l2, 4), 3〉/(0, o�).(1, on).(1, w).(1, o�)
↓ pass-uncont(o�)

t = 5 (1,Auth).(1, on).(3, o�)/〈(2, w), ε, (l1, 0), 0〉/(1, on).(1, w).(1, o�)
↓ delay(1)

t = 6 (1,Auth).(1, on).(3, o�)/〈(2, w), ε, (l1, 1), 1〉/(0, on).(1, w).(1, o�)
↓ pass-uncont(on)

t = 6 (1,Auth).(1, on).(3, o�).(1, on)/〈ε, w, (l2, 1), 0〉/(1, w).(1, o�)
↓ delay(1)

t = 7 (1,Auth).(1, on).(3, o�).(1, on)/〈ε, w, (l2, 2), 1〉/(0, w).(1, o�)
↓ store-cont(w)

t = 7 (1,Auth).(1, on).(3, o�).(1, on)/〈ε, w.w, (l2, 2), 1〉/(1, o�)
↓ delay(1)

t = 8 (1,Auth).(1, on).(3, o�).(1, on)/〈ε, w.w, (l2, 3), 2〉/(0, o�)
↓ pass-uncont(o�)

t = 8 (1,Auth).(1, on).(3, o�).(1, on).(2, o�)/〈(2, w).(0, w), ε, (l1, 0), 0〉/ε
↓ delay(2)

t = 10 (1,Auth).(1, on).(3, o�).(1, on).(2, o�)/〈(2, w).(0, w), ε, (l1, 2), 2〉/ε
↓ dump((2, w))

t = 10 (1,Auth).(1, on).(3, o�).(1, on).(2, o�).(2, w)/〈(0, w), ε, (l1, 2), 0〉/ε
↓ dump((0, w))

t = 10 (1,Auth).(1, on).(3, o�).(1, on).(2, o�).(2, w).(0, w)/〈ε, ε, (l1, 2), 0〉/ε

Figure 6. Execution of an enforcement monitor with input (1,Auth) · (1,LockOn) · (2, Write) · (1,LockO�) ·
(1,LockOn) · (1, Write) · (1,LockO�)

monitor and green text depicts the remaining input word at this date. The �nal output is the same as the one
of the enforcement function Eϕ as per De�nition 7: (1,Auth) · (1, on) · (2, o�) · (1, on) · (2, o�) · (2, w) · (0, w).

Proposition 5. The output o of E as per De�nition 9 for input σ at date t is such that o = Eϕ(σ, t).

The output of the enforcement monitor is the concatenation of the outputs of the word labelling the
path followed by the enforcement monitor when reading σ. A formal de�nition is given in the proof of this
proposition, in appendix A.

Remark 1. For a con�guration of the enforcement monitor c = 〈σb, σc, q, δ〉, we can associate a node of the
game graph (Π1(q), Z, w, 0), such that Π2(q) ∈ Z, and w is the longest pre�x of the bu�er of the enforcement
monitor, i.e. ΠΣ(σb) ·σc, such that (Π1(q), Z, w, 0) is a node of the game graph. Then, if (σ, t) ∈ Pre(ϕ), and
c is the con�guration reached by the enforcement monitor with input σ at date t, then (Π1(q), Z, w, 0) is a
winning node for player P0.

Runtime Enforcement of Timed Properties using Games 19

4. GREP: Games for Runtime Enforcement of Properties

In this section, we present GREP (Games for Runtime Enforcement of Properties), a tool for RE of timed
properties with uncontrollable events. GREP implements the RE framework described in Section 3. It is a
tool of about 6,000 lines of code2 developed using the C language. GREP is open-source, and is available at
https://github.com/matthieurenard/GREP. Installation instructions are available in the INSTALL �le in
the repository. However, installing GREP can be tedious, due to some dependencies, thus we also provide a
virtual machine (VM) with a pre-compiled version of GREP. This VM also contains all the tools required to
run benchmarks and generate plots like the ones given in this section (see Section 4.4). For more information
about how to get the VM and run the tool, see https://github.com/matthieurenard/testGREP.

In this section, we �rst recall general aspects of the approach used in GREP, then we present implement-
ation details of the di�erent modules composing it. Then we detail the possible options available, and �nally
we evaluate the performance and compare the results with another tool called TiPEX.

4.1. Description of the approach

The strategy of GREP is the one described in Section 3. Given a timed regular property ϕ, and a partition
of its alphabet into a set of controllable events Σc and a set of uncontrollable events Σu, GREP �rst builds a
symbolic graph that is compatible with Büchi games, as per De�nition 5. The graph used is the one described
in [ACH+92]. Then, GREP builds a game graph as per De�nition 6, using Σc as the set of controllable events
and Σu as the set of uncontrollable events. Once the game graph is constructed, GREP computes the set
W0 of winning nodes for player P0 (the EM).

GREP can follow a real execution on the game graph, by watching the node that has been reached so
far by its output, and the nodes that can be reached by emitting stored controllable actions (i.e. following
the corresponding edges in the game graph). Whenever a winning node is reached by P0, the strategy is to
emit as many events as possible, remaining in a winning node all the time. Since the game played is a Büchi
game, it is always possible for P0 to stay in a winning node whenever one is reached. Whenever a winning
node is reached, the output of the EM is then guaranteed to satisfy the property.

4.2. General Functioning of GREP

GREP is essentially composed of two modules (cf Fig. 7): the Symbolic Computing Module (SCM) and
the Enforcement Monitor Module (EMM). It loads a TA �le describing the desired property, and reads the
inputs directly from stdin. The output of the EM is sent to stdout. This approach allows one to use GREP
with o�-the-shelf applications.

4.2.1. Symbolic Computing Module (SCM)

The Symbolic Computing Module is composed of three main components: a TA loader, the Zone Graph
Generator, and the Game Graph Generator.

4.2.2. TA Loader

The TA loader is the component that parses a �le containing the description of a timed automaton and loads
it into a C structure. The �le of the automaton is a textual description following a grammar designed for
this purpose.

The �le is parsed using a custom grammar, implemented using lex and yacc. The automaton must also
be deterministic and complete (see [AD92]). If the automaton is not deterministic, the behaviour is unde�ned.
Once the timed automaton is loaded, a symbolic graph is computed by the Zone Graph Generator to abstract
its in�nite semantics into a �nite graph that is compatible with Büchi games, as per De�nition 5. The graph
that is built is actually the one described in [ACH+92].

2 calculated with cloc (https://github.com/AlDanial/cloc)

https://github.com/matthieurenard/GREP
https://github.com/matthieurenard/testGREP
https://github.com/AlDanial/cloc

20 M. Renard, A. Rollet and Y. Falcone

TA Loader
Zone Graph
Generator

Game Graph
Generator

SCM

Property
ϕt as TA

Graph Display (Graphviz) PDF �le

Enforcement
Monitor (EM)

EMM

Input events on stdin
E(σ) on stdout
Log �le

Game graph �le

Figure 7. General architecture of GREP

4.2.3. Zone Graph Generator

From the TA, a symbolic graph is constructed using zones. This zone graph must be compatible with Büchi
games, as per De�nition 5. An algorithm to compute a symbolic graph compatible with Büchi games is given
in [ACH+92]. This algorithm has been implemented to compute the symbolic graph in this module.

In GREP, zones are represented by Di�erence Bound Matrices (DBMs), using the UPPAAL DBM library
(UDBM, see [UDB11]), and its C API. The algorithm requires some functionality not provided by this API
(some of them exist in some higher-level wrappers), such as complementing zones into a list of zones. This
functionality was added to our own wrapper of UDBM. No other third-party library was needed to compute
the symbolic graph. This symbolic graph is used to build the �nal game graph, that will be used by the
enforcement monitor.

4.2.4. Game Graph Generator

Using the symbolic graph, the Game Graph Generator builds a graph over which to play a Büchi game
whose strategy is the one to be followed by the enforcement monitor. The graph is constructed as described
in De�nition 6. Once the graph is constructed, the Büchi game is solved for player P0 (the enforcement
monitor), with the set of Büchi nodes being the set of nodes whose location is accepting. The winning nodes
are then the nodes from which the enforcement monitor ensures that its output will satisfy the property.

Following a path of winning nodes in the graph gives a strategy to follow such that the �nal output
satis�es the property. This is how the EM uses the graph to actually enforce the property.

4.2.5. Enforcement Monitor Module (EMM)

The EMM uses the SCM to compute the output for a given input. It has �ve main public functions: init(G),
getStrat(), delay(δ), eventRcvd(e), and emit(). Function init(G) initialises the EMM following the strategy
from graph G. Function getStrat() gives the strategy to follow, i.e. whether the �rst action of the bu�er
should be output or not. Since time is abstracted by the zone graph for the SCM, it needs to be noti�ed
that some time has passed, which is done by the use of function delay(δ), where δ is the number of time
units that have elapsed since the last call to delay(), or the creation of the EM for the �rst call. Time units
only need to be consistent with the ones used in the property. Function eventRcvd(e) is used to inform the
EMM that an event e has been read from the input. In this case, the EMM acts di�erently depending on the
controllability of the event. Function emit() is used to output the �rst action of the bu�er. Uncontrollable
events are output by function eventRcvd(), as required by compliance.

Note that these functions allow to use the EMM in both online (on the �y) and o�ine (with a trace as
input) settings. All these functions, except function getStrat(), return the number of time units required to
reach the time successor of the current node (∞ if there is no time successor). It is the number of time units

Runtime Enforcement of Timed Properties using Games 21

given to function delay() if no event is received before and the strategy is not to emit. Algorithms for these
functions are given in algorithms 1 to 5.

The EM is represented by a tuple containing the game graph, the current con�guration, i.e. location,
valuation and bu�er, thus it is initialised by init(G), given in algorithm 1.

input : A game graph G, that has all information about its related TA
output: An enforcement mechanism, represented by a tuple containing the graph, and the initial

state, i.e. initial location, with all clocks evaluating to 0 and an empty bu�er
1 Function Init(G)
2 return (G, 〈l0, ν0〉, ε);

Algorithm 1: Function Init(G)

The three functions delay(), eventRcvd(), and emit() are used to modify the EM. They implement the
rules of the enforcement monitor described in De�nition 9: function delay() corresponds to the rule Delay,
function eventRcvd() corresponds to rules Pass and Store, depending on the controllability of the event
received, and function emit() corresponds to rule Dump. These functions are described in algorithms 2 to 4.
In the algorithms, only the actions are emitted, with no delays, because we considered that the enforcement
mechanism was used in online mode, thus delays are not output, since they are computed from the real
instant at which the event is written by function writeOutput(). These algorithms can easily be adapted
to be used in o�ine mode, by adding a delay to the enforcement mechanism, that is increased by function
delay(), and used as the delay of the actions that are written by function writeOutput() before being reset.

input : The EM = (G, q, w) as returned by function Init or another function described here, and a
delay δ

output: The state of the EM after delay δ, and the delay needed to reach the next zone (∞ if there
is not any)

1 Function delay((G = (V,E), q, w), δ)
2 delayToNextZone ← min({δ′ ∈ R≥0 | q after (δ + δ′) 6∈ v, with v ∈ V such that

q after δ ∈ v} ∪ {∞}) ;
3 return 〈(G, q, w), delayToNextZone〉 ;

Algorithm 2: Function delay(EM, δ)

input : The EM = (G, q, w), and the event e that is received
output: The EM after having received the event e, and the delay to the time successor of the new

zone, as in algorithm 2. If the event is uncontrollable, it is output (written) by function
writeOutput

1 Function eventRcvd((G = (V,E), q, w), e)
2 if e is controllable then
3 EM ← (G, q, w · e) ;
4 delayToNextZone ← min({δ ∈ R≥0 | q after δ 6∈ v, with v ∈ V such that q ∈ v} ∪ {∞}) ;
5 else

/* e is uncontrollable */
6 EM ← (G, q after e, w) ;
7 delayToNextZone← min({δ ∈ R≥0 | q after e after δ 6∈ v with v ∈ V such that q ∈ v}∪{∞}) ;
8 writeOutput(e)
9 end

10 return (EM, delayToNextZone)

Algorithm 3: Function eventRcvd(EM, e)

The other primitive of our enforcement mechanism is function getStrat() that indicates whether the �rst
event of the bu�er should be emitted or not. This is the function in which the game graph, and the set

22 M. Renard, A. Rollet and Y. Falcone

input : The EM = (G, q, w)
output: The EM after having emitted the �rst event e of w, and the delay to the time successor of

the new zone. Again, e is written with function writeOutput
1 Function emit((G = (V,E), q, w = e · w′))
2 delayToNextZone ←

min({δ ∈ R≥0 | q after w(1) after δ 6∈ v, with v ∈ V such that q after w(1) ∈ v} ∪ {∞}) ;
3 writeOutput((w(1)) ;
4 return 〈(G, q after w(1), w[2..]), delayToNextZone〉 ;

Algorithm 4: Function emit(EM)

of winning nodes W0 are used to determine the strategy to follow. Algorithm 5 describes this function. In
algorithm 5, a �path in W0� is a path in G whose nodes belong to W0. Moreover, we use (q, w, 0) as a node to
simplify, but its existence is not guaranteed in V . Normally, we should consider instead (q,maxbuffer(w), 0)
and search paths by simulating the reception of the remaining events of w that are not in maxbuffer(w) as
soon as possible. Note that computing this condition requires to explore all the possible executions in order
to compute the maximal number of green edges.

input : The EM = (G, q, w)
output: EMIT if the strategy is to emit the �rst event of the bu�er, DONTEMIT otherwise

1 Function getStrat((G, q, w))
2 if there is a path in W0 from (q, w, 0) with maximal number of green edges (those in E2) that

starts with nodes (q, w, 0) · (q after w(1), w[2..], 0) then
3 return EMIT ;
4 else
5 return DONTEMIT
6 end

Algorithm 5: Function getStrat(EM)

Then, the general algorithm to use the EMM in the o�ine setting is given in algorithm 6. Basically, the
EMM builds an EM with function Init(G), and then uses the primitive previously de�ned to produce a
compliant output that is sound whenever possible. In algorithm 6, the EM is updated whenever a change of
the zone happens (condition del ≤ δ, line 5), or an event is received (lines 12 and 13). The �rst event of the
bu�er of the EM is output if the strategy indicates so (i.e. getStrat() returns EMIT). Once all the events
of the input have been read (line 14), the remaining events of the bu�er can be emitted with good delays
(line 15 to line 22).

Note that computing an output such that all actions are emitted whenever it is possible to emit them
does not require to explore the strategy tree. Depending on the property, the two outputs could be the
same. It is the case if the property is such that letting time elapse never enables a transition that eventually
allows the EMM to output more events. Then the EMM can work faster by using an optimisation that does
not compute any tree, but outputs actions whenever possible, i.e. when the successor node by emitting is
winning, if it is speci�ed to do so.

To visualise the di�erence between the two computations, consider the property described in Fig. 3. For
this property, considering for instance that the input word is (0, Write) · (1, Write), the output of GREP
when exploring the execution tree would be (using delays): (4, Write) · (4, Write), whereas using the other
algorithm, that emits events as soon as possible, the output would be (2, Write). The �rst one outputs more
events, but the second one outputs the Write event before.

To produce the second output, function getStrat() can be reimplemented as per algorithm 7.

4.3. Running GREP

GREP is shipped with two executables: one to use EM in o�ine mode, and the other in the online mode. Both
of them take their input on the standard input. In the o�ine mode, the input is composed of events in the

Runtime Enforcement of Timed Properties using Games 23

input : The game graph G, the input sequence of events, through function read ()
output: The output of the EM, written through functions emit and eventRcvd

1 EM ← Init(G);
2 del←∞;
3 while The input sequence has not been read entirely do
4 (δ, a)← read();
5 while del ≤ δ do
6 δ ← δ − del;
7 (EM, del)← delay(EM, del);
8 while getStrat(EM) = EMIT do
9 (EM, del) ← emit(EM);

10 end
11 end
12 (EM, del) ← delay(EM, δ);
13 (EM, del)← eventRcvd(EM, a);
14 end
15 while del <∞ or getStrat(EM) = EMIT do
16 while getStrat(EM) = EMIT do
17 (EM, del) ← emit(EM);
18 end
19 if del <∞ then
20 (EM, del)← delay(EM, del);
21 end
22 end

Algorithm 6: Main algorithm to enforce a property in o�ine mode

input : The EM = (G, q, w)
output: EMIT if the strategy is to emit the �rst event of the bu�er, DONTEMIT otherwise

1 Function getStratFast((G, q, w))
2 if (q after w(1),maxbuffer(w[2..]), 0) ∈W0 then
3 return EMIT ;
4 else
5 return DONTEMIT
6 end

Algorithm 7: Function getStratFast(EM)

form (t, a), where t is a date and a is an action, controllable or uncontrollable. In the online mode, only the
action is given, the date is computed from the real time through a call to gettimeofday(). Note that these
executables may be built only on UNIX-like systems because of some system calls such as gettimeofday()
and clock_gettime(). Excepting this, the tool is not system-dependent. The output (events with their
dates) is printed on the standard output.

GREP provides a �fast� mode (-f), where actions are output whenever they can be instead of outputting
the longest word possible with minimal dates. This option corresponds to using function getStratFast()
presented in algorithm 7 instead of function getStrat() described in algorithm 5, which is used by default.
Using option -f is usually faster, but the outputs might di�er depending on the property.

Let us show an example of command for GREP:

game_enf_offline -a phit.tmtn -l log -d gameGraph.pdf < input

will enforce the property described in the �le phit.tmtn, logging in the �le log, reading its events from the
�le input. It will also draw the game graph in the �le gameGraph.pdf.

The EM logs the mode in which it runs (default or fast) at the beginning, and when it stops, it logs the
input, its output, the controllable actions that have not been output (what remains in its bu�er), and a verdict

24 M. Renard, A. Rollet and Y. Falcone

s1 s2 s3

a

r
x :=0

r
x≥5
x :=0

a

r
x<5

r, a

(a) A safety property

s1 s2 s3

s4

g

r
x := 0

g
x ≥ 6

r
g, x < 6

r, g

r, g

(b) A co-safety property

s1

s3

s2

a

g
x :=0

r

a

g
r, x<15 ∨ x>20

r
15≤x≤20
x :=0

a, r, g

(c) A response property

Figure 8. Properties used to benchmark GREP

that is WIN if its output satis�es the property, or LOSS otherwise (some properties are not enforceable, as
discussed in [RFR+17]).

For example, considering property ϕt, the previous command with the input �le containing the sequence
(0, Write) · (1,Auth) · (2, Write) · (3,LockOn) · (4, Write) · (5,LockO�) (6,LockOn) · (7,LockO�), produces
the output (1,Auth) · (2, Write) · (2, Write) · (3,LockOn) · (5,LockO�) · (6,LockOn) (7,LockO�) · (9, Write).

4.4. Performance Evaluation

4.4.1. Comparison with TiPEX

The performance of GREP has been evaluated on three properties that come along with TiPEX, the tool to
which we compare. TiPEX (see [PFJM15]) is, to our knowledge, the only other tool that acts as an EM for
timed regular properties. The three properties are described in Fig. 8. The safety property states that after
the �rst r action, there should be at least 5 time units between any two subsequent r actions. Moreover, a
actions are not constrained. The co-safety property states that the �rst r action should be followed by a g
action, with a delay of at least 6 time units, and no intervening r action. After this prescribed sequence, g
and r actions can happen freely. The response property states that every g action should be followed by a
r action within 15 to 20 time units, without any g action occurring between them, and no r action should
occur before its corresponding g action.

For each of these properties, GREP has been run 100 times on every input among 100 inputs of 1000
events randomly generated. The time between the reception of two events has been saved for all of these

Runtime Enforcement of Timed Properties using Games 25

0 200 400 600 800 1000

3
4

5
6

(a) GREP - safety

0 200 400 600 800 1000

3
4

5
6

(b) GREP fast - safety

0 200 400 600 800 1000

6.
4

6.
5

6.
6

6.
7

6.
8

6.
9

7.
0

(c) TiPEX - safety

Figure 9. Comparison of timings of GREP and TiPEX on the safety property. �GREP fast� means that option
-f is used. The x axis corresponds to the events of the input (from 1 to 1000), and the y axis corresponds
to the logarithm of the timings (in nanoseconds) between the reads of the events.

executions. The same times have been computed for TiPEX3, reducing the number of inputs and iterations
to have the benchmarks run in a reasonable amount of time. Figures 9 and 10 give a graphical visualisation
of the performance of GREP and TiPEX.

Figures 9 and 10 are obtained as follows: each input is iterated several times (100 for GREP, less for
TiPEX4), and the computation times (in nanoseconds) of the tool between the reads of two consecutive
events of the input are stored. Then, the median time is computed for each of these times between all the
iterations. We then plot the logarithm (in base 10) of these times against the reads of the events. We use
a logarithmic scale because many values are low, and they would be merged in a line when using a linear
scale. The results for GREP with option -f are given only for the safety property because they are similar
to the results without the option for the two other properties. We can see that GREP is faster than TiPEX
by several orders of magnitude. GREP outputs many events in less than 10µs (4 on the scale of the graphs),
whereas TiPEX takes at least 1ms (6 on the scale of the graph) to output them. For the safety property, we
can see that for some inputs, GREP takes an increasing amount of time to compute the strategy. This is due
to the exploration of the strategy tree, which grows with the number of stored controllable actions. Using
the optimised setting (-f) allows GREP to compute its output faster, as shown in Fig. 9b. The last vertical
line has also many high values, because it represents the time to emit all the remaining actions after the
last event from the input was read. For the co-safety and response properties, the time GREP takes between

3 We patched TiPEX to retrieve the times as we do in our tool, only modifying it to get times properly, and did not change
the behaviour inside the part that is being measured.
4 For some properties, running TiPEX was too long to run it as many times as GREP.

26 M. Renard, A. Rollet and Y. Falcone

0 200 400 600 800 1000

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

(a) GREP - co-safety

0 200 400 600 800 1000

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

(b) TiPEX - co-safety

0 200 400 600 800 1000

3.
0

3.
5

4.
0

(c) GREP - response

0 200 400 600 800 1000

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

(d) TiPEX - response

Figure 10. Timings of GREP and TiPEX on the response and co-safety properties. The x axis corresponds
to the events of the input (from 1 to 1000), and the y axis corresponds to the logarithm of the timings (in
nanoseconds) between the reads of the events.

two events is less variable than for the safety property, mainly because the strategy of GREP is simpler: it
consists in either emitting everything for the co-safety property (once state s3 is reached) or emitting nothing
for the response property, if the �rst stored controllable is an r while in state s1. TiPEX, on the other hand,
takes a linearly-increasing amount of time to emit some events.

Thus GREP performs globally better than TiPEX on these properties. Besides, another advantage of
GREP over TiPEX is its ability to handle uncontrollable events. To our knowledge, no other RE tool has
this functionality. However, using uncontrollable events can lower the performance of GREP, as discussed in
Section 4.4.2.

4.4.2. Performance Evaluation with Uncontrollable Events

In this section, we show the limits of GREP when using uncontrollable events, with a property that is
voluntarily designed to be hard to be enforced by GREP, at least in its default mode.

Consider property ϕu described in Fig. 11, with u an uncontrollable event and c a controllable one. This
property has two locations, s1 and s2 that are symmetrical: both of them require that a certain delay (15 time
units for s1 and 10 time units for s2) has elapsed since the last event to emit a c event. As in Section 4.4.1,
GREP has been tested for this property, using 100 random inputs of 1000 events. The results are presented
in Fig. 12. As in Section 4.4.1, the x-axis of the plots represents the events of the inputs, from 1 to 1000,
and the y-axis is the logarithm of the timings, in nanoseconds, between the reads of two consecutive events.
The timings have been plotted with (Fig. 12b) and without (Fig. 12a) option -f.

Runtime Enforcement of Timed Properties using Games 27

s1 s2

s3

c
x ≥ 10
x := 0

c
x < 10

u
x := 0

c
x ≥ 15
x := 0

c
x < 15

u
x := 0

c, u

Figure 11. Property ϕu.

0 200 400 600 800 1000

3
4

5
6

7

(a) Timings of GREP for ϕu without op-
tion -f.

0 200 400 600 800 1000

3
4

5
6

7

(b) Timings of GREP for ϕu with op-
tion -f.

Figure 12. Timings of GREP for property ϕu with and without option -f.

Considering Fig. 12a, one can notice four apparent di�erent behaviours: for some inputs, the timings
between events is constant, and can be low, i.e. of about one microsecond, or a little bit higher, i.e. of about
10 microseconds; for some other inputs the timings are increasing, up to about 10 microseconds, or up to
about 10 milliseconds for the last events. This di�erence between runs can be explained by the randomness
of the events of the inputs. This benchmark has been made to show the limitation of GREP, thus the delays
between events have been taken randomly between 0 and 3, meaning that events are received faster than it
is possible to output controllable events (remember that c events must have a delay greater than 10 time
units). Thus, depending on the proportion of uncontrollable events, that are emitted immediately, the bu�er
of stored controllable events grows as events are read. Property ϕu has been speci�cally designed to increase
the number of stored controllable events.

Thus, in the worst case, the computation time of GREP increases with the size of its bu�er. For some
properties such as ϕu, receiving events with small delays (compared to guards) increases the size of the
bu�er, meaning that the computational overhead introduced by GREP could become too high for a use in
online mode.

However, considering Fig. 12b, we can see that GREP performs better with option -f. Note that for ϕu,
the outputs are the same with or without option -f. In the worst case, where GREP used 10 milliseconds
without option -f, it only requires about 100 microseconds with option -f. In both cases, the timings increase
with the size of the bu�er, but option -f reduces the growth of the timings, and may allow using GREP in
online mode where it is not possible without option -f. This di�erence between the use of option -f and not

28 M. Renard, A. Rollet and Y. Falcone

using it can be explained by the fact that with option -f, GREP does not explore all the possible executions
to output the longest word possible, but only decides if it is possible to emit a limited number of events.

4.4.3. Discussion

Limitations of GREP are theoretical and practical. Because of uncontrollable events, some properties may
not be enforceable. The framework considers in�nite bu�ers, but in practice, such a situation would inevitably
lead to the saturation of the bu�er. Adding bounds to the bu�er in the theoretical framework is currently
under investigation. Even in case of enforceable property, we have identi�ed situations where the size of the
bu�er would inevitably grow. It is the case when the EM receives events with small delays compared to
the required staying time in a state of the property (as shown in Fig. 12). In this case, the overhead may
be too important to use the EM online. It depends on the inputs which are usually unpredictable. Another
obstacle is hardware : such things are more likely to be used in embedded environments, which can have
small computational power/memory.

GREP is a proof of concept tool. Despite these limitations, it �ts pretty well in practice on usual prop-
erties.

5. Related Work

A �rst RE approach has been proposed by Schneider et al. in [Sch00]. They propose an EM synthesising
security automata permitting to enforce safety properties described with Büchi automata. The EM watches
the executions step by step and terminates whenever the property is going to be violated. Later, Bloem
et al. present in [BKKW15] a framework to synthesise an enforcement mechanism (named shield) from
safety automata by solving a 2-player game. A shield acts instantaneously and cannot bu�er actions. It is
k-stabilising : whenever a property violation is unavoidable, the shield allows to deviate from the property
for k consecutive steps (as in [CEFJ15]). Whenever a second violation occurs within k steps, then the shield
enters into a fail-safe mode, where it ensures only correctness. A similar approach has been proposed by Wu
et al. in [WZW16], adding the ability to handle burst errors.

In [LBW09], Ligatti et al. synthesise edit automata from �nite-state automata. They add in their frame-
work the ability to insert or suppress events from the execution of the system, and use a memory to store
the su�x of an invalid execution until it becomes valid again. Thus it permits to enforce a bigger set of prop-
erties than safety ones, and more precisely the set of renewal properties. Falcone et al. present in [FMFR11]
a framework to enforce response properties from the Safety-Progress classi�cation ([MP90, CMP92]). These
properties are similar to the in�nite renewal properties of [LBW09]. In [DLR15], the authors model en-
forcement mechanisms as Mandatory Results Automata (MRA). MRAs extend edit automata by re�ning
the input/output relationship of an EM and thus allowing a more precise description of the enforcement
abilities.

All these previously mentioned approaches deal only with untimed properties. The �rst RE framework
considering timed properties has been proposed by Pinisetty et al. in [PFJ+13]. In this approach, the EM
acts as a delaying �lter on the input sequence of timed events in order to provide a correct output sequence
according to the property modelled as a timed automaton ([AD92]). The framework of [PFJ+13] is able to
enforce safety and co-safety properties, and has been generalised in [PFJ+14] for any regular timed property
described by a timed automaton. Variants of this work have been proposed ([FJMP16] for suppressing events,
[PFJM14a] for parametric properties), and a tool has been developed [PFJM15].

To our knowledge, very little work has been done on RE with uncontrollable events. Basin et al. extend
in [BKZ11] the approach of Schneider et al. ([Sch00]), permitting to enforce safety properties where some of
the events in the speci�cation are uncontrollable. This work has been generalised in [BJKZ13], presenting
enforcement of security policies with controllable and uncontrollable events. As in [Sch00], the system stops
the execution in case of violation of the property. Basin et al. propose to adapt their framework for timed
properties. In this case, time constraints are represented with special uncontrollable tick events. In our
approach, we consider dense time using the expressiveness power of timed automata, any regular property,
and our EM are more �exible since they block the system only when delaying events cannot prevent from
violating the property, thus o�ering the possibility to correct more violations.

In previous work, we introduced runtime enforcement for timed properties described by timed automata,
with uncontrollable events ([RFR+17]). We have adapted the usual notions of soundness, transparency

Runtime Enforcement of Timed Properties using Games 29

(changed to compliance) and optimality in this new context, and provided an approach to synthesise a
sound, compliant and optimal EM. A �rst attempt of using games in the generation process has been
proposed in [RRF17b]. This framework considers only untimed properties. A tool permitting to enforce
timed properties with uncontrollable events and using game theory has been implemented and presented in
[RRF17a].

6. Conclusion and Future Work

Conclusion This paper presents a complete RE framework for timed properties with uncontrollable events.
It describes the theoretical framework based on a Büchi game approach, and presents GREP, the corres-
ponding implemented tool. GREP builds a two-player game graph representing the possible actions of the
EM and the system under scrutiny (that acts as the environment). Each vertex of the graph belongs to
one of these two players, and each edge represents a possible action of the player owning the source vertex.
GREP then solves a Büchi game by computing a set of nodes of the graph from which there exists a winning
strategy. Using this approach allows to avoid the exploration of the whole execution tree at runtime. This
paper provides benchmarks and compares the results with a state of the art tool TiPEX. They show that
GREP provides better computing times in case of properties without uncontrollable events, since TiPEX
does not handle uncontrollable events. To our knowledge, there exists no tool for enforcing timed properties
with uncontrollable events.

Future work We propose several ways for future works. The proposed approach considers RE in an ab-
stracted way. Even if GREP is build in a way permitting to plug it directly on a system using stdin and
stdout �ows, we did not consider practical aspects. In some real situations, instrumentation considerations
may be investigated in order to plug GREP. Moreover, our EM is allowed only to delay events. Adding richer
primitives, such as suppressing events for instance, could increase the enforcing power of the mechanism,
and may be adapted to di�erent situations. Besides, this framework considers only timed regular properties
described by timed automata. One could build EM for properties with di�erent formalism, such as TLTL
properties for instance. Finally, in this work we focus on EM for single systems. Extending this for distributed
systems is a challenging task. For instance, it may be necessary to use several EMs, implying communication
(problems) between them. The enforcing ability of the EM according to distributed properties also appears
to be a challenging open question.

30 M. Renard, A. Rollet and Y. Falcone

A. Proofs

Proposition 1. Eϕ as per De�nition 7 is an enforcement function, as per De�nition 1.

Proof. We have to prove the two following properties:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t,
Eϕ(σ, t) 4 Eϕ(σ, t′)

2. ∀σ ∈ tw(Σ),∀δ ∈ R≥0,∀a ∈ Σ,
Eϕ(σ, time(σ · (δ, a))) 4 Eϕ(σ · (δ, a), time(σ · (δ, a)))

For σ ∈ tw(Σ), let P(σ) be the predicate �∀t ∈ R≥0,∀t′ ≥ t,∀(δ, a) ∈ R≥0 × Σ,Eϕ(σ, t) 4 Eϕ(σ, t′) ∧
Eϕ(σ, time(σ · (δ, a))) 4 Eϕ(σ · (δ, a), time(σ · (δ, a)))
(〈(σ, t), o1〉 ∈ Eϕ ∧〈(σ, t′), o2〉 ∈ Eϕ ∧〈(σ, time(σ · (δ, a))), o3〉 ∈ Eϕ ∧〈(σ · (δ, a), time(σ · (δ, a))), o4〉 ∈ Eϕ) =⇒
(o1 4 o2 ∧ o3 4 o4)�.

Let us show by induction that P(σ) holds for any σ ∈ tw(Σ):

Induction basis: for σ = ε, let us consider t ∈ R≥0 and t′ ≥ t. Then, Eϕ(ε, t) = ε = Eϕ(ε, t′) 4 Eϕ(ε, t′).
Moreover, for (δ, a) ∈ R≥0 × Σ, Eϕ(σ, δ) = ε 4 Eϕ((δ, a), δ) Thus, P(ε) holds.

Induction step: suppose that P(σ) holds for some σ ∈ tw(Σ). Then, let us consider (δ, a) ∈ R≥0 × Σ,
t ∈ R≥0, and t

′ ≥ t. We �rst prove that the �rst condition holds. Let us consider 〈(σ, t), o1〉 ∈ Eϕ, 〈(σ, t′), o2〉 ∈
Eϕ, 〈(σ·(δ, a), t), o′1〉 ∈ Eϕ, and 〈(σ·(δ, a), t′), o′2〉 ∈ Eϕ. We have to prove that Eϕ(σ·(δ, a), t) 4 Eϕ(σ·(δ, a), t′).

Three cases are possible:

1. t ≤ t′ < time(σ · (δ, a)). Then obs(σ · (δ, a), t′) = obs(σ, t′), and obs(σ · (δ, a), t) = obs(σ, t). Let us consider
〈σs1, σc〉 = storeϕ(obs(σ, t)) and 〈σs2, σ′c〉 = storeϕ(obs(σ, t′)). Then, considering the de�nition of Eϕ
(De�nition 7), Eϕ(σ, t) = obs(σs1, t) = Eϕ(σ · (δ, a), t), and Eϕ(σ, t′) = obs(σs2, t

′) = Eϕ(σ · (δ, a), t′)
(since obs(σ, t) = obs(σ · (δ, a), t) and obs(σ, t′) = obs(σ · (δ, a), t′)). Following the induction hypothesis,
P(σ) holds, meaning that Eϕ(σ, t) 4 Eϕ(σ, t′). This means that Eϕ(σ · (δ, a), t) 4 Eϕ(σ · (δ, a), t′).

2. t < time(σ·(δ, a)) ≤ t′. Then, obs(σ·(δ, a), t) = obs(σ, t), meaning that (see previous case) Eϕ(σ·(δ, a), t) =
Eϕ(σ, t). Following the induction hypothesis, since P(σ) holds, Eϕ(σ, t) 4 Eϕ(σ, time(σ · (δ, a))) 4 Eϕ(σ ·
(δ, a), time(σ · (δ, a))). Thus, we have to show that Eϕ(σ · (δ, a), time(σ · (δ, a))) 4 Eϕ(σ · (δ, a), t′). Since
time(σ ·(δ, a)) ≤ t′, obs(σ ·(δ, a), time(σ ·(δ, a))) = σ ·(δ, a) = obs(σ ·(δ, a), t′), thus if 〈σs2, σc〉 = storeϕ(σ ·
(δ, a)), then Eϕ(σ · (δ, a), time(σ · (δ, a))) = obs(σs2, time(σ · (δ, a))), and Eϕ(σ · (δ, a), t′) = obs(σs2, t

′).
Since time(σ · (δ, a)) ≤ t′, this means that Eϕ(σ · (δ, a), time(σ · (δ, a))) 4 Eϕ(σ · (δ, a), t′).
Thus Eϕ(σ · (δ, a), t) 4 Eϕ(σ · (δ, a), t′).

3. time(σ · (δ, a)) ≤ t ≤ t′. Then, obs(σ · (δ, a), t) = obs(σ · (δ, a), t′) = σ · (δ, a). Thus, if 〈σs0, σc〉 =
storeϕ(σ · (δ, a)), then Eϕ(σ · (δ, a), t) = obs(σs0, t) and Eϕ(σ · (δ, a), t′) = obs(σs0, t

′). Since t ≤ t′, this
means that Eϕ(σ · (δ, a), t) 4 Eϕ(σ · (δ, a), t′).

Thus, in all cases, the �rst required condition holds (i.e. Eϕ(σ · (δ, a), t) 4 Eϕ(σ · (δ, a), t′)).
Let us now consider (δ′, a′) ∈ R≥0 × Σ. We have to show that Eϕ(σ · (δ, a), time(σ · (δ, a) · (δ′, a′))) 4

Eϕ(σ · (δ, a) · (δ′, a′), time(σ · (δ, a) · (δ′, a′))). Since obs(σ · (δ, a), time(σ · (δ, a) · (δ′, a′))) = σ · (δ, a) and
obs(σ · (δ, a) · (δ′, a′), time(σ · (δ, a) · (δ′, a′))) = σ · (δ, a) · (δ′, a′), if 〈σs3, σc〉 = storeϕ(σ · (δ, a)) and 〈σs4, σ′c〉 =
storeϕ(σ · (δ, a) · (δ′, a′)), then Eϕ(σ · (δ, a), time(σ · (δ, a) · (δ′, a′))) = obs(σs3, time(σ · (δ, a) · (δ′, a′))) and
Eϕ(σ · (δ, a) · (δ′, a′), time(σ · (δ, a) · (δ′, a′))) = obs(σs4, time(σ · (δ, a) · (δ′, a′))). Following the de�nition of
storeϕ (De�nition 7), it is clear that Eϕ(σ · (δ, a), time(σ · (δ, a) · (δ′, a′))) 4 σs4. Thus, since time(Eϕ(σ ·
(δ, a), time(σ · (δ, a) · (δ′, a′)))) ≤ time(σ · (δ, a) · (δ′, a′)), Eϕ(σ · (δ, a), time(σ · (δ, a) · (δ′, a′))) 4 Eϕ(σ · (δ, a) ·
(δ′, a′), time(σ · (δ, a) · (δ′, a′))).

This means that P(σ · (δ, a)) holds.
Thus, for any σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ, P(σ) =⇒ P(σ · (δ, a)).

Thus, by induction on σ, P(σ) holds for any σ ∈ tw(Σ). Thus Eϕ is an enforcement function.

Lemma 1. ∀σ ∈ tw(Σ),∀t ≥ time(σ), (σ 6∈ Pre(ϕ, t) ∧ 〈σs0, σc〉 = storeϕ(σ)) =⇒ (obs(σs0, t) = σ|Σu
∧

ΠΣ(nobs(σs0, t)) · σc = ΠΣ(σ|Σc
)).

Runtime Enforcement of Timed Properties using Games 31

Proof. For σ ∈ tw(Σ) and t ≥ time(σ), let P(σ, t) be the predicate �(σ 6∈ Pre(ϕ, t)∧〈σs0, σc〉 = storeϕ(σ)) =⇒
(obs(σs0, t) = σ|Σu

∧ ΠΣ(nobs(σs0, t)) · σc = ΠΣ(σ|Σc
))�, and P(σ) be the predicate �∀t ≥ time(σ),P(σ, t)�.

Let us then prove by induction on σ that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: for σ = ε, let us consider t ∈ R≥0. Then, storeϕ(ε) = 〈ε, ε〉. Since obs(ε, t) = ε|Σu
, and

ΠΣ(nobs(ε|Σc
, t)) · ε = ΠΣ(ε|Σc

), it follows that P(ε, t) holds, and thus P(ε) holds.

Induction step: let us suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (δ, a) ∈ R≥0×Σ, 〈σs0, σc〉 =
storeϕ(σ), 〈σt0, σd〉 = storeϕ(σ · (δ, a)), and σs = obs(σs0, time(σ · (δ, a))). Let us also consider t ≥ time(σ ·
(δ, a)).

If σ · (δ, a) ∈ Pre(ϕ, t), then P(σ · (δ, a), t) trivially holds.
Let us consider that σ · (δ, a) 6∈ Pre(ϕ, t).

• If a ∈ Σu, then σt0 = σs ·(time(σ ·(δ, a))−time(σs), a) ·σ′s for some σ′s ∈ tw(Σ). Since σ ·(δ, a) 6∈ Pre(ϕ, t),
this means that for any t′ ≤ t, Safe(Reach((σ ·(δ, a))|Σu

, t′),ΠΣ(obs(σ ·(δ, a), t′))|Σc
) = ∅. This means that

for any t′ ≤ t−time(σ ·(δ, a)), t′ 6∈ T(Reach((σ ·(δ, a))|Σu
),ΠΣ(σ ·(δ, a))|Σc

). Now, by induction hypothesis,
since σ 6∈ Pre(ϕ, time(σ · (δ, a))) (otherwise σ · (δ, a) would be in Pre(ϕ, t)), σ|Σu

= σs, and ΠΣ(nobs(σs0,
time(σ ·(δ, a))))|Σc

·σc = ΠΣ(σ)|Σc
. Thus, for any t′ ≤ t−time(σ ·(δ, a)), t′ 6∈ T(Reach(σs ·(time(σ ·(δ, a))−

time(σs), a)), ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc). Thus, obs(σ′s, t − time(σ · (δ, a))) = ε. It follows that
obs(σt0, t) = σs ·(time(σ ·(δ, a))−time(σs), a) ·obs(σ′s, t−time(σ ·(δ, a))) = σs ·(time(σ ·(δ, a))−time(σs),
a) = (σ · (δ, a))|Σu

and ΠΣ(nobs(σt0, t)) · σd = σ′s · σd = ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc = ΠΣ(σ)|Σc
=

ΠΣ((σ · (δ, a))|Σc
). Thus P(σ · (δ, a), t) holds.

• Otherwise, a ∈ Σc, and there exists σ′′s such that σt0 = σs · σ′′s . Since σ · (δ, a) 6∈ Pre(ϕ, t), for any t′ ≤ t,
Safe(Reach((σ · (δ, a))|Σu

, t′),ΠΣ(obs(σ · (δ, a), t′))|Σc
) = ∅. Thus, for any t′ ≤ t− time((σ · (δ, a))|Σu

), t′ 6∈
T(Reach((σ ·(δ, a))|Σu

),ΠΣ((σ ·(δ, a))|Σc
)). Now, by induction hypothesis, considering that (σ ·(δ, a))|Σu

=
σ|Σu

and (σ · (δ, a))|Σc
= σ|Σc

· (time(σ · (δ, a))− time(σ|Σc
), a), and since σ 6∈ Pre(ϕ, time(σ · (δ, a))), for

any t′ ≤ t− time(σ · (δ, a)), t′ 6∈ T(Reach(σs, time(σ · (δ, a))),ΠΣ(nobs(σs0, time(σ · (δ, a)))) ·σc · a). Thus,
obs(σ′′s −t (time(σ · (δ, a))− time(σs)), t− time(σ · (δ, a))) = ε. Thus, obs(σ′′s , t− time(σ · (δ, a)) + time(σ ·
(δ, a))− time(σs))−t (t− time(σ · (δ, a))) = ε, meaning that obs(σ′′s , t− time(σs)) = ε.
Thus, obs(σt0, t) = σs · obs(σ′′s , t − time(σs)) = σs = σ|Σu

, and ΠΣ(nobs(σt0, t)) · σd = ΠΣ(nobs(σs0,
time(σ · (δ, a)))) · σc · a = ΠΣ(σ|Σc

) · a = ΠΣ((σ · (δ, a))|Σc
).

Thus P(σ · (δ, a), t) holds.

In both cases, P(σ · (δ, a), t) holds. Thus, it holds for any t ≥ time(σ · (δ, a)), meaning that P(σ · (δ, a)) holds.
This means that for any σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ, P(σ) =⇒ P(σ · (δ, a)).

Thus, we have shown by induction on σ that P(σ) holds for any σ ∈ tw(Σ).

Lemma 2. ∀q ∈ Q,∀w ∈ Σ∗c ,∀σ ∈ tw(Σ),∀t ∈ R≥0, σ ∈ Safe(q, w) =⇒ nobs(σ, t)−t (t− time(obs(σ, t))) ∈
Safe(q after (σ, t),ΠΣ(obs(σ, t))−1 · w).

Proof. Let us consider q, w and σ such that σ ∈ Safe(q, w), and t ∈ R≥0. Following the de�nition of Safe,
this means that the three following properties hold:

1. ΠΣ(σ) 4 w,

2. q after σ ∈ FG,
3. ∀t ∈ R≥0,∀v ∈ Vs,

q after (σ, t) ∈ v =⇒ 〈v,maxbuffer(ΠΣ(obs(σ, t))−1 · w), 1〉 ∈W0.

Now, considering σ′ = nobs(σ, t)−t (t− time(obs(σ, t))), σ′ satis�es the following properties:

1. ΠΣ(σ′) = ΠΣ(nobs(σ, t)−t (t− time(obs(σ, t))))

= ΠΣ(nobs(σ, t)),
thus,
ΠΣ(obs(σ, t)) ·ΠΣ(σ′) = ΠΣ(obs(σ, t)) ·ΠΣ(nobs(σ, t))

= ΠΣ(σ).

32 M. Renard, A. Rollet and Y. Falcone

Since ΠΣ(σ) 4 w, this means that:
ΠΣ(σ′) 4 ΠΣ(obs(σ, t))−1 · w.

2. (q after (σ, t)) after σ′ = (q after (σ, t)) after (nobs(σ, t)−t

(t− time(obs(σ, t))))

= q after σ.
Thus, (q after (σ, t)) after σ′ ∈ FG.

3. For t′ ∈ R≥0,
(q after (σ, t)) after (σ′, t′) = (q after (σ, t)) after (nobs(σ, t)−t

(t− time(obs(σ, t))), t′)

= q after (σ, t+ t′).
Since t+t′ ∈ R≥0, then if v ∈ Vs is such that (q after (σ, t)) after (σ′, t′) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ, t+
t′))−1 · w), 1〉 ∈ W0. Moreover, since t ≥ time(obs(σ, t)), ΠΣ(obs(σ, t + t′))−1 · w = ΠΣ(obs(σ′, t′))−1 ·
(ΠΣ(obs(σ, t))−1 · w). Thus, 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1 · (ΠΣ(obs(σ, t))−1 · w)), 1〉 ∈W0.

This means that σ′ = nobs(σ, t)−t (t− time(obs(σ, t))) ∈ Safe(q after (σ, t), ΠΣ(obs(σ, t))−1 · w).

Proposition 2. Eϕ is sound with respect to ϕ in Pre(ϕ) as per De�nition 2.

Proof. Notation from De�nition 7 is to be used in this proof: for σ ∈ tw(Σ), if 〈σs0, σc〉 = storeϕ(σ),
(δ, a) ∈ R≥0 × Σ, t = time(σ · (δ, a)), and σs = obs(σs0, t), then,

bufc = ΠΣ(nobs(σ∞, t)) · σc,
and

σ′s = κϕ(Reach(σs · (t− time(σs), a)), bufc) σ′c = ΠΣ(σ′s)
−1 · bufc,

σ′′s = κϕ(Reach(σs, t), bufc · a) +t (t− time(σs)) σ′′c = ΠΣ(σ′′s)−1 · (bufc · a).

We have to prove that for any (σ, t) ∈ Pre(ϕ), there exists t′ ≥ t such that for any t′′ ≥ t′, Eϕ(σ, t′′) |= ϕ.
For σ ∈ tw(Σ), and t ≥ time(σ), let P(σ, t) be the predicate �((σ, t) ∈ Pre(ϕ)∧ 〈σs, σc〉 = storeϕ(σ)) =⇒

(σs |= ϕ ∧ nobs(σs, t) −t (t − time(obs(σs, t))) ∈ Safe(Reach(σs, t), ΠΣ(nobs(σs, t)) · σc))�. Let also P(σ) be
the predicate: �∀t ≥ time(σ),P(σ, t)�. Let us show by induction that for any σ ∈ tw(Σ), P(σ) holds.

Induction basis: for σ = ε, let us consider t ∈ R≥0.

• If ε 6∈ Pre(ϕ, t), then, P(ε) trivially holds.

• Otherwise, ε ∈ Pre(ϕ, t). Then, following the de�nition of Pre(ε, t) (De�nition 8), there exists t′ ≤ t such
that Safe(Reach(ε|Σu

, t′), ε) 6= ∅, meaning that Safe(Reach(ε, t′), ε) 6= ∅. Thus, following the de�nition of
Safe(Reach(ε, t′), ε), ε ∈ Safe(Reach(ε, t′), ε), and Reach(ε) ∈ FG, thus ε |= ϕ. Since storeϕ(ε) = 〈ε, ε〉 and
ε |= ϕ, P(ε, t) holds.

Thus, in both cases, P(ε, t) holds, meaning that P(ε) holds.

Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (δ, a) ∈ R≥0×Σ, t ≥ time(σ·(δ, a)),
〈σs0, σc〉 = storeϕ(σ), σs = obs(σs0, time(σ · (δ, a))), 〈σt0, σd〉 = storeϕ(σ · (δ, a)), and σt = obs(σt0, t).
We have to prove that (σ · (δ, a), t) ∈ Pre(ϕ) =⇒ σt |= ϕ ∧ nobs(σt, t) −t (t − time(obs(σt, t))) ∈
Safe(Reach(σt, t),ΠΣ(nobs(σt, t)) · σd).
• If σ · (δ, a) 6∈ Pre(ϕ, t), then P(σ · (δ, a), t) trivially holds.

• If σ·(δ, a) ∈ Pre(ϕ, t)∧σ 6∈ Pre(ϕ, time(σ·(δ, a))), then, since σ 6∈ Pre(ϕ, time(σ·(δ, a))), following lemma 1,
since obs(σ, time(σ · (δ, a))) = σ, obs(σs0, time(σ · (δ, a))) = σs = obs(σ|Σu

, time(σ · (δ, a))) = σ|Σu
and

ΠΣ(nobs(σs0, time(σ · (δ, a)))) ·σc = ΠΣ(σ|Σc
). Since σ · (δ, a) ∈ Pre(ϕ, t), and σ 6∈ Pre(ϕ, time(σ · (δ, a))),

following the de�nition of Pre(ϕ, t) and Pre(ϕ, time(σ · (δ, a))) (De�nition 8), there exists t′ ∈ R≥0 such
that time(σ ·(δ, a)) ≤ t′ ≤ t, and Safe(Reach((σ ·(δ, a))|Σu

, t′),ΠΣ(obs(σ ·(δ, a), t′)|Σc
)) 6= ∅. Let us consider

the minimum such t′. Since t′ ≥ time(σ · (δ, a)), then obs(σ · (δ, a), t′) = σ · (δ, a). This means that:

Safe(Reach((σ · (δ, a))|Σu
, t′),ΠΣ((σ · (δ, a))|Σc

)) 6= ∅. (1)

Runtime Enforcement of Timed Properties using Games 33

� If a ∈ Σu, then considering that (σ · (δ, a))|Σu
= σ|Σu

· (time(σ · (δ, a))− time(σ|Σu
), a) = σs · (time(σ ·

(δ, a)) − time(σs), a), and ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc = ΠΣ(σ|Σc
) = ΠΣ((σ · (δ, a))|Σc

), (1)
becomes:

Safe(Reach(σs · (time(σ · (δ, a))− time(σs), a), t′),

ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc) 6= ∅.

Let us consider δ′ = time(σ · (δ, a)) − time(σs), such that time(σ · (δ, a)) = time(σs · (δ′, a)), and
t′′ = t′ − time(σ · (δ, a)).
Then, t′ is the minimum number such that Safe(Reach(σs · (δ′, a), t′), bufc) 6= ∅. Therefore, t′′ ∈
T(Reach(σs · (δ′, a)), bufc).
Thus, there exists w′ ∈ Safe(Reach(σs · (δ′, a)) after (ε, t′′), bufc) such that σ′s = w′ +t t

′′. Thus,
σ′s −t t

′′ ∈ Safe(Reach(σs · (δ′, a), t′), bufc).
Now, note that:
nobs(σt0, t) = obs(σt0, t)

−1 · σt0
= obs(σs · (δ′, a) · σ′s, t)−1 · σt0

Since t ≥ time(σ · (δ, a)) = time(σs · (δ′, a)),
nobs(σt0, t) = (σs · (δ′, a) · obs(σ′s, t− time(σs · (δ′, a))))−1 · σt0

= obs(σ′s, t− time(σ · (δ, a)))−1·
((σs · (δ′, a))−1 · (σs · (δ′, a) · σ′s))

= obs(σ′s, t− time(σ · (δ, a)))−1 · σ′s
= nobs(σ′s, t− time(σ · (δ, a)))

We know that σ′s−tt
′′ ∈ Safe(Reach(σs ·(δ′, a), t′), bufc), thus following lemma 2, since t ≥ t′, t−t′ ≥ 0,

and

nobs(σ′s −t t
′′, t− t′)−t (t− t′ − time(obs(σ′s −t t

′′, t− t′))) ∈
Safe(Reach(σs · (δ′, a), t′) after (σ′s −t t

′′, t− t′),
ΠΣ(obs(σ′s −t t

′′, t− t′))−1 · bufc)

(2)

Now, note that for any σ ∈ tw(Σ), t ∈ R≥0 and t′ ∈ R≥0,

nobs(σ −t t, t
′) =

{
nobs(σ, t+ t′)−t t

′ if delay(σ(1)) > t+ t′

nobs(σ, t+ t′) otherwise
The reason is that the operator −t a�ects only the �rst delay of the word, thus if this delay is in
obs(σ −t t, t

′), i.e. delay(σ(1)) ≥ t+ t′, the remaining events are not changed by the −t operator.
Thus, if delay(σ′s(1)) > t− t′ + t′′ = t− t′ + t′ − time(σ · (δ, a)) = t− time(σ · (δ, a)), then
nobs(σ′s −t t

′′, t− t′) = nobs(σ′s, t− t′ + t′′)−t t
′′

= nobs(σ′s, t− time(σ · (δ, a)))−t t
′′

Moreover, since delay(σ′s(1)) > t− time(σ · (δ, a)), obs(σ′s−t t
′′, t− t′) = ε, and obs(σt0, t) = σs · (δ, a),

thus:
nobs(σ′s−tt

′′, t− t′)−t (t− t′ − time(obs(σ′s −t t
′′, t− t′)))

= (nobs(σ′s, t− time(σ · (δ, a)))−t t
′′)−t (t− t′)

= nobs(σt0, t)−t (t− t′ + t′′)

= nobs(σt0, t)−t (t− time(σ · (δ, a)))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

On the other hand, if delay(σ′s(1)) ≤ t− time(σ · (δ, a)), then
nobs(σ′s −t t

′′, t− t′) = nobs(σ′s, t− time(σ · (δ, a)))
Moreover, since delay(σ′s(1)) ≤ t−time(σ ·(δ, a)), obs(σ′s−t t

′′, t−t′) = obs(σ′s, t−time(σ ·(δ, a)))−t t
′′,

thus

34 M. Renard, A. Rollet and Y. Falcone

nobs(σ′s−tt
′′, t− t′)−t (t− t′ − time(obs(σ′s −t t

′′, t− t′)))
= nobs(σ′s, t− time(σ · (δ, a)))

−t (t− t′ − time(obs(σ′s, t− time(σ · (δ, a)))−t t
′′))

= nobs(σt0, t)

−t (t− t′ + t′′ − time(obs(σ′s, t− time(σ · (δ, a)))))

= nobs(σt0, t)−t (t− time(σ · (δ, a))−
time(obs(σ′s, t− time(σ · (δ, a)))))

= nobs(σt0, t)−t (t− time(σ · (δ, a)−
(time(obs(σt0, t))− time(σ · (δ, a)))))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus, in both cases, (2) becomes:

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
Safe(Reach(σs · (δ′, a), t′) after (σ′s −t t

′′, t− t′),
ΠΣ(obs(σ′s −t t

′′, t− t′))−1 · bufc)

Now, since t′ ≥ time(σ · (δ, a)),
Reach(σs·(δ′, a), t′) after (σ′s −t t

′′, t− t′)
= Reach(σs · (δ′, a)) after

(ε, t′ − time(σs · (δ′, a))) after (σ′s −t t
′′, t− t′)

= Reach(σs · (δ′, a)) after

((σ′s −t t
′′) +t t

′′, t− t′ + t′′)

= Reach(σs · (δ′, a)) after (σ′s, t− time(σ · (δ, a)))

= Reach(σs · (δ′, a) · σ′s, t)
= Reach(σt0, t)

and
ΠΣ(nobs(σt0, t)) · σd

= ΠΣ(nobs(σ′s, t− time(σ · (δ, a)))) · (ΠΣ(σ′s)
−1 · bufc)

= ΠΣ(obs(σ′s, t− time(σ · (δ, a)))−1 · σ′s)·
(ΠΣ(σ′s)

−1 · bufc)

= ΠΣ(obs(σ′s, t− time(σ · (δ, a))))−1 ·ΠΣ(σ′s)·
(ΠΣ(σ′s)

−1 · bufc)

= ΠΣ(obs(σ′s, t− time(σ · (δ, a))))−1 · bufc

On the other hand,
ΠΣ(obs(σ′s −t t

′′, t− t′))−1 · bufc

= ΠΣ(obs(σ′s, t− time(σ · (δ, a)))−t t
′′)−1 · bufc

= ΠΣ(obs(σ′s, t− time(σ · (δ, a))))−1 · bufc

Thus, ΠΣ(nobs(σt0, t)) · σd = ΠΣ(obs(σ′s −t t
′′, t− t′))−1 · bufc.

Considering all this, (2) becomes:

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
Safe(Reach(σt0, t),ΠΣ(nobs(σt0, t)) · σd)

� Otherwise, a ∈ Σc. Then, (σ · (δ, a))|Σu
= σ|Σu

= σs, and ΠΣ((σ · (δ, a))|Σc
) = ΠΣ(σ|Σc

) · a =
ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc · a. Thus, (1) becomes:

Safe(Reach(σs, t
′),ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc · a) 6= ∅

Runtime Enforcement of Timed Properties using Games 35

Since t′ is the minimum date that satis�es this equation, t′ − time(σ · (δ, a)) ∈ T(Reach(σs, time(σ ·
(δ, a))), bufc · a).
Thus, there exists w′ ∈ Safe(Reach(σs, time(σ · (δ, a))) after (ε, t′− time(σ · (δ, a))), bufc · a) such that
σ′′s = (w′ +t t

′ − time(σ · (δ, a))) +t (time(σ · (δ, a)) − time(σs)). Thus, σ
′′
s −t (t′ − time(σ · (δ, a)) +

time(σ · (δ, a)) − time(σs)) = σ′′s −t (t′ − time(σs)) ∈ Safe(Reach(σs, t
′), bufc · a). Let us consider

t′′ = t′ − time(σs), such that σ′′s −t t
′′ ∈ Safe(Reach(σs, t

′), bufc · a).
Now,
nobs(σt0, t) = obs(σt0, t)

−1 · σt0
= obs(σs · σ′′s , t)−1 · σt0

Since time(σs) ≤ t, it follows that
nobs(σt0, t) = (σs · obs(σ′′s , t− time(σs)))

−1 · (σs · σ′′s)

= obs(σ′′s , t− time(σs))
−1 · (σ−1

s · (σs · σ′′s))

= obs(σ′′s , t− time(σs))
−1 · σ′′s

= nobs(σ′′s , t− time(σs))

We know that σ′′s −t t
′′ ∈ Safe(Reach(σs, t

′), bufc · a) and that t ≥ t′ meaning that t − t′ ≥ 0. Thus,
following lemma 2:

nobs(σ′′s −t t
′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t

′′, t− t′))) ∈
Safe(Reach(σs, t

′) after (σ′′s −t t
′′, t− t′),

ΠΣ(obs(σ′′s −t t
′′, t− t′))−1 · (bufc · a))

If delay(σ′′s (1)) > t− time(σs) (i.e. delay((σ′′s −t t
′′)(1)) > t− t′), then:

nobs(σ′′s −t t
′′, t− t′) = nobs(σ′′s , t− t′ + t′′)−t t

′′

= nobs(σ′′s , t− time(σs))−t t
′′

and obs(σ′′s −t t
′′, t− t′) = ε and obs(σt0, t) = σs. Thus,

nobs(σ′′s −t t
′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t

′′, t− t′)))
= (nobs(σ′′s , t− time(σs))−t t

′′)−t (t− t′)
= nobs(σ′′s , t− time(σs))−t (t− t′ + t′′)

= nobs(σt0, t)−t (t− time(σs))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Otherwise, delay(σ′′s (1)) ≤ t− time(σs), and then nobs(σ′′s −t t
′′, t− t′) = nobs(σ′′s , t− time(σs)), thus:

nobs(σ′′s −t t
′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t

′′, t− t′)))
= nobs(σ′′s , t− time(σs))−t

(t− t′ − time(obs(σ′′s , t− time(σs))−t t
′′))

= nobs(σt0, t)−t

(t− t′ − (time(obs(σ′′s , t− time(σs)))− t′′))
= nobs(σt0, t)−t

(t− t′ + t′′ − (time(obs(σt0, t))− time(σs)))

= nobs(σt0, t)−t

(t− time(σs)− time(obs(σt0, t)) + time(σs))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus, in both cases, this means that
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

Safe(Reach(σs, t
′) after (σ′′s −t t

′′, t− t′),
ΠΣ(obs(σ′′s −t t

′′, t− t′))−1 · (bufc · a))

Now, since t′ ≥ time(σs),

36 M. Renard, A. Rollet and Y. Falcone

Reach(σs, t
′) after (σ′′s −t t

′′, t− t′)
= Reach(σs) after (ε, t′ − time(σs)) after

(σ′′s −t t
′′, t− t′)

= Reach(σs) after (ε, t′′) after (σ′′s −t t
′′, t− t′)

= Reach(σs) after ((σ′′s −t t
′′) +t t

′′, t− t′ + t′′)

= Reach(σs) after (σ′′s , t− time(σs))

= Reach(σs · σ′′s , t)
and
ΠΣ(obs(σ′′s −t t

′′, t− t′))−1 · (bufc · a)

= ΠΣ(obs(σ′′s , t− time(σs))−t t
′′)−1 · (bufc · a)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 · (bufc · a)

Moreover, since
ΠΣ(nobs(σt0, t)) · σd

= ΠΣ(obs(σt0, t)
−1 · σt0) · σd

= (ΠΣ(obs(σt0, t))
−1 ·ΠΣ(σt0)) · σd

= ΠΣ(obs(σs · σ′′s , t))−1 · (ΠΣ(σt0) · σd)
= ΠΣ(σs · obs(σ′′s , t− time(σs)))

−1 · (ΠΣ(σt0) · σd)
= (ΠΣ(σs) ·ΠΣ(obs(σ′′s , t− time(σs))))

−1·
(ΠΣ(σs · σ′′s) · σd)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1·

(ΠΣ(σs)
−1 · (ΠΣ(σs) ·ΠΣ(σ′′s) · σd))

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 · (ΠΣ(σ′′s) · σd)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1·

(ΠΣ(σ′′s) · (ΠΣ(σ′′s)−1 · (bufc · a)))

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 · (bufc · a)

it follows that ΠΣ(obs(σ′′s −t t
′′, t− t′))−1 · (bufc · a) = ΠΣ(nobs(σt0, t)) · σd, and thus (2) becomes:

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
Safe(Reach(σt0, t),ΠΣ(nobs(σt0, t)) · σd)

Thus, in both cases,

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
Safe(Reach(σt0, t),ΠΣ(nobs(σt0, t)) · σd).

Since this holds for any t ∈ R≥0, in particular, if t = time(σt0), this means that ε ∈ Safe(Reach(σt0), σd),
meaning that Reach(σt0) after ε = Reach(σt0) ∈ FG. This means that σt0 |= ϕ.
Thus, if σ · (δ, a) ∈ Pre(ϕ, t) ∧ σ 6∈ Pre(ϕ, time(σ · (δ, a))), P(σ) =⇒ P(σ · (δ, a), t).

• Otherwise, σ · (δ, a) ∈ Pre(ϕ, t) and σ ∈ Pre(ϕ, time(σ · (δ, a))). Then, by induction hypothesis:
nobs(σs0, time(σ · (δ, a)))−t

(time(σ · (δ, a))− time(obs(σs0, time(σ · (δ, a))))) ∈
Safe(Reach(σs0, time(σ · (δ, a))),ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc)

� If a ∈ Σu, since Safe(Reach(σs0, time(σ · (δ, a))),ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc) 6= ∅, following the
de�nition of Safe, it means that there exists σ′ ∈ tw(Σc) such that the three following properties hold:

1. ΠΣ(σ′) 4 ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc,
2. Reach(σs0, time(σ · (δ, a))) after σ′ ∈ F × R≥0,

Runtime Enforcement of Timed Properties using Games 37

3. for any t′ ∈ R≥0, if v ∈ Vs is such that Reach(σs0, time(σ·(δ, a))) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1·
bufc), 1〉 ∈W0.

In particular, for item 3, with t′ = 0, we get 〈v,maxbuffer(bufc), 1〉 ∈ W0, with Reach(σs0, time(σ ·
(δ, a))) ∈ v. Thus, following the edge (〈v,maxbuffer(bufc), 1〉, 〈v after a,maxbuffer(bufc), 0〉) ∈ E3,
since W0 is the winning region for player 0, it follows that 〈v after a, maxbuffer(bufc), 0〉 ∈W0.
Thus, there exists a winning strategy for player 0 from node 〈v, maxbuffer(bufc), 0〉, meaning that
there exists a play π such that the set of nodes visited in�nitely often by π, noted inf(π), is such
that inf(π) ∩ FG × Σnc × {0, 1} 6= ∅, and π(1) = 〈v, maxbuffer(bufc), 0〉. Moreover, we can choose π
such that no edge from E3 or E4 (corresponding to receiving uncontrollable or controllable events,
respectively) is taken when playing π. This is possible since W0 is the winning region for player 0,
thus it is winning for all the strategies of player 1, and the edges of E3 and E4 leave a node belonging
to player 1. Now, since the only cycles in the graph without the edges of E3 and E4 are cycles of the
form 〈v, w, 0〉〈v, w, 1〉〈v, w, 0〉, with (〈v, w, 0〉, 〈v, w, 1〉) ∈ E1 and (〈v, w, 1〉, 〈v, w, 0〉) ∈ E6, it follows
that π ends with such a cycle repeated inde�nitely, i.e. π = π0 · (〈ve, we, 0〉 · 〈ve, we, 1〉)ω for some
�nite π0. Thus, inf(π) = {〈ve, we, 0〉, 〈ve, we, 1〉}, meaning that ve ⊆ FG.
This allows us to associate a word σ′ to π. To build it, we �rst build a sequence in Q×R≥0× tw(Σc)
by induction as follows:

(q0, δ0, w0) = (Reach(σs, time(σ · (δ, a))) after (0, a), 0, ε)

and, for i ∈ N,

(qi+1, δi+1, wi+1) =

(qi, δi, wi) if (π(i), π(i+ 1)) ∈ E1 ∪ E6

(qi after (δi, c), 0,
wi · (δi, c))

if (π(i), π(i+ 1)) ∈ E2, with π(i) =
〈v, c · w, 0〉 for some (c, w) ∈ Σc × Σ∗c

(qi, δi + δ, wi)
if (π(i), π(i+ 1)) ∈ E5, with δ =

min({δ′ ∈ R≥0 | qi after (ε, δi + δ′) ∈
Π1(π(i+ 1))})

Now since π = π0 · (〈ve, we, 0〉 · 〈ve, we, 1〉)ω, there exists n ∈ N such that for any n′ ≥ n, (π(n′), π(n′+
1)) ∈ E1 ∪ E6, meaning that (qn′ , δn′ , wn′) = (qn, δn, wn). Thus, the sequence stabilises. Let us con-
sider σ′ = wn, where wn is the third component of the previous sequence when it is stabilised. Then,
σ′ satis�es:

1. ΠΣ(σ′) 4 maxbuffer(bufc), because there is no edge (π(i), π(i + 1)) belonging to E3 or E4, and
Π2(π(1)) = maxbuffer(bufc).

2. Reach(σs0, time(σ · (δ, a))) after (0, a) after σ′ ∈ FG, because it belongs to ve ⊆ FG (ve is such
that π = π0 · (〈ve, we, 0〉 · ve, we, 1〉)ω).

3. For any t′ ∈ R≥0, if v ∈ Vs is such that Reach(σs0, time(σ · (δ, a))) after (0, a) after (σ′, t′) ∈ v,
then 〈v, ΠΣ(nobs(σ′, t′))−1 · bufc, 1〉 ∈ W0, because π is winning for player 0. By construction of
σ′, and because of the di�erent constraints required on Gs, this implies that all states v ∈ Vs such
that Reach(σs0, time(σ · (δ, a))) after (0, a) after (σ′, t′) ∈ v are in W0, for any t

′ ∈ R≥0. We know
by construction of σ′ that this holds for some t′, when an edge belonging to E5 can be followed.
The constraint item (6) required on Vs (see De�nition 5) ensures that this is thus true for all t′.

Thus, σ′ ∈ Safe(Reach(σs0, time(σ · (δ, a))) after (0, a), bufc), so
Safe(Reach(σs · (time(σ · (δ, a)) − time(σs), a)), bufc) 6= ∅. Thus, 0 ∈ T(Reach(σs · (time(σ · (δ, a)) −
time(σs), a)), bufc), meaning that σ′s ∈ Safe(Reach(σs · (time(σ · (δ, a)) − time(σs), a)), bufc). Let us
consider t′ = time(σ · (δ, a)).
Now, following lemma 2, since t ≥ t′, t− t′ ≥ 0, then:
nobs(σ′s, t− t′)−t (t− t′ − time(obs(σ′s, t− t′))) ∈

Safe(Reach(σs · (t′ − time(σs), a)) after (σ′s, t− t′),
ΠΣ(obs(σ′s, t− t′))−1 · bufc)

38 M. Renard, A. Rollet and Y. Falcone

Since t ≥ t′ = time(σ · (δ, a)),
nobs(σt0, t) = nobs(σs · (t′ − time(σs), a) · σ′s, t)

= nobs(σ′s, t− time(σs · (t′ − time(σs), a)))

= nobs(σ′s, t− time(σ · (δ, a)))

= nobs(σ′s, t− t′)
and obs(σt0, t) = σs · (t′ − time(σs), a) · (obs(σ′s, t − t′)). Thus, time(obs(σt0, t)) = time(σs · (t′ −
time(σs), a)) + time(obs(σ′s, t− t′)) = t′ + time(obs(σ′s, t− t′)).
This means that:
nobs(σ′s, t− t′)−t (t− t′ − time(obs(σ′s, t− t′)))

= nobs(σt0, t)−t (t− t′ − (time(obs(σt0, t)− t′)))
= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus,
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

Safe(Reach(σs · (t′ − time(σs), a)) after (σ′s, t− t′),
ΠΣ(obs(σ′s, t− t′))−1 · bufc)

Since
Reach(σs · (t′ − time(σs), a)) after (σ′s, t− t′)

= Reach(σs · (t′ − time(σs, a)) · σ′s, t− t′+
time(σs · (t′ − time(σs), a)))

= Reach(σt0, t− t′ + time(σ · (δ, a)))

= Reach(σt0, t)
and
ΠΣ(nobs(σt0, t)) · σd

= ΠΣ(obs(σt0, t)
−1 · σt0) · σd

= (ΠΣ(obs(σt0, t))
−1 ·ΠΣ(σt0)) · σd

= ΠΣ(obs(σs · (t′ − time(σs), a) · σ′s, t))−1·
(ΠΣ(σs · (t′ − time(σs), a) · σ′s) · σd)

= (ΠΣ(σs · (t′ − time(σs), a)) ·ΠΣ(obs(σ′s, t− t′)))−1·
(ΠΣ(σs · (t′ − time(σs), a)) ·ΠΣ(σ′s) · σd)

= ΠΣ(obs(σ′s, t− t′))−1 · (ΠΣ(σs · (t′ − time(σs), a))−1·
(ΠΣ(σs · (t′ − time(σs), a)) ·ΠΣ(σ′s) · σd))

= ΠΣ(obs(σ′s, t− t′))−1 · (ΠΣ(σ′s) · σd)
= ΠΣ(obs(σ′s, t− t′))−1 · (ΠΣ(σ′s) · (ΠΣ(σ′s)

−1 · bufc))

= ΠΣ(obs(σ′s, t− t′))−1 · bufc

it follows that:
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

Safe(Reach(σt0, t),ΠΣ(nobs(σt0, t)) · σd)

� Otherwise, a ∈ Σc, and then, since Safe(Reach(σs0, time(σ·(δ, a))), ΠΣ(nobs(σs0, time(σ·(δ, a))))·σc) 6=
∅, there exists σ′ ∈ tw(Σ) that satis�es the three following constraints:

1. ΠΣ(σ′) 4 ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc,

2. Reach(σs0, time(σ · (δ, a))) after σ′ ∈ F × R≥0,

3. for any t′ ∈ R≥0, if v ∈ Vs is such that Reach(σs0, time(σ·(δ, a))) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1·
bufc), 1〉 ∈W0.

Thus, item 1 can be written as ΠΣ(σ′) 4 bufc ·a, and from item 3 we can deduce that for any t′ ∈ R≥0,

Runtime Enforcement of Timed Properties using Games 39

if v ∈ Vs is such that Reach(σs0, time(σ · (δ, a))) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1 · (bufc ·
a)), 1〉 ∈W0. This last property holds because adding a controllable event to the bu�er only gives more
possibilities to the EM (in the game graph, if 〈v, w, p〉 is winning, then 〈v, w · c, p〉 is also winning).
This means that σ′ ∈ Safe(Reach(σs0, time(σ · (δ, a))), bufc · a), and thus, Safe(Reach(σs0, time(σ ·
(δ, a))), bufc · a) 6= ∅.
Thus, 0 ∈ T(Reach(σs0, time(σ · (δ, a))), bufc · a), meaning that σ′′s −t (time(σ · (δ, a)) − time(σs)) ∈
Safe(Reach(σs0, time(σ · (δ, a))), bufc · a). Let us consider t′ = time(σ · (δ, a)), and t′′ = t′ − time(σs).
Then, following lemma 2,
nobs(σ′′s −t t

′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t
′′, t− t′))) ∈

Safe(Reach(σs0, t
′) after (σ′′s −t t

′′, t− t′),
ΠΣ(nobs(σ′′s −t t

′′, t− t′))−1 · (bufc · a))

Now, if delay(σ′′s (1)) > t− time(σs) (i.e. delay((σ′′s −t t
′′)(1)) > t− t′), then

nobs(σ′′s −t t
′′, t− t′) = nobs(σ′′s , t− t′ + t′′)−t t

′′

= nobs(σ′′s , t− time(σs))−t t
′′

Since nobs(σt0, t) = nobs(σ′′s , t− time(σs)), it follows that nobs(σ′′s −t t
′′, t− t′) = nobs(σt0, t)−t t

′′.
Moreover, obs(σ′′s−tt

′′, t−t′) = ε since delay(σ′′s (1)) > t−time(σs), thus, considering that obs(σt0, t) =
σs,
nobs(σ′′s −t t

′′, t− t′)−t (t− t′ − time(obs(σ′′s , t− t′)))
= nobs(σt0, t)−t (t− t′ + t′′)

= nobs(σt0, t)−t (t− time(σs))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

On the other hand, if delay(σ′′s (1)) ≤ t−time(σs), then nobs(σ′′s−tt
′′, t−t′) = nobs(σ′′s , t−time(σs)) =

nobs(σt0, t), and since
time(obs(σt0, t)) = time(obs(σs · σ′′s , t))

= time(σs · (obs(σ′′s , t− time(σs)), t))

= time(σs) + time(obs(σ′′s , t− time(σs)))
it follows that
nobs(σ′′s −t t

′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t
′′, t− t′)))

= nobs(σ′′s , t− time(σs))−t

(t− t′ − time(obs(σ′′s , t− t′ + t′′)−t t
′′))

= nobs(σt0, t)−t (t− t′ − (time(obs(σ′′s , t− time(σs)))− t′′))
= nobs(σt0, t)−t (t− t′ + t′′ − (time(obs(σt0, t))− time(σs)))

= nobs(σt0, t)−t (t− time(σs) + time(σs)− time(obs(σt0, t)))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus, in both cases,
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

Safe(Reach(σs0, t
′) after (σ′′s −t t

′′, t− t′),
ΠΣ(obs(σ′′s −t t

′′, t− t′))−1 · (bufc · a))

Since
Reach(σs0, t

′) after (σ′′s −t t
′′, t− t′)

= Reach(σs) after (ε, t′ − time(σs)) after

(σ′′s −t t
′′, t− t′)

= Reach(σs) after ((σ′′s −t t
′′) +t t

′′, t− t′ + t′′)

= Reach(σs) after (σ′′s , t− time(σs))

= Reach(σs · σ′′s , t)
= Reach(σt0, t)

40 M. Renard, A. Rollet and Y. Falcone

and
ΠΣ(nobs(σt0, t)) · σd

= ΠΣ(obs(σt0, t)
−1 · σt0) · σd

= (ΠΣ(σs) ·ΠΣ(obs(σ′′s , t− time(σs))))
−1·

(ΠΣ(σs) ·ΠΣ(σ′′s) · σd)
= ΠΣ(obs(σ′′s , t− time(σs)))

−1·
(ΠΣ(σs)

−1 · (ΠΣ(σs) ·ΠΣ(σ′′s) · σd))
= ΠΣ(obs(σ′′s , t− time(σs)))

−1·
(ΠΣ(σ′′s) ·ΠΣ(σ′′s)−1 · (bufc · a))

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 · (bufc · a)

considering that
ΠΣ(obs(σ′′s −t t

′′, t− t′))−1 · (bufc · a)

= ΠΣ(obs(σ′′s , t− t′ + t′′)−t t
′′)−1 · (bufc · a)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 · (bufc · a)

we �nally obtain
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

Safe(Reach(σt0, t),ΠΣ(nobs(σt0, t)) · σd)

Thus, in both cases,

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
Safe(Reach(σt0, t),ΠΣ(nobs(σt0, t)) · σd).

In particular, this means that Reach(σt0, t) after nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈ FG. Since
Reach(σt0, t) after nobs(σt0, t)−t (t− time(obs(σt0, t)))

= Reach(obs(σt0, t)) after (ε, t− time(obs(σt0, t))) after

nobs(σt0, t)−t (t− time(obs(σt0, t)))

= Reach(obs(σt0, t)) after (nobs(σt0, t)−t

(t− time(obs(σt0, t)))) +t (t− time(obs(σt0, t)))

= Reach(obs(σt0, t)) after nobs(σt0, t)

= Reach(obs(σt0, t) · nobs(σt0, t))

= Reach(σt0)
this means that Reach(σt0) ∈ FG, meaning that σt0 |= ϕ.
Thus, if σ ∈ Pre(ϕ, time(σ · (δ, a))), P(σ) =⇒ P(σ · (δ, a), t).

Thus, in all cases, for any t ∈ R≥0, P(σ) =⇒ P(σ · (δ, a), t). This means that P(σ) =⇒ P(σ · (δ, a)).

We then have shown by induction that P(σ) holds for any σ ∈ tw(Σ). In particular, we have shown that for
any (σ, t) ∈ Pre(ϕ), 〈σs, σc〉 = storeϕ(σ) =⇒ σs |= ϕ. Thus there exists t′ that we can consider such that
t′ ≥ t, that is such that for any t′′ ≥ t′, σs = Eϕ(σ, t′′).

Thus, Eϕ is sound in Pre(ϕ).

Proposition 3. Eϕ is compliant, as per De�nition 3.

Proof. We have to prove that the three following properties hold:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,Eϕ(σ, t) 4dΣc
obs(σ, t)

2. ∀σ ∈ tw(Σ),∀t ∈ R≥0,Eϕ(σ, t) =Σu obs(σ, t)

3. ∀σ ∈ tw(Σ),∀(δ, u) ∈ R≥0 × Σu,
Eϕ(σ, time(σ · (δ, u))) · (time(σ · (δ, u))− time(Eϕ(σ, time(σ · (δ, u)))), u) 4 Eϕ(σ · (δ, u), time(σ · (δ, u))).

Runtime Enforcement of Timed Properties using Games 41

We start by proving items 1 and 2.

For σ ∈ tw(Σ), let P(σ) be the predicate �〈σs0, σc〉 = storeϕ(σ) =⇒ (σs0 4dΣc
σ ∧ σs0 =Σu

σ ∧
ΠΣ(σs0)|Σc

· σc = ΠΣ(σ)|Σc
)�. Let us prove by induction that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: for σ = ε, storeϕ(ε) = 〈ε, ε〉, and since ε 4dΣc
ε, ε =Σu

ε, and ΠΣ(ε)|Σc
· ε = ΠΣ(ε)|Σc

, it
follows that P(ε) holds.

Induction step: Suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (δ, a) ∈ R≥0 × Σ, 〈σs0, σc〉 =
storeϕ(σ), 〈σt0, σd〉 = storeϕ(σ · (δ, a)), and σs = obs(σs0, time(σ · (δ, a))).

• If a ∈ Σu, then there exists σ′s such that σt0 = σs · (time(σ · (δ, a))− time(σs), a) · σ′s, and ΠΣ(σ′s) · σd =
ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc. Thus, since a ∈ Σu

ΠΣ(σt0)|Σc
· σd

= ΠΣ(σs · (time(σ · (δ, a))− time(σs), a) · σ′s)|Σc
· σd

= ΠΣ(σs)|Σc
·ΠΣ(σ′s)|Σc

· σd
Now, following the induction hypothesis, σs0 =Σu σ, and since nobs(σ, time(σ · (δ, a))) = ε, it follows that
nobs(σs0, time(σ · (δ, a))) ∈ tw(Σc), and thus σ′s ∈ tw(Σc) too. Also following the induction hypothesis,
we know that ΠΣ(σs0)|Σc

· σc = ΠΣ(σ)|Σc
. It follows that

ΠΣ(σt0)|Σc
· σd = ΠΣ(σs)|Σc

·ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc
= ΠΣ(obs(σs0, time(σ · (δ, a)))·

nobs(σs0, time(σ · (δ, a))))|Σc
· σc

= ΠΣ(σs0)|Σc
· σc

= ΠΣ(σ)|Σc

= ΠΣ(σ · (δ, a))|Σc

Moreover, following the induction hypothesis, σs0 4dΣc
σ, thus in particular, σs 4dΣc

σ, meaning that if
i ∈ [1; |σs|], then time(σs|Σc[..i]) ≤ time(σ|Σc[..i]), and since i ≤ |σ|Σc

|, that means that time(σs|Σc[..i]) ≤
time((σ · (δ, a))|Σc[..i]). Since time(σs · (time(σ · (δ, a))− time(σs), a)) = time(σ · (δ, a)), it follows that for
any i ∈ [|σs|+ 1; |σt0|Σc

|], time(σt0|Σc[..i]) ≥ time(σ · (δ, a)) (remember that the restriction to an alphabet
conserves dates, not delays). Thus, for any i ∈ [1; |σt0|Σc

|], time(σt0|Σc[..i]) ≥ time((σ · (δ, a))|Σc[..i]). Since
we have already shown that ΠΣ(σt0)|Σc

· σd = ΠΣ(σ)|Σc
, we know that ΠΣ(σt0)|Σc

4 ΠΣ(σ)|Σc
. This

means that σt0 4dΣc
σ · (δ, a).

Finally, by induction hypothesis, σs0 =Σu
σ, thus, since

σt0|Σu
= (σs · (time(σ · (δ, a))− time(σs), a))|Σu

= σs|Σu
· ((time(σ · (δ, a))− time(σs), a)+t

(time(σs)− time(σs|Σu
)))

= σs|Σu
· (time(σ · (δ, a))− time(σs)+

time(σs)− time(σs|Σu
), a)

= σs|Σu
· (time(σ · (δ, a))− time(σs|Σu

), a)

= σ|Σu
· ((δ, a) +t (time(σ)− time(σ|Σu

)))

= (σ · (δ, a))|Σu

Thus, P(σ · (δ, a)) holds.

• Otherwise, a ∈ Σc, and then, there exists σ′′s ∈ tw(Σ) such that σt0 = σs · σ′′s and ΠΣ(σ′′s) · σd =
ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc · a.
Thus,

42 M. Renard, A. Rollet and Y. Falcone

ΠΣ(σt0)|Σc
· σd = ΠΣ(σs)|Σc

·ΠΣ(σ′′s) · σd
= ΠΣ(σs)|Σc

·ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc · a
= ΠΣ(σs0)|Σc

· σc · a
= ΠΣ(σ)|Σc

· a
= ΠΣ(σ · (δ, a))|Σc

As in the case where a ∈ Σu, for any i ∈ [1; |σs|Σc
|], time(σt0|Σc[..i]) ≤ time(σ|Σc[..i]). Moreover, by

construction, delay(σ′′s (1)) ≥ time(σ · (δ, a)) − time(σs), thus for i ∈ [|σs|Σc
| + 1; time(σt0|Σc

)], if i′ =
i − |σs|Σc

|, then time(σt0|Σc[..i]) = time(σs) + time(σ′′s[..i′]) ≥ time(σs) + time(σ · (δ, a)) − time(σs) =

time(σ · (δ, a)). Since time(σ · (δ, a)) ≤ time((σ · (δ, a))|Σc[..i]), and ΠΣ(σt0)|Σc
4 ΠΣ(σ · (δ, a))|Σc

, this
means that σt0 4dΣc

σ · (δ, a).
Finally, σt0|Σu

= σs|Σu
= σ|Σu

= (σ · (δ, a))|Σu
.

Thus P(σ · (δ, a)) holds.

In both cases, P(σ) =⇒ P(σ · (δ, a)).

Thus, we have shown by induction that for all σ ∈ tw(Σ), P(σ) holds. Consequently, for any σ ∈ tw(Σ), if
〈σs0, σc〉 = storeϕ(σ), then σs0 4dΣc

σ and σs0 =Σu σ. Thus, for any t ∈ R≥0, Eϕ(σ, t) = obs(σs0, t) 4dΣc

obs(σ, t), and Eϕ(σ, t) = obs(σs0, t) =Σu obs(σ, t).
Thus, items 1 and 2 hold.

Now, let us prove item 3. Let us consider σ ∈ tw(Σ), 〈σs0, σc〉 = storeϕ(σ), (δ, u) ∈ R≥0 × Σu, 〈σt0, σd〉 =
storeϕ(σ · (δ, u)), and σs = obs(σs0, time(σ · (δ, u))). Then, σs = Eϕ(σ, time(σ · (δ, u))), and following the
de�nition of storeϕ (De�nition 7), σs ·(time(σ·(δ, u))−time(σs), u) 4 σt0. Thus, Eϕ(σ·(δ, u), time(σ·(δ, u))) =
obs(σt0, time(σ · (δ, u))). Since time(σs · (time(σ · (δ, u)) − time(σs), u)) = time(σ · (δ, u)), it follows that
σs · (time(σ · (δ, u))− time(σs), u) 4 Eϕ(σ · (δ, u), time(σ · (δ, u))).

We have then shown that Eϕ is compliant with respect to Σu and Σc.

Proposition 4. Eϕ is optimal in Pre(ϕ) as per De�nition 4.

Proof. Let us consider σ ∈ tw(Σ), (δ, a) ∈ R≥0×Σ such that (σ, time(σ · (δ, a))) ∈ Pre(ϕ), E an enforcement
function that is compliant with respect to Σu and Σc, and such that E(σ, time(σ · (δ, a))) = Eϕ(σ, time(σ ·
(δ, a))). Let us suppose that Eϕ(σ · (δ, a),∞) ≺d E(σ · (δ, a),∞). We then have to prove that there exists
σu ∈ tw(Σu) such that E(σ · (δ, a) · σu,∞) 6|= ϕ.

Let us consider σs = obs(Eϕ(σ, time(σ · (δ, a))), time(σ · (δ, a))). Then, since Eϕ and E are compliant, and
Eϕ(σ, time(σ · (δ, a))) = E(σ, time(σ · (δ, a))), there exists σ′s ∈ tw(Σ) such that Eϕ(σ · (δ, a),∞) = σs · σ′s
and σEs ∈ tw(Σ) such that E(σ · (δ, a),∞) = σs · σEs . Now, since Eϕ(σ · (δ, a),∞) ≺d E(σ · (δ, a),∞), this
means that σ′s ≺d σ

E
s .

• If a ∈ Σu, since (σ, time(σ·(δ, a))) ∈ Pre(ϕ), we know that (see proof of Proposition 2) σ′s ∈ Safe(Reach(σs),
ΠΣ(σs)

−1
|Σc
· ΠΣ(σ)|Σc

). Now, since σ′s ≺d σ
E
s , and since σ′s is the maximal word for 4d that is in Safe,

this means that σEs 6∈ Safe(Reach(σs),ΠΣ(σs)
−1
|Σc
· ΠΣ(σ)|Σc

). This means that one of the following does

not hold :

1. ΠΣ(σEs) 4 ΠΣ(σs)
−1
|Σc
·ΠΣ(σ)|Σc

, but if this did not hold, then E would not be compliant.

2. Reach(σs) after σEs 6∈ FG. If this does not hold, then Reach(σs · σEs) 6∈ FG, meaning that E(σ ·
(δ, a),∞) 6|= ϕ.

3. ∀t ∈ R≥0,∀v ∈ Vs,Reach(σs ·σEs , t) ∈ v =⇒ 〈v,maxbuffer(ΠΣ(σs ·obs(σEs , t))
−1 ·ΠΣ(σ)|Σc

), 1〉 ∈W0.

If this does not hold, then there exists t ∈ R≥0 and v ∈ Vs such that Reach(σs · σEs , t) ∈ v and
〈v,maxbuffer(ΠΣ(σ · obs(σEs , t))

−1 · ΠΣ(σ)|Σc
), 1〉 6∈ W0. Then, there exists a winning strategy for

player 1 from this node. This means that we can construct a word by following the winning strategy
of player 1, like it is done in the proof of Proposition 2: depending on the edge followed in the game
graph, player 1 can add an uncontrollable event to the input word (the delays are given by the edges
corresponding to letting time elapse) that allows to stay in a node not belonging to W0. This can be

Runtime Enforcement of Timed Properties using Games 43

done until the strategy of player 0 goes back to the previous node, making a loop if it has no time
successor. This must ultimately happen since adding controllable events to the input only gives player
0 more possibilities, thus player 1 can choose only edges corresponding to adding uncontrollable events
or letting time elapse. By privileging the elapse of time, it can ensure that the word will be �nite.
Thus, player 1 can build a word σu ∈ tw(Σu) such that E(σ · (δ, a) · σu,∞) 6|= ϕ.

In any possible case, there exists σu ∈ tw(Σu) such that E(σ · (δ, a) · σu,∞) 6|= ϕ (in the second case,
σu = ε).

• Otherwise, a ∈ Σc, and we can prove as in the previous case that there exists σu ∈ tw(Σu) such that
E(σ ·(δ, a) ·σu,∞) 6|= ϕ. All that is needed is to adapt the parameters of Safe: σ′s ∈ Safe(Reach(σs, time(σ ·
(δ, a))),ΠΣ(σs)

−1
|Σc
· ΠΣ(σ · (δ, a))|Σc

), and thus σEs 6∈ Safe(Reach(σs, time(σ · (δ, a))),ΠΣ(σs)
−1
|Σc
· ΠΣ(σ ·

(δ, a))|Σc
), but the arguments are the same.

Thus, if E is compliant, and σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ are such that (σ, time(σ · (δ, a))) ∈ Pre(ϕ),
E(σ, time(σ · (δ, a))) = Eϕ(σ, time(σ · (δ, a))), and Eϕ(σ · (δ, a),∞) ≺d E(σ · (δ, a),∞), then there exists
σu ∈ tw(Σu) such that E(σ · (δ, a) · σu,∞) 6|= ϕ.

This means that Eϕ is optimal in Pre(ϕ).

Proposition 5. The output o of E as per De�nition 9 for input σ at date t is such that o = Eϕ(σ, t).

Proof. In this proof, we use some notation from Section 3.3:

• CE = tw(Σ)× Σ∗c ×Q× R≥0 is the set of con�gurations.

• cE0 = 〈ε, ε, q0, 0〉 ∈ CE is the initial con�guration.
• ΓE = ((R≥0 × Σ) ∪ {ε}) × Op × ((R≥0 × Σ) ∪ {ε}) is the alphabet, composed of an optional input, an
operation and an optional output.
The set of operations is {dump(.), pass-uncont(.), store-cont(.), delay(.)}.

For a sequence of rules w ∈ (ΓE)∗, we note the concatenation of all the inputs of w, input(w) = Π1(w(1)) ·
Π1(w(2)) . . .Π1(w(|w|)) , and output(w) = Π3(w(1)) · Π3(w(2)) . . .Π3(w(|w|)) the concatenation of all the
outputs of w. Since all con�gurations are not reachable from cE0 , for w ∈ (ΓE)∗, we note ReachE(w) = c if

cE0 ↪
w−→E c for some con�guration c ∈ CE , or ReachE(w) = ⊥ if such a con�guration does not exist. For a word

σ ∈ tw(Σ), and a date t ∈ R≥0, we note Rules(σ, t) = max4({w ∈ (ΓE)∗ | input(w) = obs(σ, t)∧ReachE(w) 6=
⊥ ∧ Π4(ReachE(w)) = t − time(output(w))}). We also note ReachE(σ, t) = ReachE(Rules(σ, t)). Rules(σ, t)
represent the sequence that the EM applies with input word σ until date t. Since rule delay() can be applied
an in�nite number of times by slicing time, we only consider words in (ΓE)∗ that are minimal in the number
of rules delay(), i.e. the word obtained by merging two consecutive rules delay() into one with the sum of
delays of the two rules, until stabilisation. This allows to de�ne Rules(σ, t) correctly, without �cheating� by
slicing time to increase the length of the word. Note that the words obtained by merging or adding delay()
rules this way reach exactly the same con�gurations in the end. We will also allow ourselves to extend the
use of output to timed words, such that output(σ, t) = output(Rules(σ, t)).

We have to show that for any σ ∈ tw(Σ), and t ∈ R≥0, output(σ, t) = Eϕ(σ, t).
Now, for σ ∈ tw(Σ) and t ∈ R≥0, let P(σ, t) be the predicate �〈σs0, σc〉 = storeϕ(σ) =⇒ (output(σ, t) =

obs(σs0, t)∧ReachE(σ, t) = 〈nobs(σs0, t), σc, Reach(σs0, t), t− time(obs(σs0, t))〉)�, and P(σ) be the predicate
�∀t ∈ R≥0, P(σ, t)�. Let us then show by induction that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: if σ = ε, then let us consider t ∈ R≥0. Then, storeϕ(ε) = 〈ε, ε〉. On the other hand, the
only rule that can be applied is delay(t), thus ReachE(ε, t) = 〈ε, ε, q0 after (ε, t), t〉.

Thus, output(ε, t) = obs(ε, t), and ReachE(ε, t) = 〈nobs(ε, t), ε, Reach(ε, t), t − time(ε, t)〉. Thus, P(ε, t)
holds. Thus, for any t ∈ R≥0, P(ε, t) holds, meaning that P(ε) holds.

Induction step: let us suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (δ, a) ∈ R≥0 ×Σ, t ∈ R≥0,
〈σs0, σc〉 = storeϕ(σ), 〈σt0, σd〉 = storeϕ(σ · (δ, a)), σs = obs(σs0, time(σ · (δ, a))), and c = ReachE(σ, time(σ ·
(δ, a))). Then, by induction hypothesis, c = 〈nobs(σs0, time(σ · (δ, a))), σc,Reach(σs0, time(σ · (δ, a))), time(σ ·
(δ, a))− time(σs)〉.

44 M. Renard, A. Rollet and Y. Falcone

If t < time(σ · (δ, a)), then ReachE(σ · (δ, a), t) = ReachE(σ, t), and obs(σt0, t) = obs(σs0, t), meaning that
P(σ · (δ, a), t) holds.

Then, let us consider that t ≥ time(σ · (δ, a)).

• If a ∈ Σu, then rule pass-uncont(a) can be applied, meaning that c after (a/pass-uncont(a)/a) =
〈σ′b, σ′c, q, 0〉, with q = Reach(σs0, time(σ · (δ, a))) after (0, a) = Reach(σs · (time(σ · (δ, a))− time(σs), a)),
σ′b = κϕ(q,ΠΣ(nobs(σs0, time(σ · (δ, a)))) · σc), and σ′c = ΠΣ(σ′b)

−1 · (ΠΣ(σb) · σc). Thus, σ′b is such that
σt0 = σs·σ′b, thus c after (a/pass-uncont(a)/a) = 〈σ−1

s ·σt0, σd,Reach(σs·(time(σ·(δ, a))−time(σs, a))), 0〉.
Then, rules delay() and dump() can be applied, until date t is reached, leading to the con�guration
〈nobs(σt0, t), σd,Reach(σt0, t), t− time(obs(σt0, t))〉.
Moreover, considering the transitions taken,
output(σ · (δ, a), t) = output(σ, time(σ · (δ, a))) · (time(σ · (δ, a))−

time(σs), a) · obs(σ′b, t− time(σ · (δ, a)))

= σs · (time(σ · (δ, a))− time(σs), a)·
obs(σ′b, t− time(σ · (δ, a)))

= obs(σt0, t)

Thus, P(σ · (δ, a), t) holds.

• Otherwise, a ∈ Σc, and then rule store-cont(a) can be applied from con�guration c, leading to c after
(a/ store-cont(a)/ε) = 〈σ′b, σ′c, Reach(σs0, time(σ · (δ, a))), t− time(σs)〉, with σ′b = κϕ(Reach(σs0, time(σ ·
(δ, a))), ΠΣ(nobs(σs0, time(σ · (δ, a)))) ·σc ·a)+t (t− time(σs)) and σ

′
c = ΠΣ(σ′b)

−1 · (ΠΣ(nobs(σs0, time(σ ·
(δ, a))))) · σc · a. Thus, σ′b is such that σt0 = σs · σ′b, and σ′c = σd. Then, rules delay() and dump() can
be applied until date t is reached, leading to ReachE(σ · (δ, a), t) = 〈nobs(σt0, t), σd, Reach(σt0, t), t −
time(obs(σt0, t))〉.
Moreover, considering the transitions taken,
output(σ · (δ, a), t) = output(σ, time(σ · (δ, a))) · obs(σ′b, t− time(σs))

= σs · obs(σ′b, t− time(σs))

= obs(σs · σ′b, t)
= obs(σt0, t)

Thus, P(σ · (δ, a), t) holds.

Thus, in both cases, P(σ · (δ, a), t) holds.
This means that for any t ∈ R≥0, P(σ · (δ, a), t) holds.
Thus P(σ) =⇒ P(σ · (δ, a)).

We have then shown by induction that P(σ) holds for any σ ∈ tw(Σ). In particular, this means that for
any σ ∈ tw(Σ), if 〈σs0, σc〉 = storeϕ(σ), then for any t ∈ R≥0, obs(σs0, t) = output(σ, t). Thus, Eϕ(σ, t) =
obs(σs0, t) = output(σ, t).

References

[ACC+04] Baptiste Alcalde, Ana Cavalli, Dongluo Chen, Davy Khuu, and David Lee. Network protocol system passive
testing for fault management: A backward checking approach. In International Conference on Formal Techniques
for Networked and Distributed Systems, pages 150�166. Springer, 2004.

[ACH+92] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, David Dill, and Howard Wong-Toi. Minimization of timed
transition systems. In CONCUR'92, pages 340�354. Springer, 1992.

[AD92] Rajeev Alur and David Dill. The theory of timed automata. In J.W. de Bakker, C. Huizing, W.P. de Roever, and
G. Rozenberg, editors, Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science, pages
45�73. Springer Berlin Heidelberg, 1992.

[BF18] Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Veri�cation - Introductory and Advanced Topics,
volume 10457 of Lecture Notes in Computer Science. Springer, 2018.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime veri�cation. In Bartocci
and Falcone [BF18], pages 1�33.

[BJKZ13] David Basin, Vincent Jugé, Felix Klaedtke, and Eugen Z linescu. Enforceable security policies revisited. ACM
Trans. Inf. Syst. Secur., 16(1):3:1�3:26, June 2013.

Runtime Enforcement of Timed Properties using Games 45

[BKKW15] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. Shield synthesis: Runtime enforcement
for reactive systems. CoRR, abs/1501.02573, 2015.

[BKZ11] David Basin, Felix Klaedtke, and Eugen Zalinescu. Algorithms for monitoring real-time properties. In Sarfraz
Khurshid and Koushik Sen, editors, Proceedings of the 2nd International Conference on Runtime Veri�cation (RV
2011), volume 7186 of Lecture Notes in Computer Science, pages 260�275. Springer-Verlag, 2011.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. Lecture Notes in Computer
Science, 3098:87�124, 2004.

[CEFJ15] Hadil Charafeddine, Khalil El-Harake, Yliès Falcone, and Mohamad Jaber. Runtime enforcement for component-
based systems. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, 2015, pages 1789�1796,
2015.

[CGP03] Ana Cavalli, Caroline Gervy, and Svetlana Prokopenko. New approaches for passive testing using an extended
�nite state machine speci�cation. Information and Software Technology, 45(12):837�852, 2003.

[CHP08] Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman. Algorithms for büchi games. arXiv preprint
arXiv:0805.2620, 2008.

[CMP92] Edward Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property classes. Automata, lan-
guages and programming, pages 474�486, 1992.

[DLR15] Egor Dolzhenko, Jay Ligatti, and Srikar Reddy. Modeling runtime enforcement with mandatory results automata.
International Journal of Information Security, 14(1):47�60, 2015.

[Fal10] Yliès Falcone. You should better enforce than verify. In Howard Barringer, Yliès Falcone, Bernd Finkbeiner,
Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime
Veri�cation - First International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings,
volume 6418 of Lecture Notes in Computer Science, pages 89�105. Springer, 2010.

[FFM12] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and enforce at runtime? Inter-
national Journal on Software Tools for Technology Transfer, 14(3):349�382, 2012.

[FHR13] Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime veri�cation. In Manfred Broy, Doron A.
Peled, and Georg Kalus, editors, Engineering Dependable Software Systems, volume 34 of NATO Science for Peace
and Security Series, D: Information and Communication Security, pages 141�175. IOS Press, 2013.

[FJMP16] Yliès Falcone, Thierry Jéron, Hervé Marchand, and Srinivas Pinisetty. Runtime enforcement of regular timed
properties by suppressing and delaying events. Systems & Control Letters, 123:2�41, 2016.

[FMFR11] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. Runtime enforcement monitors:
composition, synthesis, and enforcement abilities. Formal Methods in System Design, 38(3):223�262, 2011.

[FMRS18] Yliès Falcone, Leonardo Mariani, Antoine Rollet, and Saikat Saha. Runtime failure prevention and reaction. In
Bartocci and Falcone [BF18], pages 103�134.

[FP19] Yliès Falcone and Srinivas Pinisetty. On the runtime enforcement of timed properties. In Bernd Finkbeiner
and Leonardo Mariani, editors, Runtime Veri�cation - 19th International Conference, RV 2019, Porto, Portugal,
October 8-11, 2019, Proceedings, volume 11757 of Lecture Notes in Computer Science, pages 48�69. Springer, 2019.

[GT02] Erich Gradel and Wolfgang Thomas. Automata, logics, and in�nite games: a guide to current research, volume
2500. Springer Science & Business Media, 2002.

[KT12] Raphaël Khoury and Nadia Tawbi. Which security policies are enforceable by runtime monitors? A survey. Com-
puter Science Review, 6(1):27�45, 2012.

[LBW09] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies. ACM Trans. Inf. Syst.
Secur., 12(3):19:1�19:41, January 2009.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime veri�cation. J. Log. Algebr. Program.,
78(5):293�303, 2009.

[MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited paper, 1989). In Proceedings of the
ninth annual ACM symposium on Principles of distributed computing, pages 377�410. ACM, 1990.

[PFJ+13] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine Rollet, and OmerLandry Nguena Timo.
Runtime enforcement of timed properties. In Shaz Qadeer and Serdar Tasiran, editors, Runtime Veri�cation,
volume 7687 of Lecture Notes in Computer Science, pages 229�244. Springer Berlin Heidelberg, 2013.

[PFJ+14] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine Rollet, and Omer Landry Nguena-Timo.
Runtime enforcement of timed properties revisited. Formal Methods in System Design, 45(3):381�422, 2014.

[PFJM14a] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé Marchand. Runtime enforcement of parametric timed
properties with practical applications. In 12th International Workshop on Discrete Event Systems, WODES 2014,
Cachan, France, May 14-16, 2014., pages 420�427, 2014.

[PFJM14b] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé Marchand. Runtime enforcement of regular timed prop-
erties. In Yookun Cho, Sung Y. Shin, Sang-Wook Kim, Chih-Cheng Hung, and Jiman Hong, editors, Symposium
on Applied Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1279�1286. ACM,
2014.

[PFJM15] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé Marchand. TiPEX: A Tool Chain for Timed Property
Enforcement During eXecution. In Ezio Bartocci and Rupak Majumdar, editors, RV'2015, 6th International
Conference on Runtime Veri�cation, volume 9333 of Lecture Notes in Computer Science, page 12, Vienne, Austria,
September 2015. Springer.

[RFR+17] Matthieu Renard, Yliès Falcone, Antoine Rollet, Thierry Jéron, and Hervé Marchand. Optimal enforcement of
(timed) properties with uncontrollable events. Mathematical Structures in Computer Science, page 1�46, 2017.

[RRF17a] Matthieu Renard, Antoine Rollet, and Yliès Falcone. Grep: Games for the runtime enforcement of properties. In
Nina Yevtushenko, Ana Rosa Cavalli, and Hüsnü Yenigün, editors, Testing Software and Systems - ICTSS 2017,
pages 259�275. Springer International Publishing, 2017.

46 M. Renard, A. Rollet and Y. Falcone

[RRF17b] Matthieu Renard, Antoine Rollet, and Yliès Falcone. Runtime enforcement using Büchi games. In Proceedings
of Model Checking Software - 24th International Symposium, SPIN 2017, Co-located with ISSTA 2017, Santa
Barbara, USA, pages 70�79. ACM Press, July 2017.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30�50, February 2000.
[UDB11] UDBM. Uppaal DBM Library. http://people.cs.aau.dk/~adavid/UDBM/, 2011. Accessed: 2017-04-27.
[WZW16] Meng Wu, Haibo Zeng, and Chao Wang. Synthesizing runtime enforcer of safety properties under burst error. In

8th NASA Formal Methods Symposium NFM16, Minneapolis, USA, June 2016.

http://people.cs.aau.dk/~adavid/UDBM/

	Introduction
	Preliminaries and Notation
	Untimed Notions
	Timed Languages
	Timed Automata as Timed Properties
	Traces Manipulation
	Büchi Games
	Functions

	Enforcing Timed Properties using a Büchi Game
	Enforcement Functions and their Properties
	Synthesising Timed Enforcement Functions
	Enforcement Monitors

	GREP: Games for Runtime Enforcement of Properties
	Description of the approach
	General Functioning of GREP
	Running GREP
	Performance Evaluation

	Related Work
	Conclusion and Future Work
	Proofs
	References

