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Abstract
The measurement error of the finite-element based Digital Image Correlation (DIC) is reduced along the
borders of an object by using the precise measurement, obtained by Virtual Image Correlation (VIC). The
proposed method is called Virtual and Digital Image Correlation (VDIC). The boundary, identified by the
VIC with a sub-pixel precision, is used firstly to create an adapted mesh and secondly to create a pixel
mask. Futhermore, the VDIC also uses the VIC measurement of the boundary in the deformed state as a
constraint on the radial displacement field along the border. The optimal values of the parameters of the
VDIC are discussed throughout a sensitivity analysis. The compared performances of the constrained and
unconstrained VDIC are obtained thanks to a synthetic test of a plate with a hole in tension. Finally, the
method is checked on a sample geometry which includes holes and a U-shaped notch.

keywords: digital image correlation, virtual image correlation, boundary displacement, pixel mask, adapted
mesh

Notations
• F reference state image

• G deformed state image

• F ∗ virtual image related to F

• fo and fb respectively foreground (object) and background gray levels of the virtual image

• δF boundary of the object in F , as detected by VIC

• δG boundary of the object in G, as detected by VIC

• n local normal to the boundary

• X position vector in the frame of the reference image

• XδF position vector of a point of the boundary δF

• XδG position vector of a point of the boundary δG

• U motion vector from reference to deformed image

• U ref exact motion vector from reference to deformed image

• λk DIC set of motion parameters

• Nk DIC finite element shape functions
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• Ψ DIC cost function

• µk VIC set of shape parameters

• Φ VIC cost function

• cb pixel exclusion criterion

• α constraint level

• ΨG mean distance from the deformed border δF to δG

1 Introduction
Nowadays, Digital Image Correlation (DIC) is the most used full-field measurement technique in research
and industrial contexts, due to its capacity to measure displacements with good accuracy and resolution.
Furthermore, this approach needs a minimal experimental setup: a camera, paint, and lighting. DIC is used
for a large range of applications: high-resolution measurement [2], cracks detection [15], in extended dimen-
sion for out-of-plane displacements measurement with stereo-correlation [9, 13] or for 3D measurement with
tomography images [15]. Since the early 80s, many improvements have been developed to increase accuracy
and resolution. However, in particular zones, this method cannot accurately measure the displacement and
strain fields [18]. Oscillations appear on the boundary, which consists of the initial borders of the sample
but also of new borders generated by possible cracks. Whereas, in mechanics, free boundaries hold essential
information. This systematic error is due to discontinuities in the displacement field, between the sample and
the background or between two separate parts of the same sample [19, 3]. The classical technique to avoid
this problem is to limit the region of interest inside the sample surface and to exclude its boundary from the
analysis. However, measuring the displacement as close as possible to the boundary is important, and new
approaches have been developed by using an adapted mesh and by removing from the computation, using a
mask, the pixels located in the background [19, 4].

The purpose of this communication is to use an accurate boundary measurement to constrain the solution
of the DIC, within an existing DIC code [16], in order to obtain the same precision close to the boundary and
far from it. The method for detecting the position of the boundary is the Virtual Image Correlation (VIC)
[14, 8, 6, 7], which is able to detect the position of a boundary in a digital image with better accuracy than
computer graphics issued methods [5, 17]. The principle of the VIC is to find the best correlation between a
virtual image and the contour. The virtual image consists in a white to black progression in the vicinity of
a parametric curve which is, in this article, a generic B-Spline.

This article is separated into four parts. In Section 2, Digital Image Correlation and Virtual Image
Correlation are summarized. In Section 3, the proposed Virtual and Digital Image Correlation (VDIC) is
introduced. In Section 4, the influence of the parameters of the method, constraint level and pixel mask
criterion, are evaluated. Also, a study of an infinite plate in tension with synthetic images is performed to
compare the new method to existing ones. Then, in Section 5, an experimental test is used to compare the
different correlation methods on real cases, whose results are finally discussed in Section 6.

2 Summary of the DIC and VIC methods

2.1 Measurement of the displacement field with DIC
The DIC method requires two images: the “reference” one F and the “deformed” one G, of the same speckle
applied on the surface of the deformable object. The gray levels are represented respectively by F (X) and
G(X) where X ∈ N2 are the pixels coordinates. The displacement field U(X), which is searched for the
best correlation between F and G.

Following the optical flow equation, the reference and deformed images are related through

F (X) = G(X + U(X)). (1)
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In this article, a global DIC method [3] is used, i.e. the full-field is evaluated at each coordinate through
the minimization of a unique cost function Ψ(U) which consists in a sum of squared differences:

Ψ(U) =

∫
Ω

[G(X + U(X))− F (X)]
2

dX, (2)

where Ω is the region of interest defined in the reference image.
Mathematically, U(X) cannot be estimated for each pixel coordinate X because it represents two un-

knowns, uX1 and uX2 , for only one gray level data: G(X + U) − F (X). Therefore the displacement field
is defined from a parameterized kinematic model U(X, λk), where λ = {λ1, . . . , λm} are the unknown kine-
matic parameters. In this article, the simple finite-element basis which allows to study a lot of mechanical
problems is used [1]:

U(X, λ) =

m∑
k=1

λkNk(X), (3)

where λk are the nodal displacements along the two directions X1 and X2, and where Nk(X) are the
interpolation functions.

To solve the DIC problem, the deformed image is assumed to be differentiable. Thus, the updated
deformed image, due to an incremental displacement field ∆U(X), is

G(X + U + ∆U) = G(X + U) + ∆U ·∇G(X + U).

Hence, the minimization condition ∂Ψ(U + ∆U)/∂∆λl = 0 leads to the linear system∫
Ω

[F (X)−G(X + U)] [N l ·∇G] dX =

m∑
k=1

∆λk

∫
Ω

[Nk ·∇G] [N l ·∇G] dX. (4)

This system can be written in a compact form M∆λ = b, with

Mlk =

∫
Ω

[Nk ·∇F ] [N l ·∇F ] dX, (5)

bl =

∫
Ω

[F (X)−G(X + U)] [N l ·∇F ] dX. (6)

The gradient ∇G(X + U(X)) is replaced by ∇F (X) because this approximation can be made in most
case [11] and ∇F (X) can be calculated once. Thus, with an initial guess U0, the linear system enables the
iterative computation of the displacement field U i+1 = U i + ∆U i until convergence.

In this system, the gradient ∇F is one of the most important terms. Hence, the method needs a gray
level texture, called speckle, in the images. Moreover, to avoid local minima issues, this speckle has to be
random.

2.2 Measurement of the boundary position with VIC
Virtual Image Correlation (VIC) [17][14] is also an image correlation method, like the DIC. However, it is
not aimed at measuring the displacement field between two digital images, but at detecting the position of
the boundary of an object in a unique image F . For this purpose, a virtual image F ∗ is created, quite similar
to the boundary to be detected. An algorithm close to the one used for DIC is adopted to determine the
position and the shape of this created image that best matches the reference image.

The VIC determines an analytical description of the boundary geometry in the digital image. To define
the shape of the virtual image—in the coordinate system X of the digital image—a parametric curve model
δF is chosen. It depends on a curvilinear coordinate x1 ∈ [0, 1] and some shape parameters µ = {µ1, . . . , µm}
whose final values represent the VIC measurement. This curve may correspond to many descriptors like
polygon, circle, ellipse, B-Spline, NURBS. . .
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In a digital image, a boundary corresponds to a continuous variation of the gray level within a narrow
pixel band. Indeed, for the pixel in which passes the boundary, the gray level depends on the fraction of the
photons which comes from the sample surface and from the background. Therefore, a thickness 2R is defined
to extend the curve δF to a 2D object. The virtual image is then represented by several points of definition:

X(x1, x2, µk) = XδF (x1, µk) + x2Rn(x1, µk), (7)

where XδF (x1, µk) denotes the current points along δF , x2 ∈ [−1, 1] the second local coordinate of the virtual
image and n the local normal to δF . For a sharp image, the optimal thickness is R = 2 pixels [5].

Finally, the gray level of the virtual image is created. Its distribution is defined as a function of the signed
distance x2 between the pixel center and the curve in the local system (x1, x2):

F ∗(x1, x2, µk) = F ∗(x2) =
(fb − fo)x2 + fb + fo

2
. (8)

This distribution can be adapted to the object and background average gray levels, called respectively fo and
fb.

As for DIC, the parameters µk are evaluated through the minimization of a cost function defined by a
least-squares residual. This function Φ(µ) writes

Φ(µ) =
1

2

∫ 1

0

∫ 1

−1

[F ∗(x2)− F (X(x1, x2, µk))]
2

dx2dx1. (9)

This quadratic function can be minimized with a Newton-Raphson algorithm [17] where, at each iteration,
the increment of the parameters ∆µ is calculated by

∂Φ2

∂µl∂µk
∆µk = − ∂Φ

∂µl
. (10)

This system can be rewritten in a compact and simplified form M∆µ = b, with

Mlk =

∫
Ω∗

(
∂X

∂µk
·∇F

)(
∂X

∂µl
·∇F

)
dX, (11)

bl = −
∫

Ω∗
[F ∗ − F ]

(
∂X

∂µl
·∇F

)
dX, (12)

with here F = F (X(x1, x2, µk)) the digital image interpolated on the computation points of the virtual one.
The numerical discretization of (x1, x2) is chosen such as the distance between two computational points
in the pixel frame is less than 1 pixel. From an initial set µ0

k, the parameters are iteratively evaluated by
µl+1
k = µlk + ∆µlk until convergence. Because of the regularity of the parametric curve model, the accuracy

can be close to 1/1000 pixel [17, 5].

3 VIC to help DIC
The strategy adopted for the Virtual and Digital Image Correlation (VDIC) relies on four steps:

1. VIC measurement of the boundaries δF in F and δG in G,

2. creation of an adapted mesh, whose boundary nodes are on δF ,

3. generation of a pixel mask, eliminating pixels closer than cb from δF ,

4. resolution of the DIC problem, constrained by the final location of boundary nodes which must belong
to δG, with constraint level α.
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(a) (b)

Figure 1: Sketch of the method: measured position of the boundary of the object (a), adapted mesh and
pixel mask illustration (b).

Figure 1 shows a boundary δF identified by VIC and the finite element nodes which are precisely located on
δF . The mask is defined as follows: the pixels (in white) whose center is outside a parallel curve distant of
cb from δF are rejected. In the constrained VDIC, the finite element nodes are, similarly, forced to belong
to the curve δG.
Step 1 is clear from Section 2.2. Step 2 is easy when using relevant constrained meshing methods such as

[12]. Step 3 requires the computation of the signed distance from the current point X to the boundary δF :

(X −XδF ) · n < cb, (13)

where XδF is the projection of X on δF , along the outward pointing normal n. If cb > 0, only the pixels
whose center is located outside of δF might removed. On the contrary, setting a negative value defines an
exclusion band along the border. Especially, setting −

√
2/2 ≤ cb ≤

√
2/2 excludes any pixel intersecting δF .

The influence of cb on the precision will be discussed in Section 4.2. Step 4 requires to define a distance from
the border points in the deformed configuration, X + U , to the border δG identified in G:

ΨG =

∫
δG

(X + U −XδG)
2
dXδF . (14)

In this expression XδG is the projection of X + U on δG. In a numerical point of view, this projection is
defined by the point of δG which minimizes its distance from X +U . However, the (subpixel) discretization
of δF and δG induces a slight tangential component in the vector X + U −XδG. Thus, from a practical
point of view, the theoretically equivalent definition is retained:

ΨG =

∫
δG

[(X + U −XδG) · n]
2
dXδF . (15)

When ΨG = 0, the nodes which belong to the boundary δF at the initial state also belong to the boundary
δG in the deformed state. This constraint defines their radial motion Ur but lets their tangential motion Ut
free and only defined by the DIC. The proposed method consists in defining a global cost function which is
a weighted balance between the classical DIC function Ψ and the above function ΨG:

Π = Ψ +AΨG, (16)

where A is a parameter of the method. Setting A = 0 consists in using the DIC with an adapted mesh (Steps
1 and 2) and a pixel mask of width cb (step 3). In this case, there is no need to identify δG with the VIC,
only the identification of δF is necessary. Setting a higher value for A corresponds to impose the nodes of
the boundary to belong precisely to the boundary δG. The stationarity condition of Π is:

∂Π(U + ∆U)

∂∆λl
=
∂Ψ(U + ∆U)

∂∆λl
+A

∂ΨG(U + ∆U)

∂∆λl
= 0, (17)
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with the derivative of ΨG:

∂ΨG

∂∆λl
= 2

∫
∂δF

[(
X + U +

m∑
k=1

∆λkNk (X)−XδG)

)
· n
]

[N l (X) · n] dXδF . (18)

Equation (17) leads, like Equation (4) for the DIC problem, to find iteratively ∆λ from the resolution of the
linear system

(M +AC)∆λ = b+Ad, (19)

where

Clk =

∫
δG

[N l · n] [Nk · n] dXδF , (20)

dl =

∫
δG

[(X + U −XδG) · n] [N l · n] dXδF . (21)

However, Ψ and ΨG are not comparable because Ψ is a quadratic mean of gray levels and ΨG depends upon
a distance in pixels. Thus, A has to be defined independently for each case. For this reason, the VDIC
problem is normalized with respect to the operators M and C as follows:(

M

‖M‖
+ α

C

‖C‖

)
∆λ =

(
b

‖M‖
+ α

d

‖C‖

)
, (22)

where α replaces A as the second parameter of the method but is intrinsic and whose value will be discussed
in the next section.

As recalled previously, the DIC method requires a speckle on the correlation domain. However, the
presented VDIC method has to distinguish, for the VIC (step 1), the background from the speckle. For
this reason, the dynamic range of the speckle has been reduced in the following simulations and tests. For
example, in the synthetic sketch image 1 (see Figure 2a), the dynamic contrast of the speckle is [0 − 128]
and the background is at level 255. This reduction of the dynamic range is a cost to pay for using VDIC.
The VIC is then used with adapted background and foreground virtual images gray levels fb and fo.

4 Parameter sensitivity analysis
The VDIC method presented above uses two parameters: α, for the relative weight of DIC and VIC, which
influences the radial position of the nodes of the boundary, and cb, which defines the width of the pixel
exclusion band around the boundary. For this study, two set of 256 × 256 pixels synthetic images F and
G have been created. Test 1 consists in an object with a circular hole, deformed by a rigid body motion:
U ref
x = 0.5 pixel, U ref

y = 0.5 pixel. Test 2 consists in an object with a hole whose shape is a B-Spline of degree
2, deformed by a linear displacement field: U ref

x = x/256 pixel, U ref
y = y/512 pixel. The retained linear FE

basis is obviously theoretically able to fit the prescribed linear displacement field. The VDIC method is used
for both tests by using 16 pixel triangular linear finite elements for the DIC part and the optimal curves
(circle and B-Spline) with a final width R = 1.5 pixel for the VIC part.

The synthetic images are synthesized as follows:

• A hundred times refined binary image is created, which contains randomly distributed black spots over
a white background.

• A boundary is created from an analytical curve (straight line, B-Spline, circle. . . ). The domain outside
of this boundary is replaced by a uniform white backgroun.

• The synthetic image at the final resolution is computed from the density of subpixel binary image,
mimicking an ideal pixel whose response is proportional to the quantity of light it receives.

• Finally the dynamic range of the object is reduced to [0 128].

This procedure leads to realistic blurred edges (see Figure 2a for example), of width ' 1 pixel, around spots
and around the borders δF . Image G is created in a very similar way, the location of subpixels being moved
according to some known (reference) field denoted as U ref . The precision of the measurement is obtained
from the comparison between the measured, by DIC or VDIC methods, displacement field U and U ref , in
the narrow band where the VDIC can give different results from the DIC.
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(a) (b)

Figure 2: Reference images F for the test 1 (a) and the test 2 (b).

(a) (b)

Figure 3: RMS value, for the test 1, of the radial displacement (a) and strain (b) error as a function of α,
computed within a band of 8 pixel.

4.1 Influence of the parameter α
The remaining parameter cb is fixed at two key values, 1 and −1, which correspond respectively to a strict
inclusion and a strict exclusion of any pixel which contains δF . The parameter α influences the way the
nodes are constrained to belong to the contour δG at the deformed state. Figure 3, respectively Figure 4,
shows the RMS error for test 1, respectively test 2, of the radial displacement (Ur − U ref

r )rms and the radial
strain (εer− εref

rr )rms as a function of α. The error is computed in a pixel band of 8 pixels, half the size of the
elements size. In both cases, Figure 3 and Figure 4 show that a value of α = 50 is enough to get the best
precision on the radial displacement and strain on the boundary, and that the VDIC is close to twice more
precise than the DIC for this criterion. The saturation observed for large α corresponds to the cases when
the node belongs precisely to the contour δG. Comparable results have been obtained on various test cases,
with other sizes of images and meshes. This light overshoot, visible in Figure 4 for test 2, has no generality.
Very high values of α should be avoided because, firstly, they do not provide better precision and, secondly,
they lead the system, presented in Equation (22), to be ill-conditioned. The advantage of the VDIC is to set
more or less precisely (depending upon α) the radial position of the finite element nodes.

4.2 Influence of the parameter cb
The parameter cb defines the pixel mask, more precisely the width of the band around δF in which pixels are
not taken into account. Negative values of cb induce a loss of information, reducing the number of significant
pixels in the finite elements close to the boundary, but are often required in practical cases (as seen in the
next sections) when the boundary includes physical or optical defects. The tangential displacements Ut are
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(a) (b)

Figure 4: RMS value, for the test 2, of the radial displacement (a) and strain (b) error as a function of α,
computed within a band of 8 pixel.

(a) (b)

Figure 5: RMS value of the radial displacement (a) and strain (b) error as a function of cb, computed on a
band of width 8 pixels.

not constrained and are unaffected by cb, as long as the loss of information is not too high, i.e. −cb << Le,
where Le is the finite elements average size. In the case of constrained VDIC, the radial displacements Ur
are defined by the boundary position δG and are also unaffected by cb. This was confirmed by many tests.
However, in the case of unconstrained VDIC (α = 0), Figure 5 shows that the radial displacements Ur and
strain εrr depend upon cb for both test cases.
Positive values of cb lead to take into account the gray level of the background. Thus, in these cases of

ideal images with a uniformly white background with a null gradient, this justifies the plateau for cb > 1.
For negative values of cb, Figure 5 shows a slight increase of the error induced by the growing number of
suppressed significant pixels. Figure 5 also shows that cb = 0 is generally not a good choice. Furthermore, it
shows that a strict exclusion (cb = −1) leads to equal or better results than the strict inclusion (cb = 1) (in
this case of perfect background). In practical cases where the border and background are not perfect, one
should set cb ≤ −1, the final choice depending upon the distance from the border that can be affected by
burrs, paint drop, diffraction, etc.

4.3 Performance test
The performance of the VDIC is evaluated hereafter on the example of an infinite plate in tension (along
the x axis), with a circular hole. Such type of problems will doubtless constitute one of the major appli-
cations of the VDIC in the field of mechanical testing. The stress and the displacement fields are given by [10]:
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Figure 6: Plate in tension along the x axis with a hole: reference image F .

σrr =
σ∞

2

(
1− a2

r2

)
+
σ∞

2

(
1 +

3a4

r4
− 4a2

r2

)
cos 2θ, (23)

σθθ =
σ∞

2

(
1 +

a2

r2

)
− σ∞

2

(
1 +

3a4

r4

)
cos 2θ, (24)

σrθ = −σ
∞

2

(
1− 3a4

r4
+

2a2

r2

)
sin 2θ, (25)

ur =
σ∞

2E

[
(1 + ν)

(
a2

r
+

(
r − a4

r3

)
cos 2θ

)
+(1− ν)r +

4a2

r
cos 2θ

]
, (26)

uθ = −σ
∞

2E

[
(1 + ν)

(
1 +

a4

r4

)
r +(1− ν)

2a2

r

]
sin 2θ, (27)

where a is the hole radius, E the Young modulus, ν Poisson’s ratio, (r, θ) the polar coordinates and σ∞ the
stress σxx at infinity. The magnitude of the displacements is σ∞/E = 0.0039. The 1024×1024 pixels images
are synthesized for both initial F (see Figure 6) and final G states.
The measurement is realized with the VDIC in three ways:

• Unconstrained and unmasked VDIC with α = 0 and cb = 1.

• Unconstrained and masked VDIC with α = 0 and cb = −1.

• Constrained and masked VDIC with α = 50 and cb = −1.

In all cases, the (initially) circular hole border is measured by VIC using a B-Spline curve of order 3 and 14
control points. This choice of curve has been validated by a simulation using the exact analytical initial and
final shapes of the hole, which proved to give very close results. For the DIC part, the triangular and linear
finite elements have Le = 40 pixels far from the hole, and Le = 20 pixels in the vicinity of the hole. The
uncertainty on the identification is revealed by the map of the norm of the displacement error ‖U − U ref‖
shown in Figure 7.

A careful look at the error along the hole border shows that the constrained and masked identification
gives better results along the boundary, as expected. Furthermore, a difference of these maps shows that
the measure is identical for a distance greater than 2Le from the boundary. The unconstrained and masked
VDIC—not presented in Figure 7—gives similar results. Table 1 and 2 show the bias and uncertainty (RMS)
for both radial and tangential displacements, calculated in the band of width 2Le around the hole. Table 3
shows the bias and uncertainty for radial strain.

These results show that the masked and moreover the constrained VDIC increases the precision of the
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(a) (α = 0, cb = 1) (b) α = 50, cb = −1)

Figure 7: Map of the error in displacement for the tensile simulation on a circular hole (Figure 6). Un-
constrained and unmasked VDIC α = 0, cb = 1 (a), and constrained and masked VIDC α = 50, cb = −1
(b).

∆Ur (pixel) Bias Uncertainty
Unconstrained and unmasked, α = 0 and cb = 1 0.0132 0.0251
Unconstrained and masked, α = 0 and cb = −1 0.0073 0.0165
Constrained and masked, α = 50 and cb = −1 0.0066 0.0157

Table 1: Bias and uncertainty values of ∆Ur on the boundary.

∆Ut (pixel) Bias Uncertainty
Unconstrained and unmasked, α = 0 and cb = 1 0.0006 0.0167
Unconstrained and masked, α = 0 and cb = −1 0.0005 0.0169
Constrained and masked, α = 50 and cb = −1 0.0005 0.0169

Table 2: Bias and uncertainty values of ∆Ut on the boundary.

∆εrr Bias Uncertainty
Unconstrained and unmasked, α = 0 and cb = 1 0.0023 0.0040
Unconstrained and masked, α = 0 and cb = −1 0.0009 0.0018
Constrained and masked, α = 50 and cb = −1 0.0007 0.0016

Table 3: Bias and uncertainty values of ∆εrr on the boundary.
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(a) (α = 0, cb = 1) (b) (α = 0, cb = −1) (c) (α = 50, cb = −1)

Figure 8: Error in radial displacement |∆Ur| for the plate in tension with a hole, in the band of width 2Le.

(a) (α = 0 , cb = 1) (b) (α = 0, cb = −1) (c) (α = 50, cb = −1)

Figure 9: Error in radial strain |∆εrr| for the plate in tension with a hole, in the band of width 2Le.

measurement of the radial displacement and strain. On the contrary, the tangential displacement is, logically,
not improved but also quite not depreciated. Figures 8 and 9 present the radial displacement and strain,
around the hole for the three VDIC methods. For clarity, only the data in the band of 2Le, and for the top
left quarter of the plate, are represented. These results show that the gain in precision of the masked and
constrained identification is concentrated close to the border, this being the first objective of the method.
Furthermore, the constrained VDIC reduces the local measurement error remaining with the masked and
unconstrained VDIC.

5 Application
This test is relative to an experiment similar to the Sandia fracture challenge which consists in a tearing test
with opposed motions of both side of the upper part of the plate, as shown in Figure 10a.
The image is in 8 bits, black and white, and of size 6576× 4384 pixels.

The two images have been taken at the very beginning of the test, thus, the displacement field is sup-
posed to be a rigid body motion due to the play in the testing device. A careful view of Figure 10b shows
that, certainly due to diffraction or diffusion effects, the speckle has a lighter color close to the boundaries.
Furthermore, many paint drops are visible on this test which was not prepared specifically for VDIC but for
classical DIC measurement.

The retained parameters were:

• DIC settings: element size Le = 50 pixels.
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(a) (b)

Figure 10: Reference image of the tearing test with adapted mesh and initial boundary position δF (a).
Zoom on the U shaped notch and VIC measurement (b).

(a)

(b)

Figure 11: Reference image (a) and virtual image (b) in the virtual image coordinate system (0, x1, x2).

• VIC settings: NURBS of order 3, 6 points for the holes and B-Spline of order 3, 14 points for the notch,
virtual image width R = 2 pixels, the gray levels of the virtual image range from fo = 128, the average
of the speckle (close to the boundaries) to fb = 255 for the background.

• Three VDIC settings: (α = 0, cb = 10), (α = 0, cb = −5), (α = 50, cb = −5).

The VIC is used to measure the boundaries in both F and G images. As shown in Figure 10b it identifies
well the border, despite the presence of defects. The two images, reference F and virtual G, unwrapped
in the virtual image coordinate system (0, x1, x2), are presented in the Figure 11. As it can be shown, all
along the boundary (expect for a few singularities due to defects), the gray level variation of the unwrapped
reference image is close to the one of the virtual image. This shows that the retained B-Spline is able to
describe the boundary shape.

The identification results in term of displacement norm without rigid body motion ‖U∗‖ and in term
of radial strain |εrr| are shown in Figure 12. These two terms are supposed to be null in case of rigid
body displacement. For the radial strain, the results are calculated in a band of 2Le = 100 pixels. The
results obtained with the unconstrained and unmasked VDIC (α = 0, cb = 10), Figures 12a and 12b, show
singularities in both displacement and strain fields, very close to the borders, which seem to be unphysical.
Firstly, because the radial strain should be null due to rigid body movement and, secondly, because their
size corresponds to the size of a finite element. The results obtained by the unconstrained and masked VDIC
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(a) (α = 0, cb = 10) (b) α = 0, cb = 10)

(c) (α = 0, cb = −5) (d) (α = 0, cb = −5)

(e) (α = 50, cb = −5) (f) (α = 50, cb = −5)

Figure 12: Measured norm of the displacement without the rigid body displacement (left) and measured
radial strains (right), for: unconstrained and unmasked VDIC (α = 0, cb = 10) (top), unconstrained and
masked VDIC (α = 0, cb = −5) (middle), and constrained and masked VDIC (α = 50, cb = −5) (bottom).
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(a)

(b) (c)

Figure 13: Zoom on a defect on the U shaped notch (a). Pixel mask used in VDIC (b) and mask created
with simple threshold method (c).

(α = 0, cb = −5), Figures 12c and 12d, appear to be better because the above singularities are almost absent.
For the constrained and masked DIC (α = 50, cb = −5), Figures 12e and 12f, show again singularities along
the borders. This is due to defects mentioned above: diffraction which affects the DIC close to the border
and paint drops which distort the VIC measurement.

Figure 13 shows two types of masks related to the reference image of this experimental case. The first
mask, Figure 13b, is created with the information on the position of the boundary and the second one, Figure
13c, with a simple threshold method based on gray levels. Due to the defects on the boundaries, the mask
based on gray levels is less precise and regular than the one used in the VDIC method.

6 Conclusion
In this article, the boundary position measurement method (VIC) is used to improve the DIC precision on
the sample boundary. The proposed VDIC method can be used at various levels. Firstly, in its unconstrained
form, setting α = 0, it allows the creation of a perfectly adapted meshing whose nodes are precisely on the
contour. Furthermore, depending upon the distance of exclusion cb, the user may decide the creation of a
pixel mask which is at a precise distance from the contour. Compared with classical threshold methods, this
mask used the boundary position information to exclude unwanted pixels. As a consequence, the created
mask is much more regular and precise. In the absence of optical or physical defects, the exclusion of a band
of 1 pixel (corresponding to cb = −1) is prescribed. For a synthetic performance test and an experimental
study, this unconstrained and masked VDIC reduces significantly the displacement and strain measurement
error on the boundary.

Moreover, in its constrained version, with α > 0, the VDIC imposes the finite element nodes to also
belong to the boundary in the deformed state. This constraint is quite absolute as soon as α = 50. In case
of absence of border defects, this constraint increases the precision of the radial displacement of a factor 2.

For now the method is developed for small deformations thus no major change in the boundary shape. In
case of creation of new boundary such as cracking or loss of matter, the curve equation as well as the finite
element mesh should be defined from the final state. This will be investigated in a future work.

As shown in Figure 13, a classical preparation of the specimen for the DIC may lead to borders defects.
The VIC part of the proposed method requires a careful border cleaning and a clean white background. The
speckle has to range from half grey to black, which is sufficient for the DIC. Then, reducing (numerically)
the image dynamics from white to half grey allow the VIC to be performed in optimal conditions. Ideally,
the side of the specimen should be matte black painted to minimize the diffraction which slightly brightens
the pixels close to the border (Figure 10b), in order to avoid DIC errors. This can be achieved by, firstly,
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painting in black the whole specimen and, secondly, applying the white speckle after having protected the
sides.
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