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Phenotypic Noise and the Cost of Complexity

Experimental studies demonstrate the existence of phenotypic diversity de-

spite constant genotype and environment. Theoretical models based on a

single phenotypic character predict that during an adaptation event, pheno-

typic noise should be positively selected far from the fitness optimum because

it increases the fitness of the genotype, and then be selected against when the

population reaches the optimum. It is suggested that because of this fit-

ness gain, phenotypic noise should promote adaptive evolution. However, it

is unclear how the selective advantage of phenotypic noise is linked to the

rate of evolution, and whether any advantage would hold for more realistic,

multi-dimensional phenotypes. Indeed, complex organisms suffer a cost of

complexity, where beneficial mutations become rarer as the number of pheno-

typic characters increases. By using a quantitative genetics approach, we first

show that for a one-dimensional phenotype, phenotypic noise promotes adap-

tive evolution on plateaus of positive fitness, independently from the direct

selective advantage on fitness. Second, we show that for multi-dimensional

phenotypes, phenotypic noise evolves to a low-dimensional configuration, with

elevated noise in the direction of the fitness optimum. Such a dimensionality

reduction of the phenotypic noise promotes adaptive evolution and numerical

simulations show that it reduces the cost of complexity.

key words: Phenotypic noise, phenotypic complexity, cost of complexity,

rate of evolution, dimensionality reduction, adaptive evolution.

3



Isogenic populations of organisms often exhibit a diversity of phenotypes, even in con-

stant environments. The importance of phenotypic noise (Yvert et al., 2013) has been

highlighted with the development of experimental technologies measuring single-cell vari-

ability (Elowitz et al., 2002; Raser and O’Shea, 2005; Ohya et al., 2015). Recent ex-

perimental studies indicate that phenotypic noise affects organismal fitness, is controlled

genetically and is evolvable, both in single-cell organisms (Ito et al., 2009; Viñuelas et al.,

2012; Keren et al., 2016; Bódi et al., 2017; Duveau et al., 2018; Reyes et al., 2018) and

multi-cellular organisms (Ordas et al., 2008; Hill and Mulder, 2010; Pelabon et al., 2010;

Shen et al., 2012; Metzger et al., 2015; Mulder et al., 2016; Boukhibar and Barkoulas,

2016).

Phenotypic noise encompasses concepts such as developmental noise (Gavrilets and

Hastings, 1994), phenotypic heterogeneity (Bódi et al., 2017), cellular noise (Hortsch and

Kremling, 2018), biological noise (Eling et al., 2019), intra-genotypic variability (Bruijn-

ing et al., 2019), which take into account both intrinsic and extrinsic noises to varying

degrees (Elowitz et al., 2002). In quantitative genetics, phenotypic noise is historically

known as environmental variance (or micro-environmental variability) (Falconer

and Robertson, 1956). Environmental variance has long been assumed to be deleterious,

because it decreases the genotypic fitness close to the fitness optimum and flattens

the fitness landscape. For example, essential genes and dosage-sensitive genes are under

strong stabilizing selection and usually exhibit weak expression stochasticity (Fraser et al.,

2004; Newman et al., 2006; Lehner, 2008). On the other hand, Lande (1980) suggested

that phenotypic noise should increase the genotypic fitness far from the fitness optimum.

This phenomenon is due to the curvature of the fitness landscape, which is commonly

assumed Gaussian. Close to the optimum, the fitness landscape is concave (its second

derivative is negative, see Methods), and phenotypic noise decreases the genotypic fitness.

Far from the optimum (beyond the inflection points, Pal 1998), the fitness landscape is

convex (its second derivative is positive), and phenotypic noise increases the genotypic

fitness (Pal, 1998; Kawecki, 2000; Paenke et al., 2007; Zhang et al., 2009; Bruijning et al.,
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2019). Hence, if the phenotypic noise level is evolvable, theoretical studies have shown

that phenotypic noise should be positively selected in adaptive evolution because of its

temporary positive effect on fitness (Pál and Miklós, 1999; Bruijning et al., 2019).

Since phenotypic noise increases the genotypic fitness of an organism far from the

fitness optimum, it seems logical that it should facilitate adaptive evolution of the mean

phenotype by increasing the fitness of beneficial mutations (Zhang et al., 2009), as sug-

gested by recent experimental studies (Bódi et al., 2017; Schmutzer and Wagner, 2020).

However, this claim is in contradiction with classical theory that states that phenotypic

noise always reduces the selection gradient (Lande, 1975; Gavrilets and Hastings, 1994;

Wang and Zhang, 2011; Mineta et al., 2015; Tufto, 2015). As suggested by Paenke et al.

(2007), this apparent paradox has two origins: (i) Historically, a Gaussian shape has been

chosen to represent the fitness landscape because it is a parsimonious approximation close

to the optimum (Martin, 2014) and it “has the merit of leading to algebraic simplicity”

(Robertson, 1956). (ii) The impact of phenotypic noise on the genotypic fitness and its

impact on the gradient of relative genotypic fitness are distinct phenomena (Paenke

et al. 2007; see Figure S1). Indeed, for Gaussian fitness functions, phenotypic noise can

increase the genotypic fitness, but always decreases the gradient of relative genotypic

fitness (Lande, 1976; Paenke et al., 2007).

Finally, even if phenotypic noise increases the genotypic fitness for a one-dimensional

phenotype, it is not clear how this generalizes to the level of an entire organism, which

possesses “phenotypically integrated complex units” (Forsman, 2015). Fisher (1930) has

suggested that organisms may pay a cost to the “complexity” of their phenotype, whereby

the fraction of beneficial mutations becomes increasingly small when the number of phe-

notypic characters under selection increases. The cost of complexity hypothesis seems

robust (Orr, 2000; Martin and Lenormand, 2006), and little affected by organismal mod-

ularity (Welch and Waxman, 2003) (but see Wagner et al. 2008). This raises questions

about the impact of phenotypic noise on organismal fitness when the number of pheno-

typic characters under selection increases: Will the fitness benefit of phenotypic noise
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and its evolution be affected by a cost of complexity?

Here, we look at the impact of an evolvable phenotypic noise on genotypic fitness

and on the gradient of relative genotypic fitness in the context of (i) single-dimensional

phenotypes, and (ii) multi-dimensional phenotypes. We first show how phenotypic noise

impacts the adaptive evolution of a single phenotypic character towards a new fitness

optimum. Using a quantitative genetics approach and a generalized fitness function, we

show that, depending on the shape of the fitness function, phenotypic noise can increase

the genotypic fitness of an organism, or promote adaptive evolution of the mean pheno-

type, or both. We reveal the profound effect that the seemingly harmless addition of a

minimal fitness to the fitness function can have on the evolutionary dynamics and on the

evolutionary impact of phenotypic noise. We then extend the study to multiple pheno-

typic characters. We show that in an isotropic fitness landscape, an evolvable phenotypic

noise is expected to align and correlate with the direction of the fitness optimum. Fi-

nally, using numerical simulations, we show that phenotypic noise can promote adaptive

evolution of the mean phenotype of complex organisms and largely reduces the cost of

complexity on the genotype when the phenotypic complexity is not too high.

Methods

Single phenotypic character under selection

We consider a large population of individuals under selection with discrete generations.

We define an individual genotype by the pair {µ, σ}, where µ ∈ R is the mean phenotype

of the genotype {µ, σ} (or breeding value) and σ ∈ R
+ is the amplitude of the phenotypic

noise. Both µ and σ are inheritable and evolvable. The phenotype z ∈ R of a single

organism with genotype {µ, σ} is assumed to be drawn from a normal distribution with

mean µ and variance σ2: p(z|µ, σ2) ∼ N (µ, σ2), but any distribution satisfying the

Lindeberg’s condition can be used, as long as it has a mild effect on the phenotype (i.e.

the variance is finite and not too large; Martin 2014). The absolute fitness only depends on
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the phenotype z. The fitness function w(z) is assumed positive, three times differentiable,

and has one non-degenerate optimum at z = 0 (Martin, 2014). We extended the fitness

function from Tenaillon (2014) by adding a minimal fitness (Zhang et al., 2009; Draghi,

2019),

w(z) = (1− β)e−α|z|Q + β, (1)

where α > 0 controls the sharpness of the fitness peak, β ∈ [0, 1] is the rescaled

minimal fitness, and Q ≥ 2 controls the shape of the fitness function (Figure S2). When

β = 0 and Q = 2, w(z) is Gaussian-shaped. Note that a non-null β is sometimes used in

numerical simulations (Zhang et al., 2009; Draghi, 2019).

The absolute fitness of the genotype {µ, σ} (or genotypic fitness) is (Lande, 1979):

W (µ, σ) =

∫ +∞

−∞
p(z|µ, σ2)w(z)dz. (2)

If the genotypic fitness W (µ, σ) increases when σ increases, phenotypic noise is expected

to be positively selected. Conversely, if W (µ, σ) decreases when σ increases, phenotypic

noise is expected to be selected against. Analytical approaches to compute the effect

of phenotypic noise on the genotypic fitness are detailed in Appendix S1. Numerical

approaches are detailed in Script S1.

As discussed by Paenke et al. (2007), in the absence of dominance or epistasis and if

all the genetic variation is additive or if reproduction is asexual, the response to selection

equals the selection differential, i.e. the difference of the base population mean and the

mean after selection (Lande, 1979). Moreover, Paenke et al. (2007) have shown that if

the effect of phenotypic noise on the genotypic fitness W (µ, σ) is monotonic, which holds

when genetic variability is small, it is sufficient to study the impact of phenotypic noise

on the gradient of relative genotypic fitness:

∂ lnW (µ, σ)

∂µ
. (3)
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If ∂ lnW (µ,σ)
∂µ

increases when σ increases, phenotypic noise magnifies the relative difference

in fitness among genotypes and promotes adaptive evolution of the mean phenotype.

Conversely, if ∂ lnW (µ,σ)
∂µ

decreases when σ increases, phenotypic noise reduces the relative

difference in fitness among genotypes and slows down adaptive evolution of the mean

phenotype. Analytical approaches to compute the effect of phenotypic noise on the

gradient of relative genotypic fitness are detailed in Appendix S1. Numerical approaches

are detailed in Script S1.

Multiple phenotypic characters under selection

Fisher (1930) used the term “phenotypic complexity” to refer to the dimensionality n of

the phenotypic space. Lande (1980) generalized quantitative equations for n phenotypic

characters under selection. Here, we also included an evolvable multi-dimensional model

of phenotypic noise.

In n dimensions, we define an individual genotype by the pair {µ,Σ}, where µ =

(µ1, ..., µn)
T ∈ R

n is the mean phenotype (or breeding value) of the organism (T is the

matrix transpose), and the n × n matrix Σ is the covariance matrix of the phenotypic

noise. We assume that both µ and Σ are inheritable and evolvable. The continuous

phenotype z = (z1, ..., zn)
T ∈ R

n follows a multivariate normal distribution centered at

µ with covariance Σ: p(z|µ,Σ) ∼ Nn(µ,Σ). We assume that the absolute fitness of

an individual is determined by the Euclidean norm of its phenotype ‖z‖. Equation 1

generalizes to

w(z) = (1− β)e−α‖z‖Q + β. (4)

The fitness function in Equation 4 is isotropic, i.e. the fitness only depends on the

Euclidean distance between the phenotype and the optimum. The absolute fitness of a

genotype {µ,Σ} (or genotypic fitness) is given by the multiple integral (Lande, 1980),

W (µ,Σ) =

∫

Rn

p(z|µ,Σ)w(z)dz. (5)
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The n× n covariance matrix Σ is assumed real, symmetric and positive-definite. As

such, it admits the eigenvalue decomposition

Σ = UDUT , (6)

with a diagonal matrix D containing the n positive eigenvalues σ2 = (σ2
1, ..., σ

2
n)

T of

Σ. The matrix U is a real orthonormal matrix that can be factorized as a product

of rotations (U can be chosen to avoid any reflections, see Anderson et al. 1987). Σ

defines an hyper-ellipse in R
n where the orientations of the semi-axes are given by the

column vectors of U , and the lengths of the semi-axes are given by the square roots of the

eigenvalues (Fig. 1). This geometrical interpretation suggests a natural parametrization

for the mutations; we express phenotypic noise mutations by mutations in the lengths

and in the orientations of the semi-axes of the hyper-ellipse. Therefore, Σ is

specified by a vector of n lengths σ = (σ1, ..., σn)
T and a vector of n(n − 1)/2 rotation

angles θ = (θ1, ..., θn(n−1)/2)
T . The genotype of an organism can be rewritten {µ,σ,θ}.

The matrix U is built by applying successive rotations,

U =
n−1
∏

i=1

n
∏

j=i+1

Gij(θn(i−1)+(i−1)(i−2)/2+j−i) (7)

with Gij(θ) the Givens matrix associated to the rotation between axes i and j, with an

angle θ.

We assume that all coefficients of {µ,σ,θ} mutate independently. The vector of

mutated mean phenotypes µ′ is drawn from a multivariate normal distribution µ′ ∼

Nn(µ,Cµ), the vector of mutated phenotypic noise amplitudes is drawn from a multi-

variate normal distribution σ′ ∼ Nn(σ,Cσ), and the vector of mutated phenotypic noise

orientations is drawn from a multivariate normal distribution θ′ ∼ Nn(n−1)/2(θ,Cθ). Cµ,

Cσ and Cθ are three constant covariance matrices of size n × n for Cµ and Cσ, and of

size n(n− 1)/2× n(n− 1)/2 for Cθ. In addition to the mutational variability, we assign

mutation probabilities per generation mµ, mσ and mθ. The mutational distributions have
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finite mean and variance, satisfy the Lindeberg’s condition, and have a mild effect on the

phenotype (i.e. the variance is not too large; Martin 2014).

In summary, our model includes three evolvable vectors per individual: µ, σ and θ.

The mean phenotype of each organism is represented by a vector µ. The phenotypic

noise of each organism is modeled by a multivariate normal law Nn(µ,Σ), Σ being

decomposed in its semi-axes of lengths σ, and rotation angles θ. The model also includes

three constant mutational covariances Cµ, Cσ and Cθ, three constant mutation rates

mµ, mσ and mθ (per individual per generation), and an isotropic fitness function w(z)

(Eq. 4). Table 1 summarizes all the variables.
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Figure 1: Phenotypic noise parametrization for two phenotypic characters un-
der selection. For an organism with a mean phenotype µ = (µ1, µ2) (black dot in
(1, 1)), phenotypic noise is defined by a vector of semi-axis lengths σ = (σ1, σ2) (black ar-
rows) and a vector of rotations θ = (θ1) (for two phenotypic characters, a single rotation
is needed, blue arc). The skyblue ellipse symbolizes the multivariate standard-deviation
of the multivariate normal distribution of phenotypes for the genotype {µ,σ,θ}. The
fitness optimum zopt = (0, 0) is represented by the black dot at origin.
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Numerical simulations

We simulated the adaptive evolution of a population of individuals undergoing evolvable

phenotypic noise under stabilizing selection. We considered a population of constant size

L. At each discrete generation, individuals reproduce asexually with mutations. The

number of descendants depends on the relative fitness and genetic drift. Each descendant

inherits a mutated genotype {µ′,σ′,θ′} from its parents {µ,σ,θ}, depending on the

constant mutational covariances Cµ, Cσ and Cθ, and the constant mutation rates mµ,

mσ and mθ. We made the additional assumption that mutation sizes were isotropic

for µ, σ and θ. Mean traits µi, i ∈ {1, ..., n} independently mutate through a normal

distribution N (0, s2µ). Each semi-axis size σi, i ∈ {1, ..., n} independently mutates through

a normal distribution N (0, s2σ). Rotation angles θi, i ∈ {1, ..., n(n− 1)/2} independently

mutate through a normal distribution N (0, s2θ) (i.e. Cµ = In × s2µ, Cσ = In × s2σ and

Cθ = In(n−1)/2×s2θ). We used three different measures to better characterize the evolution

of the shape of phenotypic noise in multiple dimensions and to confirm our theoretical

predictions (see Results); assuming σ1 = max(σ), we measured:

(i) The phenotypic noise amplitude σ1, i.e. the square root of the principal eigen-

value, which is the standard deviation of the phenotypic noise along the principal

axis of Σ.

(ii) The phenotypic noise flattening,

σ2
1

∑

i∈n
σ2
i

, (8)

which is the fraction of the total variance along the principal axis. If the flattening

≈ 1, all the variance is contained in the principal axis of the phenotypic noise (i.e.

there is a dimensionality reduction of phenotypic noise towards a single dimension).
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(iii) The phenotypic noise alignment,

|u1
Tµ|

||µ|| , (9)

the dot product between the eigenvector associated to the largest eigenvalue, and

the direction of the optimum. If the alignment ≈ 1, the principal axis of the

phenotypic noise is aligned towards the optimum.

For each numerical simulation, both the population’s mean and the population’s vari-

ance of these measures were computed through time. This model extends Fisher’s geo-

metric model (Fisher, 1930) by adding an evolvable phenotypic noise. The code of the

simulation framework is available in Script S2. Table 1 summarizes all the variables.

Results

For a single phenotypic character, phenotypic noise promotes adap-

tive evolution of the mean phenotype on plateaus of positive fitness

Standard results (Pal, 1998) show that non-null phenotypic noise is beneficial to the geno-

typic fitness (Eq. 2) beyond the inflection points of the fitness function and deleterious

inside. There is an optimal noise amplitude (achieved when ∂W (µ,σ)
∂σ

= 0) due to the

smoothing effect at larger noise levels (Fig. 2, solid black lines). A classic result with

Gaussian fitness functions states that phenotypic noise always decreases the gradient of

relative genotypic fitness (Lande, 1975). However, phenotypic noise can promote adap-

tive evolution of the mean phenotype in other kinds of fitness functions. We show in

Appendix S1 that phenotypic noise promotes adaptive evolution of the mean phenotype

when the logarithmic fitness function f = ln(w) satisfies a non-zero equality

sign
(

f ′′′ + 2f ′f ′′) = sign
(

f ′), (10)
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Table 1: List of mathematical variables.

Variable notation Type Description
• Single phenotypic character under selection
z R Phenotype quantitative value
w(z) R → R Fitness function (Eq. 1)
α R

+ Sharpness of the fitness peak
β [0, 1] Minimal fitness value
Q ≥ 2 Shape of the fitness function
zopt R Optimal phenotype
µ R Mean phenotype (or breeding value)
σ R Phenotypic noise standard deviation
W (µ, σ) R× R → R Genotypic fitness given µ and σ (Eq. 2)
∂W (µ, σ)/∂µ R× R → R Genotypic fitness gradient given µ and σ
∂ lnW (µ, σ)/∂µ R× R → R Relative genotypic fitness gradient given µ and σ
∂W (µ, σ)/∂σ R× R → R Genotypic fitness gradient around σ, given µ
∂2 lnW (µ, σ)/∂µ∂σ R× R → R Relative genotypic fitness gradient around σ, given µ
• Multiple phenotypic characters under selection
n N

∗ Dimensionality of the phenotypic space (“complexity”)
z R

n Phenotype quantitative value
w(z) R

n → R Fitness function (Eq. 4)
d R

n × R
n → R Euclidean distance to the optimal phenotype

zopt R
n Optimal phenotype

µ R
n Mean phenotype (or breeding value)

Σ R
n×n Covariance matrix of the phenotypic noise

W (µ,Σ) R
n × R

n×n → R Genotypic fitness given the genotype {µ,Σ} (Eq. 5)
D R

n×n Diagonal matrix of the eigenvalues of Σ
U R

n×n Real orthogonal matrix of the eigenvectors of Σ
σ2

R
n Eigenvalues of Σ

θ R
n(n−1)/2 Pairwise plane rotations to generate U

Cµ R
n×n Mutational covariance matrix of µ

Cσ R
n×n Mutational covariance matrix of σ

Cθ R
n(n−1)/2×n(n−1)/2 Mutational covariance matrix of θ

Gij(θ) R
n×n Givens matrix (rotation between axes i and j, with angle θ)

s2µ R
+ Mutational variance of µ (Cµ = s2µIn)

s2σ R
+ Mutational variance of Σ (Cσ = s2σIn)

s2θ R
+ Mutational variance of θ (Cθ = s2θIn(n−1)/2)

In R
n×n Identity matrix of size n× n

mµ [0, 1] Mutation rate of µ
mσ [0, 1] Mutation rate of Σ
mθ [0, 1] Mutation rate of θ
L N

∗ Population size

This condition depends on the third derivative of the logarithmic fitness, f ′′′. For the

Gaussian fitness, we have f = −αµ2, α > 0, so Condition (10) can never be met, since

f ′′ < 0 and f ′′′ = 0 everywhere. However, around the fitness optimum, f ′ is close to zero,

and the condition reduces to sign
(

f ′′′) = sign
(

f ′). This means that arbitrarily small

perturbations of the Gaussian fitness can provoke the condition to be met. We show in

Appendix S1 that Condition (10) is met when the population is located on a plateau of
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positive fitness. Here, a plateau is an interval in the phenotypic space where the fitness

function is relatively flat, and bordered by regions of higher curvature. When a population

is located in such a region of the fitness landscape, phenotypic noise increases the selection

gradient by magnifying the relative genotypic fitness differences present at the borders

of the plateau, hence favoring the fixation of beneficial mutations (see Appendix S1). In

Equation 1, the formation of plateaus of positive fitness depends on the minimal fitness

β and the shape parameter Q. Indeed, if the fitness function is based on Equation 1, the

logarithmic fitness plateaus only:

(i) far from the optimum when β > 0,

(ii) around the optimum when Q > 2.

The exact threshold values of the mean phenotype µ below or beyond which phenotypic

noise promotes adaptive evolution of the mean phenotype on fitness plateaus are provided

in Table 2 and Appendix S1.

Table 2: Threshold values of the mean phenotype µ beyond or below which
phenotypic noise increases the genotypic fitness or promotes adaptive evolu-
tion of the mean phenotype, depending on the shape of the fitness landscape.

Shape of
the fitness function

Gaussian-shaped
(β = 0, Q = 2)

Rescaled minimum
(β > 0, Q = 2)

Higher curvature
(β = 0, Q > 2)

Combined effects
(β > 0, Q > 2)

Phenotypic noise
increases the genotypic
fitness when:

|µ|Q >
Q− 1

αQ
(inflection points of the fitness function)

Phenotypic noise
promotes adaptive
evolution when:

Never |µ|2 > 2w(µ) + β

2αβ
|µ|Q <

Q− 2

2αQ

|µ| ∈ ]0, µ1[ ∪ ]µ2,+∞[,
µ1 and µ2 defined in Appendix S1

In summary, during periods of adaptation to new environments, phenotypic noise

is expected to be positively selected far from the fitness optimum because it increases

the genotypic fitness. It will also promote adaptive evolution of the mean phenotype if

the logarithmic fitness plateaus far from the optimum (i.e. if β > 0). This should be

followed by a reduction in phenotypic noise when the population reaches the optimum,

because phenotypic noise decreases the genotypic fitness, even when it promotes adaptive

evolution of the mean phenotype. Thus, while phenotypic noise has the potential to
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indirectly speed up the fixation of beneficial mutations far and/or close to the fitness

optimum depending on the shape of the fitness landscape, its actual role will depend on

how direct selection impacts phenotypic noise based on its effect on the genotypic fitness.

This raises the question of the indirect selection of phenotypic noise for its specific impact

on the gradient of relative genotypic fitness (see Discussion).

To illustrate this result, we took as a reference the parameters used by Zhang et al.

(2009) (α = 3.125, β = 0.1 and Q = 2). We then selected four configurations of fitness

functions, by varying the minimal fitness β and the shape parameter Q (α plays no role

here).

(1) Gaussian-shaped fitness function (α = 3.125, β = 0 and Q = 2) (Fig. 2A),

(2) Rescaled minimum fitness function (α = 3.125, β = 0.1 and Q = 2) (Fig. 2B),

(3) Increased curvature fitness function (α = 3.125, β = 0 and Q = 4) (Fig. 2C),

(4) “Combined effects” fitness function (α = 3.125, β = 0.1 and Q = 4) (Fig. 2D).

For simplicity, we only explored positive values of the mean phenotype µ, as the result

is symmetrical around zopt = 0. In all configurations, the phenotypic noise increases the

genotypic fitness W (µ, σ) in convex regions of the fitness function, beyond the inflection

point (Fig. 2 black dots). The optimal σ value maximizing W (µ, σ) increases as the

distance between the mean phenotype µ and the optimum increases (Fig. 2 solid black

lines). As expected, for a Gaussian fitness function (Fig. 2A), the phenotypic noise

always decreases the gradient of relative genotypic fitness, i.e. it slows down adaptive

evolution of the mean phenotype (Lande, 1975). When the minimal fitness β > 0 (i.e.

the logarithmic fitness plateaus at its minimum ln(β), Fig. 2B black circle), phenotypic

noise promotes adaptive evolution of the mean phenotype but only far from the optimum.

This mechanism is independent from the curvature of the fitness landscape, and does not

depend on the inflection point (Fig. 2B black dot ; Appendix S1). The optimal σ value

maximizing the gradient of relative genotypic fitness increases as the distance between
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Figure 2: Impact of phenotypic noise on the genotypic fitness and the gradient
of relative genotypic fitness, depending on the shape of the fitness function.
A. Gaussian-shaped fitness landscape (α = 3.125, β = 0 and Q = 2). B. Rescaled
minimum fitness landscape (α = 3.125, β = 0.1 and Q = 2). C. Higher curvature
fitness landscape (α = 3.125, β = 0 and Q = 4). D. Combined effects fitness landscape
(α = 3.125, β = 0.1 and Q = 4). The blue and orange areas represent the regions where
increasing σ respectively increases or decreases the genotypic fitness W (µ, σ). The grey
area represents the region where increasing σ increases the gradient of relative genotypic
fitness ∂ lnW (µ,σ)

∂µ
, hence promoting adaptive evolution of the mean phenotype. The isocline

∂ lnW (µ,σ)
∂σ

= 0 for which σ maximizes W (µ, σ) is represented by a solid black line. The

isocline ∂2 lnW (µ,σ)
∂µ∂σ

= 0 for which σ maximizes ∂ lnW (µ,σ)
∂µ

is represented by a dashed black
line. Fitness function inflection point is represented by a black dot. The distance below
or beyond which the fitness function plateaus (including their borders) is represented by
black circles. The direction of the gradient of relative genotypic fitness is represented
by a vector field in the space (µ, σ). Figure S3 illustrates some phenotypic distributions
corresponding to specific genotypes {µ, σ}.

µ and the optimum increases (Fig. 2B dashed black line). When the shape parameter

Q increases, a logarithmic fitness plateau appears around the optimum (Fig. 2C black

circle), and phenotypic noise promotes adaptive evolution of the mean phenotype. The
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σ value maximizing the gradient of relative genotypic fitness decreases quickly as the

distance between µ and the optimum increases (Fig. 2C dashed black line). Therefore

phenotypic noise can promote adaptive evolution of the mean phenotype both close and

far from the optimum (Fig. 2D dashed black line).

The impact of phenotypic noise on the genotypic fitness and the gradient of relative

genotypic fitness is summarized in Table 3. During an adaptation event, according to the

vector field
(

∂ lnW (µ, σ)

∂µ
,
∂ lnW (µ, σ)

∂σ

)

,

an evolvable σ is expected to increase far from the optimum, and then to decrease to zero

as the population reaches the fitness optimum (Fig. 2 vector field).

Table 3: Impact of phenotypic noise on the genotypic fitness and the gradient
of relative genotypic fitness, depending on the shape of the fitness function.
Orange, blue and dark-grey background colors correspond to the color code used in figure
2.

Fitness function parameters Q = 2 Q > 2 β = 0 β > 0

Shape of the absolute fitness 

function

concave 

(curvature < 0)

concave 

(curvature < 0)

convex    

(curvature > 0)

convex    

(curvature > 0)

Shape of the log-fitness function
Equation 10 not 

satisfied

plateau/border    

(Eq. 10 satisfied)

Equation 10 not 

satisfied

plateau/border    

(Eq. 10 satisfied)

Does noise increase genotypic 

fitness?
No No Yes Yes

Does noise increase the gradient of  

relative genotypic fitness?
No Yes No Yes

Close to the fitness optimum Far from the fitness optimum

For each fitness function, we also used numerical simulations to compute evolutionary

trajectories (Methods, Script S2), in order to estimate the convergence time towards the

fitness optimum. The mean phenotype mutation size was sµ = 0.1, and its mutation rate

was mµ = 10−3 (∼1 mutation per generation per population). For a single phenotypic

character, there is no possible rotation of the single phenotypic noise component, thus

θ = ∅ (Methods). We ran simulations with a population size L = 1, 000 for the four
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fitness configurations when there is:

(1) no phenotypic noise (σ = 0),

(2) an evolvable phenotypic noise with a mutation size sσ = 0.1 and a mutation rate

mσ = 10−3 (∼1 mutation per generation per population).

We assumed that a population had reached the fitness optimum when the mean phenotype

in the population was at a distance 0.1 from the optimum (one quarter of the fitness

standard deviation). We ran 200 repetitions for each of the 8 parameter sets (1,600

simulations in all). We initialized all the individuals with the genotype {µ = 2, σ = 0}.

When phenotypic noise promotes adaptive evolution of the mean phenotype far from

the optimum (i.e. when the logarithmic fitness plateaus; β > 0), populations with an

evolvable noise converge faster to the optimum (Fig. 3B-D). When phenotypic noise does

not promote adaptive evolution of the mean phenotype far from the optimum (i.e. when

β = 0, e.g. for a Gaussian-shaped fitness function), populations without phenotypic

noise converge faster (Figs. 3A-C). In all the cases where phenotypic noise is evolvable,

genotypes {µ, σ} tend to follow the gradient of relative genotypic fitness in the space (µ, σ)

to maximize the genotypic fitness (Figure S4). Doing so, the population may go through

regions of the space (µ, σ) where the phenotypic noise promotes adaptive evolution of the

mean phenotype, indirectly reducing the convergence time depending on the shape of the

fitness function.

For multiple phenotypic characters, the best phenotypic noise con-

figuration is aligned and fully correlated with the direction of the

fitness optimum

When organisms have several phenotypic characters under selection, the fraction of ben-

eficial mutations decreases quickly with the number n of characters, a property known

as the “cost of complexity” (Fisher, 1930; Orr, 2005). This effect is maximized under the

18



< 2.2e-16

2.5

3.0

3.5

4.0

No noise Evolvable noise

C
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

lo
g

1
0

)

Gaussian-shapedA

< 2.2e-16

3

4

5

No noise Evolvable noise

C
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

lo
g

1
0

)

Rescaled minimumB

4.7e-16

2.5

3.0

3.5

4.0

No noise Evolvable noise

C
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

lo
g

1
0

)

Higher curvatureC

< 2.2e-16

3.5

4.0

4.5

5.0

5.5

No noise Evolvable noise

C
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

lo
g

1
0

)

Combined effectsD

Figure 3: Population convergence time to the fitness optimum depending on
the shape of the fitness function and the evolvability of phenotypic noise. A.
Gaussian-shaped fitness landscape (α = 3.125, β = 0 and Q = 2). B. Rescaled minimum
fitness landscape (α = 3.125, β = 0.1 and Q = 2). C. Higher curvature fitness landscape
(α = 3.125, β = 0 and Q = 4). D. Combined effects fitness landscape (α = 3.125,
β = 0.1 and Q = 4). The population with no phenotypic noise (σ = 0) is represented by
an orange boxplot. The population with evolvable phenotypic noise is represented by a
blue boxplot. Wilcoxon test p-values are provided.

“universal pleiotropy assumption” (Martin, 2014), where mutations on the mean pheno-

type are isotropic, such that mutations have no preferential direction and can affect all

characters similarly. When genetic correlations between phenotypic characters exist and

are evolvable, the universal pleiotropy does not hold anymore (see e.g. Schluter 1996;

Sato and Kaneko 2019), reducing the cost of complexity. Here, we keep the universal

pleiotropy assumption as a worst-case scenario, in order to properly characterize the role

of an evolvable phenotypic noise in complex phenotypes.
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We show in Appendix S1 that when the population is far from the fitness optimum

(beyond the inflection points of the fitness landscape), the best phenotypic noise config-

uration (i.e. the one that maximizes the genotypic fitness) is reached when phenotypic

noise is fully correlated and aligned with the direction of the fitness optimum. In this

configuration, the phenotypic noise is reduced to a single dimension, with an optimal

value in the direction of the fitness optimum and no noise in all other directions. Any

other form of phenotypic noise yields a lower genotypic fitness W (µ,Σ) (Eq. 5). Thus,

the best phenotypic noise configuration for n phenotypic characters far from the fitness

optimum consists in a dimensionality reduction to fight the cost of complexity on pheno-

typic noise. A population evolving such a noise configuration will recover the benefit of a

single character scenario, with phenotypic noise conferring a strong fitness advantage to

organisms. However, the effect of phenotypic noise on the gradient of relative genotypic

fitness will still depend on the shape of the fitness landscape, at least in the sub-space

where phenotypic noise generates random phenotypes. Inside the inflection points of the

fitness landscape, the best configuration is a null phenotypic noise.

An example of such an evolvable phenotypic noise is shown in Figure 4. In this numer-

ical simulation (see Methods, Script S2), a population of individuals with two phenotypic

characters evolve towards the fitness optimum. As shown on Figure 4A, phenotypic noise

shape evolves through generations and eventually reaches the optimal configuration, fully

flattened and aligned with the fitness optimum located in (0, 0). As the mean phenotype

in the population converges (Fig. 4B), the phenotypic noise amplitude increases tem-

porarily (Fig. 4C). Phenotypic noise is also temporarily reduced to a single dimension, as

shown by the flattening of the phenotypic noise (Fig. 4D). At the same time, phenotypic

noise temporarily fully aligns with the direction of the fitness optimum (Fig. 4E). When

the population reaches the fitness optimum, phenotypic noise becomes deleterious and is

selected against, leading to the loss of both phenotypic noise flattening and alignment

(Figs. 4D-E).
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Figure 4: Simulation for two phenotypic characters under selection. In this
simulation, a population of organisms with two phenotypic characters under selection
evolves towards a fitness optimum zopt = (0, 0). The population size is L = 1, 000. Initial
conditions are ‖µ‖ = 2 (µ1 = µ2 =

√
2), σ = (0, 0) and θ = (0). Mutation sizes are

sµ = sσ = sθ = 0.1, mutation rates are mµ = mσ = mθ = 10−3. The fitness function
w(z) is Gaussian-shaped (α = 3.125, β = 0, Q = 2). A. Evolution of the phenotypic
noise shape. Each ellipse represents noise amplitudes σ1 and σ2 (rescaled by a factor 0.3
for readability) and the orientation of the noise (given by θ). The mean phenotype µ is
represented by the central black dot. Generation time is represented by the color gradient,
from beige to blue. The phenotypic noise shape of the best individual is plotted every
500 generations. The trajectory of the best individual of each generation is represented
by a grey line. B. Distance of the population’s mean phenotype from the fitness optimum
(d = ‖µ‖). C. Evolution of the population’s mean phenotypic noise amplitude (max(σ)).
D. Evolution of the population’s mean phenotypic noise flattening. E. Evolution of the
population’s mean phenotypic noise alignment with the direction of the fitness optimum.

Phenotypic noise reduces the cost of complexity on the mean phe-

notype.

Evolving an optimized phenotypic noise, fully correlated and aligned with the direction

of the fitness optimum, is complex and requires the fixation of many mutations. As

the cost of complexity impedes the production and the fixation of beneficial mutations

for the mean phenotype, one could expect that this cost of complexity will also impede

the probability of fixing mutations shaping phenotypic noise in the right configuration.
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This probability depends at least on the phenotypic complexity n, the distance from

the fitness optimum, the effective population size Ne, and the genetic variability of µ,

σ and θ. When β > 0, if phenotypic noise evolves towards a single dimension aligned

with the direction of the fitness optimum, it will increase the probability to fix beneficial

mutations. This could counteract the cost of complexity on the mean phenotype and

promote its adaptive evolution.

To address the issue of the cost of complexity in the evolution of phenotypic noise, we

simulated the adaptive evolution of initially maladapted populations towards the fitness

optimum for a range of phenotypic complexities. We measured the convergence time to

the fitness optimum in two fitness function configurations,

(1) Gaussian-shaped fitness function (α = 3.125, β = 0 and Q = 2),

(2) Rescaled minimum fitness function (α = 3.125, β = 0.1 and Q = 2).

We then varied the mutation rate ratio between the mean phenotype µ and the phenotypic

noise parameters σ and θ (see Methods). We applied four scenarios:

(1) Organisms have no phenotypic noise. Phenotypic noise mutation rates are mσ =

mθ = 0. Phenotypic noise parameters are σ = 0,θ = 0. Mean phenotype mutation

rate is mµ = 10−3,

(2) The phenotypic noise mutates more slowly than the mean phenotype. Phenotypic

noise mutation rates are mσ = mθ = 10−4. Mean phenotype mutation rate is

mµ = 10−3,

(3) The phenotypic noise and the mean phenotype mutate at the same rate. Mutation

rates are mµ = mσ = mθ = 10−3,

(4) The phenotypic noise mutates more often than the mean phenotype. Phenotypic

noise mutation rates are mσ = mθ = 10−2. Mean phenotype mutation rate is

mµ = 10−3.
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Table 4: List of parameters used in the simulation framework for multiple
phenotypic characters.

Fitness function
Gaussian-shaped

(α = 3.125, β = 0, Q = 2)
Rescaled minimum

(α = 3.125, β = 0.1, Q = 2)
Phenotypic noise
mutation rate
(compared to µ)

Null
Lower

(0.1×mµ)
Equal

Higher
(10×mµ)

Null
Lower

(0.1×mµ)
Equal

Higher
(10×mµ)

Mean phenotype µ

mutation rate
mµ = 10−3

Phenotypic
complexity

From n = 1 to n = 10

Mutation
size

sµ = sσ = sθ = 0.1/
√
n

Initial
phenotypic noise

σ ≈ 0, θ = 0

Initial distance
from optimum

‖µ‖ = 2.0

Distance from optimum
to reach

‖µ‖ =
√

0.5/α = 0.4

Population
size

L = 1, 000

We computed simulations for a phenotypic complexity ranging from n = 1 to n = 10,

with 100 repetitions per parameter set (8,000 simulations in all). To limit computation

time, we considered the population to have converged towards the fitness optimum when

the mean phenotype in the population reached within one standard-deviation of the fitness

optimum, i.e.
√

0.5
α

= 0.4. We initialized all the populations with a null phenotypic

noise (σ ∼ 0), and with the rotations of the covariance matrix set to θ = 0. The

initial Euclidean distance was ‖µ‖ = 2.0 (beyond the fitness landscape inflection point).

Mutation sizes of phenotypic noise parameters and the mean phenotype were sµ = sσ =

sθ = 0.1√
n

(the term
√
n is used to keep a constant mutational size distribution whatever

the phenotypic complexity). Simulation parameters are summarized in Table 4.

Figure 5 represents the convergence time of simulations, in number of generations

(no phenotypic noise simulations: brown curves ; lower mutation rate phenotypic noise

simulations: beige curves ; equal mutation rate phenotypic noise simulations: water green

curves ; higher mutation rate phenotypic noise simulations: green curves). While phe-

notypic noise systematically slows down adaptive evolution of the mean phenotype for a

Gaussian-shaped fitness function (Fig. 5A), phenotypic noise significantly speeds up adap-

23



0.00e+00

2.50e+03

5.00e+03

7.50e+03

1.00e+04

1.25e+04

2.5 5.0 7.5 10.0

Phenotypic complexity n

C
o

n
v
e

rg
e

n
c
e

 t
im

e
(i
n

 g
e

n
e

ra
ti
o

n
s
)

Gaussian shapedA

0e+00

1e+05

2e+05

3e+05

4e+05

2.5 5.0 7.5 10.0

Phenotypic complexity n

C
o

n
v
e

rg
e

n
c
e

 t
im

e
(i
n

 g
e

n
e

ra
ti
o

n
s
)

Rescaled minimumB

Phenotypic noise
mutation rate

1) No noise

2) Lower

3) Equal

4) Higher

Figure 5: Convergence time of simulations in number of generations. A. Simula-
tions with the Gaussian-shaped fitness function (α = 3.125, β = 0, Q = 2) B. Simulations
with the rescaled minimum fitness function (α = 3.125, β = 0.1, Q = 2). The lowess

smooth function from R is used to compute the mean and the standard error of the conver-
gence time for each phenotypic complexity, with a span of 0.75. Brown line and standard
error: populations with null phenotypic noise. Beige line and standard error: phenotypic
noise mutation rate is lower than mean phenotype mutation rate. Water green line and
standard error: phenotypic noise mutation rate is equal to the mean phenotype mutation
rate. Green line and standard error: phenotypic noise mutation rate is higher than mean
phenotype mutation rate. Due to computational limitations, the maximum number of
generations was kept at 500,000.

tive evolution of the mean phenotype for the rescaled minimum fitness function (Fig. 5B).

The loss or gain of generation time depends on the mutation rate of phenotypic noise,

the impact being stronger with a higher phenotypic noise mutation rate. (i) For the

Gaussian-shaped fitness function (Fig. 5A), the convergence time of populations with the

highest phenotypic noise mutation rate (Fig. 5A green curve) increases by more than 20

fold when n ≈ 3, although the difference with null phenotypic noise populations (Fig. 5A

brown curve) fades away when the phenotypic complexity increases. The difference with

null phenotypic noise populations is less significant for populations with a phenotypic

noise mutation rate lower or equal to the mean phenotype mutation rate (Fig. 5A beige

and water green curves). Around n ≈ 4, there is no more differences in convergence time

between these populations. (ii) For the rescaled minimum fitness function (Fig. 5B),

a very different trend is observed. The higher the phenotypic noise mutation rate is,

the faster populations converge towards the fitness optimum. For populations with the

highest phenotypic noise mutation rate (Fig. 5B green curve), there is a 10-fold decrease
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in convergence time compared to populations without phenotypic noise (Fig. 5B brown

curve), indicating an important compensation of the cost of complexity. However, this

gain is progressively lost when phenotypic complexity increases further.

To better characterize the evolution of phenotypic noise, we extracted for each simula-

tion the maximal mean value reached in the population for the three indicators presented

in Methods (phenotypic noise amplitude, flattening and alignment with the fitness opti-

mum; Fig. 6). For the Gaussian-shaped fitness function (Figs. 6A-B-C), phenotypic noise

gets closer to the optimal configuration when the mutation rate is higher, as shown by

stronger phenotypic noise flattening and alignment (i.e. closer to 1). The optimality of

the phenotypic noise configuration decreases with the phenotypic complexity: Indeed, as

it is harder to evolve the right noise configuration when n increases, the mean phenotype

of populations converges towards the fitness optimum before phenotypic noise is able to

reach the best noise configuration. Nonetheless, for the populations with the highest phe-

notypic noise mutation rate (green curves), there is enough time for phenotypic noise to

reach the optimal configuration if the phenotypic complexity is low (n < 4). In this case,

phenotypic noise strongly reduces the gradient of relative genotypic fitness, increasing

the convergence time (Fig. 5A).

For the rescaled minimum fitness function (Figs. 6D-E-F), as the selection gradient

is very low far from the optimum, phenotypic noise has enough time to evolve towards

the optimal configuration, even for elevated phenotypic complexity. For populations

with the highest phenotypic noise mutation rate (green curves), phenotypic noise always

reaches the optimal configuration (noise flattening and alignment are close to 1). These

populations are by far the fastest to converge towards the fitness optimum (Fig. 5B),

with a convergence time reduced by 90% compared to populations with no phenotypic

noise. However, the cost of complexity increases on phenotypic noise evolution for high

phenotypic complexity (n > 7). The lower the phenotypic noise mutation rate, the

stronger the cost of complexity, as shown by weakened noise flattening and alignment

when n increases. One can also notice that for high phenotypic complexity (n > 7), the
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Figure 6: Mean optimal phenotypic noise configuration reached in the pop-
ulation for each scenario and each phenotypic complexity. Three measures of
the shape of the phenotypic noise are shown: the maximal phenotypic noise amplitude
max(σ), the maximal phenotypic noise alignment (Eq. 8), and the maximal phenotypic
noise flattening (Eq. 9), reached during simulations in both the Gaussian-shaped sce-
nario (α = 3.125, β = 0, Q = 2) and the rescaled minimum scenario (α = 3.125, β = 0.1,
Q = 2). A. Maximal phenotypic noise amplitude reached in Gaussian-shaped scenar-
ios. B. Maximal phenotypic noise flattening reached in Gaussian-shaped scenarios. C.
Maximal phenotypic noise alignment reached in Gaussian-shaped scenarios. D. Maximal
phenotypic noise amplitude reached in rescaled minimum scenarios. E. Maximal pheno-
typic noise flattening reached in rescaled minimum scenarios. F. Maximal phenotypic
noise alignment reached in rescaled minimum scenarios. Simulations are run for a phe-
notypic complexity ranging from n = 1 to n = 10. The lowess smooth function from
R is used to compute the mean and the standard error of each measure for each phe-
notypic complexity, with a span of 0.75. Brown lines and standard errors: populations
with null phenotypic noise. Beige lines and standard errors: phenotypic noise mutation
rate is lower than mean phenotype mutation rate. Water green lines and standard errors:
phenotypic noise mutation rate is equal to the mean phenotype mutation rate. Green
lines and standard errors: phenotypic noise mutation rate is higher than mean phenotype
mutation rate. 26



phenotypic noise maximal amplitude increases. This can be explained by the time spent

drifting away from the fitness optimum on the log-fitness plateau.

To summarize, phenotypic noise reduces the cost of complexity on the mean phenotype

and promotes adaptive evolution of the mean phenotype as long as it does not suffer

too much from the cost of complexity itself, and can reach the optimal configuration,

aligned and fully correlated with the direction of the fitness optimum. According to our

results, under the universal pleiotropy assumption, this is the case for an intermediate

phenotypic complexity (n ranging from 1 to 7). For higher complexities, phenotypic noise

suffers a significant cost, but still confers a strong advantage on the convergence time of

populations.

Discussion

While phenotypic noise has long been assumed to be harmful for the fitness, its ben-

efit during an adaptation event was foreseen by Lande (1980), and since then studied,

or even re-discovered, by many authors (Pal, 1998; Kawecki, 2000; Paenke et al., 2007;

Zhang et al., 2009; Bruijning et al., 2019). Eldar and Elowitz (2010) suggested a verbal

model where “one might expect increased phenotypic noise during periods of adaptation

to new environments, followed by reduction in noise when selection becomes stabilizing”.

However, until recently (Bódi et al., 2017; Duveau et al., 2018), the lack of experimental

results to support the theory led to an apparent paradox about the impact of phenotypic

noise on organismal fitness during adaptation events. Indeed, it is assumed that pheno-

typic noise promotes adaptive evolution of the mean phenotype because it increases the

genotypic fitness (Zhang et al., 2009). However, as a Gaussian-shaped fitness function

has been historically used, it is generally held that phenotypic noise only hinders the se-

lection gradient (Lande, 1975). As suggested by Paenke et al. (2007), even if phenotypic

noise increases the genotypic fitness far from the fitness optimum, it does not necessarily

increase the gradient of relative genotypic fitness, and hence the selection gradient. This
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actually depends on the shape of the fitness function.

Here, using a quantitative genetics framework, we show that phenotypic noise pro-

motes adaptive evolution of the mean phenotype on plateaus of positive fitness (i.e. on

log-fitness plateaus), where the fitness function is relatively flat, and bordered by regions

of higher curvature. In such a region of the fitness landscape, phenotypic noise increases

the gradient of selection by magnifying the relative genotypic fitness differences present

at the borders of the plateau, hence favoring the fixation of beneficial mutations. This

mechanism is independent from the known effect of phenotypic noise on increasing the

genotypic fitness and smoothing the absolute fitness landscape (Pál and Miklós, 1999;

Saito et al., 2013).

With our generalized unimodal fitness function (Eq. 1), this can lead to all sorts of

scenarios depending on the shape of the fitness landscape (Table 2): (i) Far from the

fitness optimum, phenotypic noise is always positively selected, and indirectly promotes

adaptive evolution of the mean phenotype if the logarithmic fitness plateaus at a minimum

of positive fitness (β > 0). One could object that such a fitness landscape is unrealistic,

as there is no reason to not consider a null fitness very far from the optimum. However,

in more complex fitness landscapes having multiple fitness optima, the existence of local

plateaus or saddles, surrounded by valleys and peaks of fitness is likely. Regions of neutral

evolution are proven phenomena in the evolution of DNA or protein sequences (reviewed

by Payne and Wagner 2019). Phenotypic noise could then favor the fixation of rare

beneficial mutations and phenotypic innovations, hence increasing evolvability (see e.g.

Espinosa-Soto et al. 2011). (ii) Near the optimum, phenotypic noise is always selected

against, while it has the potential to promote adaptive evolution of the mean phenotype

when the logarithmic fitness plateaus at its maximum (Q > 2). Of course, the question

is whether these results stand for more generic fitness functions. The Gaussian fitness

function is considered generic because a second-order polynomial approximation of the

log-fitness is sufficient to describe a fitness optimum. Any higher-order terms would

become negligible around the optimum. Yet, Condition (10) shows that arbitrary third
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order perturbations of the Gaussian log-fitness function will promote adaptive evolution

of the mean phenotype, as long as the first and third derivatives of the log-fitness share

the same sign. It may be argued that the third order term should be exactly zero, to

preserve symmetry. Even then, fourth order perturbations −α2z
2−α4z

4 of the Gaussian

log-fitness also satisfy Condition (10), provided that α4 > α2
2/3. Therefore, our results

are likely to apply to a broad range of non-Gaussian fitness landscapes.

This raises the question of the indirect selection of phenotypic noise for its specific

impact on the gradient of relative genotypic fitness. Populations could fix mutations

that increase the phenotypic noise by hitch hiking as a result of an enhanced rate of

evolution. This could impact e.g. the evolution of bet-hedging strategies (when the

location of the fitness optimum fluctuates through time, Beaumont et al. 2009; Bruijning

et al. 2019), or more complex evolutionary outcomes such as the “survival of the flattest”,

where a population undergoing a high mutation rate preferably evolves towards optima

of intermediate fitness, but with a plateau reducing the fraction of deleterious mutations

(Wilke et al., 2001).

Although our study mainly provides theoretical arguments, recent experimental stud-

ies support our results. Bódi et al. (2017) developed inducible synthetic gene circuits

to generate varying degrees of expression stochasticity of an anti-fungal resistance gene

in Saccharomyces cerevisiae. They showed that phenotypic noise enhances the adaptive

value of beneficial mutations when the expression stochasticity is higher. By altering

the expression noise of the TDH3 gene in Saccharomyces cerevisiae, Duveau et al. (2018)

showed that an increase in expression noise can be deleterious or beneficial, depending on

the difference between the average expression level of a genotype and the expression level

maximizing fitness: Far from the optimal expression level, expression noise is beneficial.

When organisms exhibit multiple phenotypic characters under stabilizing selection,

the cost of complexity (Fisher, 1930; Orr, 2000) is expected to strongly reduce the fraction

of beneficial mutations, and to slow down the rate of adaptive evolution of the mean

phenotype towards the fitness optimum. Similarly, the impact of phenotypic noise on
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organismal fitness cannot simply be extrapolated from the single phenotypic character

scenario.

Our results show that when assuming a fully evolvable phenotypic noise in multiple

dimensions (each dimension corresponding to a phenotypic character), the best pheno-

typic noise configuration far from the fitness optimum is aligned and fully correlated with

the direction of the optimum, i.e. phenotypic noise undergoes a dimensionality reduction

towards a single dimension. These results echo others showing that additive genetic corre-

lations (the “G matrix”, Lande 1980) sometimes align towards the lines of least-resistance

and the direction of selection (Penna et al., 2017), as suggested by Schluter (1996). A

similar result exists for the evolution of the reaction-norm (Draghi and Whitlock, 2012;

Lind et al., 2015; Gibert et al., 2019). Moreover, using numerical simulations, we show

that when evolving populations reach such a phenotypic noise configuration, the fitness

benefit of noise in one dimension is recovered. However, when the number of phenotypic

characters under selection is too high (typically for n > 7), phenotypic noise suffers from

complexity as well.

While to our knowledge, no experimental study has shown that phenotypic noise pro-

motes adaptive evolution of the mean phenotype for complex phenotypes, several authors

have reported multi-characters phenotypic noise aligned with the direction of selection in

different species, such as Drosophila serrata (Sztepanacz et al., 2017) or Daphnia (Cressler

et al., 2017). For example, Cressler et al. (2017) demonstrated the existence of correlated

phenotypic noise on Daphnia pulicaria (a freshwater zooplankton). By measuring three

integrated phenotypic characters at the individual level (body growth, number of eggs

and longevity) on different populations of genetic variants, they showed that there was no

significant genetic correlations between characters, while there is strong evidence for pos-

itive non-genetic correlations between characters: Increasing phenotypic noise enhances

growth rate when non-genetic correlations between characters are positive, in agreement

with our prediction on the evolution of phenotypic noise for multiple phenotypic charac-

ters.
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Experimental studies also suggest that both the amplitude and the correlation of

phenotypic noise on multiple characters are evolvable (Stewart-Ornstein et al., 2012;

Yvert et al., 2013). Moreover, the ability of the genotype-to-phenotype map to shape

the random distribution of phenotypes, independently from the genetic variability, has

been recently suggested by Sato and Kaneko (2019); Sakata and Kaneko (2020). They

have shown with analytical and numerical approaches that thanks to the evolution of

the genotype-to-phenotype map, the distribution of phenotypes in a population can be

restricted to a subspace as a result of evolution in variables environments. All these

results suggest that the evolution of a flattened phenotypic noise aligned with the fitness

optimum is possible. Metzger et al. (2015) have also shown that sequences associated

to expression noise in the gene TDH3 of Saccharomyces cerevisiae evolve faster that

sequences associated to the mean expression level, suggesting that phenotypic noise could

indeed evolve faster than the mean phenotype for some phenotypic characters.

Phenotypic noise is also a concern in cancer evolution, where it is known to facilitate

the emergence of cancer resistance (Frank and Rosner, 2012; Huang, 2012; Pisco et al.,

2013; Shaffer et al., 2017). Phenotypic noise could also play a role in the process of cell

differentiation (Pujadas and Feinberg, 2012). Richard et al. (2016) showed that during

the differentiation of chicken erythrocytes, gene expression patterns temporarily increase

in variability, and then decrease when the cells reach the differentiated state. Although

evolutionary arguments are delicate to apply to cell differentiation, one could speculate

that evolution has shaped the epigenetic landscape such that differentiated phenotypic

states are hills surrounded by flat regions where phenotypic noise could speed up cell

differentiation.

Our study can be extended to more complex fitness landscapes, where the fitness

value does not only depend on the distance from a single fitness optimum. Multi-peak

and high-dimensional fitness landscapes containing plateaus of positive fitness could be

used to evaluate the impact of an evolvable phenotypic noise on phenotypic innovation.

Similarly, it would be interesting to study the impact of an evolvable phenotypic noise in
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variable environments having regions of plateauing fitness. It is also important to cou-

ple an evolvable phenotypic noise with evolvable genetic variability, mutation rates, and

genetic regulation. Indeed, experimental results demonstrate the lack of realism of the

universal pleiotropy assumption (see e.g. Wagner et al. 2008), and suggest that genetic

variability could evolve towards a low dimensional distribution, just like phenotypic noise

(Penna et al., 2017). Mutation rates are also known to evolve, at least temporarily, dur-

ing adaptation events, as shown by the existence of mutator strains in micro-organisms

(Taddei et al., 1997). Genetic regulation plays an important role in adaptive evolution

as well, through the evolution of evolvability and robustness (see e.g. Crombach and

Hogeweg 2008). The evolutive interaction of these multiple factors of genetic and pheno-

typic variability could lead to non-intuitive results.

Finally, our findings on the evolution of phenotypic noise during adaptation events

could be used to predict the future direction of evolution, and to localize the direction

of the fitness optimum in the phenotypic space. By tracking the evolution of phenotypic

noise experimentally, it could be possible to find which selective pressures are at work on

organisms, and to anticipate the next evolution steps. By deciphering the conditions in

which phenotypic noise evolves towards specific patterns, our results may contribute to

the growing field of predictive evolution.
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1 Inflection point of the fitness function w(z), depend-

ing on parameters α and Q

We consider a large population of individuals under stabilizing selection and with discrete

generations. We define each individual’s genotype by the pair {µ, σ}, µ ∈ R being

the mean phenotype (or breeding value) and σ ∈ R
+ the phenotypic noise amplitude.

Both µ and σ are controlled genetically, and evolvable. Individual continuous phenotype

z ∈ R follows a normal distribution of mean µ and variance σ2: p(z|µ, σ2) ∼ N (µ, σ2).

Individual absolute fitness w depends on the phenotype z. The fitness function w(z)

is assumed positive, symmetric, three times differentiable and possessing at least one

non-degenerate optimum (Martin, 2014). We chose w as the unimodal function

w(z) = (1− β)e−α|z|Q + β. (1)

α > 0 controls the sharpness of the fitness peak at z = 0. β ∈ [0, 1[ controls the minimal

fitness, when |z| ≫ 0. The shape parameter Q ≥ 2, controls how close the fitness peak is

from a step function (when Q = +∞). When β = 0 and Q = 2, w is a Gaussian fitness

function with variance 1/(2α). When 2 < Q ≤ 3, the third derivative does not exist in

z = 0. This is only a technical problem that does not affect the results presented here,

but it can be avoided by restricting Q = 2 or Q > 3. The absolute fitness of a genotype

{µ, σ} (or genotypic fitness) is the expected fitness across all possible phenotypes given

the phenotypic noise amplitude σ (Lande, 1979),

W (µ, σ) =

∫ +∞

−∞

p(z|µ, σ2)w(z)dz. (2)

Using a Taylor expansion, it has been shown (Paenke et al., 2007) that the genotypic

fitness (Eq. 2) can be expressed by:

W (µ, σ) = w(µ) +
σ2

2
w′′(µ) +O(σ4), (3)

2



where w′′ is the second derivative of w. Hence, the effect of small phenotypic noise (such

that O(σ4) remains negligible) on genotypic fitness is determined by the local curvature:

when w(µ) is convex (w′′(µ) > 0), phenotypic noise increases the genotypic fitness. When

w(µ) is concave (w′′(µ) < 0), phenotypic noise decreases the genotypic fitness. This is a

well-known result (Slatkin and Lande, 1976), which can also be obtained directly from

the definition of W under weaker smoothness assumption, via Jensen’s Inequality.

The first derivative of w is

w′(z) = −αQ|z|Q−1 sign(z)(w − β). (4)

The term (w−β) is always positive, and sign(w′(z)) = sign(−z), as expected. The second

derivative of w is

w′′(z) = αQ|z|Q−2(w − β)
[

αQ|z|Q − (Q− 1)
]

. (5)

The inflection points of w are given by

|z|Q =
(Q− 1)

αQ
. (6)

When α increases, the fitness peak gets sharper and inflection points move closer to the

fitness optimum (z = 0). When the shape parameter Q increases, the fitness function

approaches a step function, and the inflection points converge to zinfl = ±1. The minimal

fitness β has no effect on the position of the inflection points.

In summary, the phenotypic noise σ increases the genotypic fitness W (µ, σ)

when the mean phenotype µ is beyond the inflection point of w(µ), which is

given by Equation 6. However, this analysis does not provide the optimal value of σ

that maximizes W (µ, σ) (except below the inflection point, where the optimal value of

σ is zero). To do so, we must compute numerically σ such that ∂W (µ,σ)
∂σ

= 0 (see main

manuscript).
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2 Impact of phenotypic noise on the gradient of relative

genotypic fitness

As discussed by Paenke et al. (2007), in the absence of dominance or epistasis and if all

the genetic variation is additive or if reproduction is asexual, the response to selection

equals the selection differential, i.e. the difference of the base population mean and the

mean after selection (Lande, 1979). Moreover, Paenke et al. (2007) have shown that if

the effect of phenotypic noise on the genotypic fitness W (µ, σ) is monotonic, which holds

when genotypic variability is small, it is sufficient to study the impact of phenotypic noise

on the gradient of relative genotypic fitness ∂ lnW (µ,σ)
∂µ

.

Using a Taylor expansion around σ = 0, we show that the effect of phenotypic noise

amplitude σ on the gradient of relative genotypic fitness, i.e. ∂2 lnW (µ,σ)
∂µ∂σ

, is given by

∂2 lnW (µ, σ)

∂µ∂σ
≈

w′(µ)

w(µ)
+

σ2

2w(µ)2
[w(µ)w′′′(µ)− w′(µ)w′′(µ)] +O(σ3). (7)

Thus, the phenotypic noise amplitude σ can increase the gradient of relative genotypic

fitness, and promotes adaptive evolution of the mean phenotype, provided that there is

a non-zero solution to (Paenke et al. 2007; Figs. 1A-B):

sign
(

w(µ)w′′′(µ)− w′(µ)w′′(µ)
)

= signw′(µ). (8)

There is an equivalent condition in term of the log-fitness. Let f(µ) = ln(w(µ)), then

w′(µ) = ef(µ)f ′(µ),

w′′(µ) = ef(µ)
[

f ′′(µ) + f ′(µ)f ′(µ)
]

,

w′′′(µ) = ef(µ)
[

f ′′′(µ) + 3f ′(µ)f ′′(µ) + (f ′(µ))3
]

.
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Equation (8) is equivalent to

sign
(

f ′′′ + 2f ′f ′′
)

= sign
(

f ′
)

. (9)

Equations (8, 9) can be satisfied when the fitness function is either convex (w′′ > 0)

or concave (w′′ < 0), with slightly different conditions. First, around a local fitness

optimum, where w′′ < 0, f ′′ is also negative. Condition (9) is equivalent to

sign
(

f ′′′
)

= sign
(

f ′
)

(10)

and

|f ′′′| > |2f ′f ′′|. (11)

When the fitness function is convex (w′′ > 0), condition (8) is equivalent to

sign
(

w′′′
)

= sign
(

w′
)

(12)

and

|w′′′w| > |w′w′′|. (13)

These conditions can be summarized in the following way. When we move along the

fitness gradient in the direction given by w′′ (downward if w′′ < 0 and upward if w′′ > 0),

Conditions (8, 9) are satisfied if and only if the fitness curvature increases fast enough in

magnitude. This corresponds to four basic local fitness shapes of the fitness function.

• the left shoulder (w′ > 0, w′′ < 0, w′′′ > 0; Fig. 1C, panel 2),

• the right shoulder (w′ < 0, w′′ < 0, w′′′ < 0; Fig. 1C, panel 3),
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• the left hill foot (w′ > 0, w′′ > 0, w′′′ > 0; Fig. 1C, panel 1),

• the right hill foot (w′ < 0, w′′ > 0, w′′′ < 0; Fig. 1C, panel 4).

Around a fitness optimum, the combination of shoulders forms a relatively flat region,

or a plateau: . A local shape that cannot satisfy Conditions (8, 9) is the one given

by the Gaussian fitness, , where the curvature decreases as we move downward the

fitness. Away from the fitness optimum, the fitness curve forms a flat region flanked by

a steep hill foot. These results show that around a fitness optimum, the third derivative

of the log-fitness plays an important role. Condition (11) can generically be satisfied,

since the right-hand-side, f ′ vanishes at µ = 0. The Gaussian fitness, as a second-order

approximation, has a vanishing third derivative, and never satisfies the inequality. This

indicates that when looking at the effect of phenotypic noise on adaptive evolution of the

mean phenotype, a second-order approximation is not sufficient, and higher order terms

can dominate.

Below, we derive explicit conditions for the fitness function (1) to satisfy the condition

for phenotypic noise to promote adaptative evolution of the mean phenotype.

To predict regions of w(z) where phenotypic noise promotes adaptive evolution of the

mean phenotype, we need to make these statements more quantitative. To do so, one

needs to compute the third derivative of the fitness function (1),

w′′′(z) =































4α2z(w − β)
[

3− 2αz2
]

, Q = 2,

αQ|z|Q−3 sign(z)(w − β)
[

3αQ(Q− 1)|z|Q

−α2Q2|z|2Q − (Q− 1)(Q− 2)
]

, Q > 2.

(14)

We assume µ < 0, the case µ > 0 is symmetrical.

• First, we treat the Gaussian case (Q = 2, β = 0). The left-hand-side of Condition

(8) is

w′′′w − w′w′′ = 8α2µw2. (15)
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The sign is always opposite to w′, so Condition 8 can never be satisfied.

• Second, if Q = 2, β > 0. The left-hand-side of Condition (8) is

w′′′w − w′w′′ = 4α2µ(w − β)
[

2w − 2αβµ2 + β
]

. (16)

Condition 8 will be satisfied if
[

2w− 2αβµ2 + β
]

< 0. This occurs, and phenotypic noise

promotes adaptive evolution of the mean phenotype if

µ2 >
2w + β

2αβ
. (17)

• Third, if Q > 2, β = 0, The left-hand-side of Condition (8) is

w′′′w − w′w′′ = αQ|µ|Q−3 sign(µ)w2
[

2αQ(Q− 1)|µ|Q − (Q− 1)(Q− 2)
]

. (18)

Condition 8 will be satisfied if the term in the square brackets is negative, that is if

|µ|Q <
Q− 2

2αQ
. (19)

• Fourth, if Q > 2, β > 0, The left-hand-side of Condition (8) is

w′′′w − w′w′′ = αQ|µ|Q−3 sign(µ)(w − β)
[

−βα2Q2|µ|2Q+

(

2w + β
)

αQ(Q− 1)|µ|Q − w(Q− 1)(Q− 2)
]

. (20)

Again, Condition 8 is satisfied if the term in the square brackets is negative. Notice that

this term is a quadratic polynomial in s = αQ|µ|Q,

−βs2 +
(

2w + β
)

(Q− 1)s− w(Q− 1)(Q− 2). (21)

This polynomial admits two positive roots 0 < µ1 < µ2, and is negative outside the

interval [µ1, µ2]: the discriminant is ∆ = 4w2(Q − 1)2 + β2(Q − 1)2 + 4wβ(Q − 1) > 0.
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Moreover it is negative and increasing at s = 0 and take a maximum at a positive value.

Therefore, we have the following proposition

Proposition 1 Let w(µ) be the fitness function defined by Equation 1 and the genotypic

fitness W (µ, σ) defined by Equation 2. Then

∂2 lnW (µ, σ)

∂µ∂σ
> 0

if and only if one of the following properties is satisfied.

• Q = 2, β > 0, and µ2 > (2w + β)/(2αβ),

• Q > 2, β = 0, and |µ|Q < (Q− 2)/(2αQ),

• Q > 2, β > 0, and |µ| ∈ I1 ∪ I2, where the intervals I1 =]0, µ1[ and I2 =]µ2,+∞[,

and µ1, µ2 are the two positive roots of the polynomial (21).
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Figure 1: Phenotypic noise increases the gradient of relative genotypic fitness

on plateaus of log-fitness and their borders. A. Logarithmic fitness lnw(z) where
α = 3.125, β = 0.1 and Q = 4. When µ is in the blue and orange regions (numbered
from 1 to 4), phenotypic noise increases the gradient of relative genotypic fitness. B.

Term w(µ)w′′′(µ) − w′(µ)w′′(µ) depending on µ (Eq. 8). When µ is in the blue and
orange regions (numbered from 1 to 4), phenotypic noise increases the gradient of relative
genotypic fitness. C. Four cases corresponding to regions 1, 2, 3 and 4. In all cases, the
analysis of the Conditions (8, 9) shows that phenotypic noise increases the gradient of
relative genotypic fitness when the fitness function is shoulder-shaped or hillfoot-shaped,
i.e., with the fitness function defined in Equation 1, when the population is located on
logarithmic fitness plateaus or at their borders.
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3 For multiple characters under selection, the best phe-

notypic noise configuration is fully correlated and

aligned with the fitness optimum

Let us consider the organism with genotype {µ,σ,θ} (see main manuscript) in a n-

dimensional phenotypic space, sitting at a certain distance of the fitness optimum zopt = 0

of the fitness function w(z) = (1 − β)e−α‖z‖Q + β and under stabilizing selection (with

‖µ‖ > |zinfl|, see main manuscript). We describe the phenotypic noise of this organism

by a multivariate normal distribution Nn(µ,Σ), Σ being the n × n covariance matrix

built from σ and θ (see main manuscript). This multivariate normal distribution can be

represented by an hyper-ellipse in R
n, as shown in Figure 2 for two phenotypic characters

(n = 2).

We now define an orthonormal set of vectors v1, ...,vn, forming a new basis with origin

at µ. We align the direction of the first element v1 towards the fitness optimum zopt

(Fig. 2A). Along the axis µ + av1, a being a scalar, the organism {µ,σ,θ} experiences

a convex fitness if ‖µ‖ > |zinfl|. Along all other axes µ+ avi, the organism experiences a

concave fitness, and µ is a local fitness optimum for all values of a (Fig. 2B). We denote

by V the matrix formed by the vector columns vi,

V =

(

v1

∣

∣

∣
v2

∣

∣

∣
...

)

(22)

The goal here is to find the phenotypic noise configuration Σ that maximizes the

genotypic fitness

W (µ,Σ) =

∫

Rn

p(z|µ,Σ)w(z)dz. (23)

We first make a change of variables to center the phenotype around µ: z = µ+ ǫ, to

obtain

W (µ,Σ) =

∫

Rn

p(ǫ|0,Σ)w(µ+ ǫ)dǫ. (24)
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If ‖µ‖ > |zinfl|, phenotypic noise correlated with v1 increases the genotypic fitness, and

phenotypic noise correlated with any other directions vi, i > 1 decreases the genotypic

fitness (Fig. 2B): For any covariance matrix Σ and for any ǫ ∼ Nn(0,Σ), the fitness

w(µ+ǫ) of the phenotype z = µ+ǫ is always lower or equal to the fitness of its projection

along the axis defined by v1 (i.e., the distance to the fitness optimum is shorter after the

projection). Thus:

∫

Rn

p(ǫ|0,Σ)w(µ+ ǫ)dǫ ≤

∫

Rn

p(ǫ|0,Σ)w(µ+ v1

Tǫv1)dǫ. (25)

We then express ǫ in the basis V by making the following variable change: s = V Tǫ.

Consequently, ǫ = Vs, such that:

v1
Tǫv1 = v1

TV sv1

= s1v1.
(26)

(s1 is the first coefficient of the vector s). We can rewrite the right term of the Equation

25 as follows:
∫

Rn

p(Vs|0,Σ)w(µ+ s1v1)ds1, ..., dsn. (27)

The term w(µ+ s1v1) depends only on s1, so we can re-organize the integral,

∫

R

w(µ+ s1v1)

[
∫

Rn−1

p(Vs|0,Σ)ds2, ..., dsn

]

ds1. (28)

The probability density function p(Vs|0,Σ) from Equation 28 is the same as p(s|0,V T
ΣV )

(by a change of variable). The inside integral in Equation 28,

∫

Rn−1

p(s|0,V T
ΣV )ds2, ..., dsn, (29)
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describes the marginal density of s1, and follows the univariate normal law:

s1 ∼ N
(

0,
[

V T
ΣV

]

1,1

)

(30)

the subscript “1, 1” denoting the coefficient of the first raw and first column.

Therefore, the integral 28 simplifies to

∫

R

w(µ+ s1v1)p(s1|0,
[

V T
ΣV

]

1,1
)ds1. (31)

Equation 31 is the one dimensional genotypic fitness W (µ,
[

V T
ΣV

]

1,1
), taken along the

axis spanned by v1. Along this axis, there is an optimal phenotypic noise amplitude
[

V T
ΣV

]

1,1
= σ2

opt that maximizes the genotypic fitness. The n-dimensional genotypic

fitness can be maximized by the 1-dimensional genotypic fitness

W (µ,Σ) ≤

∫

R

w(z)p(z|‖µ‖,
[

V T
ΣV

]

1,1
)dz

= W (‖µ‖,
[

V T
ΣV

]

1,1
)

≤ W (‖µ‖, σ2
opt).

Therefore, the n-dimensional genotypic fitness reaches its maximum when all the

phenotypic noise is concentrated along the axis aligned with the direction to the fitness

optimum. By expressing the covariance matrix Σ as an eigenvalue factorization, Σ =

UDUT , with D = diag(σ2), we obtain:

V T
ΣV = V TUDUTV . (32)

The maximum genotypic fitness is reached when the first eigenvector u1 is aligned with

v1 and σ2 = {σ2
opt, 0, ..., 0} (Fig. 2A).
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Figure 2: Anisotropic and correlated phenotypic noise for two phenotypic char-

acters under selection. A. The phenotypic noise distribution of an organism with
genotype {µ,σ,θ} is defined by a multivariate normal distribution with mean µ (black
dot), phenotypic noise amplitudes σ1 and σ2 (black arrows) along axes u1 and u2, and a
parameter of correlation θ1 (black angle), defining a rotation of the basis U = (u1,u2).
A phenotype z (purple dot) is generated from the multivariate normal distribution by
drawing a random vector ǫ ∼ Nn(0,Σ) (with Σ the covariance matrix built from σ and
θ), such that z = µ + ǫ. The contribution of ǫ on each axis v1 (green solid segment)
and v2 (blue solid segment) of the basis V , where v1 is aligned with the fitness optimum
zopt, is represented by the vector s = (s1, s2)

T (purple arrow). The fitness landscape is
represented by a gradient of blue centered on the fitness optimum zopt (deep blue dot).
B. Fitness along axes of the basis V = (v1,v2). Along axis v1, directed towards the fit-
ness optimum zopt, the organism experiences a convex absolute fitness (if ‖µ‖ > |zinfl|).
Along axis v2, orthogonal to v1, the organism experiences a concave absolute fitness,
sitting on a local fitness optimum.
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