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STATISTICAL DYNAMICS OF A HARD SPHERE GAS:
FLUCTUATING BOLTZMANN EQUATION AND LARGE
DEVIATIONS

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond,
Sergio Simonella

Abstract. — We present a mathematical theory of dynamical fluctuations for the hard sphere gas
in the Boltzmann-Grad limit. We prove that: (1) fluctuations of the empirical measure from the
solution of the Boltzmann equation, scaled with the square root of the average number of particles,
converge to a Gaussian process driven by the fluctuating Boltzmann equation, as predicted in [67]; (2)
large deviations are exponentially small in the average number of particles and are characterized, under
regularity assumptions, by a large deviation functional as previously obtained in [61] for dynamics with
stochastic collisions. The results are valid away from thermal equilibrium, but only for short times.
Our strategy is based on uniform a priori bounds on the cumulant generating function, characterizing
the fine structure of the small correlations.
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CHAPTER 1

INTRODUCTION

This paper is devoted to a detailed analysis of the dynamical correlations arising, at low density, in a
deterministic particle system obeying Newton’s laws. In this chapter we start by defining our model
precisely, and recalling the fundamental result of Lanford on the short-time derivation of the Boltzmann
equation, as a law of large numbers. After that, we state our main results, Theorem 2 and Theorem 3
below, regarding small fluctuations and large deviations of the empirical measure, respectively. Finally,
the last part of this introduction describes the essential features of the proofs, the organization of the
paper, and presents some open problems.

1.1. The hard-sphere model with random initial data

We consider a system of N > 0 spheres of diameter ¢ > 0 in the d-dimensional torus TN with d > 2.

The positions (x5,...,x5) € T and velocities (v§,...,v%) € R¥ of the particles satisfy Newton’s
laws

dxe dve
(1.1.1) ;;1 = e, ;;Z —0 aslongas |x{(t) —x5(t)| >e for 1<i#j<N,

with specular reflection at collisions

(VE) = V5 — = (vE = vE) - (x5 — x5) (x5 — x5)
(1.1.2) < if [x5(t) —x5(t)| =¢.

1 J
(vi) = 5+ 5 (v = vi) - (= x5) (x5 = x5)

J
Observe that these boundary conditions do not cover all possible situations, as for instance triple
collisions are excluded. Nevertheless the hard-sphere flow generated by (1.1.1)-(1.1.2) (free transport
of N spheres of diameter ¢, plus instantaneous reflection

(vive) = ((v) . (v))

at contact) is well defined on a full measure subset of D% (see [1], or [28] for instance) where D5, is

1)

J

the canonical phase space

v={ZneDV :Vi#j, |z,—zj|>¢e}.
We have denoted Zy = (Xy,Vy) € (T¢ x RV the positions and velocities in the extended
space DV = (T? x RHN with Xy := (z1,...,zy) € T and Vy = (vy,...,on) € RN, We
set Zy = (z1,...,2n) with z; = (z;,v;).
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The probability density W5, of finding N hard spheres of diameter ¢ at configuration Zy at time ¢t is
governed by the Liouville equation in the 2d/N-dimensional phase space

(1.1.3) OWg+ VN -Vx W5 =0 on Djy,
with specular reflection on the boundary. If we denote

ODSE(i,7) = {ZN eDN iw; —ajl =, H(v;—v;)-(z;—x;)>0

and  W(k,0) € [L,N2\ {i,j}, k£ ¢, |ox =] > e},

then
(1.1.4) VZn € 0D (i) i £, Wit Zn) = Wil(t, Z37),
where Z;\i,’j differs from Zy only by (v;,v;) — (v, 113), given by (1.1.2).
The canonical formalism consists in fixing the number N of particles, and in studying the probability
density W of particles in the state Zy at time ¢, as well as its marginals. The main drawback of this

formalism is that fixing the number of particles creates spurious correlations (see e.g.[26, 57]). We
are rather going to define a particular class of distributions on the grand canonical phase space
D= | DY,
N>0
where the number of particles is not fixed but given by a modified Poisson law (actually D, = 0 for

large N). For notational convenience, we work with functions extended to zero over DV \ D%,. Given
a probability distribution f°: D — R satisfying

(1.1.5) | (z,v)| 4+ |V fO(x,v)] < Cy exp ( - %|v|2) , Co>1, By>0,
the initial probability density is defined on the configurations (N, Zy) € DY as
1 1 N &
(1.1.6) WA Zv) = o2 5 [T (i) 1 (Z)
i=1

where p. > 0 and the normalization constant Z¢ is given by

N N
e H
2=1+ ) ﬁ/ﬂw dZy [ £°(zi) 10z, (Zy) -

N>1 i=1
Here and below, 14 will be the indicator function of the set A. We will also use the symbol 1«,» for

Wy ”

the indicator function of the set defined by condition “x”.

Note that in the chosen probability measure, particles are “exchangeable”, in the sense that W5’ is
invariant by permutation of the particle labels in its argument. Moreover, the choice (1.1.6) for the
initial data is the one guaranteeing the “maximal factorization”, in the sense that particles would
be i.i.d. were it not for the indicator function (‘hard-sphere exclusion’).

Our fundamental random variable is the time-zero configuration, consisting of the initial positions and
velocities of all the particles of the gas. We will denote A the total number of particles (as a random

variable) and Zj(/) = (zfo)iz1 N the initial particle configuration. The particle dynamics

(1.1.7) t Zi(t) = (25 (1) =y,

is then given by the hard-sphere flow solving (1.1.1)-(1.1.2) with random initial data Z5} (well defined
with probability 1). The probability of an event X with respect to the measure (1.1.6) will be de-
noted P.(X), and the corresponding expectation symbol will be denoted E.. Notice that particles are
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identified by their label, running from 1 to /. We shall mostly deal with expectations of observables

of type E( Zfil ...). Unless differently specified, we always imply that E. (Y, ...) = E.( Zi\il ).

The average total number of particles N is fixed in such a way that

(1.1.8) limE, (M)e?t=1.

e—0

The limit (1.1.8) ensures that the Boltzmann-Grad scaling holds, i.e.that the inverse mean free path
is of order 1 [33]. Thus from now on we will set

He = 5_(d_1) .

Let us define the rescaled initial n-particle correlation function
=1
FO(Za) = pc™ o / Qnir o oy WE (Znsy) -
p=0 © /0¥

We say that the initial measure admits correlation functions when the series in the right-hand side
is convergent, which is the case with our choice (1.1.6) of initial data, together with the series in the
inverse formula

n = —pe)?
Wi(Zy) = pt Z ( p,E) /JD) dzny1 .- dzngp Frigrp(Zn+p) :
p=0 ' i

In this case, the set of functions (Fﬁo)n>1 describes all the properties of the system.

For any test function h, : D" — R, the following holds :

M
B X e a)) = Ee (e gy e )
i;;’i',;‘j;k

e} WSO Zp !
(1.1.9) Z/Dp z, pp(! ) (pfn)!hn(zn)

it [ A2, FZ) (2,

Starting from the initial distribution W§?, the density W§ (¢) evolves on D5, according to the Liouville
equation (1.1.3) with specular boundary reflection (1.1.4). At time ¢ > 0, the (rescaled) n-particle
correlation function is defined as

e 1
(1.1.10) Fi(t.Z,) = 3 /D Bonir - Aoy We (b Znsy)
p=0 " JDP

and, as in (1.1.9), we get

(1.1.11) EE( IZ hn(zfl(t)w--m?n(t))) = u?/n dZy Fy(t, Zn) ha(Zy)

i Fin itk

where we used the notation (1.1.7). Notice that F:(t,Z,) = 0 for Z,, € D" \ Ds.
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1.2. Lanford’s theorem : a law of large numbers

In the Boltzmann-Grad limit p. — oo, the average behavior is governed by the Boltzmann equation :

atf +v-V f / /Sd . t Y, W f(t,.T,”Ul) - f(tvyaw)f(t7x,U))du(aﬁ,v)((yaw)aw)7

(1.2.1)
£(0,2,v) = f(a,
where, for any (z,v) € D,
(1.2.2) Az, ((y, ), w) = 8y_o ((w — v) -w)+dw dy dw

and where the precollisional velocities (v, w’) are defined by the scattering law
(1.2.3) vVi=v— ((v-w) w)w, wi=w+ ((v-—w) ww.

More precisely, the convergence is described by Lanford’s theorem [47] (in the canonical setting — for
the grand-canonical setting see [46], where the case of smooth compactly supported potentials is also
addressed), which we state here in the case of the initial measure (1.1.6).

Theorem 1 (Lanford [47]). — Consider a system of hard spheres initially distributed according to
the grand canonical measure (1.1.6) with f° satisfying the estimate (1.1.5). Then, in the Boltzmann-
Grad limit pe — 0o, the rescaled one-particle density F£(t) converges uniformly on compact sets to the
solution f(t) of the Boltzmann equation (1.2.1) on a time interval [0,Tp] (which depends only on f°
through Cy, Bo). Furthermore for each n, the rescaled n-particle correlation function FZ(t) converges
almost everywhere in D™ to f€™(t) on the same time interval.

We refer to [39, 69, 20, 19] for detailed proofs. The topic continues to be studied and developed, see
[44, 28, 23, 57, 29, 30, 58] for more recent contributions.

Let us define the empirical measure

(1.2.4) Za “() »
,ug i=1

where 0,z (1) denotes the Dirac mass at point z§(t). Tested on a (one-particle) function b : D — R, it

reads
1 N
(1.2.5) w$(h) = ;Zh(zj(t)).

By definition, F§ describes the average behavior of (exchangeable) particles :

(1.2.6) E. (75 (h)) :/H)Ff(t,z) h(z)dz.

The propagation of chaos derived in Theorem 1 implies in particular that the empirical measure
concentrates on the solution of Boltzmann equation: let us prove the following law of large numbers,
which is an easy corollary to Theorem 1.

Corollary 1.2.1. — Under the assumptions of Theorem 1, for all § > 0 and smooth h: D — R,

? frc

/ftz dz‘>5>—>0.

He—>00
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Proof. — Computing the variance for any test function h, we get that

EE((wf(h) - / Fy(t,2) h(z) d2)2)

1 X, 1 2
(1.2.7) zlEa(EZh () + 5 S (zE () (5 (1) ) - (/Ff(t,z)h(z) dz)

24 Ry

- Mi / Fe(t,2) h2(2) dz + / F5 (1, Z2) h(z)h(z2) dZs — ( / F(t.2) h(z)dz) —— 0.

He—>00

where the convergence to 0 follows from the fact that F5 converges to f®? and Ff to f almost
everywhere. O

Remark 1.2.2. — The restriction to the time interval [0, Ty] in the statement of Theorem 1 originates

from a Cauchy-Kovalevskaya argument in a scale of Banach spaces. A (non optimal) estimate of Tj
in terms of Cy and Py is provided in Theorem 10 of the present paper, of the form Ty ~ C(;lﬁ(gdﬂ)m

d
(notice that in this estimate the inverse temperature is given by Bo, while the physical density is Co /B3 ).
Remark that the Cauchy-Kovalevskaya argument provides the same dependence in terms of Cy and [y
for the wellposedness time of the Boltzmann equation: see Appendiz A.1.

1.3. The fluctuating Boltzmann equation

Describing the fluctuations around the Boltzmann equation is a way to capture part of the information
which has been lost in the limit u. — oco.

As in the classical central limit theorem, we expect these fluctuations to be of order 1/,/nic, which is
the typical size of the remaining correlations. We therefore define the fluctuation field (¢ as follows:
for any test function h : D — R (recall (1.2.6))

(13.1) ¢ (h) = \/;T€<w§(h) _ / FE(t, =) h(2) dz> .

Initially the empirical measure starts close to the density profile f and (§ converges in law towards a
Gaussian white noise (y with covariance

(13.2) E(Co(hn) Coha)) = / (=) ha(2) £°(2) dz

This follows from a computation similar to (1.2.7) because, with our choice of initial data given
in (1.1.6), pe (FQ8 (0) — (F5)®? (O)) vanishes as p. — oo (the Gaussian character requires an estimate

of higher order cumulants, which is made precise in Proposition 8.1.4 below). Note that, for more
general initial states, a smoothly correlated part may appear in the covariance [68, 57].

In this paper we prove that in the limit p. — oo, starting from “almost independent” hard spheres, (7
converges to a Gaussian process, solving formally

(1.3.3) dG = Ly G dt + dny
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where L, is the linearized Boltzmann operator around the solution f(¢) of the Boltzmann equa-
tion (1.2.1)

£on) = =0 Vo) + [ [ et
X (f(t,xl,vi)h(as,v’) + f(ta J,‘,’U/)h(l“l,’l)i) - f(t7 Z)h(zl) - f(t7 Zl)h('z)) :

The noise dn.(z) is Gaussian, with zero mean and covariance

E (/ dty lehl(Zl)’I]tl(Zl)/dtz dza ho(z2)n, (22)>

(1.3.4)

(1.3.5) ,

=3 /dtdﬂ('zlaz%w)f(t,Zl)f(taZZ)Ahl Ahy
denoting
(1.3.6) dp(z1, 22,w) 1= gy —ay ((vl — v9) -w)+dw dvy dvodxy

and defining for any h
(1.3.7) Ah(z1, z2,w) == h(z]) + h(2) — h(z1) — h(z2),

/A X /
where 2] := (z;, v}

) with notation (1.2.3) for the velocities obtained after scattering. We postpone the
precise definition of a weak solution to (1.3.3) to Section 6.1.

Our result is the following.

Theorem 2. — Consider a system of hard spheres initially distributed according to the grand canonical
measure (1.1.6) where fO is a function satisfying (1.1.5). Then, there exists T > 0 (depending on f°

dt1
as T ~ C’0_1,6’02 ) such that, in the Boltzmann-Grad limit p. — oo, the fluctuation field (Cts)tzo
converges in law to a Gaussian process, uniquely determined by its covariance, which solves (1.3.3) in
a weak sense on the time interval [0,T).

The convergence towards the limiting process (1.3.3) was conjectured by Spohn in [68] and the non-
equilibrium covariance of the process at two different times was computed in [67], see also [69]. The
noise emerges after averaging the deterministic microscopic dynamics. It is white in time and space,
but correlated in velocities so that momentum and energy are conserved.

At equilibrium the convergence of a discrete-velocity version of the same process was derived rigorously
by Rezakhanlou in [60], starting from a dynamics with stochastic collisions (see also [43, 42, 70, 72,
73, 51] for fluctuations and space-homogeneous models).

The physical aspects of the fluctuations for the rarefied gas have been thoroughly investigated in
[26, 67, 68]. We also refer to [12], where we gave an outline of our results and strategy. Here we
would like to recall only a few important features.

1) The noise in (1.3.3) originates from dynamical correlations.

It is a very general fact that, when the macroscopic equation is dissipative, the dynamical equation for
the fluctuations contains a term of noise. In the case under study, dynamical correlations correspond
for example to two given particles having interacted directly or indirectly backward in time on [0,¢] — a
precise, albeit technical definition will be given later on in terms of a suitable class of pseudo-dynamics
(Definition 4.1.1 below). These correlations have a negligible contribution to the limit 7§ — f(t) (see
Corollary 1.2.1). The proof of Theorem 2 provides a further insight on the relation between collisions
and noise. Following [67], we represent the dynamics in terms of a special class of trajectories, for



1.3. THE FLUCTUATING BOLTZMANN EQUATION 7

which one can classify precisely the dynamical correlations responsible for the term dn,; see Section 1.5
for further explanations. For the moment we just remind the reader that there is no a priori contra-
diction between the dynamics being deterministic, and the appearance of noise from collisions in the
singular limit. Indeed when e goes to zero, the deflection angles are no longer deterministic (as in the
probabilistic interpretation of the Boltzmann equation). The randomness, which is entirely coded on
the initial data of the hard sphere system, is transferred to the dynamics in the limit.

2) Equilibrium fluctuations can be deduced by the fluctuation-dissipation theorem.

As a particular case, we obtain the result at thermal equilibrium f° = M, where M is a Maxwellian.
The stochastic process (1.3.3) boils down to a generalized Ornstein-Uhlenbeck process. The noise
term compensates the dissipation induced by the linearized Boltzmann operator, and the covariance
of the noise (1.3.5) can be predicted heuristically by using the invariant measure. More precisely
at equilibrium, one has the equation d(; = Loq(: dt + dn: where Loq is the linearized Boltzmann
operator around M. To determine the structure of the Gaussian noise, one can formally express the
time-independent quantity E(Ct(hl) Ct(hg)) = [ h1 ha M dz in terms of the initial fluctuations ¢y, and
of dn. Using that L. is contracting, the limit ¢ — oo cancels the dependence on (y and provides
formula (1.3.5), with f = M, for the covariance of the noise; see [69] for details, and also Remark 6.1.2

page 59.
3) Away from equilibrium, the fluctuating equations keep the same structure.

The most direct way to guess (1.3.3)-(1.3.5) is starting from the equilibrium prediction (previous
point) and assuming that M = M (v) can be substituted with f = f(¢,2,v). This heuristics is known
as “extended local equilibrium” assumption, in the context of fluctuating hydrodynamics; we refer
again to [69] for details. The hypothesis is based on the remark that the noise in the fluctuating
equation (1.3.3) should be white in space and time (§—correlated in ¢ and ) and therefore it should be
determined completely by the local properties of the gas. If locally the system is at equilibrium, then the
non equilibrium equation (1.3.3) should be simply the one obtained from the equilibrium equation by
adjusting the local parameters. This procedure turns out to give the right result also for our gas at low
density, even if f = f(t,z,v) is not locally Maxwellian. The reason is that a form of local equilibrium
is still true, in terms of ideal gases; namely, around a little cube of volume pu-! centered in z at time ¢,
the hard sphere distribution converges, as u. — o0, to a uniform Poisson measure with constant
density [ f(t,z,v)dv and independent velocities distributed according to f(t,z,v)/ [ f(t,x,v)dv (see
Corollary 4.7 in [69]).

4) Away from equilibrium, fluctuations exhibit long range correlations.

The covariance of the fluctuation field at different points x1, 25 is not zero when |x; — 3| is of order one
(and decays slowly with |x; — z2|). At variance with (1.3.2) which is d—correlated, at positive times a
smooth dynamical contribution to the covariance emerges, which is non zero on macroscopic distances.
This feature is typical of non equilibrium fluctuations as discussed in [26]. In the hard sphere gas
at low density, this dynamical contribution originates again from dynamical correlations. The proof
of Theorem 2 will provide an explicit formula describing this effect, showing that the long range
contribution to the covariance formula can be expressed in terms of dynamics involving correlations
(see [67], and Proposition 6.4.1 page 70).

Remark 1.3.1. — Note that a fluctuation theorem in the spirit of Theorem 2 was proved first in the
context of a mean-field limit of Hamiltonian particle systems, interacting by means of smooth, weak and
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long-range forces [17] (see also [36, 32] for early results on quantum mechanical models). However,
this situation is deeply different from ours. The macroscopic limit is governed by the Viasov equation,
which is a reversible equation with no entropy production. Correspondingly, there is no dynamical noise
in the fluctuating equation: the fluctuations evolve deterministically according to the linearized Viasov
equation.

1.4. Large deviations

While typical fluctuations are of order O(ue 1/ 2)7 they may sometimes happen to be large, leading to
a dynamics which is different from the Boltzmann equation. A classical problem is to evaluate the
probability of such an atypical event, namely that the empirical measure remains close to a probability
density ¢ # f during a time interval [0,¢]. The following explicit formula for the large deviation
functional on [0,¢] was obtained by Rezakhanlou [61] in the case of a one-dimensional stochastic
dynamics mimicking the hard-sphere dynamics, and then conjectured for the deterministic hard-sphere
dynamics in [63, 16]:

) Fltg) = Foon) +oun{ [Las [ [ an [ dopts.r.o) Dapts.n) - 1ot}

where the supremum is taken over bounded measurable functions p, and the Hamiltonian is given by

(1.4.2) : /d,u 21, 29, W (zl)go(zg)(exp (Ap(zl, 2’2)) — 1) ,
with du and Ap defined in (1.3.6)-(1.3.7). We have denoted D, the transport operator
(1.4.3) Dyp(t, z) i= 0p(t, 2) + v Vao(t, 2)

and finally

(1.4.4) F(0, o) = /Ddz (gao log (;fg) — g0+ f°>

with ¢g = ©|t—0, is the large deviation rate for the empirical measure at time zero.

The functional F(0 (0) can be obtained by a standard procedure, modifying the measure (1.1.6) in such a
way to make the (atypical) profile g typical V). Similarly, to obtain the collisional term H in F (t, ),
one would like to understand the mechanism leading to an atypical path ¢ = ¢(s) at positive times.
A serious difficulty then arises, due to the deterministic dynamics. Ideally, one should conceive a way
of tilting the initial measure in order to observe a given trajectory. Whether such an efficient bias
exists, we do not know. We shall proceed in a different way and deduce the large deviations from the
cumulant generating function

(1.4.5) As(eh) = ilogEa(exp (11e Wf(h)))

in the spirit of the Géartner-Ellis Theorem which is classical in the large deviation theory [22]. In this
approach, the main difficulty is the explicit characterization of the cumulant generating function which
requires to control the dynamics at all scales in €. For our purpose, we will actually need to sample
the empirical measure on the whole interval [0,¢] and not only at time ¢, which will be implemented
by a more general functional (see Eq. (4.4.8) below).

1. In [65], at equilibrium, a derivation of large deviations by means of cluster expansion methods is discussed for a
larger range of densities.
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We will be able to evaluate the asymptotic probability of observing any trajectory ¢ satisfying Dyp =

2t pamely the biased Boltzmann equation

op
Dt@=// (w(t,y,w’)<p(t7x,v')e—Ap@,xm,y,w,w)
D Jgd-1

(1.4.6)
eAp(t7w7v,y7w7w)>

- <p(t7y,w)<p(t7x,v) dﬁb(x,v)((va)aw)

for some Lipschitz p, and with initial data
(1.4.7) ©(0,2,v) = fO(x,v) ePO=)

It is known indeed (see [61]) that (1.4.6) allows to code a large class of macroscopic profiles which can
be attained in a large deviation regime. The perturbed equation (1.4.6) describes a collision process
with biased transition rate.

It can be proved easily (see Chapter 7 and Appendix A) that (1.4.6), in mild form, has a unique
solution in the class of continuous functions with Gaussian decay in v. Such solutions will be called
strong solutions.

Consider M (D) the set of positive measures on D with finite mass (metrized with the topology of
weak convergence). Define the set of trajectories in [0,¢] taking values in M(D) as the Skorokhod
space D([0,t], M(ID)) and denote by djg 4 the corresponding distance (see [8] page 121). The large
deviation theorem states as follows — a more complete version is proved in Chapter 7 (see Theorems 8
and 9).

Theorem 3. — Consider a system of hard spheres initially distributed according to the grand canonical
measure (1.1.6) where f9 satisfies (1.1.5). For any r > 0, there exists a time T > 0 (depending only
on Cy, Bo,T) such that the following holds. Define

Rrr = {cp [0, T) x D+ R = ¢ is the strong solution of (1.4.6)-(1.4.7) on [0,T] for some p

such that |[pllw.<(oryx0) <7} -

For any ¢ € R, 1, in the Boltzmann-Grad limit yu. — oo, the empirical measure satisfies the large
deviation estimates

1
lim lim sup — log Pc[djo 1)(7%, ) < 3] = —F(T, ),

d—0 pe—o00 Me

1 ~
lim lim inf — log P, [djo,1)(7%, ) < 8] = —F (T, @) .

0—0 pe—00 [

A companion program for large deviations (including gradient flows) has been developed for spatially
homogeneous models and stochastic particle systems, in the spirit of Kac’s approach for the justification
of kinetic theory [49, 37, 5, 3, 4]. For (regular) homogeneous observables ¢, the functional F coincides
with the functional obtained for the Kac model (see also [61] for the additional spatial dependence).

Thus a feature of Theorem 3 is that the large deviation behaviour of the mechanical dynamics is also
ruled by the large deviation functional of the stochastic process. It is generally accepted that there is
good similarity between deterministic systems displaying some chaoticity and random stochastic pro-
cesses, an idea that has been used several times in mathematical physics. Our context is rather simple,
because of the property of molecular chaos which underlies the kinetic theory of gases. Traditionally,
the rigorous justification of this theory is based on two approaches, the programs of Grad [34] and Kac
[41], corresponding respectively to the deterministic and the random case which are both effective with
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some limitations. It is therefore natural to ask to what extent the “equivalence” of dynamical system
and stochastic process can be pushed. Our result proves such equivalence up to dynamical events of
exponentially small probability.

For an extensive formal discussion on large deviations in the Boltzmann gas, as well as for some physical
motivations, we refer to [16] (see also [7] for diffusive systems). As argued in the following section,
fluctuations and large deviations are a systematic way to probe the physical system on finer and finer
scales, characterizing all the correlations. In particular, they complement the rigorous explanation of
the transition to irreversibility, by showing that stochastic reversibility is recovered if one retains all
the information discarded in Lanford’s analysis. Finally, we mention that the large deviations add a
formal geometric structure to the limit, of gradient-flow type as discussed in [16] (Section 5.4), which
might motivate further investigations.

1.5. Strategy of the proofs

In this section we provide an overview of the paper and describe, informally, the core of our argument
leading to Theorems 2 and 3.

We should start by recalling the basic features of the proof of Theorem 1. For a deterministic dynamics
of interacting particles, so far there has been only one way to access the law of large numbers rigor-
ously. The strategy is based on the ‘hierarchy of moments’ corresponding to the family of correlation
functions (F3),~;, Eq.(1.1.10). The main role of F} is to project the measure on finite groups of
particles (groups of cardinality n), out of the total A". The term ‘hierarchy’ refers to the set of linear
BBGKY equations satisfied by this collection of functions (which will be written in Section 3.1), where
the equation for F; has a source term depending on F ;. This hierarchy is completely equivalent
to the Liouville equation (1.1.3) for the family (W5)y~o, as it contains exactly the same amount
of information. However as N' ~ p. in the Boltzmann-Grad limit (1.1.8), one should make sense of
a Liouville density depending on infinitely many variables, and the BBGKY hierarchy becomes the
natural convenient way to grasp the relevant information. Lanford succeeded to show that the explicit
solution FZ(t) of the BBGKY hierarchy, obtained by iteration of the Duhamel formula, converges to a
product f®"(t) (propagation of chaos), where f is the solution of the Boltzmann equation (1.2.1).

This result based on the hierarchy of moments has two important limitations. The first one is the
restriction on its time of validity, which comes from too many terms in the iteration: we are indeed
unable to take advantage of cancellations between gain and loss terms. The second one is a drastic loss
of information. We shall not give here a precise notion of ‘information’. We limit ourselves to stressing
that (F),~, is suited to the description of typical events. In the limit, everything is encoded in f, no

matter how large n. Moreover, the Boltzmann equation produces some entropy along the dynamics:
at least formally, f satisfies

6t(—/flogfdv)+vx-(—/flogfvdv) >0,

which is in contrast with the time-reversible hard-sphere dynamics. Our main purpose here is to
overcome this second limitation (for short times) and to perform the Boltzmann-Grad limit in such a
way as to keep most of the information lost in Theorem 1. In particular, the limiting functional (1.4.1)
coincides with the large deviations functional of a genuine reversible Markov process, in agreement
with the microscopic reversibility [16]. We face a significant difficulty: on the one hand, we know that
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averaging is important in order to go from Newton’s equations to Boltzmann’s equation; on the other
hand, we want to keep track of some of the microscopic structure.

To this end, we need to go beyond the BBGKY hierarchy and turn to a more powerful representation
of the dynamics. We shall replace the family (F};), -, (or (W5)yo) With a third, equivalent, family of
functions (fZ),~;, called (rescaled) cumulants®. Their role is to grasp information on the dynamics
on finer and finer scales. Loosely speaking, fZ(t) will collect events where n particles are “completely
connected” by a chain of interactions. We shall say that the n particles form a cluster. Since a collision
between two given particles is typically of order ¢/ ., a “complete connection” would account for events
of probability of order (¢/u.)"~t. We therefore end up with a hierarchy of rare events, which we need
to control at all orders to obtain Theorem 3. At variance with (F};), -, even after the limit p. — oo
is taken, the rescaled cumulant f; cannot be trivially obtained from the cumulant fs_,. Each step
entails extra information, and events of increasing complexity, and decreasing probability.

The cumulants, which are a standard probabilistic tool, will be investigated here in the dynamical,
non-equilibrium context. Their precise definition and basic properties are discussed in Chapter 2.

The introduction of cumulants will not entitle us to avoid the BBGKY hierarchy entirely. Un-

fortunately, the equations for (f7),~; are difficult to handle. But the moment-to-cumulant rela-
n n

solution representation of [47] for the correlation functions (F}(t)),,~,. This formula is an expansion

over collision trees, meaning that it has a geometrical representation as a sum over binary tree graphs,

with vertices accounting for collisions. The formula will be presented in Chapter 3 (and generalized

from the finite-dimensional case to the case of functionals over trajectories, which is needed to deal

tion (F),,~; — (f5),,>; is a bijection and, in order to construct f5(t), we can still resort to the same

with space-time processes). For the moment, let us give an idea of the structure of this tree expansion.
The Duhamel iterated solution for FZ(t) has a peculiar characteristic flow: n hard spheres (of diame-
ter €) at time ¢ flow backwards, and collide (among themselves or) with a certain number of external
particles, which are added at random times and at random collision configurations. The following
picture (Figure 1) is an example of such flow (say, n = 3).

/é\ X fA

FIGURE 1

The net effect resembles a binary tree graph. The real graph is just a way to record which pairs of
particles collided, and in which order.

It is important to notice that different subtrees are unlikely to interact: since the hard spheres are
small and the trajectories involve finitely many particles, two subtrees will encounter each other with
small probability. This is a rather pragmatic point of view on the propagation of chaos, and the reason
why FZ(t) is close to a tensor product (if it is so at time zero) in the classical Lanford argument.
Observe that, in this simple argument, we are giving a notion of dynamical correlation which is purely

2. Cumulant type expansions within the framework of kinetic theory appear in [9, 57, 50, 29, 31].
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geometrical. Actually we will use this idea over and over. Two particles are correlated if their generated
subtrees are connected, as represented for instance in the following picture (Figure 2).

/

FIGURE 2

The event in Figure 2 has ‘size’ t/u. (the volume of a tube of diameter ¢ and length ¢). In Chapter
4, we will give a precise definition of correlation (connection) based on geometrical constraints. It
will be the elementary brick to characterize f£(t) explicitly in terms of the initial data. The formula
for f2(t) (Section 4.4) will be supported on characteristic flows with n particles connected, through
their generated subtrees (hence of expected size (¢/u.)""1). In other words, while FE projects the
measure on arbitrary groups of particles of size n, the improvement of f; consists in restricting to
completely connected clusters of the same size.

With this naive picture in mind, let us briefly comment again on information, and irreversibility. One
nice feature of the geometric analysis of dynamical correlations is that it reflects the transition from
a time-reversible to a time-irreversible model. In [11] we identified, and quantified, the microscopic
singular sets where F does not converge. These sets are not invariant by time-reversal (they have a
direction always pointing to the past, and not to the future). Looking at FZ(t), we lose track of what
happens in these small sets. This implies, in particular, that Theorem 1 cannot be used to come back
from time ¢ > 0 to the initial state at time zero. The cumulants describe what happens on all the
small singular sets, therefore providing the information missing to recover the reversibility.

At the end of Chapter 4, we give a uniform estimate on these cumulants (Theorem 4), which is the
main advance of this paper. This L!-bound is sharp in € and n (n-factorial bound), roughly stating
that the unscaled cumulant decays as (t/uc)" 'n"~2. This estimate is intuitively simple. We have
given a geometric notion of correlation as a link between two collision trees. Based on this notion, we
can draw a random graph telling us which particles are correlated and which particles are not (each
collision tree being one vertex of the graph). Since the cumulant describes n completely correlated
particles, there will be at least n — 1 edges, each one of small ‘volume’ t/u.. Of course there may
be more than n — 1 connections (if the random graph has cycles), but these are hopefully unlikely
as they produce extra smallness in . If we ignore all of them, we are left with minimally connected
graphs, whose total number is n*~2 by Cayley’s formula. Thanks to the good dependence in n of these
uniform bounds, we can actually sum up all the family of cumulants into an analytic series, referred
to as ‘cumulant generating function’ (coinciding with formula (1.4.5)).

The second central result of this paper, stated in Chapter 5 (Theorem 5), is the characterization
of the rescaled cumulants in the Boltzmann-Grad limit, with minimally connected graphs. Using
this minimality property, we derive a Hamilton-Jacobi equation for the limiting cumulant generating
function, which is our ultimate point of arrival (allowing us, in particular, to characterize the covariance
of the fluctuation field and the large deviation functional).

The rest of the paper is devoted to the proofs of our main results.
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Chapter 6 proves Theorem 2. Here, the uniform bounds of Theorem 4 are considerably better than
what is required, and the proof amounts to looking at a characteristic function living on larger scales.
Indeed a simple expansion shows that the characteristic function of the fluctuation field is determined,
at leading order, by ff, (u;% f&)n>2 so that only the first two cumulants contribute to the limit.
This proves the Gaussian character of the process (implying in particular the Wick Theorem for the
moments of the limiting field). The more technical part of the proof concerns the tightness of the
process for which we adapt a Garsia-Rodemich-Rumsey’s inequality on the modulus of continuity, to
the case of a discontinuous process.

In Chapter 7 we prove Theorem 3, and actually even a slightly more general statement. Our purpose
is to show that the cumulant generating function obtained in Chapter 5 is dual, through the Legen-
dre transform, to a large deviation rate function. Restricting to the class R, 1 of observables, this
rate functional can be identified with the one predicted in the literature, based on the analogy with
stochastic dynamics.

Finally, Chapters 8 and 9 are devoted to the proof of Theorems 4 and 5, respectively. We encounter
here a combinatorial issue. The number of terms in the formula for f2(¢) grows, at first sight, badly
with n, and cancellations need to be exploited to obtain a factorial growth. At this point, cluster
expansion methods [64] (summarized in Chapter 2), applied to the collision trees, enter the game.
The decay (t/u.)"~* follows instead from a geometric analysis on hard-sphere trajectories with n — 1
connecting constraints, in the spirit of previous work [9, 11, 57].

Many different types of PDEs appear in this text, which are all solved, locally in time, by an application
of an abstract Cauchy-Kovalevskaya theorem in the spirit of Nishida [45]. The statement of the
theorem, as well as various applications, are provided in the Appendix.

1.6. Remarks, and open problems

We conclude with a few remarks on our results.

— To simplify our proof, we assumed that the initial datum is a quasi-product measure, with the
minimal amount of correlations (only the mutual exclusion between hard spheres is taken into
account). This assumption is useful to isolate the dynamical part of the problem in the clearest
way. More general initial states could be dealt with along the same lines (see [68, 57]). However
the cumulant expansions would contain more terms, describing the deterministic (linearized)
transport of initial correlations.

— Similarly, fixing only the average number of particles (instead of the exact number of particles)
allows to avoid spurious correlations. We therefore work in a grand canonical setting, as is
customary in statistical physics when dealing with fluctuations. Notice that fixing N' = N
produces a long range term of order 1/N in the covariance of the fluctuation field. Note also
that the cluster expansion method, which is crucial in our analysis, is developed (with few
exceptions, see [59] for instance) in a grand canonical framework [55].

— Our results could be established in the whole space R?, or in a parallelepiped box with periodic
or reflecting boundary conditions. Different domains might be also covered, at the expense
of complications in the geometrical estimates of dynamical correlations (see [27, 24, 48] for
instance).
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— We do not deal with the original BBGKY hierarchy of equations, which was written for smooth
potentials, but always restrict to the hard-sphere system. It is plausible that our results could
be extended to smooth, compactly supported potentials as considered in [28, 56] (see [2] for a
fast decaying case), but the proof would be considerably more involved.

— At thermal equilibrium, we expect Theorem 2 to be true globally in time: see [9] for a first step

in this direction 4.
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CHAPTER 2

COMBINATORICS ON CONNECTED CLUSTERS

This preliminary chapter consists in presenting a few notions (well-known in statistical mechanics)
that will be essential in our analysis: the content of this chapter is classical, but proofs are given for
completeness and to prepare the less familiar reader to some of the combinatorial notions and techniques
used in this article. We present in particular cumulants, and their link with exponential moments as
well as with cluster expansions. We conclude the chapter with some combinatorial identities that will
be useful throughout this work.

2.1. Generating functionals and cumulants

Let h : D — R be a bounded continuous function. We shall use the functional notation

(2.1.1) Fe, (h®") = / dZy FE(t, Za)h(21) .. h(zn)

n

(see formula (3.3.2) below for a generalization) and

P> = set of partitions of {1,...,n} into s parts ,
with
S
JEPZ:O':{UD...,O’S}, ‘O’i‘zlﬁli, Zl‘ii:n.
i=1

The moment generating functional of the empirical measure (1.2.5), namely E. (exp (mf (h))) is related

to the rescaled correlation functions (1.1.10) by the following remark. We recall that

N
(2.1.2) Ea(exp (ﬂf(h))) =E. lexp (ui Z h(zf(t)))] .

e

Proposition 2.1.1. — We have that

(2.1.3) Eg(exp (wf(h))) =1+ i /:TT Fe, ((eh/“E - 1)®">

if the series is absolutely convergent.
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Proof. — Starting from (2.1.2), one has

> e ((rim)") = Zk,ZZu"“E( > hE0)" b (0))

n=1ceP} 11,000
15700, 7L
1 k
3 PIPIYETE [ dZuF Zoh)™ )
k>1 """ n=loePy b

where in the last equality we used (1.1.11). On the other hand for fixed n

i D= T ¥ (D(’t;“)---(“1;;;;‘“"‘2>ﬁh<z»“

k>n 7 oePpi=1 E>n 0 kpeeerp>1 i=1
E/m:k
7 1 n n-b B 1 n (56)/ e
LTI M LT ().
i=1r;>1 i=1
Therefore
g n I3 1 = 4
E. (exp(ﬂt(h)>) :1+Z“s/ dZ, F(t, Z,) H—H( eh=)/ne 1 ) :
n>1 =1
which proves the proposition. O

The moment generating functional is just a compact representation of the information coded in the
family (£5(t)),>;- After the Boltzmann-Grad limit y. — oo, the right-hand side of (2.1.3) reduces

e 1 n
to Z = ( / f(t)h) = exp (/f(t)h), i.e. to the solution of the Boltzmann equation.
n!
n=0

As discussed in the introduction, our purpose is to keep a much larger amount of information. To this
end, we study the cumulant generating functional which is, by Cramér’s theorem, an obvious candidate
to reach atypical profiles [75]. Namely, we pass to the logarithm and rescale as follows:

(2.1.4) As(eh) = L log E. (exp (us Wf(h))) = i1ogI[-EE(exp (ih(zf(t)))) .

He He

The first task is to look for a proposition analogous to the previous one. In doing so, the following
definition emerges naturally, where we use the notation:

o]

(2.1.5) Go, =G0, |(Zs,), Go=]]Go,
=1
for o0 = {01,...,0:} € P;.
Definition 2.1.2 (Cumulants). — Let (Gy)n>1 be a family of distributions of n variables invariant

by permutation of the labels of the variables. The rescaled cumulants associated with (G )p>1 form the
family (gn)n>1 defined, for alln > 1, by

(2.1.6) gn = p2 122 P s -G, .

s=1 ocPs
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The scaling factor 2! (although unnecessary in this chapter) is introduced for later convenience, and
will ensure that the cumulants are of order 1 in e.

We then have the following result, which is well-known in the theory of point processes (see [21]).

Proposition 2.1.3. — Let (f5)n>1 be the family of rescaled cumulants associated with (F7 )n>1 We
have
> 1 n
- 1 ) 7
IR G
if the series is absolutely convergent.

Proof. — Applying Proposition 2.1.1 to h in place of h/u., expanding the logarithm in a series and
using Definition 2.1.2, we get

| R L P
g _ [ g
= logE. (exp (ug 5 (h))) = nz::l Tg Z p_” E5, (e —=1)®Pe)
_ i (_1)n71 Z MP1+ +Pn H t )®pz)
pe,
He n=1 " P1s--sPn
o0 P

N HE 3 Z( )l — 1)) 1:[ e — 1)@P)

p=1 n=1ocePr
=1 ®p
S (4 -07)

In the third equality, we used that the number of partitions of {1,...,p} into n sets with cardinals
P1y- .., Pn 1S given by

L (p\(p—n P—P1— = Pn-i1 1 p!
2.1.7 P(py,....p _< >< S
@L17) @ =5 pi)\ Do Pn nl pr! - pn!
where the factor n! arises to take into account the fact that the sets of the partition are not ordered.
This proves the result. O

Note that cumulants measure departure from chaos in the sense that they vanish identically at or-
der n > 2 in the case of i.i.d. random variables.

2.2. Inversion formula for cumulants

In this section we prove that the cumulants (g, ) associated with a family (G,,) in the sense of Defini-
tion 2.1.2, encode all the correlations, meaning that Gy, can be reconstructed from (g )r<n for alln > 1.
More precisely, the following inversion formula holds.

Proposition 2.2.1. — Let (Gp)n>1 be a family of distributions and (gn)n>1 its cumulants in the
sense of Definition 2.1.2. Then the map from (G )n>1 to its cumulants (gn)n>1 s a bijection and, for
each n > 1, the distribution G,, can be recovered from the cumulants (gi)k<n by the inversion formula

(2.2.1) Vn>1, Z > oz g,

s=1 a'G'P&

Equations (2.2.1) and (2.1.6) are equivalent definitions of (gn)n>1-
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Proof. — Let us check that

G, —(n l)g +ZM (n— S)chf'

oc€Ps
Replacing the cumulants g, by their definition, we get
n lojl
= “(n=s)g, Yo~k —
D 9D SV 35 30 | (D S SRCC RIS )
s=2 oePs s= 20’6’P5 j=1 _7_1’{ 677 ]

S
Using the Fubini Theorem, we can index the sum by the partitions with r := Z k; sets and obtain
j=1

n T S
D IDILAOIDIIC il | (IR
r=2pePy s=2 wePS i=1
Note that the partition ¢ in the definition of A,, can be recovered as
Vi<s, o; = U pj-
JEw;

Using the combinatorial identity

ZZ glazlfl)'*o

k=1oecPk
(see Lemma 2.5.1 below for a proof), we find that
Z Yo 0 [Tl = D= = (=1 = 1)
s=2 wePs i=1
hence it follows that
=33 G = ) = = Vg + G
r=2 pePr

where the last equality follows from the definition of g,,. Similarly, (2.2.1) = (2.1.6) can be verified by
induction on n. This completes the proof of Proposition 2.2.1. O

2.3. Clusters and the tree inequality

We now prove that the cumulant of order n is supported on clusters (connected groups) of cardinality n.
We shall consider an abstract situation based on a “disconnection” condition, the definition of which
may change according to the context.

Definition 2.3.1. — A connection is a commutative binary relation ~ on a set V:
r~y, z,yeV.

The (commutative) complementary relation, called disconnection, is denoted ¢, that is x o y if and
only if © ~ y is false.
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Consider the indicator function that n elements {n,...,7,} are disconnected
o, (nla e 777n) = H 1"1176773' :
1<i#j<n

For n =1, we set @ (771) =1.

The following proposition shows that the cumulant of order n of ®,, is supported on clusters of length n,
meaning configurations (71, ...,7,) in which all elements are linked by a chain of connected elements.
Before stating the proposition let us recall some classical terminology on graphs. This definition, as
well as Proposition 2.3.3 and its proof, are taken from [40].

Definition 2.3.2. — Let V be a set of vertices and E C {{v,w}, vweV, v# w} a set of edges.
The pair G = (V, E) is called a graph (undirected, no self-edge, no multiple edge). Given a graph G
we denote by E(G) the set of all edges in G. The graph is said connected if for all v,w € V, v # w,

there exist vg = v,v1, V2, ...,V = w such that {v;_1,v;} € E foralli=1,...,n.

We denote by Cy the set of connected graphs with V' as vertices, and by C,, the set of connected graphs
with n vertices when V.= {1,...,n}. A minimally connected, or tree graph, is a connected graph
with n—1 edges. We denote by Ty the set of minimally connected graphs with V' as vertices, and by Ty,
the set of minimally connected graphs with n vertices when V.= {1,...,n}.

Finally, the union of two graphs G = (V1, E1) and Gy = (Va, E2) is Gy UGe = (V1 U Vs, Ey U Es).

The following result was originally derived by Penrose [54].

Proposition 2.3.3. — The (unrescaled) cumulant of ®,, defined as in Definition 2.1.2 is equal to

(2.3.1) Sﬁn(nlwuann) = Z H (_1?7i~77j)'

GeCn {i,j}€E(G)

Furthermore, one has the following “tree inequality”

(2.3.2) ENCTS I ES D [ [ S

TET, {i,j}€E(T)

Proof. — The first step is to check the representation formula (2.3.1) for the cumulant ¢,. The
starting point is the definition of ®,,

o, (771, s 77771) = H (1 - 1”7i"’77j) = Z H (_1m~77]-) ’
1<i#j<n G {i.j}eE(G)
where the sum over G runs over all graphs with n vertices. We then decompose these graphs into
connected components and obtain that

UREEARS 3D 3 1 { D SR | QT

s=10€Ps k=1 \Gr€Co, {i,j}EE(Gy)
By the uniqueness of the cumulant decomposition as given in Proposition 2.2.1 (without the rescaling),
we therefore find (2.3.1).
The second step is to compare connected graphs and trees. This is achieved by defining a tree partition

scheme, i.e.a map 7 : C, — T, such that for any T € T, there is a graph R(T) € C,, satisfying
' ({T})={GeC, : E(T) C E(G) C E(R(T))}.
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Penrose’s partition scheme is obtained in the following way. Given a graph G, we define its image T
iteratively starting from the root 1

— the first generation of T' consists of all i such that {1,i} € G; these vertices are accepted and

labeled in increasing order t1,1,...,¢1,r;

— the ¢-th generation consists of all ¢ which are not already in the tree, and such that {t,_1 ;,4}
belongs to E(G) for some j € {1,...,r4_1}; these vertices are labeled in increasing order
of j=1,...,7¢_1, then increasing order of .

The procedure ends with a unique tree T' € T,,. In order to characterize R(T), we now investigate
which edges of G have been discarded. Denote by d(¢) the graph distance of the vertex i to the root
(which is just its generation). Let {i,j} € E(G) \ E(T) and assume without loss of generality that
d(i) < d(j). By construction d(j) < d(i) + 1. Furthermore, if d(j) = d(¢) + 1, the parent ¢’ of j in
the tree is such that ¢/ < ¢. Therefore F(G) \ E(T) is a subset of the set E'(T) consisting of edges
within a generation (d(i) = d(j)), and of edges towards a younger uncle (d(j) = d(¢) + 1 and ¢/ < 7).
Conversely, we can check that any graph satisfying E(T) C G C E(T) U E'(T) belongs to 7~ 1({T}).
We therefore define R(T') as the graph with edges E(T) U E'(T).

The last step is to exploit the non trivial cancellations between graphs associated with the same tree.
There holds, with the above notation,

Z H (_1771:~le) = Z Z H (_1'flsz)

GeCn, {i,j}€E(G) TeT, Gen—1(T) {i,j}€E(G

Z Lyinn; ) Z H Lyi~n,)

TETn {Z,j}EE E'CE/(T) {i,j}€E’

z : "71 "”7]

TET, {Z,j}EE

1 17]1""773')
{w}eE’(T)

The conclusion follows from the fact that (1 lmwm . The proposition is proved. O]

2.4. Number of minimally connected graphs

The following classical result will be used in Chapter 8.

Lemma 2.4.1. — The cardinality of the set of minimally connected graphs on n vertices with degrees
(number of edges per vertex) of the vertices 1,...,n fized respectively at the values dy,...,d, is
(n —2)!
2.4.1 ’{T%zﬂ;: me):dh.”,¢xT):dnH::Ajf—————~
(241 T, (@ - 1!

Before proving the lemma, let us notice that it implies Cayley’s formula |7,,| = n"~2. Indeed the graph
is minimal, so there are exactly n — 1 edges hence (each edge has two vertices) the sum of the degrees
has to be equal to 2n — 2. Thus

n—2
(n —2)! (n —2)! "
Tnl = " 7 A M 4.1 1 :
7.1 Z ’ Hi:l(di - 1! dl: Hz  di (,Z_; >
1<d;<n—1 0<d;<n—2



2.5. COMBINATORIAL IDENTITIES 23

Proof. — The lemma can be proved by induction. For n = 2 the result is trivial, so we suppose to have
proved it for the set 7,904 .= {T € T, | dy(T) = di,...,dn(T) = d,}, for arbitrary dy,...,d,,
and consider the set le’ ~4n+1 Gince there is always at least one vertex of degree 1, we can assume
without loss of generality that d,,+1 = 1. Notice that, if the vertex n+ 1 is linked to the vertex j, then
necessarily d; > 2. We therefore compute the number of minimally connected graphs on n vertices
with degrees dy,...,d;_1,d; —1,d;t1,...,dy, and sum then over j (all the ways to attach the vertex
n+ 1 of degree 1). This leads to

n

dl, dois (n—2)!
| |7Z(dj—2)!ni7gj(di_l)!7

Jj=1
hence
Tt ___(1=2) ’il(d N ]
+1 Hn+l(d 71) J 71‘[;74 1(d _1)|
having used again Z?ill dj =2(n+1-1). O

2.5. Combinatorial identities

The following combinatorial identities have been used in the previous sections.

Lemma 2.5.1. — For n > 2 there holds

(2.5.1) Z S (=Dkk-11=0,

k=1oecPk

(2.5.2) Z > (- H (|og] =)' =0.
=1

k=1 cePk

Proof. — From the Taylor series of x +— log (exp(x)), we deduce that

S (—1)* 1
Vn > 2, Z Z Tm:o.

Combining (2.1.7) and the previous identity, we get

= —1)k 1 "L (=1)F k!
0=> 2 (k:) él!...ék!:Z(k) D tPalli )

k=1414-- -‘rék—n k=1 b1+l =n

n'z kE—1)Pk

and this completes the first identity (2.5.1).

From the Taylor series of z — exp (log(1 + z)), we deduce that

Vn > 2 (=1* =0
n>2, Z > o

k=1l detlp=n L
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Combining (2.1.7) and the previous identity, we get

~ 1 -DE 1
0=> 2 Ei...)fkm;oepk(l)kn(lml)!

and this completes the second identity (2.5.2).

The lemma is proved.



CHAPTER 3

TREE EXPANSIONS OF THE HARD-SPHERE DYNAMICS

Here and in the next chapter, we explain how the combinatorial methods presented in the previous
chapter can be applied to study the dynamical correlations of hard spheres. The first steps in this
direction are to define a suitable family describing the correlations of order n, and then to obtain a
graphical representation of this family which will be helpful to identify the clustering structure.

3.1. Space correlation functions

For the sake of simplicity, we start by describing correlations in phase space. Recall that the n-particle
correlation function Fg = FZ(t, Z,,) defined by (1.1.10) counts how many groups of n particles are, in
average, in a given configuration Z,, at time ¢: see Eq. (1.1.11).

Let us now discuss the time evolution of the correlation functions: by integration of the Liouville
equation (1.1.3), we get that the family (F?),>1 satisfies the so-called BBGKY hierarchy (going back
to [18]) :

(3.1.1) OF: +V, Vx, Fo=C5, 1 Foy in D

n

with specular boundary reflection
(312) VZ, € 8D5L+<Z>])7 Fﬁ(ta Zn) = F’IEL(t7Z7,”Li’j)7

where Z;\i,’j differs from Zy only by (1.1.2). The collision operator in the right-hand side of (3.1.1)
comes from the boundary terms in Green’s formula (using the reflection condition to rewrite the gain
part in terms of pre-collisional velocities):

n

€ 5 o § i,€ 5
Cn,n+1Fn+1 T Cn,n—i—anJrl

i=1

with

(Crtwin Fra) (Zn) = / 2 (Z0 i)+ e, w') (w = v1) - w) | dewdu
(3.1.3)
—/F§+1(Zn,xi + Ew,w)((w —v;) -w)i dwdw ,

where (v}, w’) is recovered from (v;, w) through the scattering laws (1.1.2), and with the notation

(3.1.4) ZT@ = (21, ey Zim1s Zidly oo s 2n) -
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Note that the collision operator is defined as a trace, and thus some regularity on F; is required to
make sense of this operator. The classical way of dealing with this issue (see for instance [28, 66]) is
to consider the integrated form of the equation, obtained by Duhamel’s formula

t
Fi() = S3OF + [ it —0)C P (bt
0

denoting by S¢ the group associated with free transport in D¢ with specular reflection on the bound-
ary 0D;,.

Iterating Duhamel’s formula, we can express the solution as a sum of operators acting on the initial
data :

(315) Z Qn n+m Fﬁgﬁn ?

m>0

where we have defined for ¢t > 0

fL,n+m Frigm . / / / t - tl)cn n+1S€+1(t1 2 )0781+1,n+2
S8 (tm)FE0, dty, ... dty

n+m n+m

(3.1.6)

= S0 P20

n+m-*

and Q5 (1) F0 := SS(t)F2°, Q5 i (0)FEY

n n,n+m n+m °

3.2. Geometrical representation with collision trees

The usual way to study the Duhamel series (3.1.5) is to introduce “pseudo-dynamics” describing the
action of the operator @7, ,,;,,. In the following, particles will be denoted by two different types of
labels: either integers ¢ or labels ix (this difference will correspond to the fact that particles labeled
with an integer ¢ will be added to the pseudo-dynamics through the Duhamel formula as time goes
backwards, while those labeled by ix are already present at time t). The configuration of the particle
labeled i will be denoted indifferently z} = (27, v}) or 2z = (Tix, Vix)-

19 Y

Definition 3.2.1 (Collision trees). — Given n > 1,m > 0, an (ordered) collision tree a € A,
is a family (a;)1<i<m with a; € {1,...,i =1} U {1l%,...,nx}.

Note that |A,m|=n(n+1)...(n+m —1).

Given a collision tree a € A, ,, we define pseudo-dynamics starting from a configuration 7} =
(xF,v})1<i<n In the n-particle phase space at time ¢ as follows.

R

Definition 3.2.2 (Pseudo-trajectory). — Given Z} € D5, m € N and a € A, ,,, we consider a
collection of times, angles and velocities (Ty,, Qpm, Vin) = (ti, wi, Vi)1<i<m Satisfying the constraint

0<tm < <ti<t=tp.

We define recursively pseudo-trajectories as follows:
— in between the collision times t; and t;41 the particles follow the (n + i)-particle (backward)
hard-sphere flow;
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— at time t;r, particle i is adjoined to particle a; at position x4, +cw; and with velocity v;, provided
it remains at a distance larger than & from all the other particles. If (v; — va, (t1)) - wi > 0,
velocities at time t; are given by the scattering laws

Va, (t;) = Va, (t;r) - ((vai (t;r) - vi) 'wi) Wi
vi(t7) == vi + ((va, (t7) — vi) - w;) w; .

We denote by V5, ,,, = V5 . (t) (we shall sometimes omit to emphasize the number of created particles

(3.2.1)

and denote it simply by W) the so constructed pseudo-trajectory, and by Zy u(7) = (Z3(7), Zm (7))
the coordinates of the particles in the pseudo-trajectory at time 7 < t,,. It depends on the param-
eters a, 2%, Ty Qm, Vin, and t. We also define GE,(a, Z) to be the set of parameters (T, Qm, Vin)
such that the pseudo-trajectory ezists up to time 0, meaning in particular that on adjunction of a new
particle, its distance to the others remains larger than €. For m = 0, there is no adjoined particle and
the pseudo-trajectory U5, o(1) = Zno(0, Zy;,7) for 7 € (0,t) is the n-particle (backward) hard-sphere
flow.

For a given time t > 0, the sample path pseudo-trajectory of the n (x—labeled) particles is denoted
by Z;((0,1]).

Remark 3.2.3. — We stress the difference in notation: “z;(7)” in the above definition denotes the
configuration of particle i in the pseudo-trajectory while the real, N -particle hard-sphere flow is de-
noted Z5,(7) as in (1.1.7): particle i has configuration z:(7) in the hard-sphere flow.

With these notations, the representation formula (3.1.5) for the n-particle correlation function can be
rewritten as

m

322  Fnz)=Y Y AT,y A Vi, (H (0; — va, (1)) (,u) F2O, (050,

m>0 a€Ap, m Gr(a,23) i=1
where

dTm = dtl e dtm 10§tm§---§t1§t ,

we have denoted by (F5°),>1 the initial rescaled correlation function, and W%’ is the configuration
at time 0 associated with the pseudo-trajectory W7 ... Note that the variables w; are integrated over
spheres and the scalar products take positive and negative values (corresponding to the positive and
negative parts of the collision operators). Equivalently, we can introduce decorated trees (a, s1,. .., Sm)
with signs s; = + specifying the collision hemispheres: denoting by .Aim the set of all such trees, we
can write Eq. (3.2.2) as

(3'2'3) FZ(t7 Z’Z) = Z Z /ga (0.2 )ddedeVm (ﬁsl ((Uz — Va; (tz)) 'wi)Jr) FS?‘rm (\Ilfz(,)m) ’
m(a, 25 =1

m20 ge AE

n,m

where the pseudo-trajectory is defined as before, with the scattering (3.2.1) applied in the case s; = +
and the creation at position x; + s;ew;.

3.3. Averaging over trajectories
To describe dynamical correlations more precisely, we are going to follow the particle trajectories. As

noted in Remark 3.2.3, pseudo-trajectories provide a geometric representation of the iterated Duhamel
series (3.1.5), but they are not physical trajectories of the particle system. Nevertheless, the probability
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e A N

FIGURE 3. An example of pseudo-trajectory with n = 6, m = 10. In this symbolic picture,
time is thought of as flowing upwards (at the top we have a configuration Zg, at the bottom
vg 10) The little circles represent hard spheres of diameter €. Notice that several collisions
are possible between the adjunction times T3,. These collisions are highlighted by blue circles.
For simplicity, the hard spheres have been drawn only at their first time of existence (going
backwards), and at collisions between adjunction times.

on the trajectories of n particles can be derived from the Duhamel series, as we are going to explain
now.

For a given time ¢ > 0, the sample path of n particles labeled 41 to 4,, among the N hard spheres, is
denoted (2, ([0,?]),...,25 ([0,%])). In the case when i; = j for all 1 < j < n we denote that sample
path by Z:([0,¢]). As ZZ has jumps in velocity, it is convenient to work in the space D, ([0,t]) of
functions that are right-continuous with left limits in D™. This space is endowed with the Skorokhod
topology. In the case when n = 1 we denote it simply by D([0,¢]).

Let H,, be a bounded measurable function on D,,([0,¢]) (the assumption on boundedness will be relaxed
later). We define

Fr 0. (H. / az; y " > / AT, dQ,n, dViy,

m>0 EAi s(a,Z2)

X H (H Si — Vaq; tZ)) ) )Fiim(\l/fgm) :

This formula generalizes the representation introduced in Section 3.2 in the sense that, in the case
when H,(Z%([0,t])) = hn(Z):(t)), we obtain

(3.3.1)

FE o (Hn) = / FE(t, Z2)ha(Z5)dZ

More generally, in analogy with (1.1.11), Eq.(3.3.1) gives the average (under the initial probability
measure) of the function H,, as stated in the next proposition.

Proposition 3.3.1. — Let H,, be a bounded measurable function on D, ([0,t]). Then

B 2 Halah (0.1]. 0, (0.4)) = W2 ().

(3.3.2) A
iy Fino ik
Proof. — To establish (3.3.2), we first look at the case of a discrete sampling of trajectories

Hn(Z:,(10, 1)) = H RCACH)
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for some decreasing sequence of times © = (6;)1<;<p in [0,t], and some family of bounded continuous
functions (hﬁ?) with hg) : D™ — R.
1<i<p

First step. To take into account the discrete sampling H,,, we proceed recursively and define for any
T € (0,1

Hy(25,(10,0) := | [ w0 (Z5000) | | T] #9(Z5(7)

0, <t 0;>7
In particular, for 7 <6, < --- < 6y, the function H,, ; depends only on the density at time 7 so that

B Hur(, (0.0) 2, (0.0)) =2 [ Filr2, Hh (2:)d2;.

U1,000n

ij#ik,J#k
We then define the biased distribution
P
Fi(r, Z;) = Fi(r, Z;) [ [ h9)(Z;) for 7€ [0,6,)
j=1

and then extend this biased correlation function F£(7, Z*) on [0,1] so that

B X0 G (0o, (0) = [ Bl Zpa

i Fini 7k

In order to characterize F£(7), we have to iterate the Duhamel formula (3.1.5) in time slices [0y 1, 6;]
as in the proof of Proposition 2.4 of [10] (see also [6, 9]). More precisely we start by writing the
Duhamel formula (3.1.5) on [, ], and bias the data at time 6] by A, This gives, with the notation
introduced in Definition 3.2.2 for the pseudo-trajectories Zy, ., (7),

FE 2 Z* Z Q” n+k1 ) ~7§+k1 (afv Zn,kl (01))
k1>0
= Z sz,n+k1 (t )h (Z* (91)) n+kiq (91 ’ ZTL k1 (91))

E1>0

Similarly
F5+k1 (91_’ Zn,k1 Z Qn+k1,n+k1+k2 (91 - 92)h(2)(z* (02)) n+ki+ko (92 s Zn Jk1+ko (62))
k2>0
We obtain by iteration that
Fi(t) = > Qi (= 0D (Z5(00) Q5 s oty 10 (61 — 02)

(3.3.3) kit tkpy1>0

o h%p)(Z;(op))QfL+k1+~~'+kp,n+k’1+~~~+kp+1 (0 )Fn+k1+ Akpt1 0
which leads to (3.3.2) for discrete samplings.

Second step. More generally any function H,, on (D™)P can be approximated in terms of products of
functions on D", thus (3.3.3) leads to

EE( Z H, (ZZ ([07 tD7 s ,an ([07 t]))) = /’L? Z Qfx,n—i—kl (t - el)QfH-k],n-‘rkl—i-kg (91 - 92)
U1 yeenslin k1+---+kp+120
iy Einirk

etk k4o kg Op) Ha (Z5(01), - 20 Op) Flh, 4y
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where the Duhamel series is weighted by the n-particle pseudo-trajectories at times 61,. .., 0,.

Third step. For any 0 < 6, < --- < 01 < t, we denote by 7y, . g, the projection from D, ([0,¢])
o (D™)P

(3.3.4) 70,.....0,(Zn([0,2])) = (Zn(01), - .., Zn(6y)) -

The o-field of Borel sets for the Skorokhod topology can be generated by the sets of the form 7T9 ..... 0, A
with A a subset of (D™)?P (see Theorem 12.5 in [8], page 134). This completes the proof of PI‘OpOSl—
tion 3.3.1. O

To simplify notation, we are going to denote by U¢ the pseudo-trajectory during the whole time
interval [0, t], which is encoded by its starting points Z* and the evolution parameters (a, Ty, Qm, Vin).
Similarly we use the compressed notation 1ge for the constraint that the parameters (Th,, Qm, Vin)
should be in GZ, (a, Z) as in Definition 3.2.2. The parameters (a, Tp,, Qm, Vi) are distributed according

to the measure
m

(3.3.5) dp(P:) = Z Z AT dQ dVi 1< (P5) H (sk ((vk — vay, (tr)) 'wk>+> .

™ oac AL, k=1

The weight coming from the function H,, will be denoted by
(3.3.6) H(TS) = Hn(Z:;([O,t])) .

Formula (3.3.1) can be rewritten

(3.3.7) FS04( /dZ* /dﬂ (W5) H(W5,) FO(U50),

and F=(U:") stands for the initial data evaluated on the configuration at time 0 of the pseudo-
trajectory (containing n + m particles).

The series expansion (3.3.7) is absolutely convergent, uniformly in €, for times smaller than some Ty >
0: this determines the time restriction in Theorem 1 (see Remark 1.2.2).



CHAPTER 4

CUMULANTS FOR THE HARD-SPHERE DYNAMICS

To understand the structure of dynamical correlations, we are going to describe how the collision
trees introduced in the previous chapter (which are the elementary dynamical objects) can be grouped
into clusters. We shall identify three different types of correlations (treated in Section 4.1, 4.2, 4.3
respectively). Our starting point will be Formula (3.3.7). We will also need the notation W& = \I/?L...,n}’
where a pseudo-trajectory is labeled by the ensemble of its roots.

Notice that the two collision trees in ‘11?1,2} do not scatter if and only if \Ilil} and \IJ?Q} keep a mutual
distance larger than €. We shall then write the non-scattering condition as the complement of an
overlapping condition, meaning that \IJ%} and \11?2} reach a mutual distance smaller than e (without
scattering with each other). The scattering, disconnection and overlap situations are represented in
Figure 4 (recall also Figure 3), together with some nomenclature which is made precise below.

1% D5 1x S 1% e
external recollision . . overlap
disconnection
]. ~p 2 ]- ~o 2
FIGURE 4

4.1. External recollisions

A pseudo-trajectory WS is made of n collision trees starting from the roots Z%. These elementary
collision trees will be called subtrees, and will be indexed by the label of their root. The parameters
(a, Tony Qum, Vi) associated with each collision tree are independent, and can be separated into n subsets.
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The corresponding pseudo-trajectories \11?1}7 . \I!?n} evolve independently until two particles belonging
to different trees collide, in which case the corresponding two trees get correlated. The next definition
introduces the notion of recollision and distinguishes whether the recolliding particles are in the same
tree or not.

Definition 4.1.1 (External/internal recollisions). — A recollision occurs when two pre-existing
particles in a pseudo-trajectory scatter. A recollision between two particles will be called an external
recollision if the two particles involved are in different subtrees (see Figure 4). A recollision between
two particles will be called an internal recollision if the two particles involved are in the same subtree.

Let us now decompose the integral (3.3.7) depending on whether subtrees are correlated or not. Recall
Definitions 2.3.1 and 2.3.2.

Notation 4.1.2. — We denote by
{.7} ~r {.7/}

the condition: “there exists an external recollision between particles in the subtrees indexed by j and j

/7}

Given XA C {1,...,n}, we denote by A, the indicator function that any two elements of A are connected
by a chain of external recollisions. In other words
(4.1.1) Ay =1 <~ 4G € Cy, H 1{j}~7»{j’} =1.

{50 }EE(G)

Notice that Ay depends only on ¥5. We set My = 1 when |A\| = 1. We extend Ay to zero out-
side G=(Z5). We therefore have the partition of unity

(4.1.2) 1g- (W5) Z > (HmA 1g- (5, )) Dy (A1,. .., N0)

=1 \eP’

where ®1 = 1, and ®y for £ > 1 is the indicator function that the subtrees indexed by A1, ..., A\ keep
mutual distance larger than . ®, is defined on U;G*(Z3).

Using the notation (3.3.7), we can partition the pseudo-trajectories in terms of the external recollisions

FrjonH /dZ*Z > /du (U5)H (%) (me)«m Ay M) FEO(20)

=1 \ePL

There is no external recollision between the subtrees indexed by A1,..., ¢, so the pseudo-trajectories
are defined independently; in particular, assuming from now on that

H, = H®"

with H a measurable function on the space of trajectories D([0,]), the cross-sections, the weights and
the constraint imposed by G¢ factorize

14

®p(A1y .o ) H (W) dp (W) = By (A, .., \r) (HH(\I’ii)du(‘I’ii))

i=1

and we get

(4.1.3)  Fjq(H®") = /dZ*Z Z/ Hdu (w5,) q:A)A\A)¢4(A1,...,A@)F€°(\p§§).

=1 XePt
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The function ®, forbids any overlap between different subtrees A; in (4.1.3). In particular, notice that
@, is equal to zero if [z} — 27| < & for some i # j (compatibly with the definition of F 0 t]) .

Although the subtrees U5 ,..., ¥ in the above formula have no external recollisions, they are not yet
fully independent as their parameters are constrained precisely by the fact that no external recollision
should occur. Thus we are going to decompose further the collision integral.

4.2. Overlaps

In order to identify all possible correlations, we now introduce a cumulant expansion of the constraint ®,
encoding the fact that no external recollision should occur between the different ;.

Definition 4.2.1 (Overlap). — An overlap occurs between two subtrees if two pseudo-particles, one
in each subtree, find themselves at a distance less than € one from the other for some 7 € [0,t] (see
Figure 4).

Notation 4.2.2. — We denote by
)\i ~o )\j

the relation: “there exists an overlap between two subtrees belonging to \; and \; respectively”, and we
denote A\; o Aj the complementary relation. Therefore

(4.2.1) Dy(Ay,.s M) = H Lxiton, -
1<izj<e

The inversion formula (2.2.1) (for unrescaled cumulants) implies that

L
(A M) =D ) 9,

r=1pePy;

denoting
T
Pp = H Pp; -
j=1

The cumulants associated with the partition {Aq,...,A¢} are defined for any subset p; of {1,...,¢} as

lpj

|
(4.2.2) Pp; = D u—1)!,,

u=1 wGP;‘j

where w is a partition in u subparts of p;, and recalling the notation
u
Oy =[[Puis Pu = Py (Aks b € wi).
i=1

Note that as stated in Proposition 2.3.3, the function ¢, is supported on clusters formed by overlapping
collision trees, i.e.

(4.2.3) Cp = > II 1~y

GEC,; {ir,in}€E(Q)
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For the time being let us return to (4.1.3), which can thus be further decomposed as

n L L
@ad)  Foou= [azi 3 0SS [ (TTau(ws) w05 )A,) o, (u)

(=1 xePL r=1 pEP}

By abuse of notation, the partition p can be also interpreted as a partition of {1,...,n}
(4.2.5) Vi<lol, o= N,
1Ep;

coarser than the partition A\. The relative coarseness (4.2.5) will be denoted by

A—=p.

4.3. Initial clusters

In (4.2.4), the pseudo-trajectory is evaluated at time O on the initial distribution FEO(\IIZO). Thus the
pseudo-trajectories {\IJZ], }j<r remain correlated by the initial data, so we are finally going to decompose
the initial measure in terms of cumulants.

Given p = {p1,...,pr} a partition of {1,...,n} into r subsets, we define the cumulants of the initial
data associated with p as follows. For any subset & of {1,...,r}, we set

o]

(4.3.1) =30 () w1 E,

u=1 wepg

where w is a partition of ¢, and denoting as previously
u
0 0 0 0(ge0.
FP=T]F, FY=F0%jcw).
i=1

We recall that \Iff,? represents the pseudo-trajectories rooted in Z;j computed at time 0. They in-
volve m; new particles, so there are |p;| + m; particles at play at time 0, with of course Z§=1(|Pj| +
mj) =n+ 22:1 mj = n+ m. We stress that the cumulant decomposition depends on p (in the same
way as (4.2.2) was depending on A).

Given p = {p1,...,pr}, the initial data can thus be decomposed as

r

FOW) =) > £, with f° = H 120,
=1

s=1locPs
By abuse of notation as above in (4.2.5), the partition o can be also interpreted as a partition
of {1,...,n}
\V/ZS|O.‘7 Ui:Up]'a
Jj€oi
coarser than the partition p. Hence there holds p — o.

We finally get
L T

Foatt®) = a3 3 3 305 [ (TLantws (v )an) o 12

=1 )\e’Pf; r=1 pEP; s=1oc€Ps

T
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The n subtrees generated by Z* have been decomposed into nested partitions A < p < o (see Figure 5).

o1 02

FIGURE 5. The figure illustrates the nested decomposition A — p — o in (4.3.2). The
configuration Z;; at time ¢ is represented by n = 14 black dots. Collision trees, depicted by
grey triangles, are created from each dots and all the trees with labels in a subset A; interact
via external recollisions, forming connected clusters (grey mountains). These trees are then
regrouped in coarser partitions p and o in order to evaluate the corresponding cumulants.
Green clusters A are called forests, blue clusters p are called jungles, and black clusters o are
called initial clusters.

Thus we can write

(4.3.2) Fy o (H / azy > / Hdu (vs.) ‘Ifii)z&xi) 0 f5°.

A,p,o
A= p—o

The order of the sums can be exchanged, starting from the coarser partition o: we obtain

(4.3.3) FSoq(H /dZ*Z 3 H 3 / Hdu (w5,) \Ifii)m&) op 0

s= 106735] 1 A,p

Arproy

where the generic variables A, p denote now nested partitions of the subset o;.

4.4. Dynamical cumulants

Using the inversion formula (2.2.1), the cumulant of order n is defined as the term in (4.3.3) such
that o has only 1 element, i.e. o = {1,...,n}. We therefore define the (scaled) cumulant, recalling
notation (4.3.1),

(4.4.1)

o - [z Y S S S [ Hdu VEH(UE )2 ) 0 S (050 00).
{=1

AePL r=1peEP]
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In the simple case n = 2, the above formula reads

I jo. (H®?) = / az; - / Ap(UT.2)) Ly (23 H (P50, 7 (071 )
_ 2 d \I/E H \IJE 1 FEO \I’EO \IJEO
1T | dn(¥5) H(¥T) |1y~ ) 1y iz
=1

o [T [t i) ] (720wt ) — 7 () 2= (wi3)) }.
=1

where we used (4.1.1), (4.2.3) and (4.3.1). The three lines on the right hand side represent the
three possible correlation mechanisms between particles 1* and 2* (i.e. between the subtrees 1 and 2):
respectively the recollision, the overlap and the correlation of initial data.

More generally, looking at Eq. (4.4.1), we are going to check that f (0., (H®™) is a cluster of order n,
and identify a minimal structure in the spirit as the Penrose partition scheme recalled in Chapter 2.

— We start with n trees which are grouped into ¢ forests in the partition A. In each forest \; we
shall identify |A\;|—1 “clustering recollisions”. These recollisions give rise to Zle(\)\i|—1) =n—{
constraints.

— The ¢ forests are then grouped into r jungles p and in each jungle p;, we shall identify |p;| — 1
“clustering overlaps”. These give rise to Y.._,(|p;| — 1) = £ — r constraints.
— The r elements of p are then coupled by the initial cluster, and this gives rise to r—1 constraints.

By construction n—1=3""_,(|p;] = 1)+ Zle(\)\ﬂ —1)4r—1. The dynamical decomposition (4.4.1)
implies therefore that the cumulant of order n is associated with pseudo-trajectories with n—1 clustering
constraints, and we expect that each of these n — 1 clustering constraints will provide a small factor
of order 1/p.. To quantify rigorously this smallness, we need to identify n — 1 “independent” degrees
of freedom. For clustering overlaps this will be an easy task. Clustering recollisions will require more
attention, as they introduce a strong dependence between different trees.

Let us now analyze Eq. (4.4.1) in more detail. The decomposition can be interpreted in terms of a
graph in which the edges represent all possible correlations (between points in a tree, between trees
in a forest and between forests in a jungle). In these correlations, some play a special role as they
specify minimally connected subgraphs in jungles or forests: this is made precise in the two following
important notions.

Let us start with the easier case of overlaps in a jungle. The following definition assigns a minimally
connected graph (cf. Definition 2.3.2) on the set of forests grouped into a given jungle.

Definition 4.4.1 (Clustering overlaps). — Given a jungle p; = {Ail""”\jmu} and a pseudo-

trajectory W,

(4.4.2) g ~o Ajp)s- s (g ~o Ay, )

such that

we call “clustering overlaps” the set of |p;| — 1 overlaps

{{Aju)\jg}w--,{)\jwflﬂ\j"ml,l}} = E(Tp,)

where T, is the minimally connected graph on p; constructed via the Penrose algorithm. Given a
pseudo-trajectory V5 with clustering overlaps, we define |pil — 1 overlap times as follows: the k-th
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overlap time is
(4.4.3) Tov,k 1= SUp {7’ >0 : 'm‘}lrzl |zg (T) — 2q(T)| < 5} .
q in X
q’ in \I/‘;Jz
Remark 4.4.2. — Contrary to the case of clustering recollisions defined below (Definition 4.4.3),
there is no privileged way of extracting this minimally connected graph, so we choose the Penrose
algorithm (see the proof of Proposition 2.3.1) for simplicity. Remark that the times T,y are not
ordered.

Each one of the |p;| — 1 overlaps is a strong geometrical constraint which will be used in Part III to gain
a small factor ¢/u.. More precisely, in Chapter 8 we assign to each forest A;, aroot zf\jk (chosen among
the roots of \If‘f\jk ). Then, it will be possible to “move rigidly” the whole pseudo-trajectory \Ilijk , acting
just on o:’;jk. It follows that one easily translates the condition of “clustering overlap” into |p;| — 1
independent constraints on the relative positions of the roots. In fact remember that the pseudo-
trajectories \I!ij,c , \Ilij,k do not interact with each other by construction. Therefore Aj, ~, A;; means

that the two pseudo-trajectories meet at some time 7oy > 0 and, immediately after (going backwards),
they cross each other freely. This corresponds to a small measure set in the variable z3 , — xj{jk‘
Tk

Contrary to overlaps, recollisions are unfortunately not independent from one another. For this reason,
the study of recollisions of trees in a forest needs more care. In this case we need to fix the order of
the recollision times. Then we can identify an ordered sequence of relative positions (between trees)
which do not affect the previous recollisions. One by one and following the ordering, such degrees of
freedom are shown to belong to a small measure set. The precise identification of degrees of freedom
will be explained in Section 8.1 and is based on the following notion.

Definition 4.4.3 (Clustering recollisions). — Given a forest \; = {i1,...,i|s,|} and a pseudo-
tragectory WS, we call “clustering recollisions” the set of recollisions identified by the following iterative
procedure.

- The first clustering recollision is the first external recollision in WS, (going backward in time); we
rename the recolliding trees ji,j1 and the recollision time Tiec 1.

- The k-th clustering recollision is the first external recollision in U5 . (going backward in time) such

that, calling j, j;. the recolliding trees, {{j1,71},. .. {jk-dutt = F (G(k)) where G%) is a graph with
no cycles (and no multiple edges). We denote the recollision time Tyec k.

In particular,
(444) Trec,l = ©°° 2Tr6C7|/\i|—1 and {{jly.ji}w--a{j|)\i|—17.j|/)\i\—1}} :E(T)\,)
where T, is a minimally connected graph on A;.

If q,q' are the particles realizing the k-th recollision, we define the corresponding recollision vector by

g (Trec k) = Zq(Trec k)

445 e =
(4.4.5) Wrec,k 6

The important difference between Definition 4.4.3 and Definition 4.4.1 is that we have given an order
to the recollision times in Eq. (4.4.4) (which does not exist in Eq. (4.4.3)).
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From now on, in order to distinguish, at the level of graphs, between clustering recollisions and clus-
tering overlaps, we shall decorate edges as follows.

Definition 4.4.4 (Edge sign). — An edge has sign + if it represents a clustering recollision. An
edge has sign — if it represents a clustering overlap.

Collecting together clustering recollisions and clustering overlaps, we obtain r minimally connected
clusters, one for each jungle. In particular, we can construct a graph G, made of r minimally
connected components. To each e € E(G) ), we associate a sign (+ for a recollision and — for an

overlap), and a clustering time 7¢/4st,

Our main results describing the structure of dynamical correlations will be proved in the third part of
this paper. The major breakthrough in this work is to remark that one can obtain uniform bounds
for the cumulant of order n for all n with a controlled growth. We recall indeed that we expect
each clustering to produce a small factor ¢/u., so that the (scaled) cumulant f£(¢) of order n defined
in (4.4.1) should be bounded in €. Moreover the number of minimally connected graphs with n vertices
n—2

is n"~2 so we expect f<(t) to grow as (Ct)"~!n!. This is made precise in the following theorem, which

[50 1 from which the large
deviation estimates are derived in Chapter 7. The following theorem will be proved in Section 8.2 as

Theorem 10.

provides in particular sharp controls on the cumulant generating function A

Theorem 4. — Consider the system of hard spheres under the initial measure (1.1.6), with fO satis-
fying (1.1.5). Let H : D([0,00]) — R be a continuous function such that
(4.4.6) |HE"(Z,([0,1]))] < exp (an + % sup |Vn(s)|2)

s€10,t]

for some o € R. Define the scaled cumulant f} (, (H®™) by (4.4.1), with the notation (3.3.5). Then
there exists a positive constant C' such that the following uniform a priori bound holds for any t < Ty:

(4.4.7) | fo 0,81 (H®™)| < (Ce*)"(t +¢)

"ot
In particular there is a constant ¢ < 1 depending only on the dimension such that setting H = e — 1,
the series defining the cumulant generating function is absolutely convergent on a time [0, T, ] with T, =

c e’o‘ﬂédﬂ)/Q/Co :

N oo
(448) VE<T., Afy(e") = uilog]EE (exp (Zh(zj([(),t]))) =3 %fﬁ’[o’t]((eh _pyen).
€ i=1 n=1""

Note that (4.4.8) follows easily from the uniform bounds (4.4.7) on the rescaled cumulants, recalling
Proposition 2.1.3.

In the next chapter, we shall prove the existence of the limiting cumulant generating function (Theo-
rem 5) and the form of the limit will be characterized explicitly (Theorem 6). As is known from the
general theory [25, 22, 62] such a result implies upper and lower large deviation bounds, which will
be obtained later on in Chapter 7 (see Sections 7.3.1 and 7.3.2).



CHAPTER 5

CHARACTERIZATION OF THE LIMITING CUMULANTS

Thanks to the uniform bounds obtained in Theorem 4 we expect that, for all n, there is a limit
Inf0.4 (H®™) for ffl’[o)t] (H®™) as pe — oco. Our goal in this chapter is first to obtain a description
of fy0,(H®™) in terms of a series expansion similar to (4.4.1), with a precise definition of the limiting
pseudo-trajectories (see Theorem 5 in Section 5.1 below): the main feature of those pseudo-trajectories
is that they correspond to minimally connected collision graphs.

In Section 5.2 we derive a series expansion for the limiting cumulant generating function (Theorem 6)
which is shown to satisfy a Hamilton-Jacobi equation in Section 5.3 (Theorem 7); the fact that the
limiting graphs have no cycles is crucial for the derivation of this equation.

This Hamilton-Jacobi equation encodes all the dynamical correlations. In particular, the convergence
of the typical density to the Boltzmann equation is recovered from the Hamilton-Jacobi equation in
Section 5.4 and the limit covariance in Section 5.5.

5.1. Limiting pseudo-trajectories and graphical representation of limiting cumulants

In this section we characterize the limiting cumulants f;, 0.4 (H ®n) by their integral representation.
This means that we have to specify both the limiting pseudo-trajectories and the limiting measure.

We first describe the formal limit of (4.4.1). To this end, we start by giving a definition of minimal
pseudo-trajectories associated with cumulants for fixed . Recall that the cumulant ffz,[& 4 (H®™) of
order n corresponds to graphs of size n which are completely connected, either by recollisions, or by
overlaps, or by initial correlations. It will be proved in Chapter 9 that

— clusterings coming from the defect of factorization of the initial data are smaller by a factor
O(e) and thus will not contribute to the limit,

— cycles are created by additional (non clustering) recollisions or overlaps and have a vanishing
contribution in the limit.

Thus only pseudo-trajectories corresponding to minimally connected graphs will be considered in this
section.

Definition 5.1.1 (Minimal cumulant pseudo-trajectories). — Let m > 0. The cumulant
pseudo-trajectory Ve . associated with the minimally connected graph T € T, decorated with edge

n,m
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clust

Stgns (se and the decorated collision tree a € AL, is obtained by fizring Z! and a collection

)GEE(T)’ n,m
of m creation times Ty, in decreasing order, and parameters (L, Vin). The cumulant pseudo-trajectory
s constructed backward according to the following rules. At each step the set of particles follows the

backward free transport until two of them approach at a distance € or we reach a time tj.

At a time ty, a new particle, labeled k, is adjoined at position x4, (tr) + Skewy, and with velocity vy,.
— If s, > 0 then the velocities vy, and vq, are changed to vi(t, ) and ve,(t;) according to the
laws (3.2.1),
— then all particles are transported (backwards) in Dy, ;..
When two particles, say {qe,q.}, touch, we look at the roots j and j' of their respective subtrees.
— Ife={j,7'} is not an edge of T or if this edge has already appeared before in the (backward)
process, then the pseudo-trajectory is not admissible.

clust _ clust __

— Else we have a clustering recollision if s"* = + or a clustering overlap if s = —. We say

that {qe, q.} is a representative of the edge e, and we denote this by {¢e, q.} =~ e. The clustering

time is denoted TS, and the clustering angle can be defined by
lust lust
clust = Lqe (Tg " ) — wqé (Tg " ) c Sdfl .

N €

The pseudo-trajectory is admissible if at time 0 all edges of T have appeared in the construction. We
will order the clustering times, and the edges of T accordingly, and we will denote by (OUS, Qclust)

the collection of clustering times and angles.

Theorem 4 will be proved in Section 8.2 by establishing, in particular, the uniform convergence of the
series expansion (4.4.1) (on the number of created particles m, see (3.3.5)). We thus focus here on a
fixed m and a fixed tree a € AL, .

The clustering constraints provide n — 1 conditions on the roots (z;)1<;<, of the trees, so only one
root will be free. We set this root to be z;. Given (z},v;) and v} as well as collision parame-

ters (a, Ty, Qm, Vin), since the trajectories are piecewise affine one can perform the local change of
variables

(5.1.1) T; € T s (7t elust) € (0,¢) x §771

with Jacobian pz ! ((vg, (75t

€

(5.1.2) pedz;dvi dridv; = dry dvfdv;drgluStdwEI“St ((vg, (TS5 — vy (75M54)) - wSuSt)Jr .

) — vgr (TEMSETY) - welust) .- This provides the identification of measures

We shall explain in Section 8.1 how to identify a good sequence of roots to perform this change of
variables iteratively (see Figure 6).

For each tree a € AT

n,m?

and each minimally connected graph 7' € 7, the cumulant pseudo-trajectories
5, the velocities V¥ at time ¢, the sequence (ge, ¢, )cep() Of clus-

tering particles, the clustering parameters (OSSt, Q¢lust) and the collision parameters (Ty,, Qm, Vin)-

are then reparametrized by the root x

Now let us introduce the limiting cumulant pseudo-trajectories and measure.

Definition 5.1.2 (Limiting cumulant pseudo-trajectories). — Let m > 0. The limiting cumu-
lant pseudo-trajectories WV, ,, associated with the ordered trees T € T,F and a € Aim are obtained by

fizing x) and V',
— for each e € E(T), a representative {qe,q.} ~ e
— a collection of m ordered creation times T,,, and parameters (Qpm, Vin)

— a collection of clustering times and angles (OSSt, Qclust),
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FIGURE 6. On the left figure, two trees (with roots x7,z}) are built independently in the

time interval [7¢,t] and their roots are not fixed a priori. On the right figure, the clustering
condition at time 7. imposes a constraint on the relative position x; — x} of the roots : the
trees are shifted rigidly to satisfy the clustering. This procedure is applied iteratively to
determine all relative positions at time ¢. Only one root, say x;,, has to be prescribed.

At each creation time ti, a new particle, labeled k, is adjoined at position x4, (t;) and with velocity vy, :
— if s, = +, then the velocities vy and v,, are changed to vi(t, ) and ve,(t; ) according to the
laws (3.2.1),
— then all particles follow the backward free flow until the next creation or clustering time.
At each clustering time TS the particles q. and g, are at the same position:

— if se = +, then the velocities vy, and vy are changed according to the scattering rule, with
scattering vector wClust,
— then all particles follow the backward free flow until the next creation or clustering time.

Note that, in Definition 5.1.1, positions X at time ¢ were fixed and clustering conditions were con-
sidered as admissibility constraints, while here the positions X' at time ¢ are not prescribed: they are
determined according to an algorithm devised in Section 8.1.

We can therefore define the limiting measure, with the notation introduced above:

Aptsing 7.0 (Wnm) 1= AT, dQp, AV AV dOSSE dQCSE Hsl — va, (t) - wi) |

(5.1.3)
~ H Z clust ,qu (Tclust) Vg, (Teclust )) . wglust) L

e€E(T) {qe,q. e
We stress the fact that this measure is supported on singular pseudo-trajectories, in the sense that the
pseudo-particles interact one with the other at distance 0.

Equipped with these notations, we can now state the result that will be proved in Chapter 9.

Theorem 5. — With the previous notation and the assumptions of Theorem 4, for all t < Ty, the
cumulant f} o (H®™) converges when e — 00 to f,, 10,4 (H®") given by

(514) vt < TO ) fn [0 t] H®n Z Z Z /duslng Ta n m) H(\Iln,m) (f0)®m+n (\Ijg,m) .

TeT;F m= OaGAgm
In particular by Theorem 4 there exists a constant C > 0 and a time T, < 1/C depending only
on «, Cy, By such that
VE<To, |fupgHO)<C"" 'n
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and the limiting cumulant generating function (4.4.8) has the form

o0 1 .
(5.1.5) W< Tos Apgle) =3~ ((e" = 1)) = Tim Af (")
n=1

Recall that the convergence time Tj, in Theorem 1, of the particle system to the solution f of the

Boltzmann equation depends only on f° through Cy, Bp: as noted in Remark 1.2.2, there holds Ty ~

Cy ! B((Jdﬂ)/ > The parameter o quantifies the size of the deviations from f which can be observed.

The time T, is then adjusted accordingly : T, ~ Toe .

5.2. Limiting cumulant generating function

The following result provides a graphical expansion of A (eM).

Theorem 6. — Under the assumptions of Theorem 4, the limiting cumulant generating function A 4
satisfies for all t < Ty,

(521 Agy +1fZK, Z / At 7 (W 1.0) () (W1 0) fO5K (W0, o)

TeTH
where
(5.2.2) Aging 7 = AT dVi H ] Se((Vg(Te) — vgr (Te)) -we)+d7'edwe.
e={q,q’'}€E(T)

Furthermore the series is absolutely convergent for t € [0,T,)] :

(5.2.3) / dlttging 7(Vic.0)] (€M EF (Ui 0) FO2K (WY o) < (C1)

Compared to Theorem 5, all dynamical connections are dealt with in a symmetric way, resorting to
one connected graph T € T, %, rather than a graph T € 7, encoding recollisions and overlaps and a
tree a € Aim encoding collisions.

Proof. — By definition and thanks to Theorem 5,

A[Ot Z n! Z Z Z /dﬂsmg,Ta nm)( h _ 1)®n (f0)®(m+n) '

n=1 " rerEm=04ecaE

Note that the trajectories of particles ¢ € {1,...,m} can be extended on the whole interval [0, ¢] just
by transporting ¢ without collision on [t;,¢] : this is actually the only way to have a set of m + n
pseudo-trajectories which is minimally connected (any additional collision would add a non cluster-
ing constraint, or require adding new particles). It can therefore be identified to some ¥,,1, 0 (see
Figure 7).
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Let us now fix K = n + m and symmetrize over all arguments :

Ot] Z Klznl _n Z Z /dﬂSmgTa n,K— n)( h_1)®n(f0)®K

TeTE acAE

SEYE T T T [t -0 ()

KZI n=1 M\—n ()= '1—‘67—77 acA*

(€)=

where 7 stands for a subset of {1*,...,n* 1,..., K — n} with cardinal n; n° denotes its complement
and (n°)~ indicates that we have chosen an order on the set n°. We denote by An (o)< the set of
signed trees with roots n and added particles with prescribed order in (n¢)~.

Note that the combinatorics of collisions a and recollisions or overlaps T' (together with the choice of
the representatives {qe, ¢, }ccp(r)) can be described by a single minimally connected graph 7" € ’Tf(t.
In order to apply Fubini’s theorem, we then need to understand the mapping

(a7 T7 {qea QQ}eEE(T)) — (T7 77) .

It is easy to see that this mapping is injective but not surjective. Given a pseudo-trajectory Wy o
compatible with T and a set 7 of cardinality n, we reconstruct (a, T, {q., 4. Yeer(T)) as follows. We
color in red the n particles belonging to 1 at time ¢, and in blue the K — n other particles. Then we
follow the dynamics backward. At each clustering, we apply the following rule

— if the clustering involves one red particle and one blue particle, then it corresponds to a collision
in the Duhamel pseudo-trajectory. The corresponding edge of T will be described by a. We
then change the color of the blue particle to red.

— if the clustering involves two red particles, then it corresponds to a recollision in the Duhamel
pseudo-trajectory. The corresponding edge of T is therefore an edge e € E (T) and the two
colliding particles determine the representative {ge, ¢, }.

— if the clustering involves two blue particles, then the pseudo-trajectory is not admissible
for (T,n), as it is not associated to any (a,T), {ges @t} een(m))-

~

FIGURE 7. A couple (,T) and an associate pseudo-trajectory ¥ o.
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However the contribution of the non admissible pseudo-trajectories Wi o to

h 0\®K
S [ g ()77 (1)
TeT;
is exactly zero. Indeed the blue parts of the trajectories are not weighted, so that the overlap and the
recollision terms associated with the first clustering between two blue particles (i.e. the + signs of the
corresponding edge) exactly compensate.

We therefore conclude that

K
Aoy ( Z K\ Z /d“mgT Vi) ( Z 1)e"

K>1 TeTE §<

Z K| Z /dusmgT \I’KO)( h)®K (f0)®K—1

K217 TeTt

which is exactly (5.2.1). Note that the compensation mechanism described above does not work
for n =0 and K = 1, which is the reason for the —1 in the final formula.

The bound (5.2.3) comes from the definition of p1;, . 7 together with the estimates used in the proof
of Theorem 4 to control the collision cross-sections. O

5.3. Hamilton-Jacobi equations

We consider test functions on the trajectories which write as

(5.3.1) h(z([0,t])) = g(t, 2(t)) —/0 Dyg(s, 2(s))ds

recalling the notation D,g := 059 + v - V,g. The effect of this specific choice will be to integrate
the transport term in the Hamilton-Jacobi equation. We choose complex-valued functions here as we
shall be using properties of analytic functionals of g later; all the results obtained so far can easily be
adapted to this more general setting. To stress the dependence on g, we introduce a specific notation
for the corresponding exponential moment (5.1.5)

(5.3.2) I(t,g) = Apq (eg(t)fj}f D.gy

Note that g is defined here by its final value g(¢) and its transport Dg = (Dsg)o<s<¢, and these two
functions will be considered as two independent variables.

The following statement specifies the functional framework in which 7 is well defined as a convergent
series, and identifies the equation it satisfies. We recall that for any « > 0, there exists T, (depending
only on «, Cy and fp) such that the cumulant generating function A[o t]( /) is uniformly convergent

on [0,7T,] provided that e — 1 satisfies (4.4.6). We then define

t
Bo = {9 € C'(0.T] xDiC) : Jg(t,2)] < (1= )@+ o),
(5.3.3) 1 5
0,12
2w Dugls,9)] < gl FloP)
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Let us translate Theorems 4 and 6 in terms of the functional Z. For ¢ in [0,T,], let h be defined as
in (5.3.1) with ¢g in B,,. One has

‘(eh(m([O,t])) _ 1)®” < i || < gaont B (- DIV (O +52 g Ji [Va(s) 2 ds

(5.3.4)

< eOﬂH—%Q SUPse(o,¢] Vi () ,

which is the assumption on H = e — 1 of Theorem 4. In particular, the series

— 1 — [t s)ds
(6:35)  Tt9)i=-14 3 15 3 [ diangr(Uico) (el P (1, 0) 25 (0 )
K=1"""pe7Z

is absolutely convergent for ¢ € [0,7,] and g € B,. Note that (5.3.5) shows that Z is analytic with
respect to g(t): in particular one can differentiate Z(¢, g) with respect to the final condition ¢(t), in a
direction T and by term-wise derivation of the series (5.3.5) we find:

IZ(t,g) B 1 K
/Ddz dg(t) ) = ; K! T;ﬁ ;/dusing,f(\pKvO)T(zi(t))

s (9015 Pete) (g 0) (1) (W)

(5.3.6)

0I(t.9)
dg(t)
equation derived in Theorem 7. Additional results on Z in an appropriate functional setting will be

derived later in Proposition 7.2.2 in order to obtain the uniqueness of the Hamilton-Jacobi equation.

9L(t,g)

9g(t)
continuous function in x € T with values in the space M, (R?) of weighted measures in v € R?: there
s a constant C such that for any g € B,

We first state a regularity result on needed to define the singularity in the Hamilton-Jacobi

Proposition 5.3.1. — Fort < T, and g € B,, the functional derivative (z,v)

(z,v) is a

9I(t,9) Bo
Vt < T, Vo e Te H I (g, 20021 H <
ST, Ve i) e+, <
Proof. — Given K, we consider the associated integral in the series expansion (5.3.6). The integrand

is uniformly bounded by the assumption (1.1.5) on f° and inequality (5.3.4)
" ®K
(5.3.7) Lk (Vo) := (eg(t)fjo Dsgds) (Vk.,0) (fo)®K (ko) < K= Vi (O,

The measure Psing, 7 is invariant under global translations in 2. Thanks to the upper bound (5.3.7),

each integral in (5.3.6) is uniformly bounded in terms of || exp(—%|v|2)(1 + [0)) T Y] L1 (L)
| [ b (i) (W) Y1)

(5.3.8) . ]
= ‘/dusing,f(\IJK,O)eOLK_?l‘/K(O)l

B -
lexp(=g o)1+ o) Y|y o)

Furthermore, using the continuity of g and f°, we deduce that I'x(¥k ) is a continuous function
of the root z;(t), as changing the position of the root boils down to translating rigidly the whole
pseudo-trajectory. Therefore, by density approximation, one can extend the convergence and the
bound (5.3.8) to any Y such that Texp(—%"\vF)(l + |v])7t € M, (L) where M, is the space of
measures. Proposition 5.3.1 is proved by summing the expansion (5.3.6). O
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The next theorem is the key to derive the large deviation functional in Chapter 7. As a byproduct,
it will also allow us to prove that the limit first cumulant f; solves the Boltzmann equation, and to
derive the equation on the limit covariance.

Theorem 7 (Hamilton-Jacobi equation for the limit cumulant generating function)

For any a > 0, the functional Z(t, g) is well defined on [0,T,] X By, and the series defining Z(t,g) is
a solution of the mild form of the Hamilton-Jacobi equation on [0,T,] X B,

I(t,g) =7Z(0,9) / dT/ B9 )85(17') (1, g)(zz)(eAg(T) - 1)du(21,22,w),
10.9) = [dz )" - 1),

(5.3.9)

where we used the notation (1.3.6)-(1.3.7)
du(z1, z2,w) = 8z —z, (V1 — v2) - W)y dwdvy dvaday |

and
Ag(z1, 22,w) = g(21) + 9(25) — g(21) — g(22) .

We will see in Chapter 7 that this Hamilton-Jacobi equation provides a complete characterization of Z
which will be crucial to identify the large deviation functional by means of Legendre transform.

Proof. — At time 0, the exponential moment (5.3.5) reduces to the exponential moment of independent
particles thus only the term K = 1 remains
(5.3.10) 7(0,9) = -1+ /dzeg(o’z)fo( )= /dz 1O>2) (90 —1).

To recover the mild form of the Hamilton-Jacobi equation (5.3.9), we are going to reparametrize each
term of the series (5.3.5) of Z(t, g) by singling out the last clustering collision. Given a tree T in 7'%
with K > 2, let 7. := 751"t € [0,#] be the last clustering time which occurs at the edge e and is
associated with the scattering vector w, := w* and the sign s, := 5%t € {—1,1}. By removing the
edge e, the tree T is split into two trees 17 € ’TKl and T; € 7'[?2 with sizes K7 + Ko = K and clustering
times belonging to [0, 7.]. These trees generate two pseudo-trajectories ¥, o, ¥k, 0 on [0, 7] which are
then constrained to cluster at time 7.. The whole pseudo-trajectory Ui o on [0,¢] (generated by T) is
then recovered by merging the pseudo-trajectories ¥k, o, Uk, o at time 7. and extending them on [0, ¢]
with a scattering, or not, according to the sign s.. This procedure is abbreviated by

(5.3.11) Uko=VYr,0N¥Yk,0
This leads to

S [ g (i) (0 P () 05K (0 )

TeTE
1 0,7e [0,7e
= 5 Z K1|K2 Z / dTe/duglllg T \I/Kh )dlu‘smg ]TQ(\I’KmO)fO@Kl( )JCO®K2(\IjK27 )
Kllilklz(QK e T
TgeTi
(5.3.12)

x> > /dwe Se On(r)—ay () (0 (7)) = 05 (7)) - we) g (9D~ Jo Deg()dsy@ K

i€T] so==%1
JETS
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where the edge e = (4, j). By construction the parameters associated with the pseudo-trajectories Uk, o

and Uy, o are independent and the corresponding measures on [0, 7] factorize. We used the nota-

tion Ng?ﬁg]n to stress the fact that the clustering times of the measure are restricted to [0, 7.]. The last

line of the identity (5.3.12) encodes the clustering constraint at 7.

To recover the factorization of the Hamilton-Jacobi equation (5.3.9), we first note that all the particles
evolve in straight line in |7, t], so that for any k < K

g(t, 2 (1)) 7/0 Dyg(s, zx(s))ds = g(7e, zi(7.")) — /OTe Dyg(s, z(s))ds.

If s, = 1, a scattering occurs between the particles (4, j) forming the edge e so that their velocities jump
at time 7.; if s = —1 on the other hand, the trajectories are unchanged. With the notation (1.3.7),
the discontinuity at the collision can thus be rewritten as

(eg(t)—fot Dsg(S)dS)®K _ (eg(fe)—f(fc Dsg(S)d5)®K1 (eg(fe)—f(fﬁ Dsg(S)dS)®K2

(5.3.13) X (1 + 15,21 [exp (Ag(Te) (zi(Tg),zj(Tg),we)) - ID .

It follows that except for the interaction at time 7., between particles i, j, the test functions factorize.
We can rewrite (5.3.12) as

) /dﬂsing,T(‘I’K,o)(eg(t)_ﬁ Pealo)o) SR (W ) 05K (W o)
TeTE

K t
K! ]. OTe 7. )— [Te .q(s)ds
SN N S [ an TT | [ bl s 100w g et Doy
=1,2

K1=0 1 cpt i€Ty
1€7K) jery

T2€TE,

(5.3.14)
[ o by e () = 7)) )i [ (Bg() ), 350 D)) 1],

where only the contribution s, = 1 remains. Indeed the constant 1 in the last line of (5.3.13) cancels
out after summing over s, = +1.

Summing (5.3.14) over all K > 1 in order to rebuild Z(t,g), the product of the functional deriva-

T
tives 9L(re,9) defined in (5.3.6) can be identified
dg(e)
1/ oz oz
I(t,g) =1 S| dre | (e . A9(re) —1)d e)-
(19) = Z0.0)+ 3 [ dr. [ 5o 0o s () (e Jdu(zr, 220)
Theorem 7 is proved. O

5.4. The Boltzmann equation for the limit first cumulant

The Hamilton-Jacobi equation (5.3.9) encodes all the limiting correlations of the microscopic dynamics.
As a first consequence, we are going to recover the convergence of the density to the solution of the
Boltzmann equation already stated in Theorem 1.

Let us denote t the backward transport operator by Si¢(x,v) := ¢(x — tv,v), for any test function ¢.
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Proposition 5.4.1. — In the Boltzmann-Grad limit, the rescaled one-particle density converges in
the time interval [0, Tp] in the sense of measures

(5.4.1) i FE(0) = i) =

The limit f1 is a mild solution of the Boltzmann equation in a weak form

/ Filt, 2)(z) dz = / Suf0(2)(2) d
(5.4.2) v v

+ / ds / Soa (15 24) (52 20) — f1(5, 20) f1 (5, 22)) (1) iz, 22, )

for any continuous bounded test function .

Proof. — We will consider only functional derivatives of Z at g = 0, thus a can be chosen arbitrarily
small so that all the equations obtained from Theorem 7 are valid up to the time Ty = Ta|a70.

By definition (5.3.2) of Z

(5.4.3) I(t,g):Z%fn’[o’t]«eh—l)@n) with h(z([O,t})):g(t,z(t))—/O Dag(s, 2(s)) ds.
n=1""

is a uniformly convergent series for ¢ < T, and in particular it is analytic with respect to g(t) for g
in B,. Given a test function ¢ defined on D (and acting at time t), the derivative at g = 0 is given by

OZ(t,0) B B
< dg(t) ’¢> 7f1a[07t](1/})*/mfl(t)1/1(2’) dz,

where (-, -) denotes the duality bracket. Theorem 5 implies that f§ (0,4 converges to fi04- As
Ff(t) = f5(¢), this leads to (5.4.1).

(5.4.4)

The Hamilton-Jacobi equation (5.3.9) will enable us to obtain rather easily that the equation satisfied
by f1 is the Boltzmann equation. Let us start by computing the derivative with respect to g(t)
of Z(0,g). First, we note that for all s € [0,¢], then g(s) is a function of g(¢) and Dg through the
Duhamel formula

t
g(t,z +tv,v) = g(s,z + sv,v) +/ D,g(o,x 4+ ov,v)do,
S

which may be recast as follows:

(5.4.5) Vs e [0,t], g(s)=Ss—g(t) — / Ss—oDsg(o)do.

This formula will be key to track the impact of the variations of g(s) in the functional derivatives
under a perturbation of g at time ¢ (or of Dg later on). Recalling that

7(0,9) = / £0(2)(e909) — 1) d,

we therefore find that taking the derivative with respect to g(¢) in the direction v is given by

92(0,9) v _ [ 40 . 2)e9(0:2) 7
Sl = [ £ S-w) (e d.

(5.4.6) (

hence in particular at g = 0
0Z(0,0)
dg(t)

(5.4.7) ( v = [ (Su°) () dz.
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Next differentiating (5.3.9) with respect to g(t) in the direction v, we find

il = [ s d:
(5.4.8) / /81 59) a(z)(;gg&y@(@)(eﬁg(s) - 1>d,u(z1,zz7w)
615 g ( vg) p eAg(s) 21 20 W
w3 [as [ BB ZED ) a5y b (e 20,0,

Note that Proposition 5.3.1 allows to handle the singularity of the measure dpu.
Evaluating the result at g = 0 produces, thanks to (5.4.4), (5.4.5) and (5.4.7),

OI(t,0)
dg(t)

Finally thanks to (5.4.4) again, we recover that for any smooth function

{

s ) Z/(Stfo>(z)¢( )dz+ 5 / dS/fl s,21) f1(8, 22) ASs 4t dp(21, 22,w) -

(f1(t), ) =/(Stf°)(z)w(z) dZ-l-/O dS/(fl(S,Zi)fl(&Zé)—fl(S,Zl)fl(S,22))Ss—t1/)du(217227w)
:/(Stfo)(z)¢(z) d2+/0 dS/St—s(fl(SaZi)fl(Sazé)*f1(3721)f1(5722))1/’(21)dﬂ(zhzmw)-

The proposition is proved. O

5.5. Equation for the limit covariance

The fluctuation field covariance is defined for any test functions v, p on I by

(5.5.1) Vs<t,  Cc(t,s,9,0)=Ec (G (0))-

The Hamilton-Jacobi equation (5.3.9) enables us to deduce dynamical equations characterizing the
limit covariance. For this, we shall need the following notations :

Definition 5.5.1. — The (adjoint) linearized operator is defined as
Lio(z):=v-Vep(z)+ Lip(z), with

(5.5.2) Lig(z) = /dMZ(ZQ,w)f(t,zQ)A@(mz:g,w),

with notation (1.2.2) for the measure du,(z2,w). We also set
1
(5.5.3) Covilet) i= 5 [ dnler,000) F120) (0, B,

Proposition 5.5.2. — The covariance of the particle system converges to a quadratic form C in the
time interval [0, Tp] in a weak sense, i.e. for any bounded continuous functions @,

(5.5.4) Vs <t < Ty, lim C.(t,s,1,¢) =C(t, 8,9, ).
e —>00
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The limit C is a solution of the system of equations for t < Ty
t
C(ta tv ’(/}7 SO) = C(Ov 07 Sft{ll% Sft@) + / ds COVS(szt’(/J, sztso)
0

t t
(5.5.5) —|—/ dsC(s,s,Ss—11, L:Ss_+p) +/ dsC(s,s,LiSs_41p, Ss_+),
0 0

/OtC(t,a,w,¢U)da: /ot do (C(o, o, sat¢,¢g)+/j dsC(s,a,L:SStvjz,(ﬁg)) ,

where ¢, ¢ and (¢o)o<T, are test functions on D.

It is shown in the appendix that (5.5.5) provides a complete characterization of C(t, s, v, ), at least
for a short time: see Proposition A.3.1.

Proof. — The proof of the proposition is split into 2 steps.

Step 1. Convergence of the covariance (5.5.4).
Recall first that the covariance, for fixed ¢, is determined by the first two cumulants

Vs <t, Co(t,s,,¢) ( Z‘P ))) TE. |~ Y ol ()0 (25, (1)

£ . .
(41,42)

&<L2F@@OX&<;2W@@O

= f1,10,0(P(8)Y (1) + f3,10,9(0(s) @ 1(1))
where with slight abuse, we denote by f5 0.4 = fs (0,4 (¥ ® ) the bilinear form obtained by polarization

1
[0 (W @)= §<f§,[o,t] (0 +9)®?) — f3.00.4 (®?) — f3.0.4 (<P®2)> )

By the convergence of the cumulants proved in Theorem 5, the limit covariance is

(5.5.6) Vs <t, C(t,s,1,0):= fi04@E)e(s)) + fo,0,0 (¥ (t) @ @(s)).

Step 2. Derivation of the system of equations (5.5.5).

We start by establishing the equation for the covariance at a single time ¢. Asin (5.4.4), differentiating
twice Z with respect to g(t) in the direction ¢ provides

0*T 9
(Gog ¥ © ¥y = Fs) + fasld © ) =Clt,0.,0).
The corresponding formula for C(t, ¢, ¢, 1) follows by polarization. Thanks to (5.4.6), there holds
9%7(0,9) _
(gt V) = [ OS2 = C0.0.5 .50,

By using the identity (5.4.5), the functional can be also differentiated at different times

0%L(s,9) 0%L(s,g) ;
(5.5.7) (Gt )0 = (Garmautsy Sott) (1)
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Thus differentiating (5.4.8) one more time and computing the result at g = 0 provides

C(tatawaw) = (O O S t’(/) S t’(/))
2 / s [ (5 OT5,0) I (s, 0 L 8- OL(:0) () AS_pda(z1, 22.0)

dg(s)
/ / aI (s, 0 . aazéf’s;)) (22) (ASu_et)) *du(z1, 22, )
(5.5.8) Ay tw
2
+2/ ds/ 972(,0) I ),Ss_tz/}> F(5,22) ASs_gtb du(z1, 20, 0)

—&—5/0 ds/f(s,21)f(s7zg)(ASs,tw)Qdu(zl,zz,w),

0Z(s,0
where (5,0) has been replaced by f(s) thanks to Proposition 5.4.1.

dg(s)
With these notations, (5.5.8) can be rewritten as
(5.5.9)

t t
C(t7 ta Qﬁ, ¢) = C(Oa 07 S—tw7 S—tw) +2 / ds C(‘Sv S, Ss—tw7 L:Ss—t'(/)> + / ds COVS(Ss—t'(/]a Ss—tw) .

0 0

Thus the first equation of the system (5.5.5) is recovered by polarisation.

Now let us turn to the equation on the covariance at two different times. Given ¢ a test function
defined on [0,¢] x D, the integrated covariance can be recovered by differentiating with respect to Dg
in the direction ¢, = ¢(o), a given smooth function. Setting

a(t, 2(0,])) ;:/0 (b(mz(a))da:/o b0 do

t
7¢ (I)> = _fl,[O,t] (1/1 (I)) - f2,[0,t] (1/1 Y é) = 0 C(ta 8,77[}’ ¢9) ds

one has

J*L(t,0)
dg(t)oD

¢
where the minus sign comes from the fact that the test function is g(t) — / dsDsg.
0

ey

We are now going to derive the second equation on the covariance at different times, differentiat-
ing (5.4.8) again. We recall from (5.4.5) that the variations of g(s) in the directions 1) and ¢ are given
by

t
(5.5.10) Vs € [0,6], Sg(s) = Ss_sto— / S oy do.

We start by observing that taking a second derivative in (5.4.6) leads to
2T t t
<§g( go ,0) W ® <I>> /dzfo(z)s_tw(z)/ S_¢(0,z)do = _/ (0,0, S_41, S_s¢,) do.

0 0

Taking the derivative at intermediate times s € [0,¢] on Z(s, g) with respect to Dg is more delicate as
there is a contribution of the variation of dg(s) by (5.5.10) and another contribution accounting for
the variations on [0, s]: recalling (5.4.3),

(5.5.11) <a§(;’go),q>> = —/: <8§;‘E;;)),Ss_a¢a>do - /O <8(,)Il()gg),¢a>
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Differentiating (5.4.8) one more time and using (5.5.7), there holds
¢ t
/ C(t,0,v,¢0) do = / C(0,0,S-11), S—s¢5) do
0
321 (s, 0 9I(s,0 ‘
/ dS/ s—tw>(zl) ( )(22)<A/ Ss—a¢a dg) d,LL(Zl,ZQ,W)

9g(s)
o B Bt
A /81 s, O . 5‘1;?;;)) (m)(ASs—ﬂ/J) (A/S Ss_obs da)du(zl,z%w)_

Using that 6819(@?) = f(s) by Proposition 5.4.1, the adjoint linearized operator (5.5.2) and the covari-

ance (5.5.3), we get

t B t t t 82:[(8,0) .
/0 C(t, 0,0, 65) do = / C(0,0,5_1t), 5—pb0) dor + /O s / 1o (Gl SV @ LiSemetr)

621 (5,0) L+ ¢ ¢
/d 905)Ds" Sss_t¢®<b>+/o ds/s do Cov, (Sei, Sy ).

From identity (5.5.11), we ﬁnally obtain

t _ t t t 821(5,0) )
| etoionar= [ cw.0.5 w5 qodr+ [ as [ Lo (G5 s w0 LS00

821 .
/ ds / do( 5o )Lsssftw@oss,mg}

9(s)
/ds/ da 82 sgng L:Ss—t¢®¢a>

/ ds/ do Covs( s—t, Ss— a¢a)

0?I(s,0)
99(s)0Dog

Noticing that

C(s.0,1.9) = (5

this can be rewritten in terms on the covariance C.

t t t t
| etovondo= [ drc0.5 w5 000)+ [ ds [ doc(ss, 5118 00,)
0 0 0 s

& 0),

+/Ot ds/stdaC(s,s,L:Sstw,SSUqﬁg) +/0t ds/os dac(s,a,L;SS,tw,qsg)

+ /Ot ds /St do Cov, (Ss_tl/), Ss—agba)'

Finally swapping the integrals in s, o by Fubini’s Theorem, we get

t t t o
/ C(t7aawa¢o’)d0 = / daC(O7OaS—twaS—o’¢U) + / dO'/ ds C(&svss—tw)]-‘ijss—o’(ba)
0 0 0 0

+/Ot da/oa dsc(s,s,L:ss,tzp, Ss,ggbg) +/0t da/: dsc(m, L;ss,tw,qsg)

+ /Ot do /00 ds Covyg (Ss_tw, Ss—a¢o)-
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Noticing that (5.5.9) implies

C(0,0,Sy_1tb, ) = C(0,0, 510, S_o ) + / dsC(s,5, Sy, L Ss_ods)
0

+ / dSC(S7SvL:sztw7sza¢a) + / ds COVS(sztwassf'r¢a) )
0 0
the formula for the covariance simplifies
t t t
/ C(t7o—a¢a¢0)d0 = / dO' (C(O-a g, Sa—ﬂ/%ﬁ%) + / dS C(S707 Lzsstw7¢a')) .
0 0 o

This completes the derivation of the system of equations (5.5.5). O






PART 11
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DYNAMICS






CHAPTER 6

FLUCTUATING BOLTZMANN EQUATION

The goal of this chapter is to prove Theorem 2, describing the limit of the fluctuation field (¢f):, of
which we recall the definition:

G (p) = (Zw peE (w5 () )

on test functions ¢. Namely we prove that, in the Boltzmann-Grad limit, {§ converges to a process (;

which solves, in a weak sense clarified below (see Section 6.1), the fluctuating Boltzmann equation
(6.0.1) dé, = Ly dt + dn, .

We recall that f is the solution of the Boltzmann equation on [0, 7], that the linearized Boltzmann
operator is defined as £; := —v - V, 4+ L; with the collision part

(6'0'2) L; <p(2’1) = /dﬂm (Zva) (f(t7 Zé)@(zi) + f(t, zi)go(zé) - f(t7 22)90(21) - f(tv 21)50(22)) )

and that dn(x,v) is a Gaussian noise with zero mean and covariance given in (5.5.3), which we recall

(6.0.3) Cov (¢, ) /d,u 21, 22,w) f(t,21) f(t, 22) AvAgp.
where the scattering measures are defined as in (1.3.6) and (1.2.2)

dpzy (22,w) = 63y —ay (V1 — v2) ~w)+dwdv2,
dp(z1, 22,w) = 6z, —a, (V1 — v2) - w) | dwdzidvidvs,

and we recall the notation
(6.0.4) Ap(21,22,w) = ¥(21) + ¥(25) — ¥(21) — ¥(22) -
The limiting Gaussian process (6.0.1) will be characterized by its covariance in Section 6.1.

In order to obtain the convergence of the fluctuation field, we shall proceed in two steps, establish-
ing first the convergence of the characteristic function in Section 6.2.1, and then some tightness in
Section 6.2.2.
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6.1. Weak solutions for the limit process

A solution ét to (6.0.1) is a Gaussian process: its law is therefore completely characterized by its
covariance. In this section we study the equation governing this covariance

(6.1.1) Ct, 5,9, 9) = E(G()4s(9))
and prove that it is precisely the equation obtained Proposition 5.5.2, namely (5.5.5). Since there

is a unique solution to (5.5.5) (see Proposition A.3.1), the limiting covariance C(t, s, ¥, ¢) is equal
to C(t, 8,1, @), at least for short times.

6.1.1. Equation for the covariance. — Denote by U(t, s) the semigroup associated with £, be-
tween times s < ¢, meaning that

OU(t, s)p — LIAU(E, s)p =0, U(s,8)p =,
and

OU(t, s)p +U(t,s)Lsp =0, Ut t)p=p.
By definition, U*(t, s)p satisfies
(6.1.2) U™ (L, s)p+ LU (t,s)p =0, Ut t)ye =,

and
U™ (t,8)p —U™(t,8)Lip =0, U (s,8)p =,
where we recall that £} =v -V, + L} with

(6..3) L 0(e0) = [ e a2, (5 22) Ao, 2,0).
Formally, a solution of the limit process (6.0.1) satisfies for any test function ¢

Gle) = Coltd* (£,0)0) + / dnu (U (1, 5)¢)

For any t > s and test functions ¢, ¥, the covariance is then given by

B 0) = B (6ot 4.00) 6ot 5,0)9)) +E ([ [ e @0 1.000) @450
+E (CO (Z/l*(t, 0)1/)) /OS dng (L{*(s, U’)go)) +E (CO (U*(s, O)cp) /Ot dng (U*(t,o)l/}))

so that according to (6.0.3) and (6.1.1)
(6.1.4) C(t,s,,¢0) = E(Co (U*(t,0)) Co(u*(S,O)QD)) +/O do Cov, (U*(t, o), U*(s,0)p) .

Definition 6.1.1. — A weak solution to (6.0.1) is a Gaussian process with covariance satisfy-
ing (6.1.4).

Let us take formally the time derivative of (6.1.4) for ¢ > s. This gives
0C(t, 5,9, ) = E (Co (U (1,00L54) o (U (5,0)) ) + /O doCov, ((U*(t,0)Liv), (U (s,0)p))

= é(t’ S’ ‘C:wa <p) °

For s = t, the time derivative is

OiC(t, t,1, ) = C(t,t, Lib, @) + Clt, t,9, Lip) + Covy(, p) .
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We recognize here the equation (5.5.5) satisfied by the limit covariance C(s,t,p,1) (see Proposi-
tion 5.5.2), written in infinitesimal form:

atc(ta S, ¢7 QO) = C(t7 S, ‘C’:wa Qp),
(615) Vs < t’ atc(ta tv ¢7 QO) = C(ta t7 L:qu/}a 90) + C(ta t7 1/’7 L::SO) + COVt(QZJ, QO) )
C(0,0, 9, ) = / dzp(2)b()(2)

The link between (5.5.5) and (6.1.4) is made rigorous in Lemma 6.1.5 below. The set of equations (6.1.5)
is used in the physics literature to describe correlations at equal and unequal times: we refer to [26]
which includes a comparison of several equivalent formulations of the right-hand side.

Remark 6.1.2. — The equilibrium case (when f© = M is a Mazwellian) is much simpler. The linear
operator Leq := —v -V + Leq, where Leq is the (autonomous) linearized operator around M, generates
indeed a semigroup Ueq of self-adjoint contractions on L*(Mdvdz). By the method of [38], one can
construct a martingale solution of the generalized Ornstein-Uhlenbeck equation

(6.1.6) Ay = Log Cy dt + dn, .
Moreover, the covariance structure is such that the fluctuations exactly compensate the dissipation :

using the symmetry of the equilibrium measure M (z1)M (z5) = M (21)M (22) and denoting by Uy, the
adjoint of Ueq in L*(D), one gets

t
/ duCov(U:q(t,a)w,U = —2/ da/ (t,0) oML U (t,0)p
0

= 72/ clcr/Z/{‘;"q(t,cr)(pM(fa7 —v- V) Uy (t,0)p

= [ yaiel ~ [ arie 01

Out of equilibrium the structure of the linearized operator is lost: it is no longer autonomous, and the
semigroup generated by Ly is no longer a contraction.

6.1.2. Functional setting for (6.1.4). — Let us define a functional setting for the semi-
group U*(t,s), and check that in this setting the right-hand side of (6.1.4) is well defined. By a
Cauchy-Kovalevskaya type argument (see Theorem A.1 and Section A.1) one can prove that there is a
time Ty ~ Cjy’ ! Béd+1)/ % such that there is a unique solution f to the Boltzmann equation on the time
interval [0, Tp] which satisfies

(6.1.7) I1f ()]l %0se = 4C0,
with
(6.1.8) Ly = {gp =¢(@,v) : lellry = s%pexp (- §|v|2)\cp(x,v)| < +oo} .

For any 3 > 0, we introduce the weighted L? space

(6.1.9) L% .= {go = p(z,v) : ||<p||L% = (/Dexp (- §|v|2) (pQ(x,v)dxdv>% < +oo} .

In particular, (L%) s>0 is an increasing sequence of Hilbert spaces and an application of Theorem A.1
leads to the following result: we refer to Section A.2 of the appendix for the proof.

Proposition 6.1.3. — There is a timeT € (0,To] withT ~ C’_lﬂéd+1)/2, such that for any p in L%o/4

and any s <t < T, U*(t,s)y is well defined and belongs to Lsﬁ /8-
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This proposition implies that the covariance is well defined, as stated in the next proposition.

Proposition 6.1.4. — There exists a time T € (0,Tp] with T ~ Co_lﬂc(,dﬂ)/z, such that for any ¢
and Y in L%0/4 and all times 0 < s <t < T, the covariance é(t, $,1, ) is well defined by (6.1.4).

Proof of Proposition 6.1.4. — Denote (c) = U*(t,0)y and (o) = U*(s,0)p. Then by the definition
of the covariance (5.5.3) and by (6.1.7), for any ¢ and ¢ € L%0/4 there holds Vs <t < T

/Os do Covg((u*(t,o)%/f)a (U*(s,a)¢)> < z/os/du(zl,zQ,w)f(a, 21)f (o, ZQ)((AMJ))%F(A@(U))Q)
< (j/os/du(zhzrz,w)exp(—i?(|v1|2 + |UQ‘2))<¢2(U, 1) +<p2(a, z1)>

which is finite since (o), ¢(0) belong to Lgﬁo/B by Proposition 6.1.3. Therefore,

(6.1.10) Vs<t<T, /O do Covg<(u*(t,a)1/)), (L{*(S,U)go)) < +oo.

Similarly, the first term in the right-hand side of (6.1.4) is bounded by applying Proposition 6.1.3, and
since

€0.0.0.0)| = | [ deevt) )] < oo
thanks to (1.1.5). This concludes the proof of Proposition 6.1.4. O

6.1.3. Identification with the limit covariance. — We now prove that the covariance é(t, 8,10, )
constructed above satisfies the same equation (5.5.5) as the limiting covariance C(t, s, 1, ¢).

Lemma 6.1.5. — The covariance C(t,s) defined by (6.1.4) and Proposition 6.1.4 satisfies (5.5.5)

2

for (s,t) € [0,T)2. As a consequence, the covariance C coincides on [0, T)|? with the limit covariance C

of the hard sphere system defined by (5.5.4).

Proof of Lemma 6.1.5. — By definition (see Section A.2 of the appendix),
t
(6.1.11) Vs <t, Ut s)p=Ss_b —|—/ duld*(u, $)L) Sy—+1) .

Similarly
U (t,8)) QU (t,8)p = Ss—1th ® Ss_1p

¢ t
+ / dull*(u, )L} Sy—t @ U* (u, 8)Su—t + / duld*(u, 8)Sy—+ @ U™ (u, $)LS Sy —tp .
We consider first the case t = s in (6.1.4) which we recall
t
(6.1.12) C(t, t,1, ) = /Z/{*(t,())l/) U*(t,0)p f° +/ do Cov, (U (t, o), U (t,0)p) ,
0

and we want to prove that it satisfies (5.5.5), namely (omitting the integration parameters dz to lighten
notation)

t
é(tatﬂf’a@) = /S*tw S*tw fO +/ ddé(d, g, L;SU*twvsU*t(p)
0

t t
+ [ d0C(0.0 8,01y, i0) + [ do Cova(SyithSasi).
0 0
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Noting that Cov, (), ¢) is a linear operator on the tensor product ¥ ® ¢, we find from (6.1.12) that
t
C(t,t, 1, ) :/S,ﬂp S_ip f0+/ da/u*(a, 0)L:S, 1) @U*(0,0)S,_ o f°
0
t t
—|—/ do/u*(o, 0)Sy 1 @U*(0,0)LES, s f° —I—/ do Covy (So—t¥), Sy—1)
0 0
t t
—|—/ da/ do'Cov, (U (o', 0)LE Sy —1th,U* (0", 0)Sor—1p)
0 o
t t
—I—/ da/ do'Cov, (U (0',0)Ssr_1b,U* (0, 0) L%/ Sor 1) .
0 o

To conclude we notice that thanks to (6.1.12) again

t

t
/dO’CA(O',O',L:SU,ﬂ/),SU,tQO)-F/ dJCA(mJ,SJ,tz/J,L;SU,t(p)
0 0
t t
:/ da/u*(a, 0)L:S, 1 @ U* (o, O)Sg_tapfo—&—/ da/u*(a,O)Sa_tz/J QU (0,0)L:Sy_sof°
0 0
t t
—|—/ da/ do'Cov, (U (0!, 0)LE Sy —1th,U* (0" ,0)Ser—1p)
0 o

t t
+/ da/ do'Cov, (U (0',0)S,_1p,U* (0" ,0) L% Sy 1)
0 o
and the result follows.

We now study the case of two different times. Consider 1, (¢5)se[o,¢] in L%OM: recalling

(6.1.13)  C(t,0,4,¢,) = /U*(t»o)d@u*(a, 0)<Paf0+/ do’ Cover (U (t, 0" ), U (0,0")p0)
0
we want to prove that it satisfies (5.5.5) namely
t ¢ X t R
(6.1.14) / Ct,o,v,0s) dU:/ do (C(a, 0, So_tW, 05 ) +/ da‘lc(o'/,0'7L;/ U/_tz/;,gpg>).
0 0 o
Note that by the semi-group property in Corollary A.2.1,
t
(6.1.15) Vs<o<t, U(ts)y=U(0,8)S s+ / duld* (u, s)L Sy—+,
so identity (6.1.13) can be written
t t
/ C(t,o,1,py)do :/ dU/U*(J,O)SU,ﬂ/) QU*(0,0)q f°
0 0
¢ t
—l—/ da/ dU’/U*(U',O)L;,Sa/_tw®Z/I*(a, 0)q f°
0 o
t o
—|—/ da/ do'Covyr (U*(0,0")Sy— i1, U (0,0")ps)
0 0

t o t
—l—/ da/ dU’/ duCov,r (U*(u, 0" LY Sy—1th,U* (0,0 )ps) -
0 0 o



62 CHAPTER 6. FLUCTUATING BOLTZMANN EQUATION

Now we note that the first term on the right-hand side adds up to the third to produce
t t o
/ do /Z/I*(a, 0)S, 11 @U*(0,0) 00 f° + / do/ do’'Cov, (U*(0,0")Sy_s1b,U* (0,0 )ps)
0 0 0

t
— / do C(0,0,So—t1, P) .
0

Finally exchanging the role of u and ¢’ in the last term on the right-hand side, we find that the two

remaining terms add up to
t t
/ do/ do’é(a',a, L:;/S,,/_tw,goa).
0 o

The result follows. By Proposition A.3.1 stating the uniqueness of the solution to (5.5.5), we deduce
that C(t,s) = C(t,s) for 0 < s <t <T. Lemma Lem: equiv lim cov is proved. O

6.2. Convergence of the process

The limiting covariance has been characterized in the previous section. Let 61, ..., 8, be a collection of
times in [0, 7. Given a collection of smooth bounded test functions {¢;};<¢, we consider the discrete
sampling

4
H(=(10,T0D) = 3 05(=(67)) -
Let us define j
1 14 N
(6.2.1) (¢s. HY) = WTs; Lg; v;(2(65)) —Na/ Fr(05,2) ¢;(2) dzl :

The convergence of the fluctuation field (° is obtained by proving

— the convergence of the characteristic function E. (exp (i<<(5, H >>)) which implies that the limit-
ing process is a weak solution of (6.0.1) in the sense of Definition 6.1.1
— and the tightness of the fluctuation field.
This will complete the proof of Theorem 2.

6.2.1. Convergence of the characteristic function. — We are going to prove the convergence
of time marginals of the process ((;);~-

Proposition 6.2.1. — The characteristic function E. (exp (1<< ° H>>)) converges to the characteris-
tic function of the Gaussian process with covariance given by (6.1.4).

Proof. — The characteristic function can be rewritten in terms of the empirical measure
¢
(6.2.1) E5<exp (i{¢e, H>>) = Es(exp (iv/pe(me, H>>)> exp | —1+/fte Z / Fi(0;,2) 0;(2)dz
j=1
Thanks to Proposition 2.1.3, we get

iH

log E. ((exp (i(¢*, H)) ) = uei %ffh[O,t] (¥ =1)®") - i\/ITEi/Ff(%,Z)w(Z) dz.
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As H is bounded, the series converges uniformly on [0, Tp] for any p. large enough. At leading order,
only the terms n = 1 and n = 2 will be relevant in the limit since by Theorem 10

fi,[O,t] ((e\iﬂ% — 1)®n) ’ < (C%)o)nn'

Expanding the exponential with respect to p., we notice that the term of order /. cancels so

: 1 1 1H 113
log Ee (exp (i{C%, H))) = =5 f o, (H?) = 5 F50,9 (H®?) + O (WT :
As the cumulants fi[O,t] (HQ) ,f§7[07t] (H®2) converge (see Theorem 5), the characteristic function has
a limit

lim E. (exp (i{¢%,H))) = exp f% Z C(0:,05,0i,05) | »

e —>00
: i<t

where the limiting covariance is given by (5.5.6) and thus by (6.1.4) thanks to Lemma 6.1.5. Proposi-
tion 6.2.1 is proved. O

Remark 6.2.2. — The moments of the fluctuation field can be obtained by computing derivatives
of (6.2.1). As a byproduct of our analysis, one then verifies the Wick’s pairing rule: for alln > 1, the
moments of order 2n + 1 vanish in the limit p. — oo and

2n
i (B (TLG, 660 | = X T B (Ge0 ()| =0
: j=1 "EPin lij}eo

log

We omit the details of this computation, which is not to be used in this paper.

6.2.2. Tightness and proof of Theorem 2. — In this section we prove a tightness property for
the law of the process ((f )te[O,To]' This is made possible by considering test functions in a space with
more regularity than L/230' In order to construct a convenient function space let us consider a Fourier-
Hermite basis of D: let {€;,(z)},,cz« be the Fourier basis of T? and {ej,(v)};,ene be the Hermite
basis of L?(R?) constituted of the eigenmodes of the harmonic oscillator —A,, + |v|2. This provides
a basis {h;(z) = &, (z)ej,(v)}
that for all j = (41, j2)

i=(iaj) of Lipschitz functions on D, exponentially decaying in v, such

(6.22) [lhjllo < ¢, [IVhjllo = Vohilloo +IVahjllo < eI+, llo-Vahjllo <c(1+15)2,

with [j] := |j1| + |j2| and for some constant ¢ (see [35]). Then we define for any real number k € R
the Sobolev-type space Hy (D) by the norm

2 .= i12)k zp(z)hi(z 2.
(6.2.3) el = 3 i) (/d () ))

J=(j1,J2

Following [8] (Theorem 13.2 page 139), the tightness of the law of the process in D ([0, Ty, H_x(D))
(for some large positive k) is a consequence of the following proposition.
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Proposition 6.2.3. — There is k > 0 large enough such that
(6.2.4) v >0, i lim P s [l - ¢, 2 07) =0,

6—0 pre =00 |s—t| <68
s,t€[0,Tg]
6.2.5 lim lim ]P’( sup ||¢ zA) —0.
( ) A-soo pe—o0 © tE[O,TO]H tH—k

The identification of the limit Gaussian law in Proposition 6.2.1 together with the above tightness
property complete the characterization of the limiting process and therefore the proof of Theorem 2.

The proof of Proposition 6.2.3 relies on the following modified version of the Garsia, Rodemich, Rumsey
inequality [75] which will be used to control the modulus of continuity (its derivation is postponed to
Section 6.3).

Proposition 6.2.4. — Givenb > 4, choose two functions U(u) = u® and p(u) = u/® with~ belonging
to ]2,3[. Let ¢ :[0,To] — R be a given function and define for a > 0

To pTo _
(6.2.6) B, ;:/ dsdt U (M) Lji—sj>a -
o Jo p(|t = s|)
The modulus of continuity of ¢ is controlled by
(6.2.7) sup ‘got—apsl <2 sup ‘got—gas‘ + C B/ (5%2,
0<s,t<Ty 0<s,t<Ty
[t—s[<s |t—s|<2a

for some constant C depending only on b and .

In the standard Garsia, Rodemich, Rumsey inequality, (6.2.6) is assumed to hold with a = 0 leading
to a stronger conclusion as ¢ is then proved to be Holder continuous. The cut-off @ > 0 allows us to
consider functions ¢ which may be discontinuous.

Proof of Proposition 6.2.3. — At time 0, all the moments of (§ are bounded, so (6.2.5) can be deduced
from the control of the initial fluctuations and the bound (6.2.4) on the modulus of continuity. Thus
it is enough to prove (6.2.4). For this, we are going to show that

1 2
92 ’ . . €01\ _ FE(T . > 8 =
(6.2.8) V&' >0, %lH(l)ullm P, Ej A F ‘Ss_?‘pg] |¢F (hy) = CS(hy)|” =6 | =0,
s,t€[0,Ty

where {h;(2)},=(j,,j») is the family of test functions introduced above.

We are going to apply Proposition 6.2.4 to the functions t — (7 (h;) with b = 4 and a time scale cut-off
a vanishing as a. = ue /3 In order to do so, the short time fluctuations have first to be controlled.
This will be achieved thanks to the following lemma.

/3

Lemma 6.2.5. — The time scale cut-off will be denoted by a. = /1;7 . For the basis of functions

introduced in (6.2.2), there is k > 0 large enough so that

1 2
2. 5 lim P —_— E(hy) —CE(h)|" >8] =0.
(6 9) V >07 #Egnoo £ ; (1+ |j|2)k \sfslll[lﬁgTaT |<t( J) Cs( ])| = O
s,t€[0,Ty

To control the fluctuations on time scales of order J, it will be enough to rely on averaged estimates
of the following type.
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Lemma 6.2.6. — There exists a constant C' such that for any function h and for any € > 0 and s,t
in [0, T]
4 1
(6.2.10) e (670 = GE)") < CIRE IV + 1) (It = s + -1t = s])
€

We postpone the proofs of the two previous statements and conclude first the proof of (6.2.8).

Notice that Lemma 6.2.6 implies that the random variable associated with any function h; satisfy-
ing (6.2.2)

ToorTo |G (hy) — G5 (h)|*
(6.2.11) / / dsdt ‘t — S|'Y 1 si>a.
has finite expectation
To To 1
6212 Be(Ba () < €O+ P [ [T asdr (je- P4 e s )
0 0 €

Setting now v = 7/3, we get an upper bound uniform with respect to ¢ for a. = ,u5_7/3

2—y

) <1415

€

(62.13) B (B (h) < CL+ i) (1+

From Proposition 6.2.4, a large modulus of continuity of ¢ — ¢; (h;) induces a deviation of the random
variable By, (h;). This implies that on average

N

ls—tl<é
s,t€[0,Tg)
(6.2.14)
1 2 vV as 6/
<F(Z v pr g, 500 - G > 5) + P(3 TR 2 g
st o]

The first term in (6.2.14) tends to 0 by Lemma 6.2.5 and the second one can be estimated by the
Markov inequality and by the upper bound (6.2.13), along with the Cauchy-Schwarz inequality

« o' 67_2 02
(Z\/Ei ) <o 5,22(1+1 E.(Bo.(hy)) < 2672,

L+ [j2)F = Cco3 1 FBE = 52
for some constants C1, C2 and k large enough. As v = 7/3, the limit (6.2.8) holds and Proposition 6.2.3
is proved. O
6.2.3. Averaged time continuity. — We prove now Lemma 6.2.6. Denoting

H(z([0,1])) = h(2(t)) — h(2(s)),

the moments can be recovered by taking derivatives of the exponential moments

(6:2.15) E. (G0 — ¢z(n)*) = (5;1@8 (exp (i/\<<§5,H>>)))

We recall from Proposition 2.1.3 that

log E (exp (A%, H))) = e -~ fi oy (Y = 1)™) = Vi AFf () = O(¥)
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Thus expanding the exponential moment at the 4th order leads to

iNH

E. (exp (IA(C 1)) =1+ e Y0 i 0y (9 = 1)) = miars (1)
n=1""

)\4 1 € 2 1 € ®2 ? 4
D) §f1,[0,t] (H?) + §f27[07t] ((E)*2) ) +o(XY).
The fourth moment can be recovered by taking the 4th derivative with respect to A

E (¢~ E)*) =8 (f 100 (H2) + Fipg (H5))
(6.2.16)

4
1 o1
FEY Y Cfatne e n
€ n=1 K1+ tkn=4

denoting abusively by f; [0.4] the n-linear form obtained by polarization. Point 3. of Theorem 10
applied with § =t — s implies

(6.2.17) |5 0.0 (%) + F5 00 (HE2)| < O U19Rllw + [1hllo) [l 12— 5] (2 4-<)
Furthermore for any x1 + - - - + K, = 4, Point 3. of Theorem 10 implies also

FrpoH™ @@ H™)| < C A% (¢ +2)*(t = 8)(IVR]oo + [[hllo) -

Combined with (6.2.16), this leads to

6218)  E((GG(0) = GM)") < Clt+ 2RIV + [hI) It — 5] (t —sl+ t:) .

€
This concludes the proof of Lemma 6.2.6. O

Remark 6.2.7. — Notice that since the assumption (8.0.3) is satisfied, the norms ||h exp(—Bov?/4)|| L
and || Vhexp(—pBov?/4)| L= could have been used instead of ||h||L~ and ||Vh| L.

6.2.4. Control of small time fluctuations. — We are now going to prove Lemma 6.2.5 by lo-
calizing the estimates into short time intervals. For this divide [0, T}] into overlapping intervals I; :=
[ice, (i + 2)ae] of size 2a.. Define also the set of trajectories such that at least two distinct collisions
occur in the particle system during the time interval I;

(6.2.19) A; = {At least two collisions occur in the Newtonian dynamics {z;(t)}r<a during Ii}.
We are going to show that the probability of A = U;.A; vanishes in the limit

(6.2.20) lim P.(A) = 0.

e—0

Assuming the validity of (6.2.20) for the moment, let us first conclude the proof of Lemma 6.2.5 by
restricting to the event A°. By construction for any trajectory in A€, there is at most one collision
during each time interval I;. Then, except for at most 2 particles, the particles move in straight lines
as their velocities remain unchanged and it is enough to track the variations of the test functions with
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respect to the positions. Thus, for any ¢,s in I; and a smooth function h;, we get

N

Ve (G (hy) = G (hy)) = D (B (20(1) = Dy (23 (9))) — ue/dZ(Ff(t,Z) = Fi(s,2))hy(2)

N t =1
-y / du v () - Vhy (25 (w) — pie / d2(FE(t, 2) = F£ (5, 2))hy(2) + O hylloe)
=1"°

where the error occurs from the fact that at most two particles may have collided in the time inter-
val [s,t] C I;. Using the Duhamel formula, the particle density (at fixed ) can be also estimated by
the free transport up to small corrections which may occur from the collision operator Cf , F5

(6.2.21) ,ug/dz(Ff(t,z) — F(s,2))hj(z) = ,ue/ du/szf(u, z2)v - Vh;(z) + pea:O(|hjlloo) -

Recall that p.c. — 0 when p. tends to infinity. Setting h;(z) := v - Vh;(z), the time difference can
be rewritten for any trajectory in A as a time integral

022)  Glm) =G ) = = [ au (uam,m e [ Ff(u,z)hj(Z)dz) + —=0(s )
t - 1
:/8 du Gi(h) + —=O(h1).

Thus thanks to (6.2.22), we get

1+ |j|2)’C ls—t|<2as

s,t€[0,Tp]

U:i=P. [ A Z% sup |G () = G5 (hy)[* = 6
J

1 2
<P.[A° 5 Sup  sup [¢f(hy) — (S (hy)|T >0
= n Z (1+|]| ) ’II“?) S’t€€i|Ct( ]) C ( ])|

c 1 ¢ c/T 2 é

To s,tel;

where the error term in (6.2.22) was controlled by choosing & large enough and e small enough so
that \/% < 8§'/2. At this stage, the constraint A° can be dropped and by the Bienaymé-Tchebichev
inequality there holds

1 ¢ .
6.2.23 U< ———FE sup su / du ¢S (h
( ) ZJ: 5/(1 + |J|2)k : l<§ s,tGI?i ’ S C ( ])

To
ae 1 t _ 9
<L 2 ST (s 1 [ avciiF).

Using the Cauchy-Schwarz inequality and then the fact that ¢, s belong to I; = [iae, (i + 1)ae], we get

t
<sup | / du (R ) E (sup t—s [ du |<z<hj>2)
s, tel; s,tel; s

(i+1)ae 9
<o [ duB(G(0)°) < cat i)

e

(6.2.24)
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In the last inequality, an argument similar argument to (6.2.18) leads to the control of the second
moment of 5 (h;) by [|h;]|2 < c(1+[])% as h; = v - Vih; (see (6.2.2)).

Combining (6.2.23) and (6.2.24), we deduce that for k large enough

(1 C
(6.2.25) U< ZZ ca; ++j|‘7|k < Sa. %o,
i=1 g

Thus to complete the proof of Lemma 6.2.5, it remains only to show (6.2.20), i.e. that the probability
concentrates on A°. To the estimate the probability of the set A; introduced in (6.2.19), we distinguish
two cases :

— A particle has at least two collisions during I;. This event will be denoted by A} if the cor-
responding particle has label 1, and can be separated into two subcases: either particle 1
encounters two different particles during I;, or it encounters the same one due to space period-
icity.

— Two collisions occur involving different particles. This event will be denoted by A; 2 if the
corresponding particles are 1 and 2.

The occurence of two collisions in a time interval of length a, has a probability which can be estimated
by using Proposition 3.3.1 with n = 1, 2, which allows to reduce to an estimate on pseudo-trajectories
thanks to the Duhamel formula: noticing that the space-periodic situation leads to an exponentially
small contribution, since it forces the velocity of the colliding particles to be of order 1/a., we find

(6.2.26) P. (A;) < pPe (.A ) + p2P (.Al 2) < C(ue —|—,u§)oz§ < C’agugl/g,

where we used that o, = ,u5_7/3. Summing over the 2—2 time intervals, we deduce that P, (A) <
CTopgl/?’. Thus the probability of A vanishes as ¢ tends to 0. This completes the proof of (6.2.20)
and thus of Lemma 6.2.5. O

Remark 6.2.8. — Remark that the proof of Lemma 6.2.5 still holds for sequences of functions (h;);>1
satisfying

Ihilloe < p22(1+5%),  Be(Ci(v-Vhy)®) < e+ li)°

6.3. The modified Garsia, Rodemich, Rumsey inequality

Proposition 6.2.4 is a slight adaptation of [75]. For simplicity we suppose that Ty = 1 and set

1 1
et — sl
(6.3.1) B ::/ dsdt\I/< 1 si>a-
‘ o Jo p(lt —s|) sl
Step 1:
We are first going to show that there exists w,w’ € [0,2a] such that
1 1 g2

_1 (4B, d(uv)
(6.3.2) 1w — | < 8/0 gl ( — >dp(u) < 8(4Ba)1/b/0 a7 < C B/,
Define

(6.3.3) Ba(t) = /01 ds U (M) L—sj>a With B, = /OldtBa(t).
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There is t9 € (0,1) such that B,(tg) < B,. Suppose that ¢ty > 2a, then we are going to prove that
there is w € [0, 2a] such that

1
_1 (4B,
(6.3.4) |ow — 1| < 4/ vt ( 2 )dp(U)'

If tg < 1 — 2a, we can show the reverse inequality

1
_1 (4B,
|P1—w — 10| < 4/ vt < 2 >dp(u).

Combining both inequalities, will be enough to complete (6.3.2).

Let us assume that to > 2a, we are going to build a sequence {t,,, un }n
to>up >t >ug > ...

such that t,_1 > 2a and u,, is defined by

(6.3.5) plun) = 5

The sequence will be stopped as soon as t,, < 2a.

. 1
p(tn—1), le. unzwtn_l.

Initially tg > 2a and wu; is defined by (6.3.5). Suppose that the sequence has been built up to ¢,_1.
By construction

1
tho1 — Up = <1 — 24/V> tn,_1>a since t,_1 > 2a.

tn |0t —%I) /“" (I% o —sosl)
ds O (2t TP [ g g (P TSN g < Byt ).
/o <p<tn_1—s|> i p(ltnr =3y ) Henr-et>a < Baltn-)

Furthermore

Thus

/ dtBq(t) < Ba,
0
thus there is t,, € [0, u,] such that

2B,
B, (tn) < and W (

Un

|(Ptn—1 - (Ptn| ) < 2Ba(tn—1) < 4Ba 4Ba
p(|tn71 - tn|) Unp Unp—1 Un u
We deduce that

41 (4B _,1 (4B,
Pty — P, | <O ( u2a> Pltn—1 —ta]) <O ( u2a> p(tn-1)-

n n

Suppose that ¢, > 2a then using that

Up >ty = p(un) > p(tn) = 2p(uni1),

we get
P(tn—1) = 2p(un) = 4(p(un) - p(un)/2) < 4(p(un) - p(un+1))
and also
630) o -l <407 (25 () - plon) <4 [0 (20 dpto

We then iterate the procedure to define ¢,,4.

If t,, < 2a, we set w = t,, and we stop the procedure at step n with the inequality

Un (4B,
(6.7 ot = pul =lors el < [ 07 (22 ) ),
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where we used that

P(tn—1) = 2p(un) < 4( )
Summing the previous inequalities of the form (6.3.6), we deduce (6 3.4) from
n w1 4B
(6:35) oo ol < Xlons el <4 [0 (42 dot)

=1

This completes the proof of (6.3.2).

Step 2: proof of (6.2.7).
We are going to proceed by a change of variables. Given = < y such that y — x > 4a, we set

pu-o () = p((y — )u) and vy = (o + (y ~ o)1)
() e =]
B = [ f s () w<|t—s|>>1“t il

B
ds'dt’ U [V = s 1oy o < e
|y—m|2// ( (=)t < o

Applying (6.3.2) to the function 1, there exists w,w’ € [0, 2a] such that
B

Lo [4B.- L [ 4B
v 2 | dpy—o <8 U ———2 ) dpy—z(u).
/ B et <5 [0 (2 ) ot

Changing again variables, we get for some constant C' depending only on v,b

1
[ (A oty < e -7
0 U

— (py‘ by the supremum of the local fluctuations in a time interval
less than 2a, we conclude to (6.2.7). The proposition is proved. O

|1/J1_y% —Yom

SN

[y — Parw| <8(y— )8~

By bounding ‘(py —

6.4. Spohn’s formula for the covariance

For the sake of completeness, we are going to show that the covariance C of the Ornstein-Uhlenbeck
process computed in (6.1.4) coincides with the formula obtained by Spohn in [67] and recalled below
n (6.4.1). Formula (6.4.1) is striking as the recollision operator R'? emphasizes the contribution to
the covariance of the recollisions in the microscopic dynamics.

Proposition 6.4.1. — Recall that U(t, s) stands for the semi-group associated with the time depen-
dent operator L. for T between times s < t. Given two times t > s, there holds

(641) C(s,t,0,0) = / AU (1, $)0(2) o(2) (s, 2)

+/0 dT/dfcdvdwf“?l’2 (f(r), f(7)) (, 0, w) (Ut 7)¢) (2, 0) U (s, 7)) (2, 0),

where the recollision operator RY? is defined by

(6.4.2) R“2(g,9)(z1, %) :=/(g(21)9(25)—g(21) (2 ))duzl,zz( )
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Proof. — The covariance at time ¢t = s = 0 is indeed given by

E (Go(0)6o(¥)) = / dzp(2) % (z) = / dzp(2)(2) (0, 7).

We will simply derive (6.4.1) when s = ¢ and the case s < ¢ can be easily deduced. The covariance Cov;
introduced in (5.5.3) can be rewritten in terms of the operator ¥,

(6.43) Et"/}(zl) = /dlLLZl (Zva) [f(t7 Zl)f(t722) + f(t7 Zi)f(u Zé)] A’Q/J,

with the notation dy., as in (1.2.2) and Ay as in (6.0.4). Indeed, one can check that for any functions
p, 1, the covariance can be recovered as follows

[emiean =5 [ dutar,zaw) £t )5t 2) + 040 5)] Auloe) + o(:2)

1

=5 [ duler. 22,0 (6 20) (1,2 (86) (Ap) = Covilg ).

The covariance C of the Ornstein-Uhlenbeck process computed in (6.1.4) reads
(6.4.4)

t
Clttopr ) = [ deald (0,0)0() FU (. 00pen) + [ [ doa o) [U(t,0) B0 U (0 0)0] o).
0
The following identity is the key to identify (6.4.4) and (6.4.1)
(6.4.5)  Yp(z1) = —(ftﬁj + Ltft)so(zl) +0uf(t,21) p(z1) + /d22 RY2(f(), F(1)) (21, 22)p(22) -

Let us postpone for a while the proof of this identity and complete first the proof of (6.4.1).

Replacing the expression (6.4.5) of ¥, in the second line of (6.4.4) and recalling that U(t,t)p = ¢, we
get that

/ du/d21 o(z1) [Ut, w) Sy U (t,u)Y] (21)
0
:/ du /dzl o(z1) [U(t,u) (f (Lufu+ full) + 3uf(u)> U*(t, u)] (z1)
0

t
—|—/ du /dzldzzu*(t,u)go(zl) R1’2(f(u),f(u))(z1722) U*(t,u)h(z2) -
0
Noticing that the time derivative is given by
Oulth(t,w) fu U (6 0)| = Ut w) (= (Cufu+ FuL5) + 0uf (@) U (E ),

we conclude that
/ du/dzl o(21) [U(t,u) B, UT(t, U)ll)] (z1) = /dzl (‘P(zl) fevo(21) — @(21) Z/[(t70)f0 u(t, 0)¢(21))
0

—|—A du/dzldzz U (t,u)p(z1) RV (f(u), f(w) (21, 20) U (¢, u)(22) .

Finally the covariance (6.4.4) reads

Ct,t, o, ¢) = /dw(z) ftw(z)+/0 dU/dZ1dzzu*(t7u)<ﬂ(z1)Rl’g(f(ULf(u))(zl,Zz) U™ (t, u)(z2)
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This completes the proof of Proposition 6.4.1. It remains then to establish the identity (6.4.5). Let us
write the decomposition ¥; = ¥} + ¥, with

SHo(a) i= = [ diey (o) [0 AAG, E0(a) = [ di (a0 (20, 22) A0
Recall that £} was computed in (6.1.3). We get
FOLT o) = 1) v Tlon) + [ diey (22000 (121 220D = () 01+ Tip(er) = £ plen).
and
Ll Op(r) = =01 VIR + [ diey(200) (£(0 410 5 (0031) + ()
= Flt 20 S (1 22) (0(22) + 9(20)) )
— o VIFORl) + [ die Ga) (£(8 ) 11 )M
+ [P F(28) = F(21) £t 22)] (9(21) + 9(22))
= —v1 - V[f(t)e](z1) — B p(21) + /de RY2(f(t), f(1) (21, 22) (@(21) + @(22))

where we used the notation (6.4.2). As a consequence, we get that

T Lip(z1) + Lef(D)p(21) = —p o1 - Vf(t,21) — Spp(21) + /dZ2Rl’2 (f(£), f()) (21, 22) (p(21) + (22)) -

As f solves the Boltzmann equation, we have

Buf(t.z1) = —v1 - Vf(t,z1) + /dzgRl’Q(f(t), £(8) (21, 22) -

This leads to further simplifications as

FOLLp(21) + Lo f(B)p(22) = ¢ i f (8 21) — Bigp(21) + /dzz RY2(f(1), F(1)) (21, 22)p(22)
thus (6.4.5) holds. Proposition 6.4.1 is proved. O



CHAPTER 7

LARGE DEVIATIONS

This chapter is devoted to the study of large deviations, and to the proof of Theorem 3. We are going
to evaluate the probability of an atypical event, namely that the empirical measure remains close to
a probability density ¢ (which is different from the solution to the Boltzmann equation f) during a
short time interval.

It is well known, see e.g. [22, 25], that the large deviation functional can be deduced from the ex-
ponential moments by Legendre transform. We recall the definition (5.3.2) of the limiting cumulant
generating function

(7.0.1) I(t,g) := A g (e?®~Jo P=9) = Tim A% (9~ Jo Do9)

e —>00
which is well defined (see Theorem 5) in the set
4
Bo = {g€ CHO, T xD5C) 5 |glt,2)| < (1= 5 )(a+ ol

2T,
(7.0.2)

1 B
sup [Dag(s,2)| < gt o)}
s€[0,Tx]

as long as t < T,. The Legendre transform of Z defines implicitly the large deviation functional
(see (7.0.8) below), and one of the goals of this chapter is to identify it with the following functional,
as previously conjectured by Rezakhanlou [63] and Bouchet [16]:

~

(7.0.3) Fiti) o= F(0,0) + s {<<p, D) - / H(so<s>,p<s>>ds} ,

where the supremum is taken over bounded measurable functions p on [0,¢] x D, and the Hamiltonian
is given by

(7.0.4) H(p,p) = %/du(zl,zz,w)w(zl)s@(Z2)(exp (Ap) —1).

We have denoted as in (6.2.1) the duality on [0,¢] x D by

<<P1/1> /ds/dzgosz (s,2).

We will be able to prove that F describes indeed the large deviations only for a restricted class of
functions, constructed as follows. Consider the biased Boltzmann equation already introduced in
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(1.4.6) :

(7.0.5) Dsﬂ:/(w(Z’)sO(Zé)eXP(*AP)*w(z)so(@)eXp(Ap))duz(ZQ,w) with  (0) = foe®

where p is a Lipschitz function in space and time, and define for any r,T > 0 the set

Ryr = {<p :[0,T] x D+ RT : ¢ is a strong solution of (7.0.5) on [0, 7] for some p
(7.0.6)
such that ||p|lw1.e(jo,71xm) < r} .

We shall prove the following theorem in Section 7.1 :

Theorem 8. — For any r > 0, there is a > 0 (depending on r,Cy and By), and a time T € (0,T,]
(recalling that Ty, is defined in Theorem 5) such that

~

(7.0.7) Vo Ry, VEST,  F(tp) =Tt ¢),

where F is the Legendre transform of T

(7.0.8) Fit.¢) = sup { — (o, Dg) + {e(t). o)) = Z(t,9) }.
g [e3

Building on Theorem 5 and standard methods of the large deviation theory [22], we shall then prove
the following large deviation principle in Section 7.3.

Theorem 9. — Consider a system of hard spheres initially distributed according to the grand canonical
measure (1.1.6) where fO satisfies (1.1.5). Let v > 0 be fized, and the associate parameters o > 0
and T > 0 of Theorem 8. In the Boltzmann-Grad limit p. — oo, the empirical measure satisfies the
following large deviation estimates :

— For any closed set ¥ C D([0,T], M(D)),

1
(7.0.9) limsup — logP. (7 € F) < — inf F(T, ¢).

e —>00 He p€EF
— For any open set O C D([0,T], M(D)),

(7.0.10) lim inf L logP. (7 € O) > — inf  F(T,¢p).

He—+00 [Lg eEONR,, T

7.1. Identification of the large deviation functional

In this section, we prove Theorem 8. From now on, we fix a real number r > 0. The main step
of the proof will be to provide a more explicit formula for Z(¢, g) by using that the Hamilton-Jacobi
equation (5.3.9) has a unique solution.

7.1.1. Mild solutions of the Hamilton-Jacobi equation. — For any « > 0, fix a function g
in B,. At the formal level, the Hamilton-Jacobi equation (5.3.9) states that for any ¢ € [0, T,,]

(7.1.1)  0Z(t,g) = H(aéz);?t)g),g(t)) with H(go,p) = %/(p(zl)g&(zQ)(eAp — 1)d,u(21,22,w),

with initial condition

(7.1.2) 7(0,9) = (f°, (7@ - 1)).
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As noticed before, all the limiting cumulants at time 0, except the first one, equal zero so that Z(0, g)
coincides with the exponential moment of independent variables distributed according to f° and tilted
by the function g(0).

We would like to use a method of characteristics to obtain a mild solution Z(t,g) of (7.1.1)-(7.1.2).
Given ¢ in [0, T,], define the Hamiltonian system on the time interval [0, ¢]

(7.1.3) Dugi = T pup)s with u(0) = %),

(7.1.4) Dy(p: — g) = *%(Sﬁt,pt) , with  pg(t) = g(t).

The subscript ¢ stresses the fact that the functions ¢4 (s), p;(s) depend on ¢t. As customary, the boundary
conditions are prescribed in terms of the initial time (for (7.1.3)) and the final time ¢ (for (7.1.4)).
The condition (7.1.3) is identical to the biased Boltzmann equation (7.0.5) used to define R, 1. Note
that (7.1.4) reads

(7.1.5) Dy(ps —g) = —/@t(ZQ)(eXp(Apt) —1)dp=(z2,w) with p(t) = g(t).

The local well-posedness of the Hamiltonian equations (7.1.3)-(7.1.4) will be obtained by a Cauchy-
Kovalevskaya argument after recasting the system in more symmetric variables (see Section 7.2 and
Appendix A 4).

Let us now explain how the functions ¢¢, p; can be used to build a more explicit representation of the
functional Z. For g € B, and (¢4, pt) solution to (7.1.3)-(7.1.4), define the action associated with the
Hamiltonian system (7.1.3)-(7.1.4) by

(7.1.6) I(t, g) = (f°, (€@ — 1)) + (Ds(pe — 9), ¢1) +/0 H(pi(s),pe(s))ds .

Proposition 7.1.1. — Let « > 0 and g € B,. Assume that the Hamiltonian system (7.1.3)-(7.1.4)
admits a unique continuous solution on [0,T] for any forcing § in a neighborhood of g in B,. Denote
by (¢¢, pe) the solution on [0,T] associated with g. Then the functional 7 defined by (7.1.6) satisfies
the Hamilton-Jacobi equation (5.3.9) on [0,T] and the following identities:

0T oL
1. ———(t, ) = [t _ = —p,.
(7.1.7) ag(t)( :9) = ¢e(t) 8Dg(tg) Pt
Proof. — Let us first compute the time derivative of 7 (t,g) for a fixed function g
(7.1.8) OZ(t, ) =(£°,e*Vdpy(0)) + (De(pr — 9) (1), @4(t)) + H(o1(t), Py (£))

+ {(Dsbpe, i) + (Ds(pe — 9),601)
+ <<5<Pt, %(<ﬂt,pt)> + <<5pt, %(@t»ﬁt)) )

where § stands for the derivative with respect to the variations of the final time; for example

Vs < t, 5pt(5) = lim w
u—0 U

In particular, we will prove that

(7.1.9) opi(t) = =0 (pe(t) — g(t)) = —Di(pe(t) — g(t)) ,
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where the time derivative is only with respect to the argument s — p;(s)—g(s). The first part of (7.1.9)
follows by
Prru(t) = Pe(t) _ Pryu(t) — Peoult + 1) + proult +u) — pe(t)
u u

_ Peyu(t) = pryu(t +u) + g(t +u) — g(?)
U u—0

=0 (pe(t) — (1)),

thanks to the boundary condition (ps —¢)(s) = 0. Using once again the boundary condition, we deduce
that v -V (pt — g)(t) = 0 so that the second equality in (7.1.9) is proved.

Integrating by parts the first term in the second line of (7.1.8), we get

(Dsdpe, i) = —(8pr, Dapr)) + (5pe(t), i () — (0p:(0), 0¢(0))
= —(0pt, Dspr) — (Di(pe(t) = g(t)), 1 (t)) — (5pe(0), e ),

where we used the boundary conditions ¢;(0) = f%P:(®) and the identity (7.1.9). From the equa-
tions (7.1.3)-(7.1.4), we deduce that the integral contributions of dp; and dp; vanish. Therefore T
satisfies the Hamilton-Jacobi equation

(7.1.10) OL(t, g) = H(pe(t), pe(t)) -

The mild form (5.3.9) is then a consequence of identities (7.1.7) by time integration.

Let us now fix ¢ and differentiate (7.1.6) with respect to g(t) and Dyg. The corresponding varia-
tions dg(t) and 0D,g are independent. We get

af(t’g) :<fo7ept(0)6pt(0)> + <<Ds(5pt,§0t>> - <<5Dsga<pt>> + <<Ds(pt - 9)764Pt>>
+ (b1, g;l(@t,pt» + (0pe, %(@t,pt» :

By integration by parts and using the boundary conditions ¢;(0) = f%¢*(®) and p.(t) = g(t), we obtain

(Dsbpr, 1) = —(0pe, Dapr)) + (6pi(t), 01 (t)) — (pe(0), ¢1(0))
= —(6pr, Dspr ) + (69(t), (1)) — (6p:(0), o)y
Thus

5f(ta g9) :<f0,€pt(0)5pt(0)> - <<§Dsgv <Pt>> - <<5pt, Ds¢t>> + (0g(t), ¢e(t)) — (9p:(0), fo€pt(0)>

+ {Ds(pe — 9), 601 ) + (o1, %(Sﬁt,m» + (ope, %(Sﬁt,l)t)>>-

Combining this identity and equations (7.1.3)-(7.1.4) to simplify the Hamiltonian contribution, this
completes the statement (7.1.7)

OZ(t,g) = (39(1), e(1)) = (3Dsg. 1) -
Proposition 7.1.1 is proved. O

As a consequence of Theorem 7 page 46 and Proposition 7.1.1, the functionals Z, 7 are both solutions of
the Hamilton-Jacobi equation (7.1.1) and we are going to deduce that they coincide on some short time
interval. The proof of the following result is postponed to Section 7.2.1 as this requires to reparametrize
the Hamiltonian variables in order to show the uniqueness of the Hamilton-Jacobi equation.
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Proposition 7.1.2. — Let o > 0 be given. There exists a time T} > 0 such that the functional 7 is
well defined on [0, T2] X B, and the functionals ,Z coincide on [0, Tx] X By

~

Z(t,g) =Z(t,9) forany t<Tr, g€ B,.

7.1.2. Identification of the Legendre transform F. — In this section, we prove Theorem 8. Fix
a function @ satisfying the biased Boltzmann equation (7.0.5) for some p such that

(7.1.11) ||p||W1,oo([07T0]XD) <7r.
Noticing that

oH ,_ _ N I _

ap PP = (#(2")p(25) exp(=Ap) — $(2)¢(22) exp(Ap)) dp= (22, w) ,
this biased Boltzmann equation can be rewritten in the more compact form (7.1.3) which we recall
(7.1.12) Dip = %—H(@p), with  3(0) = f0eP(©),

p

By Appendix A.1 (see (A.1.4)), Equation (7.1.12) has a unique solution on [0, Toe~5"] such that

(7.1.13) sup

o(t) exp (ﬁ |v|2) H < 4Cpe".
te[O,Tgef&"] 4 S

We then set

T := min(Tpe ", T7),
with T as in Proposition 7.1.2. Note that ¢ is smooth, non-negative and that the conservation of
mass, momentum and energy are satisfied :

(7.1.14) (Dsp,1) = (D@, v;) = (D, |v]*) = 0.
Remark 7.1.8. — It has been shown in [37, 4] that the functional F is not relevant to describe
the large deviations of some functions ¢ which are weak solutions of the homogeneous Boltzmann

equation but do not conserve energy. Such functions are much more irreqular than those in R, 1 (see
e.g. (7.1.14) ), thus the counterexample in [37] does not contradict Theorem 8.

Equation (7.1.12) implies that p is a critical point of the variational problem (7.0.3) on [0, 7], which
we recall:

F(t, @) == F(0,5(0)) + sup {<<p, Dsp) — /0 H(@(S),p(S))dS} :

where the supremum is taken over bounded p on [0, ¢] xD. Indeed since @ > 0, the function p — H(p, p)
is convex and one can check that for any bounded p and for all ¢ € [0, T,

(p. Ds7) / H(3(),pls)) ds < (5, D) — / "W ((5), 5())ds + (0 — B Do — %—’;(w»

< (7. Ds) —/0 H(p(s),p(s))ds,

where the last term in the first inequality is equal to 0 thanks to (7.1.12) and the fact that p,p are
bounded. The previous inequality implies that the supremum F is reached at p:

(7.1.15) vt e [0,T), F(t,p)=F(0,5(0)) + (p, Ds@) —/O H(p(s),p(s))ds.
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We turn now to the analysis of F(¢,p). By the identification of Z and 7 in Proposition 7.1.2, the
variational problem (7.0.8) can be rewritten, for all ¢ < T

(7.1.16) F(t,9) = sup { — (@, Dag) + (p(1), 9(t)) — Z(t, g)}.

Let us first build a critical point g for this variational problem. Given p satistfying (7.1.11) and @
solving (7.1.12), we define § as the solution of

_ _OH,_ _
(7.1.17) Dsg = Dsp + %(w,p) with  g(t) = p(t).

By assumption (7.1.11) on p, we get
|Dsp| < (1 + o])pllwre < (14 Jol)r
and there holds

o] =| [ oten) (w88 ~ Vi)
< ‘/@(@MMI exp(|Aﬁ|)d/~Lz<22’W>‘

< CCyrexp(5r)8; * (Il + 5, %),

where we used the weighted estimate (7.1.13) on ¢ to control the divergence of the cross section. The
constant C' is universal and depends only on the dimension. Thus we deduce from (7.1.17) that

(7.1.18) |Dsg(s, @,v)| < CCorexp(5r)B, (|U\ + B, 2 ) (L+[v))r and |gt,z,v)| <r.

Given r > 0 which quantifies the size of the observables in the large deviation principle, the parameter a
is then chosen large enough by using the estimates (7.1.18) so that g belongs to B,. Note that the
larger « is chosen, the smaller T, = ce’o‘ﬁ(()d's_l)/2

Theorem 8.

/Co will be, and hence also the time of validity of

By construction @ belongs to R, 1 and (@, p, §) satisfy the Hamiltonian system (7.1.3)-(7.1.4) on [0, T,
so from Proposition 7.1.1, the following holds

o, . T ., _ _
%(ﬁg) =o(t), 87Dg(t’g) =—p.
This implies that g is a critical point of
(7.1.19) (9(t), Dsg) = (@, Dsg) + (2(1), 9(t)) — Z(t,9) .-

Since f(t, g) =Z(t,g9) = Ao g (eg(t - sg) is strictly convex with respect to (g(t), Dg), the supremum
in (7.1.16) is reached at g. Thus

(7.1.20) F(t,9) = (@), 3(t)) — (@, Dsg) — L(t.9)

— (1), 3(8) — (f°, ("© — 1)) — (Dup, & / H(@(s), pls))ds

where f(t,g) is replaced by its explicit representation (7.1.6) in the second line. As g(t) = p(¢)
and @(0) = 2P an integration by parts leads to

F(t,9) = (3(0),5(0) + (f° — (0)) + (p, Do) — / H(p
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As the initial large deviation functional is given by
F(0,6(0)) = (i0log (;fg) o+ °)

and f'(t,gb) by (7.1.15), this shows that F(t,p) = ﬁ(t,@) on [0,7]. The proof of Theorem 8 is
complete, provided that we can construct solutions of the Hamiltonian equations to define Z, and
prove the uniqueness of solutions to the Hamilton-Jacobi equation. O]

7.2. Symmetrization of the Hamiltonian system: proof of 7 = 7

This section is devoted to the proof of Proposition 7.1.2.

In order to prove the two missing statements, i.e. the local well-posedness of the Hamiltonian equa-
tions (7.1.3)-(7.1.4), and the uniqueness for the Hamilton-Jacobi equation (5.3.9), the idea is to apply
Theorem A.1, which requires to define suitable functional settings in which we have loss continuity
estimates of the type (A.0.2).

To do so, it will be convenient to reparametrize the Hamiltonian variables and instead of p, ¢ to
consider

(7.2.1) (¥, ) := (pe™P,€").

In these new variables, the Hamiltonian (7.0.4) is rewritten in a more symmetric form

(7.2.2) H (,n) = %/1/)(21)1#(22)(77(21)77(25) —n(z1)1(22)) dp(21, 22, w)
= —i / (0(21)1h(25) — (21)0(22)) (n(21)n(25) — n(z1)n(22)) dp(z1, 22, w).

7.2.1. Uniqueness for the Hamilton-Jacobi equation. — Consistently we characterize g using
the variables y(s) := e9(*) and ¢(s) := D,g(s) which are related by the continuity equation
(7.2.3) Vs <t, Dgvy(s) — ¢(s)y(s) =0.

The functional Z(t, g) becomes then
(7.2.4) T(t,6.7) = Aoy (ve )
and the Hamilton-Jacobi equation (5.3.9) can be rewritten in terms of the new Hamiltonian H’
(7.2.5) J(t)=J(0) +/Ot F(J(s))ds,
when ¢ and «(t) are related by (7.2.3) and where
F(T(5.09(6)) = H (G 0.2(60)7(0))
I o
2) Oy oy
with initial condition (7.1.2)
(7.2.6) J(0,0,7(0)) = (f°, (+(0) = 1)).

(6:7(5))(21) G- (6, 7()) (2) (05 2005 25) = (5200705, 2) ) dn(n, 22, 0)
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Inspired by Appendix A, we define the scale of function spaces

t
Bapa = {(6.7) € C0.4 x Bi0) x CODC) 5w v)] < exp (1 50-) @+ SloP)).

Finally let us set
(7.2.7) 1Tl = sup [Tt )]

(¢,7)EBa,s,t
Proposition 7.2.1. — Let ag > 0 be given. There exists Toli)‘] € (0,Ty,,] such that the Hamilton-
Jacobi equation (7.2.5) has locally a unique solution J in [O,Tgf], in the class of functionals which
satisfy:
— forany 0<a <o <ap, 0< B < <P, t €[0,Ty,] and (¢,7) € Bap.

(7.2.8) Haj%}quM(

1 1
< C _— + R — t o /;
(1+]v]) exp ((17ﬁ)(a+g\v|2))dzdv> - <a/ — 6/ _ 6) ||j( )” B
I (t,¢,7)

— the derivative

y
for any (¢,7) € B,

18 a continuous function on D, and there is a constant C such that

<C.

0 t7 )
(7.2.9) Vt < Ty H‘W(l + o)) exp(%lvlz)‘ o)

Proof. — According to Theorem A.1, there is a unique solution to (7.2.5) provided that for all 0 <
a<ad <ag,0<B < < B

1 1
(7.2.10) IF(T®) = F(T'#)llas < C (O/_a + M) T =TV O)lar,p -
Tt suffices to prove that (7.2.10) holds if J satisfies (7.2.8)-(7.2.9). Let us write
oTg—-J 0 !
F) - 77 = 5 [ 22T 000 2T s 6000 )

% (105, 200705, 28) =105 20)7(5, 22) ) (21, 25, 0)
If (¢, ) belongs to B, g+ then

Vs <t, |”y(s,x,v)| < exp ((1 - %) (a + §|v|2)) ,

so we deduce that for any o/, 8’ with 0 < 8 < < By, 0<a<a <ag
S, ¢7V) B \7/<57 ¢a 7)) H
0y M((l+|v\)cxp((172Tixo)(a+%|v\2))dxdv)

AT (5,0,7) + T'(5,6,7))
v

F(7) - P < o 2

<| (1 + o) exp( 2 o?)

o (D)

1 1
gy <M . M) 17(5) = T'(5)lar

where C is a generic constant depending only on «y, 3p. Taking the supremum on all couples (¢, 7)
in By g,t, we obtain that

|P(T() = F(T'(s))

1 1 )
=€ (a, —t5 5 ﬁ) [MOENAO!
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Proposition 7.2.1 is proved. O

Having in mind to use the uniqueness criterion of Proposition 7.2.1 to establish Proposition 7.1.2, we
now need to rewrite Z and Z in the new variables and to prove some regularity estimates.

7.2.2. Regularity of the limiting cumulant generating function J. —

Proposition 7.2.2. — Let ag > 0 be fized. Fort < T,,, the functional J(t,¢,v) defined by (7.2.4)
is an analytic function of v, on B, .. For any o €la, ), 8 €]8, 6] and all (¢p,) € By g, the

T (t, ¢, ‘ o ‘ N
derivative w satisfies the loss continuity estimate (7.2.8). Moreover, the derivative w
g gl
is a continuous function on I satisfying the estimate (7.2.9).
oJ(t,d,7) . . . .
Proof. — Thanks to (5.3.6) we find that w is a function on D, for which we are going to
gl

establish properties (7.2.8) and (7.2.9).

Step 1. Proof of (7.2.8). Let (¢,7) be in By g, and let T be a continuous function on D satisfying

Y0l < 1+ ol esp (1= =) o+ hP).

It is easy to check that for a suitable choice of A > 0, the couple (¢, + Ae??T) belongs to Bar gt
Indeed it suffices to notice that

]7 n )\ew’f‘ < (14 A1+ o)) exp ((1 - 2; Yo+ gm‘l))
A
exp ((1- 212 Yo+ §|v|2) +23+ Slol?)

IN

t /
<exp (1= )@+ TloP)
[e ™)

. o/ —a =P .. . .
provided that A < mm( 1 1 ) Then by analyticity, choosing A = min (

the derivative can be estimated by a contour integral

aJ(t,¢,7) L i0 —i0
/DdzT(z) =55 j(t,d),(’er/\e T))e de,

)

and we conclude that for all (¢,~) in By g,

1 1
<C{———+ T )llar,p -
(1+|v\)exp((172Tta0 )(a+§|v\2)>) (a/ —a B - ﬂ) 1T B lar,p

H T (t,¢,7) H
0 M(

This completes (7.2.8).

Step 2. Proof of (7.2.9). For the second estimate, we use the series expansion (5.3.6). The mea-
SUTe flgy,, 7 1S invariant under global translations, and since T depends only on one variable in D, (5.3.6)

still makes sense if exp( —%MQ)T is only a measure. Up to changing the parameter of the weights, we
get the result.

Proposition 7.2.2 is proved. O
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7.2.3. Definition and regularity of f]\ . — The same change of variables is used to de-
fine J (¢, ¢, v(t)) which is the counterpart of Z(¢, g) introduced in (7.1.6) :

(7.2.11) T(t,¢,7) :=(f°, (m:(0) — 1)) + (Dne, ) — (Do, beme) + /0 ’H/(T/)t(s)ant(s)) ds,

where (¢,n) = (pe™P, eP).

In these new variables, the Hamiltonian equations (7.1.3)-(7.1.4) on the time interval [0,¢] can be
rewritten

Dy + s ¢ = aain(wtant)a ¥(0) = f°,

8 A
Dne —ne ¢ = —%(%m), n(t) =~(t).

Note that the structure of this Hamiltonian system is more symmetric than (7.1.3)-(7.1.4) and it can
be interpreted as a system of modified Boltzmann equations. Indeed (7.2.12) can be written

(7.2.12)

Dgtpy = =ty ¢y + /dﬂzl (22,w) e (22) (%(21)%(2;) - Z/Jt(zl)l/Jt(@)) with  ,(0) = f°,
(7.2.13)

Do =m e~ [ diey (20, (e (mGHm () = mlaym(zz)) with mi(e) =
In particular contrary to (7.1.3), the boundary conditions in (7.2.13) are time independent.

We are now going to check that the modified Hamiltonian equations (7.2.13) admit unique solutions.
From this, we will deduce that 7 is well defined and satisfies the regularity assumptions of Proposi-
tion 7.2.1.

Proposition 7.2.3. — Let o > 0 be fized. There exists a time TX € (0,Ty] such that for any (¢,7)
in Ba g, 1, and t in [0, T2, there is a unique solution (1;,n;) to the system of modified Hamiltonian
equations (7.2.13) on [0,t] such that for the norm introduced in (6.1.8)

oo < o <
(7.2.14) s?f(fﬂ [e(s)llzes,, . <O Szt[lol?ﬂ e (s)llzse ,, <
If (¢,) take real values and v > 0 then (¢, n;) are both positive functions. For any t € [0,TH],

the functional J(t,¢,v) is well defined and depends analytically on ~y. Furthermore, it satisfies esti-
mates (7.2.8) and (7.2.9).

Proof. —
Step 1. Well-posedness of the system of modified Hamiltonian equations (7.2.13).

This is once again a consequence of the Cauchy-Kovalevskaya argument of Appendix A. The proof is
therefore postponed to the appendix A.4. Let us just point out here that to implement the strategy,
it is more convenient to rewrite (7.2.13) in a mild form, denoting Sy the transport operator in D:

Vi) = Sof° + / Su o Py (61(0), me(0), in(0)) dor
(7.2.15) Vs < t, 0

n(8) = Soceye — / Ss—oFs(60(0), 1e(0), 91(0))do,
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with
Filovm, ) = <00+ [ di, (oo, nen) (9)(:5) — (1))

Falom ) =16~ [ diz, (20, 00e2) (n(z)n(5) = n(z1)n(z2))
The positivity of (¢, n:) is proved by rewriting (7.2.12) in the form

Dby + 4y (¢t + K (wt,m)) = /dﬂzl(z%w) e (22) e (21)1he(25)  with 4 (0) = f°,

Dgne + m( — ¢ + Kz(%ﬂ?t)) = */d#zl (22, w) e (z2)me(21)me(25)  with  7e(t) = .

The first equation is a transport equation with a (nonlinear) damping term ¢; + Ki (¢, 7n:) and a
source term which is nonnegative (as long as 1,7 are positive). It therefore preserves the positivity.
The second equation is a backward transport equation with a damping term —¢; + Ko(t)4,7:) and a
source term which is nonpositive (as long as 1, n; are positive). It also preserves the positivity. The
solution (¢, 7;) obtained by iteration (using the fixed point argument) is therefore positive.

Step 2. Regularity estimates on j(t, ?,7)-

Since the solution (¢¢,7;) to the Hamiltonian equations is obtained as a fixed point of a contracting
(polynomial) map depending linearly on v (see (7.2.15)), it is straightforward to check that (i, )
depends analytically on v (for instance using the iterated Duhamel series expansion). Proceeding as
in Proposition 7.1.1, we can show

0J (t,6,7)
=L (b)),
72 =t
The estimates (7.2.14) on ¢, lead directly to (7.2.9). The inequality (7.2.8) can be obtained by a
contour estimate as in the derivation of Proposition 7.2.2. Proposition 7.2.3 is proved. O

7.2.4. Conclusion of the proof of Proposition 7.1.2. — By Proposition 7.2.3, the functional J
is well defined on some time interval [0, Tgl], so 7 is also well defined and the formal computations in
Proposition 7.1.1 are justified. By implementing a proof similar to the one of Proposition 7.1.1, J is
a solution of the Hamilton-Jacobi equation (7.2.5) in [0, TH']

vt < T T (t,d,v(t) = H' (g,v(t)> .

The regularity assumptions of Proposition 7.2.1 hold for J (see Proposition 7.2.2) and for J (see
Proposition 7.2.3), thus 7 and J coincide on [0, 7] X Ba, up to requiring 7* < min(T', T7).

Given g, the functions (¢, n) are positive by Proposition 7.2.3, so that ¢ = ¢y and p = logn are well
defined. Going back to the original variables, we conclude that Z and Z coincide on [0, T}] X Bg.

7.3. The large deviation estimates

In this section, we fix o according to (7.1.18), and T" as in Theorem 8. Recall that M (D) stands for the
set of positive measures with finite mass on . We are now going to prove the large deviation estimates
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of Theorem 9 in terms of the functional F given by the Legendre transform for ¢ € D([0,T], M(D))

F(T) = sup { = (. Dg) + (1), 9(T)) ~ (T, 9)}.

The method of the proof is standard (see e.g. the textbook [22] or [25]) as the difficult work has been
achieved already in Theorems 4 and 5 to derive the convergence of the cumulant generating function
of the particle system to the limiting functional Z(t,g). For the sake of completeness, we sketch the
main steps of the proof.

We first start by proving upper and lower large deviation bounds in a topology weaker than the
Skorokhod topology. This weak topology on D([0,T], M(DD)) is generated by open sets of the form
below, for any v € D([0,T], M(D)) and for test functions g in B, and 6 > 0:

(7.3.1) Og,4(v) = {u’ € D((0,To], M(D)) :  |((, Dg)— (p, g1)) — ({v, Dg) — (vr, g1))| < 5/2}.

Then, in Section 7.3.3, the topology will be enhanced to the Skorokhod topology by a tightness argu-

ment.
7.3.1. Upper bound. — We are going to prove the large deviation upper bound (7.0.9) for any
compact set F of D([0,T], M(D)) in the weak topology
1
(7.3.2) limsup — logP. (7 € F) < — inf F(T, ).
He—>00 He pEF

General closed sets will be considered in Section 7.3.3.

We are first going to show that for any density ¢ in F and § > 0, there exists g € Bs and an open
set Og,4(¢) of ¢ such that

1
(7.3.3) limsup — log P, (7% € O5,4(¢)) < —F(T,¢) + 9.

pe—oo He
Then by compactness, for any § > 0, a finite covering of F C U;<x Oy g, (i) can be extracted so that

1
li —logP. (7 € F) < — inf F(T,p;) +0 < — inf F(T, J.
meup - logPe (r° € F) < — Il F(Top) +9 < = Il (109 +

Letting § — 0, we recover the upper bound (7.3.2).

We turn now to the derivation of (7.3.3). For any density ¢ in F, we know from (7.0.8) that there
exists g € B, such that

F(T,9) < —(», Dg) + (¢(T), 9(T)) = Z(T,g) + /2.
This leads to the upper bound
P. (7 € O, (¢)) < exp (1o + (0. D) — e (1), (7))
x E. (exp ( — pe{7, Dg) + ME<W%79(T)>>)
< exp (ueg + 1e{p. Dg) — pe(o(T), 9(T) + e I°(T, 9)) 7

with
T2(t,g) == A (e9=Jo P9) .
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Passing to the limit thanks to Theorem 5, this completes (7.3.3)

lim sup 1 log P, (WE € Oa,g(sa)) <I(T,g) + (., Dg) — (p(T),9(T)) +6/2 < —F(T,¢) + 4.

pe—o0 He

Remark 7.3.1. — Note that the proof of the upper bound holds actually up to time T, =
dt1
ce= By 2 /Co, if the supremum in (7.0.8) is taken over the functions g satisfying the assumptions
1 Bo, 2 1 9
sup [g(t,2)| < S(a+ —[v]7),  sup [Dig(t,2)] < o (a+ —[v]7).
te[0,Ts] 2 8 te[0,Ts] 2T,

The restriction to T will appear in the proof of the lower bound when using the fact that the supremum
in (7.0.8) is reached for some g € B,.

7.3.2. Lower bound. — We are going to prove the large deviation lower bound (7.0.10) for any
open set O in the weak topology
1
34 liminf —logP. (7 € O) > —  inf T
(7.3.4) iminf ~logPe (r° € 0) = — _inf F(Ty0),

where the restricted set R, 1 of trajectories was defined in (7.0.6) (see also Theorem 3).

Contrary to the proof of the upper bound which was a direct consequence of the convergence to Z
of the cumulant generating function (Theorem 5), the derivation of the lower bound follows from the
Gaértner-Ellis method [22] and it requires an additional regularity assumption on F. For this, we
consider observables ¢ such that the supremum in (7.0.8) is reached for some g € By

(7.3.5) F(T,¢) = (p(T),9(T)) — {#, Dg) — I(T, g) .

It was shown in (7.1.20) that identity (7.3.5) is valid for any ¢ in R, . Even though (7.3.5) should
be valid for a larger class of functions, we restrict to functions ¢ in O NR, 7 for simplicity.

Let us fix ¢ € ONR,pr and denote by g the associated test function as in (7.3.5). There exists a
collection of test functions ¢(V), ..., g in By such that the following open neighborhood of ¢

Os,g0y(p) = {u € D([0,T), M(D)) : Vi<,

(v, Dg ™) = (1), g (1)) = (2, D9 V) = ((T), gD (T)))| < 5}

is included in O for any & > 0 small enough. We impose also that g is one of the test func-
)

(7.3.6)
tions g™, ..., g®. To complete the lower bound
1
liminf —logP. (7 € O) > —F(T, ),
He—00 e

it is enough to show that

1
(7.3.7) lim inf lim inf — log P. (7° € Oy 1,1 (0)) = —F(T, ).

520 e300 [l
We start by tilting the measure
P (Os (g3 ()) = exp ( — Opie + pe{, Dg) — pe(p(T), g(T)>)
% B (exp (= e, Dg) + pelns g(T)) To, oy )

> exp ( - (SME + NEIE(T7 g) + ;U’6<<907 Dg>> - ME(SO(T)79(T)>) ]EE,Q (1057“(1)}@7)) 5



86 CHAPTER 7. LARGE DEVIATIONS

where we defined the tilted measure for any function ¥ on the particle trajectories as
Ee,q (%)) = exp (~.T°(T, 9)) Ee (exp (= e, D) + e, 9(T))) W(r7))
If we can show that the trajectory ¢ is typical under the tilted measure

(7.3.8) V6 >0, lim P, (7% € Og y00y(0)) =1,

He—>00

this will complete the proof of (7.3.7).

Let § be one of the functions ¢gV,..., ¢ used to define the weak neighborhood 057{9@)}(@).
Choose u € C in a neigborhood of 0 so that the function below is analytic

u€CrI(T,ug+g)= lim I°(T,ug +g).
He—>00

As a consequence the derivative and the limit as pu. — oo commute, so that taking the derivative
at u =0, we get

_<<aagg(T, g),D§>> + <85(1T)(T, g),g(T)> — ﬂi@mEfvg( — («°,Dg) + <WET,§(T)>) .

Note that in the above equation, the functional derivative is taken over both coordinates Dg, g(T) of
the functional Z(T), g). As the supremum in (7.0.8) is reached at g, we deduce from (7.3.5) that

139 (5501 D3) + (5o (Td(T) ) = (D)) ~ (0. D3)
This allows us to characterize the mean under the tilted measure

Taking twice the derivative, we obtain

i B ([, 5000) = (%, D)) = Bey (005000 — (D3} ) <20

He—>00

Combined with (7.3.10), this implies that the empirical measure concentrates to ¢ in a weak sense
_ ~ B ~ V12
lim E., ([(wa,g(T» — (7, D3)) = ({e(1),3(1)) - (¢, Dg) ) ) 0.

In particular, this holds for any test functions gV, ..., ¢®) defining the neighborhood 057{5(@}(90)
in (7.3.6). This completes (7.3.8).

7.3.3. Tightness. — In this section, we are going to prove a tightness property in the Skorokhod
topology which will enhance the large deviations proven so far in a coarser topology (see Corollary 4.2.6
of [22]).

Let (h;);>0 denote the basis of Fourier-Hermite functions (as in (6.2.2)). We define a distance on the
set of measures M(DD) by

(7.3.11) d(p,v) = ZQ‘j /dz hj(z)(dp(z) — dv(z))
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Proposition 7.3.2. — The norm of the empirical measure is concentrated in compact sets
1
(7.3.12) lim lim —1og]P’€< sup d(my;,0) > A) = —00
A—00 pre =00 [Ue +€[0,To]
and the modulus of continuity is controlled by
/ . . ]- £ o !

(7.3.13) v§' >0, lim lim — logP. sup d(m;,7) >0 | =—o0.

60 pe—>00 [le [t—s|<é

t,s€[0,T0]

Thus the sequence of measures (75) is exponentially tight.

Before proving Proposition 7.3.2, let us first show that it implies large deviation estimates in the
Skorokhod space of trajectories D([0,T], M (D)) (for a definition see Section 12 in [8]). First of all
notice that the upper bound (7.0.9) holds for closed sets F and not only compact sets as the sequence
of measures (P.) is tight and the closed sets for the Skorokhod topology are also closed for the weak
topology.

We consider now an open set O for the strong topology and ¢ a trajectory in O N R, r, recalling
that R, is defined in (7.0.6). We would like to apply the same proof as in Section 7.3.2 and to reduce
the estimates to sample paths in a weak open set of the form (7.3.6). We proceed in several steps.
First note that there exists § > 0 such that

{1/ o osupd(v, @) < 25} cO.
t<T

Since ¢ belongs to R, 7, the density ¢ is continuous in time. Choosing a time step v > 0 small enough,
we can restrict to computing the distance at discrete times

v osup d(Viy, @iy) <0 ﬂ {u : sup d(v,vs) < (5} cO.

i€N —sl<
s [t—s|<vy

Since ¢ is continuous in time and we consider only 7'/~ times, the first set above can be approximated
by a set of the form Og(p) as in (7.3.6). As a consequence we have shown that there is an open set
O;s(p) such that

P, (7* € O) > P, <7T€ € Os(p) ﬂ{ sup d(m;,75) < 5})

[t—s|<vy

> P, (7° € Os(p)) — P sup d(mg,7m5) >4 .
[t—s|<vy
By Proposition 7.3.2 the last term can be made arbitrarily small for v small. Thus the proof of the
lower bound reduces now to the one of weak open sets as in Section 7.3.2.

Proof of Proposition 7.3.2. — To prove (7.3.12), let us first note that the test functions used for defin-
ing the distance in (7.3.11) are uniformly bounded, thus the distance is bounded in terms of the total
number A of particles

d(rs,0) <c£/-
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As the number of particles is fixed only by the initial distribution, it is simple to obtain the exponential
decay claimed in (7.3.12)

(7.3.14) Ps(tes[g’%)] d(n$,0) > A) <P, (N > A%) < ¢ exp ( - CQILLEA) )

By the inequality (7.3.14) and the boundedness of the test functions used in (7.3.11), it is enough to
consider a finite number of test functions. Indeed, for any §’ there is K = K (¢') such that

. o'

dp,v) >0 = Z?J/MW@@m>m@ﬂ>2

l7|<K

By the union bound, we can then reduce (7.3.13) to controlling a single test function h

1
7.3.15 Vo' >0, lim lim — logP. | su m5, h) — (S, h)| >4 | = —oc0,
(r.3.19 ti tiny Lo @éyt>< ) )

where t, s are restricted to [0, T]. Next, we localize the constraint on the time interval [0, T] to smaller
time intervals

[t—s|<5 t,5€[(i—2)8,id]

/5
(7.3.16) P, ( sup |[(wf, h) — (75, )| > 6’) < ZIP’E ( sup (75, h) — (w5, )| > 6’) :

By assumption (1.1.5), the initial density f° is bounded, up to a multiplicative constant Cp(27/Bo)%/?

by the Maxwellian Mg, (uniformly distributed in z). By modifying the weights W§° in (1.1.6), we
deduce that the probability of any event A under P. can be bounded from above in terms of the
probability P, with initial density Mpg, (its expectation is denoted by E.)

Nl

P(A) < ZB(CV 1) < ZE(CP)F B0} < exp(Cpe) BL(A)F

for some constant C' and Z¢ stands for the partition function of this new density. Using the fact that
the probability P is time invariant, we can reduce the estimate of the events in (7.3.16) to a single
time interval. Thus (7.3.15) will follow if one can show that

1 _
3.1 ! lim lim — logP £ h)y —(mo,h "l = —c0.
(7.3.17) Vo' >0, lim lim o ogP. (t,ssel[l()I;é] |(m§, h) — (5, B)| > 5) 00

By the Markov inequality and using the notation Ls = log|logd|, we get
(7.3.18)
_ o N
P, ( sup |(mf,h) — (75, h)| > 5') <e ks “EEE(eXp ( sup Lg ‘ Zh(zf(t)) - h(zf(s))‘))
] i=1

t,s€[0,26] t,s€[0,28
N
< e Ls ustE(exp (Z sup Ly |h(z;(t)) — h(z(s)) |)) .
i—1 t»5€[0,29]

The last inequality is very crude, but it is enough for the large deviation asymptotics and it allows us
to reduce to a sum of functions depending only on the trajectory of each particle via

h(z([0,24])) = sel[lg)%] Ls |h(2(t)) — h(2(s))]-
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Thanks to Proposition 2.1.3, the last expectation in (7.3.18) can be rewritten in terms of the cumulants

(7.3.19) ilongg (exp(Zh ([0, 2]) )) 2;

where fﬁ stands for the dynamical cumulant under the new distribution.

[0 25]( eXP(iL) - 1)®n) )

For n > 2, the statement 1 of Theorem 10 page 93 can be applied
((exp(r) = 1)) | < nl(C(20 +£))" " [10g ol

with Ls = log|logd|. The term n =1 is controlled thanks to the statement 3 of Theorem 10

|7 f021 (xp(h) = 1)| < 8 (IVhllow L + 1) X1~ < 5 (Jo+ VohlaoLs + 1) |1og 6]~

Thus (7.3.19) converges to 0 as € — 0, then ¢ tends to 0. Furthermore Ls diverges to co as § vanishes,
one deduces from (7.3.18) that (7.3.17) holds for any ¢’ > 0. This completes the proof of (7.3.15) and
therefore of Proposition 7.3.2. O

7.4. Proof of the large deviation theorem

Theorem 3 is derived by combining Theorems 9 and 8. Indeed given ¢ € R, 7, the upper bound
is obtained by considering in (7.0.9) the closed sets {djo 7)(7,¢) < 6}, where djo 7] stands for the
distance metrizing the Skorokhod topology. Since F is lower semi-continuous (by property of the
Legendre transform) there holds

lim inf F(T,v) > F(T,p),

6—0 ¥,
d[U,T] (¥,p)<s

which gives the result since F(T,¢) = F(T,¢) thanks to Theorem 8. The lower bound is obtained
directly thanks to (7.0.10) and Theorem 8. O
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CHAPTER 8

CLUSTERING CONSTRAINTS AND CUMULANT ESTIMATES

In this chapter we consider the cumulants f7 , , (H®™), whose definition (Eq. (4.4.1)) we recall:

$01) Tt = [z Y Y S [ Hdu (V5O )2y Sy

(=1 \ePt r=1 pePy

We prove the upper bound stated in Theorem 4 page 38 which is a consequence of the following more
general statement :

Theorem 10. — Consider the system of hard spheres under the initial measure (1.1.6), with f° sat-
isfying (1.1.5). Let H,, : D([0,00[) = R be a continuous factorized function:

H,, (Z([0,00]) = [ H™ (2:(]0, 00]))
i=1
and define the scaled cumulant f7 t]( n) by polarization of the n linear form (4.4.1). Then there
exists a positive constant C' and a time Ty such that the following uniform a priori bounds hold:

1. If H, is bounded, then on [0, Tp]

: CC \" (4 opr
|f5 0. (H)| < ! <g<d+1§/2> (t+ o TTIED|
0

i=1
2. If H,, has a controlled growth

(8.0.2) |H, (2 ([0, )] < exp (a nt 2 qup \vn(s)ﬁ) ,
4 s€0,t]

then on [0, Tp)
e CC’oe n—
|fn,[0,t (Hy)| < (W) (t+e) Inl,

3. Fixzd > 0. If H,, measures in addition of (8.0.2), the time regularity in the time interval [t—9, ],

i.e. if for some i€ {l,...,n}
(303)  |Ha(Zu((0,1)] < Crigmin ( sup [zi(t) = 2(¢')],1) exp (an + % AACIE
|t—$’\56 s€[0,t]
then on [0, Tp)

e CCy e” ! n—1
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The key idea behind this result is that the clustering structure of f7 [ (H®™) imposes strong geometric

0,t
constraints on the integration parameters (Z, Th,, Vin, Q) (Where vxle recall that m is the size of the
collision tree), which imply that the integral defining ffl,[o,t] (H®™) involves actually only a set of
parameters with small measure of size O(1/u”~1). More precisely, what we prove is that:
— there are n — 1 “independent” geometric constraints (clustering conditions) and each of them
provides a small factor O(1/pu.);
— the integration measure (which is unbounded because of possibly large velocities in the collision

cross-sections) does not induce any divergence.

Section 8.1 is devoted to characterizing the small measure set. Actually we only provide necessary
conditions for the parameters (Z%, Ty, Vin, Q) to belong to such a set (which is enough to get an
upper bound). This characterization can be expressed as a succession of geometric conditions on the
relative positions z7,...,x) of the n particles at time ¢.

Section 8.2 then explains how to control the integral defining f7 1 ,(H ®n). Recall that, by (4.4.6) and
by conservation of the energy,

H(D2)| = [H (Z2(10,1]))] < et BV OF+5 V(0
Since the initial data satisfy a Gaussian bound
(fO)&n+m(ge0) < ont 67%0|V,;‘(0)|2—%0|Vm(0)\"‘7
the growth of |H(¥¢)] is easily controlled, so the main difficulty is to control the cross-sections

(8.0.5) c(ws) =] Sk((vk. — v, (1) -wk)+
k=1

in the measure du(\lffl). In order for this term not to create any divergence for large m, we need
a symmetry argument as in the classical proof of Lanford, but intertwined here with the estimates
on the size of the small measure set. A similar procedure is used in Section 8.1 to cure high energy
singularities arising from the geometric constraints themselves.

8.1. Dynamical constraints

Let A < p be a nested partition of {1*,...,n*}. We fix the velocities V,* at time ¢, as well as the
collision parameters (m,a, Tp,, Vin, Qm) of the pseudo-trajectories. We recall that V,, = (v1,...,0m)
where v; is the velocity of particle ¢ at the moment of its creation.

We denote by

n m
V2= (V) VR =D () + ) of
i=1 i=1
(twice) the total energy of the whole pseudo-trajectory ¢ appearing in (8.0.1), and by K = n+m its
total number of particles. We also indicate by VZ (resp. V3 for any A C {1*,...,n*}) and K; (resp. K)
the corresponding energy and number of particles of the collision tree with root at z; (resp. Z%), that
is:

. X -
(811) j created in ‘Il{i}

K, =1+ +# (particles created in \I'?l}>
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and
Vi= > V7,
(812) i tree in A\
Ky= > K.
i tree in A

Note that V2 =" VZand K =), K; =n+m.

In what follows, it will be important to remember the notations and definitions introduced in Chapter 4,
as well as the rules of construction of pseudo-trajectories explained in Section 3.2. In particular we
recall that, because of these rules, V2/2 is the energy at time zero of the configuration We°, while VZ/2
is not, in general, the energy of \I/??} (because of external recollisions which can perturb the velocities
of the particles inside the tree), unless \IJ%} does not recollide with the other \Ilf{ e j #i.

— Clustering recollisions. We first study the constraints associated with clustering recollisions in the
pseudo-trajectory of the generic forest W§ . Up to renaming the integration variables, we can assume
that

M=l 0).

We call x’;\l = :z:z‘l the root of the forest.

Proposition 8.1.1. — The set of configurations Zj at time t compatible with the forest Ay =
{1,...,41} on [0,t] satisfies the following estimate :

l1—1
, 3 Ct j
(8.1.3) /dXel_ll&Al 1g= (¥5,) < <1/2u> ST oV + k)

0 T€eTx, jEM

where d;(T) is the degree of the vertex j in the graph T'.

By definition of Ay, and by Definition 4.4.3 of clustering recollisions, there exist ¢; — 1 clustering
recollisions occurring at times Trec,1 > Trec,2 = *** = Trec,ty—1. Moreover, the corresponding chain of
recolliding trees {j1,j1},- -, {je, 1,4y, 1} is a minimally connected graph T" € 7y,, equipped with an
ordering of the edges. We shall denote by 7T~ a minimally connected graph equipped with an ordering
of edges, and by T)\f the set of all such graphs on A;. Hence we have

Ay, = E Ay, 7=
=< =<
T=eT

almost surely, where X\, 7~ is the indicator function that the clustering recollisions for the forest A,
are given by T=. We also recall that, by definition, A, is equal to zero whenever two particles find
themselves at mutual distance strictly smaller than e.

It will be convenient to represent the set of graphs ’7;: in terms of sequences of merged subforests.
The subforests are obtained following the dynamics of the pseudo-trajectory W5  backward in time,
and putting together the groups of trees that recollide. An example is provided by Figure 8.

More precisely, we define the map which associates to any ordered tree the sequence of merging clusters
< < ’
Toia T (M),

by the following iteration :
— start from Ay = {1,...,01};
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Ay = {7} X(U ={6} — «a
Agy={4} Ny ={3} = o
@ =1{2} )%3) ={1} = o«
(
(
(

>

A 4) = {6, 7} /\E‘l) = {5} — 4
A 5) = {5,6, 7} /\/<5> = {3,4} — G5
Aoy = {3,4,5,6,7F Ny ={L2} —

Co

FIGURE 8. An example of pseudo-trajectory W5, (€1 = 7) satisfying the constraint A, 7,
together with its minimally connected graph T, ordered graph T~, and sequence of merged
subforests ()\(k),)\'(k))k. The roots of the trees z; = (z;,v;) and the clustering recollision
times appear in the picture on the top.

— take the first edge {j1,71} of T, and set ()\(1),)\’(1)> = ({J1},{J4i}); these two elements are
merged into a single cluster ¢;; set Ly :=¢; U (A1 \ {J1,71});
— at step k > 1, take (A(k)’)‘/(k)) of Ly_1 in such a way that jr € Ay, J, € )\’(k) where {ji, j;.} is

the k-th edge of T, and merge them into a single cluster cg; set Ly := ¢, U (Lk,l \ { A, )\’(k)}).

We can assume without loss of generality that max )\’( gy < Mmax Ak)-

The last step is given by ()\(gl_l), )‘261—1))’ which merges the two remaining clusters.

However this map is not a bijection, because the merged subforests do not specify which vertices
of ji. € Ay and j;, € )\’(k) are connected by the edge. A bijection is therefore given by

(8.1.4) TioT = (A(k),Agk),jk € Ay jh € )\’(k))k .

We define the root of the subforest Ay by

* .
Z‘)\(k) T mmax)\(k) )
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and same definition for the root of )\’(k). We can then define

fi'k = .’I;;/

* — —
(k)_x)\(k), k—l,...7€1 1

as the relative position between the two recolliding subforests at time ¢. It is easy to see that, for any
given root position =}, = xj, € T<, the map of translations

(8.1.5) X; = (a3, 2 ) e Xoyoa = (81,0, B0y 1)
is one-to-one on T¥“1=1) and such that

dX} _y =dXe 1 -
Thus (8.1.5) is a legitimate change of variables in (8.0.1).

Our purpose is to prove iteratively that, for kK = ¢, —1,...,1, the variable &} associated with the k-th
clustering recollision has to be in a small set, the measure of which is uniformly small of size O(1/p.).

We define \I/‘i(k) (respectively \I/iE )) the pseudo-trajectory with starting particles Az (X(k)).
k

Since Treek > (Trec,s) the collision trees in A\; \ ()\(k) U ) do not affect the subforests A, )‘zk)

s>k’ (k)
in the time interval (7yec x,t). The clustering structure prescribed by 7 implies that \Ijsém and \Ilf\(k),

regarded as independent trajectories, reach mutual distance e at some time Trec k € (0, Trec k—1)-

Given (&), fixed by the previous recollisions, we are going to vary Zj so that an external recollision
between the subforests occurs. This corresponds to moving rigidly ¥§, and \Ili(k) by acting on their
,c :

relative distance 2. In fact, the recollision condition depends only on this distance.

(with |&,] > ¢),

Given a sequence of merged subforests (/\(k), /\/(k))k and a set of variables (&),

the k—th clustering recollision condition is defined by

T € Bk = U qu’ 5

q in the subforest A )
¢’ in the subforest )\Ek)

with
(8.1.6) By = {ik eT? |Zq' (Trec k) — Zq(Trec,k)| = € for some Tyec x € (O,Tmcyk_l)} )

Here z4(7), x4 (7) are the particle trajectories in the flows VS i? (and 7 is of course restricted to
)

their existence times). In other words there exists a time Tyec k € (0, Trec,k—1) and a vector wyee k € Sé-1
such that

(8.1.7) g (Trec k) — Tq(Trec,k) = € Wrec k -

The particle trajectories x4(7), 24 (7) are piecewise affine (because there are almost surely a finite
number of collisions and recollisions within the trees \Ilf\(k), iﬁk) ). We will denote by vé‘sﬁ ), v((jTj ) the
velocities of ¢ and ¢’ on the interval ;. Moreover, (zq4(7) — z4/(7)) — (a:j{(k) - zf\zk)) does not depend
on Iy = xi,(k) — xj(k), because all positions in the collision tree are translated rigidly. This means
that 2 has to be in a tube of radius ¢ around the parametric curve (a:f\(k) - xﬁzk)) — (xq(T) — zg (7).

This tube is a union of cylinders, with two spherical caps at both ends (see Figure 9). Note however
that we have to remove from this tube the ball corresponding to the exclusion at the creation time (or
at time ¢ if ¢ and ¢’ exist up to time t).
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FIGURE 9. The tube B, leading to a recollision between particles ¢ and ¢’. The tube has
section pg '

Therefore
Byg = U Byq (67;)
J
for a suitable finite decomposition of (0, Tyec k—1) (depending on all the history). We therefore end up
with the estimate (see Figure 9)

C T 67'7'
Bag| < =3[0 = o™ 1671
J

for some pure constant C' > 0 depending only on the dimension d.

We sum now over all ¢, ¢’ to obtain an estimate of the set By. To exploit the conservation of energy,
we exchange the sums over d7; and over ¢,q’. We get

C T OT;
Bi,| < IZ 0731 3 o) — o8],
J

q,q

Applying the Cauchy-Schwarz inequality, the sum over ¢, ¢’ is bounded by

3 (v ' K Ky o+ 3 (00 ‘K Ky <V Ky, Ky +V Ky K
R Ay BN, Yg' Ay BBrm = Vg Ay TG T VA, Mgy 22
q q

where we use the notations for energy and mass of subforests introduced at the beginning of this
section. In the above inequality, we have used the independence of \I/‘i(k) and \Ilig , on [Tvec, ks t], and
k

bounded their energies in d7; with V, = and VAEM respectively (see Eq.s (8.1.1)-(8.1.2)). Therefore we
infer that

C 2 2
‘Bkl < 55/2 _ /dTrec,kl‘rrec,kSﬂec,k_l (50V>\(,€) +K)\(k)) (BOVAE,C) +K)\;k))
8.1.8 C
( ) = SYo R /dTrec,kl‘rmc,kS‘rmc,k_l Z (ﬂoV?k + Kjk) (BOVZ +Kj,;) .
0 HMe JEX (k)
k€A

In this way we have obtained an estimate which depends only on the energy and the number of particles

enclosed in the trees WS S/
/\(k:) ’ A

)
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Coming back to Equation (8.0.1) we observe that, if A, = 1, then there exist merged subforests such
that & € By, for k = ¢1—1,...,1. Hence, iterating the procedure leading to (8.1.8) for k = ¢;—1,...,1,
leads to an upper bound on the cost of the clustering recollisions in A;:

(8.1.9)

/dXZ—1 Ay, 1g-(T5,) < /d3311131/d’£2 /dl‘el 11s,,
(A M)
-1

l1—1
C t Trec,£1 —2
S (1/2/18) /0 dTrec,l o /0 dTrec,Zlfl Z Z H <BOV?k + Kjk) (60V]2L + Kj,;)

JkEXNK) k=1
Ay Al ) THEN®)
( (k)) JllceAEk)

-1 £-1
Ct 1
= 1/2 7 — 1) Z Z H (BoV3, + K. (ﬁOV?L +KJ’;@) :
He (61 —1)! (/\(k) N ) IRE€EAGm) k=1
(k) jx’ﬁ*(k)
Using the bijection (8.1.4) and compensating the 1/(¢; — 1)! with the ordering of the edges in T, we
rewrite this result as

-1
Ct
/dX;l_lz&Al 1g- (¥5,) < (1/2 ) S I BV +K) (BVE + Kyr)
e

0 TeTx {4,4'}€B(T)

where E(T) is the set of edges of T. Equivalently, we obtain (8.1.3).

— Clustering overlaps. We are now going to estimate the constraints associated with clustering overlaps
in the pseudo-trajectory of the generic jungle p;. Up to a renaming of the summation variables, we
can assume that

pP1 = {)‘17“-7)\7‘1} .
The number of particles in the jungle at time ¢ is |p1], and at time 0 is K,, = |p1| + m,,. We recall
that each forest A; has a root z3 , which did not play any role in the previous estimate of clustering
recollisions. We call z7j, = a:f\rl the root of the jungle.

Proposition 8.1.2. — Consider some forests A1, ..., A, whose internal dynamics is fized (prescribed
by the velocities and relative positions at time t, as well as the creation parameters). The set of con-
*

figurations Z‘p1| at time t compatible with the jungle p1 = {A1,...,A\r } on [0,t] satisfies the following
estimate :

ri—1
N " C - dx, (T)
(8110) /d.x)\l "‘dl’Arl_1|sﬁp1| S (1/2> (t+5) -t Z H <BOV§\7 +K}\_7‘> ! .
fhe

0 TeTy, Ni€p1

The argument is similar, but not identical, to the one just seen for clustering recollisions. Below we
shall indicate the differences, without repeating the identical parts.

By definition of ¢,,, and by Definition 4.4.1, the clustering overlaps are extracted from the
graph of all overlaps between the forests {A1,..., A} via the Penrose algorithm : we denote

Y (N> Ajt )y <)\j7"1*1’)\j;1—1) the (ordered) edges of the resulting minimally connected graph
T €Ty, Then, thanks to the tree inequality stated in Proposition 2.3.3,

(8.1.11) EAESY II 1~

TETM {>‘j»>\j’ }GE(T)
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Note that, as mentioned in Section 4.4, we have more flexibility when dealing with overlaps than with

recollisions, as (\Ili are completely independent trajectories, whatever the ordering of the

J> 1<j<r
overlap times. We therefore have more freedom in choosing the integration variables.

We can then define
Ty = x*/
k Al)
as the relative position between the two overlapping forests at time ¢. As in the case of clustering

= xj{m € T, the map of translations

*
—l‘)\[k], k:1,...,7“1—1

*

recollisions, for any given root position 7,

(8.1.12) (wil,...,mﬁwlil) NG GRS o N

is one-to-one on T*"™~1) and it has unit Jacobian determinant. Thus (8.1.12) is a legitimate change
of variables in (8.0.1).

Given a graph T € 7,, and the corresponding sequence ()\[k],)\ik])k, the k—th clustering overlap

condition is defined by
Iy € By :i= U qu/ R
g in the forest >‘[k]
¢’ in the forest )\Ek]
with

Byy = {ﬁck €T : 37 €[0,t] such that |z,(1) — x4 (7)] < 5}
where we used (4.4.3), and z4(7), x4 (7) are the particle trajectories in the flows WS, Y5, - This set
(i

has small measure
~ C
(8.1.13) 1Bil < — 75— (t+¢) (&Nim + KAW) (ﬁovim + KMH)
Bo He

for some constant C' > 0. Notice that the correction of O(e) comes from the extremal spherical caps
of the tubes in Figure 9 (since 1/\[’€1N0)‘fk] = 1 inside those regions).

Remark 8.1.3. — Note that overlaps can be classified in two types
— those arising at time t or involving a particle q at its creation time t, : in this case, the distance
between the overlapping particles at To, satisfies only the inequality

|24 (Tov) — g (Tov)| < €.
This corresponds to one spherical end of the tube in Figure 9;

— and the regular ones, for which the two overlapping particles are exactly at distance € at Toy.
We then have the same parametrization as for recollisions

(8.1.14) Zq(Tov) — Ty (Tov) = EWoy -

This corresponds to the tube in Figure 9 minus the spherical end.

We finally obtain (8.1.10).

— Initial clustering. Finally, we are going to estimate the non-overlap constraints in the initial data,
which are encoded in (4.3.1).

Recall that f7 4 (¥50,..., 7)) is a measure of the correlations between all the different clusters of
particles \IIZ?, ey \IIZE at time zero, and its definition has been adapted to reconstruct the dynamical
cumulants. An estimate of this correlation is obtained by integrating over the root coordinates of the

jungles z7 ...z} |, as stated in the following proposition.

pr—
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We recall that Kpl := my, + |pi| denotes the number of particles in the configuration W7/ 0 at time 0,

and that K := ZK =m-+n.

=1

Proposition 8.1.4. — Under Assumption (1.1.5), there exists C' > 0 (depending only on the dimen-
sion d) such that, for e small enough,

* * 5 T
/Td(—l)‘ ,,,,, (Ve WD) da, o da, | < (= 2 (CC) exp (= V) 0D

Jor all U0 € D, at time 0. We have used the convention 0! = (—=1)! = 1.

Recall that ff? .y 18 extended to DX\ D by setting F2° = 0 in (4.3.1) wherever it is not defined.

The following proof is an application of known cluster expansion techniques, see e.g. [55] and references
therein.

Proof. — Set Zg := (V5),...,¥50) with &) ¢ Dj, at time 0. To make notation lighter we shall
€0

omit the superscripts and also omit to specify the exclusion constraints inside each W{ in the
sequel. We define ®,, the indicator function of the mutual exclusion between the elements of the
set {W5,,..., W5 Z1,..., 2} (where U ... W form r clusters and Z1,.. ., Z, are the configurations

of p single particles):
Pryp = H 17”:’7677}1’ )
h#h'

with (71, .-, Mrgp) = (U5, ..., V5 L 21,000, 2p) and “np & mw
between elements of 7, and 7/ is larger than €. So we start from

” meaning that the minimum distance

e0 (f0)®K ZK 0 ®p e e — —
(8.1.15) F(Zg) = Z (f%) ) oy (V.. U5 Z,) d 2,
p>0 Dr
We want to expand ®,, in order to compensate the factor Z° whose definition we recall
(8.1.16) / (fO®P(Z,) ®,(Z,) dZ,,
p>0 Dr

and to identify the elements in the decomposition

FR(T5,, ... 0 ZZHfﬁ.‘h v;

s= lae'qu 1

This will enable us to compute, and estimate, ff?,...,r}( R 4 ). To do so, we naturally de-
velop @, into s clusters (each of them corresponding to one connected graph containing at least one
element of {W¢ ..., W¢ }), plus a background &¢ of mutually excluding particles (for which we do not
expand the exclusion condition). Such a partition can be reconstructed isolating first the background
component, and then splitting {¥¢ \Ilir} in s parts, to which we adjoin the remaining single
particles (see Figure 10).

prLrc

This amounts to introducing truncated functions ¢ via the following formula:

(B117)  Dppp(W5 .. W5 Z) = > D5(Z5y) > Y > ng(\l/;,Z—,i).

G0C{1,....p} s=10€P; 51,...,6:C{1, - ,p} i=1
Ui—di={1,....p}
GrNap=0,k#h
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o O jungle clusters ¥,

» background particles z;

FI1GURE 10. Initial configurations are decomposed in s clusters containing at least one jun-
gle W7 ...,
expand the exclusion condition).

W, plus a background of mutually excluding particles (for which we do not

Note that the 7; may be empty (in particular all 5; are empty if |G| = p). By (2.3.1), we see that
(\I/ZI,...AI/ZT,ZP) = Z H (_1nh~nm)v
GECrqp (h,h')EE(Q)
where the sum runs over the set of connected graphs with r 4+ p vertices; more generally,
90(\1/314 Zﬁi) = Z H (_1?7h~77h/) :
GEClo; 1415, (hh)EE(G)

Using the symmetry in the exchange of particle labels, we get, denoting 3; := |5;],

P\ (p—5 pP—S1— =81 _ P!
51 5, ) 34 50! 51!...5,!

choices for the repartition of the background particles, so that

S

Zp|/ rp (W5, dZ_ZZZ 3 / 5 mnap Z Z,,.

p>0 s=1oePs p>0 5¢,...,5:>0 i=1

> 8i=p
Therefore, plugging (8.1.17) into (8.1.15) first and then using (8.1.16), we obtain

0\®K r S0 o _ _
rz) = DIy S 5 Z>O(’§;! 07502 go)dzgo>

®K ZK Z Z HZ /fO ®3; (\IIE Z )ngi,

s=1lo€ePsi=15; 20

hence finally

(B8118)  f (U, 0 ) = (K (Z Z”E/fo P (Z)p(S, . U Z,)d 2, .

p>0
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Applying again Proposition 2.3.3 implies that ¢ is bounded by

(8.1.19) (W5, ... Z< > I 1nh~nh/

TE€Tryp (h,h)EE(T

where 7T, is the set of minimally connected graphs with r+p vertices 1abelled by WO ... W0 [z, 2.
By Lemma 2.4.1, the number of minimally connected graphs with specified vertex degrees d1, ..., d,4p
is given by

r+p

(r+p— 2)!/H(di —1).

On the other hand, the product of indicator functions in (8.1.19) is a sequence of r + p — 1 con-
straints, confining the space coordinates to balls of size € centered at the positions of the clusters
ve ..., ¥ ,Z1,...,%. Such clusters have cardinality K, ,..., K, > 1 with the constraint

P’ ’ pr?
Y K, =K.
i
We deduce that for some C' > 0 depending only on the dimension d
0 * *
/11‘(1(7‘71) |f{517.__,7,}(\1121, e WL day, L day,

) ey (rHp—2)! p IT-, K
< (CCpFetrne=37 S P2 (oeyety e e
Z p! Z . H +P(d _ 1)

p=>0 di,eydpgp>
. _ |
< (C’CO)st(T’l)e’%OVZ Z (r +P| 2)! (Coedus)p e2K+p
o P
< (CCy) K== FV9r=2(r — 2)1 37 (CCoepie)? K7

p=>0

In the second inequality we used that
2K, _ 2K
szill_HKePz<He Pi =" .
i=1d;>1

Since Ce?p, is arbitrarily small with e, this proves Proposition 8.1.4. O

8.2. Decay estimate for the cumulants

We shall now prove the bound provided in Theorem 10. In the previous section, we considered a
nested partition A — p < o (with |o| = 1) of the set {1%,...,n*}. We fixed the velocities V, as
well as the collision parameters of the pseudo-trajectories (m, a, Ty, Vin, Q). We then exhibited n— 1
“independent” conditions on the positions X/ for the pseudo-trajectories to be compatible with the
partitions A, p. Now we shall conclude the proof of Theorem 10, by integrating successively on all the
available parameters. The order of integration is pictured in Figure 11.

For the proof of the first two statements in Theorem 10, we start by controlling the weight, simply
using the bounds

(8.2.1) H IHD oo or  [H(T5)] < eom+ 2V
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* * * * 3 * * * *
T Ta Ty Ty T5 L Ty xg Ty Z10 L1y Ty T3 Xy

\ A6/
P3

FicUrRE 11. In this contribution to the cumulant of order n = 14, we integrate over the
positions of the roots in the following order: (i) first we integrate over the initial clus-
tering &,, = xio — x14 and &,, = x7 — xi4; (ii) secondly over the clustering overlaps
Tx, = x5 — x10 and &x, = x3 — x5 ,Tr, = x5 — x7; (iii) finally over the clustering recol-

P a1 * ~(A1) = * ~(A1) = * ~(A3) _ = * ~(Ag) _
lisions : T3 = X9 — I3, Ty =T — g, Zq = T3 — T4, Ty = xg — Ty, Ty =
LA L (A LA .

5 — T§, :cz(3 o) — Tl — Tia, xg o) — Tie — i3, asg o) — 31 — 72. Notice that the

variable x7, remains free.

Then we use that nothing depends on the root coordinates of the jungles x7 ,...,z7  inside the

integrand in (8.0.1), except the initial datum fff e Therefore by Fubini and according to Proposi-
tion 8.1.4,

0 0 0 * * K 50 2 d(r—1
(8.2.2) /wn I8y (U0 WD, iy, < (= 2)1(CCo) exp (— 297 et

for some C > 0, uniformly with respect to all other parameters.

Next, the clustering condition on the jungles gives an extra smallness when integrating over the roots
of the forests (see (8.1.10))

, 1 l—r r
: (T)
(8.2.3) H/|<ppi IT d=3, < (ﬁ”%t) t+o I S 11 (ﬁo\@j +KAj)dA] o
i=1 j=1 €

0 i=1 T€7—/’i )\jEpi
uniformly with respect to all other parameters, for some possibly larger constant C.

The clustering condition on the forests gives finally an extra smallness when integrating over the
remaining variables Zj, according to (8.1.3). Notice however that the latter inequality cannot be
directly applied to (4.4.1), due to the presence of the cross section factors (8.0.5) in the measure
(3.3.5).

It is then useful to combine the estimate with the sum over trees ajy,. The argument is depicted
in Figure 12. We will present the arguments for A;, assuming without loss of generality that \; =
{1,...,¢1}. We will denote by a the restriction of the tree a to A; with fixed total numbers of particles
Ky,--- Ky, and by ag, Cr the tree variables and the cross section factors associated with the sy
creations occurring in the time interval (Tyec k, Treck—1) for 1 <k < ¢4,
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|CL1| 281:5

’CLZ’ =52 =1 pumber of creations per slice
|C~L3| = 83 = 1

FIGURE 12. Integration over time slices.

As in the first line of (8.1.9), we have that
(8.2.4)

Z/dle—l AM 1g- (\I/il)|C( il)|

> Z|ci(%1)|/d@11312|cg(m1/§1)|/df;2.../dfcel,ﬂmﬂZml(mgl)y

a
(i) @

&@1

We can therefore apply iteratively the inequality (8.1.8) and the classical Cauchy-Schwarz argument
used in Lanford’s proof. Denote by

k
Sk = Z S;
i=1
the number of particles added before time Tyec 1, so that

Sgl =mx,
(denoting abusively Tyece, = 0). We get

Sk s—1 £y
>olewn)l = 1 (Z [os = vulta)] + D s = v;;<ts>|>

s=Sk_1+1 \u=1

s=Sk_1+1 u=1

Sk s—1 4
(8.2.5) < ] ((61 +s—Dva + Y foalta)+ IvZ(ts)>

1 L

<—7 L (om0 8 ) + Bolva, )

0 s=Sk_1+1
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and
(8.2.6)
l1—1
s () ()"0
l1—1 A 4Ge A1 A1 s - 13
a Bé/zﬂa Bo

x> TT (B2 + )" H(eﬁmh (L 85 oc]) + Bol Vi)

TeTx, jEM

for some positive C.

Recall that
exp (— L VI2) BolVP? < Om.
16m

Combining (8.2.6) with the bound (8.2.1) on H, (8.2.2) and (8.2.3) leads therefore to

14
a =1

< (r—2)1(CCH)* exp (an — @ V) gdlr= b (%) (t+e)" ™"

(8.2.7)
- (T) ¢ ‘
15 1 (o)) (TS 11 o
1=1T€T,; Xj€p; 1T, jen
m/2 m
< () T,
s=1

valid uniformly with respect to all other parameters. Here and below, we indicate by C' a large enough
constant, depending only on the dimension d and changing from line to line.

The following step then consists in integrating (8.2.7) with respect to the remaining parameters
(T, U, Vi) and V.* (with m fixed for the time being). Recalling the condition that t; > tg > -+ > &y,
we get

14
/ |30 TT A C(W5) 1o (W) H(WS )y S5,y (W3l W0) AT, d Vi 02
a =1

n—r m m/2
< (T—Q)!(CCo)KEd(T1)< 1/C2 ) (t+e)" " (Cif,lt)(mm)’”(ﬁl)
. 0

i

S SIED S SIS DI L (VR )ﬁ1+ﬂ1/2|vsdv*dv

Ti€Tp, TTETPriHET)\l TzET)\K

) £ ~
X sup eXp H H (60V§\] +K}\J)dkj(Tz) H H (B0V?+Kj)dj(n)

=1 X;€p; i=1 jeEX;

[ o (- Satol ) 85 tulaw < cay

exp (—fgm?) (BolV|* + K)D < c¥@aeDp)”

Using the facts that
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for positive K, D, we arrive at

14
/ ’ ST Ax, e(95,) 1o (U5,)H (Y5, )@ £5) g (052, E0) dT0dQpd Vi, | dZ,
a =1

_1/2 n—r .
(828  =(r-2) (CBMW) 1 (CCo By * )™ (Coe™By “*)"

r , ! -\ (T)
1> I @™ X T (4)
i=1 T€T,, X\;j€p; =1 TeTy, J€N

For each forest (jungle) we ended up with a factor > .- Hle (di(T))di(T) where k is the cardinality

of the forest (jungle). Applying again Lemma 2.4.1, and using that for any integer i

< iexp(i — 1) < exp(2i),

1)

this number is bounded above by

k d.
d%
—9)! T — 9)1 e4(k=1)
(k-2)! > H(di—l)!§<k 2)le Y1,
dl,“' ,dk =1 d1,~~ ,dk
1<d;<k—1 1<d;<k—1
>, di=2(k—1) >, di=2(k—1)
The last sum is also bounded by C*. Taking the sum over the number of created particles m, we arrive
at

L
/ |/ H[ (05,880, C(¥S,) Tg- (W5 )H(¥)] x oy 70 (030, 030 02

2.
(8 9) 1'7167"/2 d+1

T 4

valid uniformly with respect to all partitions A < p, and for ¢ small enough. Finally, summing (8.2.9)
over the partitions A — p we find (recalling the convention 0! = (—1)! = 1)

iZéZ(T_Z)!H | jr:[lg_z

=1 xeP{ r=1pePy

n! /! r ¢
_Z > Z Z 6!51!...&!7"!7’1!...7"(T_Q)!,l:[l(ri_m!l:[l(gj_m!

=1 [1, €g>1 r=1 T1, > r

A= > 'rlff

2n
1
<nl [14) ——
r>2 T(T_ 1)

This concludes the proof of the first two estimates in Theorem 10.

The third statement (8.0.4) is obtained in a very similar way. If the pseudo-particle i has no collision
nor recollision during [t — 6, ¢] then

sup |z4(t) — 24(¢)] < Slui(t)] < 8|Va(8)] -

jt—t|<6

This is enough to gain a factor § from the assumption on H,.
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If a collision occurs during [t — 4,t], then by localizing the time integral of this collision in Duhamel
formula, one gets the additional factor § (with a factor m corresponding to the symmetry breaking in
the time integration dT,,).

Finally, it may happen that a recollision occurs during [¢ — d,¢]. This imposes an additional geometric
constraint and the recollision time has to be integrated now in [t — §,¢]. Thus an additional factor ¢ is
also obtained (together with a factor n corresponding to the symmetry breaking in the time integration
dO¢st). This completes the proof of (8.0.4). O

Remark 8.2.1. — Note that the sum over m in (8.2.9) is converging uniformly in €, which means
that the contribution of pseudo-trajectories involving a large number m of created particles can be
made as small as needed. In particular, to study the convergence as € — 0, it will be enough to look at
pseudo-trajectories with a controlled number m < mg of added particles.



CHAPTER 9

MINIMAL TREES AND CONVERGENCE OF THE CUMULANTS

The goal of this chapter is to prove Theorem 5 p. 41, which can be restated as follows.
Theorem 11. — Let H,, : (D(]0,+0[))"” — R be a continuous factorized function H,(Z,([0,t])) =
[T, H9(2([0,t])) such that

(9.0.1) |Hn(Zn([0,1]))] < exp (om + % sup |Vn(s)|2) ,
s€[0,t]

with By defined in (1.1.5).

Then the scaled cumulant fi,[o,t] (H,) converges for any t < Ty to the limiting cumulant introduced
n (5.1.4)

fn [0 t] Z Z Z /d,usmg,T a\¥n m)H(\Ijn,m)fO®(n+m)(\1/9L7m) .

TGTN m aeAn m

After some preparation in Section 9.1, we present in Section 9.2 the leading order asymptotics
of fﬁ,[o, 1 (H®™) by eliminating all pseudo-trajectories involving non clustering recollisions and over-
laps. Section 9.3 is devoted to the conclusion of the proof, by estimating the discrepancy between the
remaining pseudo-trajectories W5 and their limits ¥,,.

9.1. Truncation of cumulants

An inspection of the arguments in the previous chapter shows that initial clusterings are negligible
compared to dynamical clusterings. Indeed Estimate (8.2.9) shows that the leading order term in the
cumulant decomposition (4.4.1) corresponds to choosing r = 1: this term is indeed of order

Cn(t+e)" !
while the error is smaller by one order of e. We are therefore reduced to studying

pe” 12 Z/ Hd“ (¥5,) ‘I’AJZ&M) e F(25)).

=1 XePt
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We shall furthermore consider only trees of controlled size: we define, for any integer my,
(011)  fEme (men) =13 Y / iz; / H i (V5,80 H(5,) [ o1,y F(WE0),
=1 \eP’

where the measure on the pseudo-trajectories is defined as in (3.3.5) by

m;

e (U5) = > > dT0,d D, dVi, 16-(95) [] (sk (v — vay (1)) .wk)+).
m; Smo ae_Ai’. . k=1
Then by Remark 8.2.1, we have
(9.1.2) lim ’f 104 oy~ f fgot (H®")’ = 0 uniformly in €.

mo— 00

Next let us define

7 o (HE™) o= it 12 3 /dz*/H dp(W5,) Ay, H (5, )}@{1 oy T ()

=1 \eP;

where A A; 18 the characteristic function supported on the forests \; having exactly |\;| — 1 recollisions,
and @y;,.. ¢ is supported on jungles having exactly £ — 1 regular overlaps, so that

— all recollisions and overlaps are clustering;
— all overlaps are regular in the sense of Remark 8.1.3.

Since f 0.4 [0.4]
a spemal choice of initial data), the same estimates as in the previous chapter show that

(H®™) is defined simply as the restriction of f£ ., . (H®™) to some pseudo-trajectories (with

|f2,[0,t](H®n)| < C'nl(t + E)n_l .

Furthermore, defining its truncated counterpart

gy =y 5 oz ] H [ SB[ 0,01 S )

=1 XePL

there holds

(9.1.3) lim |f 1040 omy — f6 08 (H®™)| = 0 uniformly in €.

mo—>00 [O t

The limits (9.1.2) and (9.1.3) imply that it is enough to prove that the truncated decomposi-
tions f 1% (H®") and fa o (H®™) are close: we shall indeed see in the next section that non
clustering recollisions or overlaps as well as non regular overlaps induce some extra smallness.

Note finally that the estimates provided in Theorem 10 show that the series f7 1, , (H®™) /n! converges
uniformly in ¢ for t <T,, so a termwise (in n) convergence as € — 0 is sufficient for our purposes. We
therefore shall make no attempt at optimality in the dependence of the constants in n, a, Cy, Bg in this
chapter.
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9.2. Removing non clustering recollisions/overlaps and non regular overlaps

Let us now estimate |ffl7[g[;] (H®™) — f;fg"t] (H®™)|. We first show how to express non clustering recol-
lisions/overlaps as additional constraints on the set of integration parameters (Z*, Tp,, Vin, Qm). This
argument is actually very similar to the argument used to control (internal) recollisions in Lanford’s

proof (which focuses primarily on the expansion of the first cumulant).

Proposition 9.2.1. — Denote by B° the set of integration parameters leading to pathological cumu-
lant pseudo-trajectories :

B = {(Z;;,m7Tm,Qm7Vm) :m < mg
(9.2.1)

and V¢ has a non clustering recollision/overlap or a non regular overlap} .

Then, there exists a constant C (depending on «, Cy, Bo) such that

2ot (EFO) = oo, (EOM)| < (0 1t

In the coming section we discuss one elementary step, which is the estimate of a given non clustering
event, by treating separately different geometrical cases — we shall actually only deal with non clustering
recollisions, the case of overlaps being simpler. Then in Section 9.2.2 we apply the argument to provide
a global estimate.

9.2.1. Additional constraint due to non clustering recollisions and overlaps. — We consider
a partition A of {1*,...,n*} in ¢ forests A1,..., A;. We fix the velocities V¥, as well as the collision
parameters (T, Vin, Qm), with m < mgf. As in Section 8.1 we denote by V2 := (V,*)2 + V.2 (twice)
the total energy and by K = n + m the total number of particles, and by V? and K; the energy and
number of particles of the collision tree U, with root at z7.

Let us consider a pseudo-trajectory (compatible with A) involving a non clustering recollision. We
denote by t,e. the time of occurrence of the first non clustering recollision (going backwards in time)
and we denote by ¢,¢' € {1*,...,n*} U {1,...,m} the labels of the two particles involved in that
recollision. By definition, they belong to the same forest, say A1, and we denote by \I/?i} and \I/?i,}
their respective trees (note that it may happen that ¢ = ¢’ in the case of an internal recollision).

The recollision between g and ¢ imposes strong constraints on the history of these particles, especially
on the first deflection of the couple ¢, ¢’, moving up the forest (thus forward in time) towards the root.
These constraints can be expressed by different equations depending on the recollision scenario.

Self-recollision. Let us assume that moving up the tree starting at the recollision time, the first
deflection of ¢ and ¢’ is between ¢ and ¢’ themselves at time #: this means that the recollision occurs
due to periodicity in space.

This has a very small cost, as described in the following proposition (with the notation of Section 8.1).

Proposition 9.2.2. — Let q and q' be the labels of the two particles recolliding due to space period-
icity, and denote by t the first time of deflection of q and ¢, moving up their respective trees from the
recollision time. The following holds:
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S]]

time ¢

time e

FIGURE 13. The first deflection of g and ¢’ can be either the creation of one of them (say gq),
or a clustering recollision.

— If q is created next to ¢’ at time t with collision parameters & and v, and if Uy is the velocity
of q at time tT, then denoting by \I!?i} their collision tree there holds

_ C
5 5 — PP P 2d+1 d+1
/ 1Self—recollision with creation of ¢ at time & ‘ (U - vq) : w‘dtdeU S ,LL V + (1 + t) + .
g

— Ift corresponds to the k-th clustering recollision in S, between the trees \Ij?jk} and \I/?j’;}, then

c d
A~ —+1
/ ]-Sclf-rccollision with a clustering recollision at time dl’k- S E (V(]- + t)) .

€

Note that in the first case the admissible collision parameters (¢,w,7) belong to a small set of
size O(1/pe). In the second case, the condition is expressed in terms of the root Z; with the notation
of Section 8.1: it is not independent of the condition (8.1.6) defining By, but it reinforces it as the
estimate provides a factor 1/u2 instead of 1/ ..

Generic non clustering recollision. Without loss of generality, we may assume that the first deflection

moving up the tree from time t.. involves q. We denote by ¢ the time of that first deflection and
by ¢ # q,q' the particle involved in the collision with ¢ (see Figure 14). The parent § of ¢ is the
particle ¢ or ¢ existing at time ¢+, and we denote by v, the velocity of ¢ at time ¢t . Similarly we
denote by 7, the velocity of particle ¢ at time ¢.

q

time £ time £ = 74

time t,ec time ¢, e.

FIGURE 14. The first deflection of ¢ can be either a collision, or a clustering recollision.

The result is the following.

Proposition 9.2.8. — Let q and q’ be the labels of the two particles involved in the first non clustering
recollision. Assume that the first deflection moving up their trees from time tiec tnvolves q and a
particle ¢ # ¢, at some time t. Then with the above notation
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— 1Ift is the creation time of q (or ¢), denoting by & and v the corresponding collision parameters,
by \I/?i} their collision tree and by \II?Z_,} the collision tree of q', there holds

) . 1 112
/ 1Recollision with a creation at time ‘('D - 'Dq({)) : (D|dtd@d@ S CV2d+% (1 + t)d-’_§ min <]-7 |'UEU|> .
q V¢
— Ift corresponds to the k-th clustering recollision in s, between \Il?jk} and \If?j, 0 and if \Il?i,}
k

1s the collision tree of ¢, then

C_ s N 61/2
/ 1Recollision with a clustering recollision at time ¢ dxk S 7V2 (1 + t) 2 min 1, |’l_] Py | B
e q Y

Note that as in the periodic situation, the recollision condition in the first case provides some smallness
on the set of admissible parameters (f,&,v), while the recollision condition in the second case is
expressed in terms of the root &, and reinforces the condition (8.1.6) defining B,, by a factor £'/2.
However in both cases the estimate involves a singularity in velocities that has to be eliminated.

The geometric analysis of these scenarios and the proof of Propositions 9.2.2 and 9.2.3 are postponed
to Section 9.4. The estimates in the first case were actually already proved in [9], while the second
one (the case of a clustering recollision) requires a slight adaptation.

Elimination of the singularity. It finally remains to eliminate the singularity 1/|t, —7,|, using the next
deflection moving up the tree. Note that this singularity arises only if the first non clustering recollision
is not a self-recollision, which ensures that the recolliding particles have at least two deflections before

the non clustering recollision. The result is the following.

Proposition 9.2.4. — Let q and ¢’ be the labels of two particles with velocities vy and vy, and denote
by t the time of the first deflection of q or ¢' moving up their trees.
— If the deflection at t corresponds to a collision in a tree \I/Ei} with parameters w,v, then

cl/2

i 5 | AE A7 477 d+1_1
/ 1Recollisi0n with a creation at time £ 111111 (15 ) ‘(U - Uq) : w‘dtdvdw S CtV + €8

[vg — vy

— if t corresponds to the k-th clustering recollision in the tree s, between \Il"{‘jk} and \I/?j, % then
k

1/2 1
/min (1, 6) dzy < Cen Vi .
|Uq —’Uq/‘ He

The proposition is also proved in Section 9.4 of this chapter.

9.2.2. Removing pathological cumulant pseudo-trajectories. —

Proof of Proposition 9.2.1. — We first consider the case of pathological pseudo-trajectories involving a
non regular clustering overlap. By definition (see Remark 8.1.3), this means that the corresponding 7o
has to be equal either to ¢ or to the creation time of one of the overlapping particles. In other words,
instead of being a union of tubes of volume O((t + &)/ ), the set By describing the k-th clustering
overlap (see (8.1.13)) reduces to a union of balls of volume O(g?), so that

|Bk| < CSdK)\[k] K)‘Ek] .

The non clustering condition is therefore reinforced and we gain additional smallness.
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Let us now consider the case of pathological pseudo-trajectories involving some non clustering recolli-
sion/overlap. We can assume without loss of generality that the first non clustering recollision (recall
that we leave the case of regular overlaps to the reader) occurs in the forest \y = {1,...,¢1}. The
compatibility condition on the jungles gives smallness when integrating over the roots of the jungles
(see (8.2.3)). The compatibility condition on the forests Aa, ..., A¢ is obtained by integrating (8.2.4)
as in Section 8.2. We now have to combine the recollision condition with the compatibility conditions
on A1 to obtain the desired estimate. As in the previous chapter, we denote by & the restriction of
the tree a to A1, and by ag, Cx the tree variables and the cross section factors associated with the sy
creations occurring in the time interval (Tyec ks Trec,k—1)-

We start from (8.2.4), adding the recollision condition: we get

§ * * 5 5
/dx)\1,1 e d‘r)\l,flfl A)q lg( )\1) |C(\Il)\1)| 1‘I/§\1has a non clustering recollision
a

> |Cl(\IIf\1)|/d§71131 3 |CQ(\II§1)|/d5cQ...

az

X /dii'zl—l 1621,1 Z ‘Cél (‘I’il)| 1\IJ§1has a non clustering recollision -
(I.z1
As shown in the previous section, the set of parameters leading to the additional recollision can be
described in terms of a first deflection at a time . We then have to improve the iteration scheme
of Section 8.2, on the time interval [Tyec,k, Trec,k+1] containing the time ¢. There are two different
situations depending on whether the time ¢ corresponds to a creation, or to a clustering recollision.

If ¢ corresponds to a creation of a particle, say ¢, the condition on the recollision can be expressed in
terms of the collision parameters (£,v, @) = (¢, ve,w.). We therefore have to
— use (8.2.5) to control the collision cross sections |Cj (\Ilil)’ for integration variables indexed
by se{c+1,...,5;};
— use the integral with respect to ¢,@, v to gain a factor

c(1+ V)Q‘”?’/z(l + t)dﬂ/2 min (1, _ e )
0g — v/
by Proposition 9.2.3. Note that the geometric condition for the recollision between ¢ and ¢’
does not depend on the parameters which have been integrated already at this stage, and to
simplify from now on all velocities are bounded by V;
— use (8.2.5) to control the collision cross sections |Cj (\Ililﬂ forse {S;_1+1,...,c—1}
— use the integral with respect to Z; to gain smallness due to the clustering recollision.
Note that, since # is dealt with separately, we shall lose a power of ¢ as well as a factor m < ¢mg in the
time integral. We shall also lose another factor K? corresponding to all possible choices of recollision
pairs (g,¢'): at this stage we shall not be too precise in the control of the constants in terms of n,
and mg, contrary to the previous chapter.

If ¢ = Tyec, corresponds to a clustering recollision, we use the same iteration as in Section 8.2:
— use (8.2.5) to control the collision cross sections |Ck (\Ifil) {;
— use the integral with respect to Zj to gain some smallness due to the clustering recollision,
multiplied by the additional smallness due to the non clustering recollision.
As in the first case, we shall lose a factor K2 corresponding to all possible choices of recollision pairs.
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After this first stage, we still need to integrate the singularity with respect to velocity variables, which
requires introducing the next deflection (moving up the root).

We therefore perform the same steps as above, but integrate the singularity
1/2
€
wmin (1, )
lvg — vy

Remark 9.2.5. — Note that it may happen that the two deflection times used in the process are in
the same time interval [Trec ks Trec,k+1], Which does not bring any additional difficulty. We just set apart
the two corresponding integrals in the collision parameters if both correspond to the creation of new
particles.

by using Proposition 9.2.4.

Integrating with respect to the remaining variables in (T,,, Q.., Vi) and following the strategy described
above leads to the bound

4
/ <H AM C(\I/il) ]_g (\Ifil),H(\I/)\l)> @{17...,5}.]‘1{5?}155 ddededeZ;

i=1

(9.2.1)
(t+¢)

< 0les (bmg)*C™ ( .

)n_l (ct)™(1+1)?.

Finally summing over m < ¢mg and over all possible partitions, we find

Vn> 1, |ft (HE) = fres (HPM)| < Cr(t+ 1) nle!/®
where C' depends on Cy, «, By and mg. This concludes the proof of Proposition 9.2.1. O

9.3. Convergence of the cumulants

In order to conclude the proof of Theorem 11, we now have to compare fe 78‘1] (H®™) and Jojo.(H ®n)
defined in (5.1.4) as

FaoaE = XY [ disngra (W) () (1) (8,
TeT;E ™ aGAf m
The comparison will be achieved by coupling the pseudo-trajectories and this requires discarding the
pathological trajectories leading to non clustering recollisions/overlaps and non regular overlaps. Thus
we define the modified limiting cumulants by restricting the integration parameters to the set G, which
avoids internal overlaps in collision trees of the same forest at the creation times, and by removing the
set B¢ introduced in (9.2.1)

T = 55 5 [ e (7)™ 08,0,
TeT,;E ™ acAl,,

where d,u:ﬁfg T, Stands for the measure with at most mg collisions in each forest. We stress the fact
that f o t]( ®n) depends on € only through the sets B® and G°. We are going to check that

H® ®
(9:3.1) i T o, (") = Ffy y (HE™)| = 0.
The analysis of the two previous sections may be performed for the limiting cumulants so that restrict-
ing the number of collisions to be less than mg in each forest and the integration parameters outside
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the set B¢ leads to a small error. The control of internal overlaps, associated with G, relies on the
same geometric arguments as discussed in Section 9.2.1: indeed, in order for an overlap to arise when
adding particle k£ at time ¢, one should already have a particle which is at distance less than 2¢ from
particle ay, which is a generalized recollision situation (replacing € by 2¢). This completes (9.3.1).

In order to compare f 0.4 (H®™) and fa Eg‘; (H®"), we first compare the initial measures, namely f£" I
with (f0)®(+m) This is actually an easy matter as returning to (8.1.18) we see that the leading order

term in the decomposition of f{sf} is F?

n+m> Which is well known to tensorize asymptotically as p. goes

to infinity (for fixed n 4+ m), as stated by the following proposition.
Proposition 9.3.1 ([28]). — If f° satisfies (1.1.5), there exists C > 0 such that
vm, ‘ (F,% - (f0)®’") 1D;n(zm)’ < O e R0Vl |

At this stage, we are left with a final discrepancy between ff[% 1 (H®™) and f; fe ﬂ)“)t] (H®™) which is due
to the initial data and #H being evaluated at different configurations (namely ¥,, and ¥¢). We then

need to introduce a suitable coupling.

In Chapter 5, we used the change of variables (5.1.1) to reparametrize the limiting pseudo-trajectories
in terms of =%, V.* and n — 1 recollision parameters (times and angles). In the same way, for fixed ¢, we
can use the parametrization of clustering recollisions (4.4.5) and of regular clustering overlaps (8.1.14)
to reparametrize the non pathological pseudo-trajectories in terms of z},V,* and n — 1 recollision
parameters (times and angles). The cumulant pseudo-trajectories W5, . associated with the minimally
connected graph T' € 7, and tree a € Aim are obtained by fixing z; and V7,
— for each e € E(T), a representative {q.,q.} ~ e,
— a collection of m ordered creation times T, and parameters (Q,,, Vi,,);
clust c}ust)

— a collection of clustering times (75"*").c (1) and clustering angles (wg

e€E(T)-
At each creation time ty, a new particle, labeled k, is adjoined at position z,, (t;) + ewy and with
velocity vg:
— if s, = +, then the velocities v;, and v,, are changed to vi(t, ) and vg, (t, ) according to the
laws (3.2.1),
— then all particles follow the backward free flow until the next creation or clustering time.

For ¥,, ., to be admissible, at each time 7elust the particles . and ¢, have to collide with the following

clust ) clust ) clust .

rules g, (75 wqr (78 = ew;

— if s, = +, then the velocities v,, and v, are changed according to the scattering rule, with
scattering vector welust,

— then all particles follow the backward free flow until the next creation or clustering time.

As in (5.1.3), we define the measure for each tree a € A7,

and each minimally connected graph T € T,*

Aiing 7.0 = AT A AV da, dVy; dOSS dw ClustHsl vi = a, (£) - wi) |
(9.3.2)
% H Z clust Uqc(Tclubt) /Uqé(TSIUSt)) 'UJSIUSt)_,’_]-ga\BE

e€E(T) {ge,q. }me

denoting by Ot and Q¢S the n — 1 clustering times 7<% and angles w™s* for e € E(T).

We can therefore couple the pseudo-trajectories ¥,, and W¢ by their (identical) collision and clustering
parameters. The error between the two configurations ¥¢ and ¥, is due to the fact that collisions,
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recollisions and overlaps become pointwise in the limit but generate a shift of size O(e) for fixed €. We
then have
[Ts (1) =V, (7)< C(n+m)e forall T €[0,t].

Such discrepancies concern only the positions, as the velocities remain equal in both flows.
It follows that

()5 ) = (£0) ™ ()] < Comgze™ ¥ Vel
having used the Lipschitz continuity (1.1.5) of f°. Using the same reasoning for H (assumed to be
continuous), we find finally that for all n,mq

ly 5oy () = g () = 0.

This result, along with Proposition 9.2.1, Estimates (9.1.2), (9.1.3) and (9.3.1) proves Theorem 11. [

9.4. Analysis of the geometric conditions

In this section we prove Propositions 9.2.2 to 9.2.4. Without loss of generality, we will assume that
the velocities V; are all larger than 1.

Self-recollision: proof of Proposition 9.2.2. Denote by ¢, ¢’ the recolliding particles. By definition
of a self-recollision, their first deflection (going forward in time) involves both particles ¢ and ¢’. It
can be either a creation (say of ¢ without loss of generality, in the tree \I/?i} of ¢'), or a clustering
recollision between two trees (say ¥5. , and ¢, , in U5 ) (see Figure 13).

{dr} {3%} A1

o If the first deflection corresponds to the creation of g, we denote by (¢, @, ¥) the parameters encoding
this creation. We also denote by 9, the velocity of the parent ¢ just before the creation in the backward
dynamics, and by \Il? i the collision tree of ¢’ (and ¢). Denoting by v, and v, the velocities of ¢ and ¢’

after adjunction of ¢ (in the backward dynamics) there holds
(9.4.1) @ + (Vg — Vg ) (tree — ) = Ewrec + ¢ with ¢ € Z%\ {0}

which implies that vy — v4 has to belong to the intersection K. of a cone of opening € with a ball of
radius 2V.

Note that the number of (’s for which the sets are not empty is at most O(thd).

— If the creation of ¢ is without scattering, then v, — vy = ¥ — 9, has to belong to the union of
the K¢’s, and

/ 1Se1f—recollision with creation at time ¢ without scattering| (T} - ’Dq) : (D‘d{d(:}d@
< ovid sup/ Li—s,ex.| (v — 1) - @|dtdodo < Ce* VeV
¢
— 1If the creation of ¢ is with scattering, then v, — vy = o — 9y — 2(0 — ¥,) - @@ has to belong to

the union of the K.’s. Equivalently ¢ — 7, lies in the union of the SgK.’s (obtained from K¢
by symmetry with respect to @), and there holds

(v — vy) - @|dtdwdv

/ 1Self»recollision with creation at time £ with scattering

< Ccvid sup/ Lo—g,es0k. | (0 — 0) - @|dtdodo < Ce® 'V (V)4
¢
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o If the first deflection corresponds to the k-th clustering recollision between \I!? ied and \I!? it} in the

forest WS for instance, in addition to the condition &) € B,y which encodes the clustering recollision
(see Section 8.1), we obtain the condition
(9 4 2) EWrec,k T (Uq - Uq/)(trec - Trec,k) = EWrec + C with C € VA

o and vy — vy = Ty — Uy — 2(Vg — V') * Wrec,k Wrec,k
denoting by v4,7, the velocities before the clustering recollision in the backwards dynamics, and
by wrec,i; the impact parameter at the clustering recollision. We deduce from the first relation that v, —
vy has to be in a small cone K. of opening €, which implies by the second relation that wrec r has to
be in a small cone S¢ of opening €.

Using the change of variables (5.1.1), it follows that

o d—1 Z _ _
/ 1Self—recollision with clustering at time ¢ dxk: g CE t / 1wrec)kesc ((Uq - Uq’) : wrec,k)dwrec,k
¢

< 21 (pyy
This concludes the proof of Proposition 9.2.2. O
Non clustering recollision: proof of Proposition 9.2.3

Denote by q,q the recolliding particles. Without loss of generality, we can assume that the first
deflection (when going up the tree) involves only particle ¢, at some time . It can be either a creation
(with or without scattering), or a clustering recollision.

e If the first deflection of g corresponds to a creation, we denote by (¢,@, ) the parameters encoding

this creation, and by (Z,,7,) the position and velocity of the parent § before the creation in the
backward dynamics. Note that locally in time (up to the next deflection) ¥, is constant, and Z, is an
affine function. In the same way, denoting by (Z/,74) the position and velocity of the particle ¢’, we
have that v is locally constant while z, is affine.

There are actually three subcases :

(a) particle ¢ is created without scattering : vy, = ¥ ;

(b) particle g is created with scattering : v, =0+ (0 —7,) - W@ ;

(c) another particle is created next to ¢, and ¢ is scattered : vy = Uy + (0 — 7q) - W @.
The equation for the recollision states

jfl(a +ew— fq’ (E) + (Uq - z_)(1')(t1“3C - i) = EWrec T+ C in cases (a)_(b)7
Zq(t) — T/ () + (vg — Vg ) (trec — ) = eWrec + ¢ in case (c).
We fix from now on the parameter ¢ € Z% N By; encoding the periodicity, and the estimates will be

multiplied by V¢ at the very end. Define

dx = é(fq/ (1) —ew — Zq(t) +¢) =: dz 1 + é(z‘;q/ — 0q)(t — to) in cases (a)-(b) ,

0x = l(fq’(f) — Ty(t) + () =: 0z, + é(f)q/ —7g)(t — to) in case (c),

5
Trec i= (tree —t)/e  and 7:= (t — to)/e,

where 0z is orthogonal to @y — ¥, (this constraint defines the parameter t¢). Then (9.4.3) can be

(9.4.3)

rewritten

(9.4.4) Vg — Vg =

(wrec + oz, +7(vy — ﬁq)).

Trec
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We know that v, — ¢ belongs to a ball of radius V. In the case when |7(0y — ¥q)| > 2, the triangular
inequality gives

1
2 ‘T(EQ’ - 17q)| < Wree + 021 + T(Vy — g)| = [vg — V| < Vs
Trec Trec
and we deduce that
1 2V
S T = —
Trec |THU(]' - Uq|

hence, by (9.4.4), v, — Uy belongs to a cylinder of main axis dz | +7(7y —U,) and of width 2V/|7||5, —
Ug|. In any case, (9.4.4) forces vy — Uy to belong to a cylinder R¢ of main axis 0z + 7(vg — 7q)

and of width CV min (‘T”@%ﬁ/', 1). In any dimension d > 2, the volume of this cylinder is less
than C'V? min (

1
IT110g =g/ 1

Case (a). Since vy = v, Equation (9.4.4) forces v — 04 to belong to the cylinder R¢. Recall that 7 is a
rescaled time, with

o t,_ C
|(Uq - Uq’)T| < g‘vq - Uq’l + |5x”\ < ;(Vt + 1)'
Then
B C(Vt+1)/e 1 du
/ Ly—s,ere |(0— 1) - @|dtdwdv < CVd+1/ min ( 1) e—
|o|<V ¢ —C(Vi41) /e |ul [0g — Vg
< C«Vd+15<| log(Vt + 1) + |10g5|) )

‘@q - 77q’|

Cases (b) and (c). By definition, v, belongs to the sphere of diameter [0, 7,]. The intersection I of this
sphere and of the cylinder v, + R is a union of spherical caps, and we can estimate the solid angles of
these caps.

FI1GURE 15. Intersection of a cylinder and a sphere. The solid angle of the spherical caps is
less than Cymin(1, (n/R)"/?).

A basic geometrical argument shows that @ has therefore to be in a union of solid angles of measure
less than C' min ((%)1/ 2 1). Integrating first with respect to @ and @, then with respect
[T1[0g =g [10g—7]
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to £, we obtain

B C(Vt+1)/e 1 du
/ Lo,er |(0— ) - @|didid < CVd+1/ min( 1/2,1)5 ———
|5|<V —C(Vt+1)/e |ul |9 — V|
1/243
< oy L
B [vg — ']

We obtain finally that
1
3

(v — vy) - w|dtddv < CV2H3(1 4 t)f”%,gi, :
|Ug — Uy |

/ 1Recollision of type (a)(b)(c)

e If the first deflection of g corresponds to a clustering recollision. With the notation of Section 8.1
we assume the clustering recollision is the k-th recollision in W5 —between the trees W5 and \Ili,,
k

involving particles ¢ € V¢, , and ¢ € \I/?jl,c} (with ¢ # ¢') at time ¢ = Tyec - Then in addition to the
condition

I € ch
which encodes the clustering recollision (see Section 8.1), we obtain the condition

(jq(Trec,k) - xq/(Trec,k)) + (vq - 1_)q/)(trec - Trec,k) = EWrec + Ca

and Vg = Vg — (Uq - ﬂc) * Wrec,k Wrec, k

(9.4.5)

denoting by (Z4,74) and (Z., ) the positions and velocities of ¢ and ¢ before the clustering recollision
(in the backward dynamics). Note that, as previously, ¥, and 7. are locally constant. Defining as
above

1 . _ _
ox = g(fq(’frec,k) — Zq(Trec,k) +C) =: 01 + (Ugr — Ug)(Trec,k — to0)/€ With dz | L (U — Ty),

and the rescaled times

Trec = (trec — Trec,ke)/€  and T =: (Tyec,k — t0)/€,
we end up with the equation (9.4.4), which forces v, — Uy to belong to a cylinder R of main axis dz; —
T(Uq—Uq) and of width C'V min (m, 1), where \IIEZ.,} is the collision tree of ¢’. Then v, has to be
in the intersection of the sphere of diameter 74, ¥.] and of the cylinder o, +R. This implies that wyec k
has to belong to a union of spherical caps S, of solid angle less than C' min ((M’m)l/z, 1).
Using the (local) change of variables & — (Tvec ks EWrec,k), it follows that

. C L
/]-Recollision of type (d)dxk < ; lwrec,k €S|(Uq - Uc) : Wrec,k|dwrec,kd7—rec,k
€

1/2
< Svigpnt .
He [0g — /|
This concludes the proof of Proposition 9.2.3. O

Integration of the singularity in relative velocities: proof of Proposition 9.2.4

We start with the obvious estimate
£1/2

(9.4.6) min (1, NSRS TR

[vg — vg'|

Thus we only need to control the set of parameters leading to small relative velocities.
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Without loss of generality, we shall assume that the first deflection (when going up the tree) involves
particle g. It can be either a creation (with or without scattering), or a clustering recollision, say
between ¢ € 5. , and ¢ € V%, ,.

{ix} {3}

o If the first deflection of ¢ corresponds to a creation, we denote by (¢,&,?) the parameters encoding
this creation, and by (Z4,74) and (T4, Uy) the positions and velocities of the pseudo-particles g and ¢’
before the creation.

There are actually four subcases :

(a) particle ¢’ is created next to particle ¢ in the tree nt lvg — vyl = [0 — 74| ;
(b) particle ¢’ is not deflected and particle ¢ is created without scattering next to g in the tree \I’?i}:
[vg —vg'| = [0 — Vg ;

(c) particle ¢’ is not deflected and particle ¢ is created with scattering next to g in the tree \I/? i}
vq—@f(@—@q) 0@ ;

(d) particle ¢’ is not deflected, another particle is created next to ¢ in the tree ¥% Ly and ¢ is
scattered so v, =TV, + (T —7y) - W@ .

In cases (a) and (b), we obtain that ¥ has to be in a small ball of radius !/4. Then,
/ 1Small relative velocity of type (a)(b) ’ (’E - /Dq) . w’d{d@d’f) < CVtEd/4 .

In cases (c) and (d), we obtain that v, has to be in the intersection of a small ball of radius £'/4 and
of the sphere of diameter [7,7,]. This condition imposes that @ has to be in a spherical cap of solid
angle less than e% /|5 — 0,|'/? (see Figure 15). We find that

_ _ 3T - = d+1, 1
/ ]-Small relative velocity of type (c)(d) | (U - Uq) : W|dtd(.Od’U S cv ta tes .

Combining these two estimates with (9.4.6), we get

el/2 1
/mln )’(T) ) - &|dtdwdv < CVatites

_Uq|

o If the first deflection of ¢ corresponds to the k-th clustering recollision in \Ilil between ¢ € \Il?jk}

and ¢ € \I/? i at time ¢ = Tyec i, in addition to the condition &) € By which encodes the clustering
k

recollision (see Section 8.1), we obtain a condition on the velocity.

There are actually two subcases :
(e) ¢ =cand |vg — vy | =[vg — Vg| ;

(f) ¢ is not deflected, and vy = T4 — (T — T¢) * Wrec,k Wrec,k -
In case (e), there holds

Ctet

He

C
/ ]-Small relative velocity of type (e)d‘rk S ; 1‘17(1—17‘1/ |§El/4 | (Uq - Uq’) ! w‘deTrec,k S
€

In case (f), we obtain that v, has to be in the intersection of a small ball of radius ¢'/4 and of the
sphere of diameter [y, 7.]. This condition imposes that wyecr has to be in a spherical cap of solid
angle less than 5%/|17q — 0e|Y? (see Figure 15). We find

1 1
1 CtVzes
]-Small relative velocity of type (f) de'k < 758 |Uq - /UC dTrec k < :
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Combining these two estimates with (9.4.6), we get

. el/? CVtes
/mln (1, 7)(1331~C <
|vg — vgr['/?
This concludes the proof of Proposition 9.2.4.



APPENDIX A

THE ABSTRACT CAUCHY-KOVALEVSKAYA THEOREM

In this appendix we recall the well-known Cauchy-Kovalevskaya theorem, in a generalized Banach
framework as devised namely by F. Treves [71], L. Nirenberg [52], T. Nishida [53]. This result is
used to prove the existence and uniqueness of a solution for short times for the Boltzmann equation
(Section A.1), for the linearized Boltzmann equation (proof of Proposition 6.1.3 in Section A.2), for
the covariance equation (5.5.5) (Proposition A.3.1 in Section A.3), and for the modified Hamiltonian
equations (7.2.15) (proof of Proposition 7.2.3 in Section A.4).

We state the result as proved in [45] (Théoreme A (V).

Theorem A.1 ([45]). — Let (X,),>0 be a decreasing sequence of Banach spaces with increasing
norms || - ||,. Consider the equation
t
(A.0.1) u(t) = uo(t) +/ F(t,s,u(s))ds, t>0
0
where

— there are Ag > 0,pp > 0 such that t — ug(t) is continuous for t € [0, Ag(po — p)| with values
in X, for all p < po, and there is Ry > 0 such that

vt € [0, Ao(po — P, lluo@®)l, < Ro;

— F(-,-,0) =0, and there are R > Ry > 0,T > 0 such that F is continuous from [0,T] x [0,T] x
Br(X,) to X, for all p < p' < po, with Bg the open ball of radius R. Moreover there is a
constant Cr such that for all u,v € Br(X,/), for all (t,s) € [0,T7,

Po
(A.0.2) IF(t.s0) = Fts,0)ll, < Ca P flu—vlly . po/2<p <0< .
Then there exists a constant ¢ (not depending on any of the previous parameters) such that (A.0.1)
has a unique solution on the time interval [0,T) with T = ¢/Cyr,, which is continuous in time and

satisfies
~ t (1 . 7) <R
po/zlﬁlflpo ||u( )HP 4T(1 - p/pO) N 0
0<t<4T(1—p/pg)

and in particular

[u(®)lpo/2 <4Ro,  t€[0,T].

1. The (suboptimal) estimate on the existence time, as well as the estimates as stated in Theorem A.1, follow from
a simple adaptation of the argument in [45], pages 367-368.
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A.1. Local well-posedness for the biased Boltzmann equation

The local well-posedness of the Boltzmann equation (1.2.1) can be deduced directly from the previous
theorem (as pointed out first in [74]). In this section, we are going to consider the well-posedness of
the biased Boltzmann equation (1.4.6) recalled below

(ALll) D= / (ot 2ot 25)e™ 0 = olt, 2)p(t, 22)e7 ) dpiz (22, w) - with (0) = [P,
with [[pllwi.e(o,11xp) < 7
We first define the weighted L>° spaces
L .— _ . o« _ é 2
5 =qe=e@v) : [elry = sup exp (= S[v) (@, v)] | <400
Note that, by assumption (1.1.5), the initial data f° belongs to L>5 so that
le ()=, < Coe"
Note also that these functional spaces are invariant by the free transport operator S; over D.

The mild formulation of (A.1.1) states

(A12) (1) = Srp(0) + / Si s Qp((s), (5))ds
where the collision term
Qoo )(:) = [ (9(t,2)plt, )P = p(t, 2l 22)e ) di 2, )

satisfies the following loss continuity estimate for 8y/2 < 5 < 8’ < By

o ’
Qs oMl < 2Nl e sup  [exp (~Z5 L) exw (<)) o - uduas )

4 Bo —(d+1)/2
6/ _ 550 9

where the constant ¢4 depends only on the dimension d.

(A.1.3)

< callpl=, e

Then choosing Ty = ¢qCy lﬁédﬂ)/ 2, we obtain by Theorem A.1 that the mild formulation of the

Boltzmann equation (A.1.2) has a unique solution ¢ which is continuous on [0, Toe™°"] and satisfies
t
sup t)|| oo (1 - = ) <2Cy,
Bo/2<p<fo @z, AToe=" (1 = B/ Po) ’
0<t<4Tge =57 (1—-5/Bg)
and
(A.1.4) lot)||pe. < 4Coe”,  te[0,Toe "] .

—Bo/2 —
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A.2. Well-posedness of the linearized Boltzmann (adjoint) equation.

We prove now Proposition 6.1.3. Let us recall the definition (6.1.9) of the function spaces

L= {<p = o(z,v) : H@H%g = /Dexp (- §|v|2) O (z,v)drdv < +oo} )

We need to prove that if ¢ is in L??o/4’ then U*(t, s)p belongs to Lg,ﬁo/S for any s <t < T for T small
enough. We get from (6.1.2)-(6.1.3) the backward Duhamel formula

¢
(A.2.1) U*(t,s)p = Ss,tgo—i—/ Ss—oc LU (t,0)pdo .

Using the uniform bound (A.1.4), we first establish a loss continuity estimate for the operator LZ
defined by (6.1.3). By the Cauchy-Schwarz inequality, for any function ¢ and any 5 0 < B <pB< 350

!/
18562 < [ dsdvexp(= 10 ([ 10— 0P 205, 0) exp G P )

x <Aw>2<s,x,w>exp<i'|w|2>dwdw
(A.2.2)

_ 550
< chgH(p”ig/BO U2 qup <€Xp( \v\ /|v w|? exp ——|w| )dw>

Sl
B—p "

where ¢, denotes a constant depending only on the dimension d which may change from line to line.

Since the transport S preserves the spaces L%, we are in position to apply Theorem A.1. The only
difference is that (A.2.1) defines a backward evolution, rather than a forward one, and that the L%
spaces are increasing rather than decreasing. Up to these slight adaptations, Theorem A.1 provides
the existence of T' < Tp, also of the form T = ¢ ﬁ(dﬂ /2/00 such that for any ¢ € LB Ja0 (A.2.1) has
a unique solution satisfying U*(t, s)p € L§50/8 for any s <t < T. Proposition 6.1.3 is proved. O

Notice that, for the linear equation (A.2.1), the fixed point argument leading to the Cauchy-
Kovalevskaya theorem provides in particular a convergent series representation for the solution, of the
form

(A.2.3) U*(t,s)p = S tgo—l—Z/ doy -- / donSe o Lt - L2 Sy 4.
n>1 On—1
In particular, the following properties are easily verified.
Corollary A.2.1. — For T < Ty as in Proposition 6.1.3 and for any s < t < T, U*(t,s) is a
semigroup satisfying
U*(t,s) =U*(o,s)U*(t, o), o € [s,t]
and

t
U*(t,s)p = Ss_t<p+/ doU* (0, 8)L.S,—tp.
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A.3. Well-posedness of the covariance equation

Proposition A.3.1. — There exists a time T > 0 of the form T = cdﬂédﬂ)/Q/Co such that the
system (5.5.5) has a unique solution C on [0,T)?, which is defined as a bilinear form on L%OM.

Proof. — System (5.5.5) consists in two equations. Let us start by solving the first one, namely

t
C(t7 ty ¢7 90) = C(Oa 07 S—twv S—t@) + / dS COVS(Ss—t¢a Ss—t@)
0

(A.3.1) .

t
+/ dsC(s,s,Ss—t1, LiSs_1) +/ dsC(s,s,LiSs_1), Ss_1) .

0 0
We are going to apply Theorem A.1, with the family of spaces Xz of bilinear forms defined by
5= {Ci=C,9) /ICIx <o}, IClas=  sw cwe)].

1z <Ll <t

Notice that, since the spaces L% are increasing, the spaces X3 are decreasing. Given § < By and ¥, ¢
in L3 of norm smaller than 1, there holds

(0,0, 5116, S—rp)| < / ISt (2)[|S_vip(2)] dz

<G / e E- B =S |5 () e $10F | S_po(2)| dard

so by the Cauchy-Schwarz inequality we infer

[ct=0,t=0 < Co.

Mz, ,, <
Similarly, as in the proof of Proposition 6.1.4 page 60, we find that
1
’COVS(sztwa sztﬁﬂ)’ S 5 /d/’[/(zla 22, W)f(S, Zl)f(sa Z2)|A587t’¢)| |A587t¢|

Bo

< CCg/dM(zh 29, w)e(7 =) (ot val?) <6—§|v1|2w2(3’ 21) 4 e 72 (s, 21))6_§|”2‘2

< Cdcgﬂ()_(d+1)/2
if ¥, ¢ belong to L% for B < 38,/8, and norm bounded by 1.

Finally setting
F(t,s,C(s,8,+-)) :=C(s,8, 8¢, L5Ss_4-) + C(s,8,LiSs_¢-, Ss—¢*)
let us prove the loss estimate (A.0.2). There holds, for 5y/4 < 8’ < 8 < 30y/8,
|F(t,5,C(s,5,%,9))| < 2/IC(s, 8) s [1Ss—9 12 1L Ss—e0ll 12

- B
< caCofly G2 1IC s )l ez, Iz,

where we have used the fact that the spaces L% are increasing, along with the loss estimate (A.2.2).

Thanks to Theorem A.1, we find that there exists a time T' > 0, proportional to B(()d+1)/2/00, such
that (A.3.1) has a unique solution which is continuous on [0, 7], with values in X, 4.

The argument is the same for the second equation of (5.5.5), namely

(A.3.2) /OtC(t,mw,gbg)da:/Ot do (C(o, o, sat¢,¢g)+/t dsC(s,U,LjSStw,qﬁg)) 7
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applying Theorem A.1 to
t
K(t.6,2)i= [ C(t.0.0,00)do
0

which satisfies, thanks to the Fubini theorem,

t t
/C(t,z/),q)):/o dUC(U,U,SU,tw,¢U)+/O ds K(s,LiSs_11), ).

Note that () is now a bilinear form on L% x L>((0,1); L%) The same estimates as above allow to
conclude. O

A.4. Well-posedness of the modified Hamiltonian equations

We are now going to check the well-posedness of the modified Hamiltonian equations (7.2.15) which
are recalled below

wt(s) = szo + /S szaFl ((]5,5(0'), 77t<U)>1/)t(U))dU’
(A.4.1) Vs <t, ’

w5) = Sec = [ Se-aFlono). o) (o)) do.
with ¥;(0) = £°, 7:(£) = v and
Fiomd) = ~00+ [ duey(2.0) e) (8(a)0(5) — (1))
Falom ) =06~ [ diz, (20, 0e2) (n(z)n(5) = n(1)n(z2))

This is a coupled system and 7, satisfies a backward equation, so this is not exactly the standard
formulation to apply Theorem A.1.

Let us fix @ > 0 and a time ¢t < T,,. Using the fact that (¢, ) belongs to By, g,,1, , we have in particular
that

s, |6(s,2,0)[ < C(L+[vf*) and ~(t) € L )4,
se(0,t

where the constant C' depends on «, By, Cy. Recall moreover that f° belongs to L%, so let us define
- 0
C=4(Ileg,, + 1=, ) -

By a computation as in (A.1.3), one can check that for any 38y/4 < 1 < 8] < By and fy/4 < B <
B2 < Bo/2 there are constants Cy and Cy such that

C13

(A4.2) 1B (60l < gl (14 Il Inlzg . )
Cafs

(A.4.3) 126,00y < g2 Wl (1 Il g, )

The second equation in (A.4.1) evolves backward so that as in Section A.2, the regularity in (A.4.3) is
coded in the opposite direction of the forward flow.

By the method of Theorem A.l, a fixed point argument can be implemented (by solving at each
iteration both the forward and backward equations). In this way, we find a time Tf/ > 0 such that
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there exists a unique solution (¢, 7;) to (A.4.1) on [0,] for any t < TH', satisfying
sup [ne(s)lleg , <C,  sup [[ve(s)lL=, , <C.

s€[0,t] Po/z s€[0,t] ~3fosa

Step 1 of the proof of Proposition 7.2.3 is now complete.
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