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46 allée d’Italie, 69007 Lyon, FRANCE.

E-mail : Laure.Saint-Raymond@ens-lyon.fr

S. Simonella

UMPA UMR 5669 du CNRS, ENS de Lyon, Université de Lyon,
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STATISTICAL DYNAMICS OF A HARD SPHERE GAS:
FLUCTUATING BOLTZMANN EQUATION AND LARGE

DEVIATIONS

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond,
Sergio Simonella

Abstract. — We present a mathematical theory of dynamical fluctuations for the hard sphere gas
in the Boltzmann-Grad limit. We prove that: (1) fluctuations of the empirical measure from the
solution of the Boltzmann equation, scaled with the square root of the average number of particles,
converge to a Gaussian process driven by the fluctuating Boltzmann equation, as predicted in [67]; (2)
large deviations are exponentially small in the average number of particles and are characterized, under
regularity assumptions, by a large deviation functional as previously obtained in [61] for dynamics with
stochastic collisions. The results are valid away from thermal equilibrium, but only for short times.
Our strategy is based on uniform a priori bounds on the cumulant generating function, characterizing
the fine structure of the small correlations.





CONTENTS

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. The hard-sphere model with random initial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Lanford’s theorem : a law of large numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. The fluctuating Boltzmann equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4. Large deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5. Strategy of the proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6. Remarks, and open problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Part I. Dynamical cumulants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Combinatorics on connected clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1. Generating functionals and cumulants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. Inversion formula for cumulants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. Clusters and the tree inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Number of minimally connected graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5. Combinatorial identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Tree expansions of the hard-sphere dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1. Space correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Geometrical representation with collision trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3. Averaging over trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Cumulants for the hard-sphere dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1. External recollisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



6 CONTENTS

4.2. Overlaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3. Initial clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4. Dynamical cumulants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5. Characterization of the limiting cumulants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1. Limiting pseudo-trajectories and graphical representation of limiting cumulants. . . . . . . . . . . 39

5.2. Limiting cumulant generating function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3. Hamilton-Jacobi equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4. The Boltzmann equation for the limit first cumulant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5. Equation for the limit covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Part II. Fluctuations around the Boltzmann dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6. Fluctuating Boltzmann equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1. Weak solutions for the limit process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2. Convergence of the process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3. The modified Garsia, Rodemich, Rumsey inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4. Spohn’s formula for the covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7. Large deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1. Identification of the large deviation functional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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CHAPTER 1

INTRODUCTION

This paper is devoted to a detailed analysis of the dynamical correlations arising, at low density, in a

deterministic particle system obeying Newton’s laws. In this chapter we start by defining our model

precisely, and recalling the fundamental result of Lanford on the short-time derivation of the Boltzmann

equation, as a law of large numbers. After that, we state our main results, Theorem 2 and Theorem 3

below, regarding small fluctuations and large deviations of the empirical measure, respectively. Finally,

the last part of this introduction describes the essential features of the proofs, the organization of the

paper, and presents some open problems.

1.1. The hard-sphere model with random initial data

We consider a system of N ≥ 0 spheres of diameter ε > 0 in the d-dimensional torus TdN with d ≥ 2.

The positions (xε1, . . . ,x
ε
N ) ∈ TdN and velocities (vε1, . . . ,v

ε
N ) ∈ RdN of the particles satisfy Newton’s

laws

(1.1.1)
dxεi
dt

= vεi ,
dvεi
dt

= 0 as long as |xεi (t)− xεj(t)| > ε for 1 ≤ i 6= j ≤ N ,

with specular reflection at collisions

(1.1.2)
(vεi )

′
:= vεi −

1

ε2
(vεi − vεj) · (xεi − xεj) (xεi − xεj)(

vεj
)′

:= vεj +
1

ε2
(vεi − vεj) · (xεi − xεj) (xεi − xεj)

 if |xεi (t)− xεj(t)| = ε .

Observe that these boundary conditions do not cover all possible situations, as for instance triple

collisions are excluded. Nevertheless the hard-sphere flow generated by (1.1.1)-(1.1.2) (free transport

of N spheres of diameter ε, plus instantaneous reflection(
vεi ,v

ε
j

)
→
((

vεi
)′
,
(
vεj
)′)

at contact) is well defined on a full measure subset of DεN (see [1], or [28] for instance) where DεN is

the canonical phase space

DεN :=
{
ZN ∈ DN : ∀i 6= j , |xi − xj | > ε

}
.

We have denoted ZN := (XN , VN ) ∈ (Td × Rd)N the positions and velocities in the extended

space DN := (Td × Rd)N with XN := (x1, . . . , xN ) ∈ TdN and VN := (v1, . . . , vN ) ∈ RdN . We

set ZN = (z1, . . . , zN ) with zi = (xi, vi).
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The probability density W ε
N of finding N hard spheres of diameter ε at configuration ZN at time t is

governed by the Liouville equation in the 2dN -dimensional phase space

(1.1.3) ∂tW
ε
N + VN · ∇XNW ε

N = 0 on DεN ,
with specular reflection on the boundary. If we denote

∂Dε±N (i, j) :=
{
ZN ∈ DN : |xi − xj | = ε , ±(vi − vj) · (xi − xj) > 0

and ∀(k, `) ∈ [1, N ]2 \ {i, j}, k 6= ` , |xk − x`| > ε
}
,

then

(1.1.4) ∀ZN ∈ ∂Dε+N (i, j) , i 6= j , W ε
N (t, ZN ) := W ε

N (t, Z
′i,j
N ) ,

where Z
′i,j
N differs from ZN only by (vi, vj)→

(
v′i, v

′
j

)
, given by (1.1.2).

The canonical formalism consists in fixing the number N of particles, and in studying the probability

density W ε
N of particles in the state ZN at time t, as well as its marginals. The main drawback of this

formalism is that fixing the number of particles creates spurious correlations (see e.g. [26, 57]). We

are rather going to define a particular class of distributions on the grand canonical phase space

Dε :=
⋃
N≥0

DεN ,

where the number of particles is not fixed but given by a modified Poisson law (actually DεN = ∅ for

large N). For notational convenience, we work with functions extended to zero over DN \ DεN . Given

a probability distribution f0 : D→ R satisfying

(1.1.5) |f0(x, v)|+ |∇xf0(x, v)| ≤ C0 exp
(
− β0

2
|v|2
)
, C0 ≥ 1 , β0 > 0 ,

the initial probability density is defined on the configurations (N,ZN ) ∈ DN as

(1.1.6)
1

N !
W ε0
N (ZN ) :=

1

Zε
µNε
N !

N∏
i=1

f0(zi) 1DεN (ZN )

where µε > 0 and the normalization constant Zε is given by

Zε := 1 +
∑
N≥1

µNε
N !

∫
DN

dZN

N∏
i=1

f0(zi) 1DεN (ZN ) .

Here and below, 1A will be the indicator function of the set A. We will also use the symbol 1“∗” for

the indicator function of the set defined by condition “∗”.

Note that in the chosen probability measure, particles are “exchangeable”, in the sense that W ε0
N is

invariant by permutation of the particle labels in its argument. Moreover, the choice (1.1.6) for the

initial data is the one guaranteeing the “maximal factorization”, in the sense that particles would

be i.i.d. were it not for the indicator function (‘hard-sphere exclusion’).

Our fundamental random variable is the time-zero configuration, consisting of the initial positions and

velocities of all the particles of the gas. We will denote N the total number of particles (as a random

variable) and Zε0N =
(
zε0i
)
i=1,...,N the initial particle configuration. The particle dynamics

(1.1.7) t 7→ ZεN (t) = (zεi (t))i=1,...,N

is then given by the hard-sphere flow solving (1.1.1)-(1.1.2) with random initial data Zε0N (well defined

with probability 1). The probability of an event X with respect to the measure (1.1.6) will be de-

noted Pε(X), and the corresponding expectation symbol will be denoted Eε. Notice that particles are
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identified by their label, running from 1 to N . We shall mostly deal with expectations of observables

of type Eε
(∑N

i=1 . . .
)
. Unless differently specified, we always imply that Eε

(∑
i . . .

)
= Eε

(∑N
i=1 . . .

)
.

The average total number of particles N is fixed in such a way that

(1.1.8) lim
ε→0

Eε (N ) εd−1 = 1 .

The limit (1.1.8) ensures that the Boltzmann-Grad scaling holds, i.e. that the inverse mean free path

is of order 1 [33]. Thus from now on we will set

µε = ε−(d−1) .

Let us define the rescaled initial n-particle correlation function

F ε0n (Zn) := µ−nε

∞∑
p=0

1

p!

∫
Dp
dzn+1 . . . dzn+pW

ε0
n+p(Zn+p) .

We say that the initial measure admits correlation functions when the series in the right-hand side

is convergent, which is the case with our choice (1.1.6) of initial data, together with the series in the

inverse formula

W ε0
n (Zn) = µnε

∞∑
p=0

(−µε)p
p!

∫
Dp
dzn+1 . . . dzn+p F

ε0
n+p(Zn+p) .

In this case, the set of functions
(
F ε0n

)
n≥1

describes all the properties of the system.

For any test function hn : Dn → R, the following holds :

(1.1.9)

Eε
( ∑

i1,...,in
ij 6=ik,j 6=k

hn
(
zε0i1 , . . . , z

ε0
in

))
= Eε

(
δN≥n

N !

(N − n)!
hn
(
zε01 , . . . , z

ε0
n

))

=

∞∑
p=n

∫
Dp
dZp

W ε0
p (Zp)

p!

p!

(p− n)!
hn
(
Zn
)

= µnε

∫
Dn
dZn F

ε0
n (Zn)hn(Zn) .

Starting from the initial distribution W ε0
N , the density W ε

N (t) evolves on DεN according to the Liouville

equation (1.1.3) with specular boundary reflection (1.1.4). At time t ≥ 0, the (rescaled) n-particle

correlation function is defined as

F εn(t, Zn) := µ−nε

∞∑
p=0

1

p!

∫
Dp
dzn+1 . . . dzn+pW

ε
n+p(t, Zn+p)(1.1.10)

and, as in (1.1.9), we get

(1.1.11)
Eε
( ∑

i1,...,in
ij 6=ik,j 6=k

hn
(
zεi1(t), . . . , zεin(t)

))
= µnε

∫
Dn
dZn F

ε
n(t, Zn)hn

(
Zn
)
,

where we used the notation (1.1.7). Notice that F εn(t, Zn) = 0 for Zn ∈ Dn \ Dεn.
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1.2. Lanford’s theorem : a law of large numbers

In the Boltzmann-Grad limit µε →∞, the average behavior is governed by the Boltzmann equation :

(1.2.1)

∂tf + v · ∇xf =

∫
D

∫
Sd−1

(
f(t, y, w′)f(t, x, v′)− f(t, y, w)f(t, x, v)

)
dµ(x,v)((y, w), ω) ,

f(0, x, v) = f0(x, v)

where, for any (x, v) ∈ D,

(1.2.2) dµ(x,v)((y, w), ω) := δy−x
(
(w − v) · ω

)
+
dω dy dw

and where the precollisional velocities (v′, w′) are defined by the scattering law

(1.2.3) v′ := v −
(
(v − w) · ω

)
ω , w′ := w +

(
(v − w) · ω

)
ω .

More precisely, the convergence is described by Lanford’s theorem [47] (in the canonical setting — for

the grand-canonical setting see [46], where the case of smooth compactly supported potentials is also

addressed), which we state here in the case of the initial measure (1.1.6).

Theorem 1 (Lanford [47]). — Consider a system of hard spheres initially distributed according to

the grand canonical measure (1.1.6) with f0 satisfying the estimate (1.1.5). Then, in the Boltzmann-

Grad limit µε →∞, the rescaled one-particle density F ε1 (t) converges uniformly on compact sets to the

solution f(t) of the Boltzmann equation (1.2.1) on a time interval [0, T0] (which depends only on f0

through C0, β0). Furthermore for each n, the rescaled n-particle correlation function F εn(t) converges

almost everywhere in Dn to f⊗n(t) on the same time interval.

We refer to [39, 69, 20, 19] for detailed proofs. The topic continues to be studied and developed, see

[44, 28, 23, 57, 29, 30, 58] for more recent contributions.

Let us define the empirical measure

(1.2.4) πεt :=
1

µε

N∑
i=1

δzεi (t) ,

where δzεi (t) denotes the Dirac mass at point zεi (t). Tested on a (one-particle) function h : D → R, it

reads

(1.2.5) πεt (h) =
1

µε

N∑
i=1

h (zεi (t)) .

By definition, F ε1 describes the average behavior of (exchangeable) particles :

(1.2.6) Eε
(
πεt (h)

)
=

∫
D
F ε1 (t, z)h(z) dz .

The propagation of chaos derived in Theorem 1 implies in particular that the empirical measure

concentrates on the solution of Boltzmann equation: let us prove the following law of large numbers,

which is an easy corollary to Theorem 1.

Corollary 1.2.1. — Under the assumptions of Theorem 1, for all δ > 0 and smooth h : D→ R,

Pε
(∣∣∣πεt (h)−

∫
D
f(t, z)h(z)dz

∣∣∣ > δ

)
−−−−→
µε→∞

0 .
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Proof. — Computing the variance for any test function h, we get that

(1.2.7)

Eε
((
πεt (h)−

∫
F ε1 (t, z)h(z) dz

)2)
= Eε

( 1

µ2
ε

N∑
i=1

h2
(
zεi (t)

)
+

1

µ2
ε

∑
i6=j

h
(
zεi (t)

)
h
(
zεj(t)

))
−
(∫

F ε1 (t, z)h(z) dz
)2

=
1

µε

∫
F ε1 (t, z)h2(z) dz +

∫
F ε2 (t, Z2)h(z1)h(z2) dZ2 −

(∫
F ε1 (t, z)h(z) dz

)2

−−−−→
µε→∞

0 ,

where the convergence to 0 follows from the fact that F ε2 converges to f⊗2 and F ε1 to f almost

everywhere.

Remark 1.2.2. — The restriction to the time interval [0, T0] in the statement of Theorem 1 originates

from a Cauchy-Kovalevskaya argument in a scale of Banach spaces. A (non optimal) estimate of T0

in terms of C0 and β0 is provided in Theorem 10 of the present paper, of the form T0 ∼ C−1
0 β

(d+1)/2
0

(notice that in this estimate the inverse temperature is given by β0, while the physical density is C0/β
d
2
0 ).

Remark that the Cauchy-Kovalevskaya argument provides the same dependence in terms of C0 and β0

for the wellposedness time of the Boltzmann equation: see Appendix A.1.

1.3. The fluctuating Boltzmann equation

Describing the fluctuations around the Boltzmann equation is a way to capture part of the information

which has been lost in the limit µε →∞.

As in the classical central limit theorem, we expect these fluctuations to be of order 1/
√
µε, which is

the typical size of the remaining correlations. We therefore define the fluctuation field ζε as follows:

for any test function h : D→ R (recall (1.2.6))

(1.3.1) ζεt
(
h
)

:=
√
µε

(
πεt (h)−

∫
F ε1 (t, z)h

(
z
)
dz

)
.

Initially the empirical measure starts close to the density profile f0 and ζε0 converges in law towards a

Gaussian white noise ζ0 with covariance

(1.3.2) E
(
ζ0(h1) ζ0(h2)

)
=

∫
h1(z)h2(z) f0(z) dz .

This follows from a computation similar to (1.2.7) because, with our choice of initial data given

in (1.1.6), µε

(
F ε2 (0)− (F ε1 )

⊗2
(0)
)

vanishes as µε →∞ (the Gaussian character requires an estimate

of higher order cumulants, which is made precise in Proposition 8.1.4 below). Note that, for more

general initial states, a smoothly correlated part may appear in the covariance [68, 57].

In this paper we prove that in the limit µε →∞, starting from “almost independent” hard spheres, ζεt
converges to a Gaussian process, solving formally

(1.3.3) dζt = Lt ζt dt+ dηt ,
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where Lt is the linearized Boltzmann operator around the solution f(t) of the Boltzmann equa-

tion (1.2.1)

(1.3.4)
Lt h(z) := −v · ∇xh(z) +

∫
D

∫
Sd−1

dµz(z1, ω)

×
(
f(t, x1, v

′
1)h(x, v′) + f(t, x, v′)h(x1, v

′
1)− f(t, z)h(z1)− f(t, z1)h(z)

)
.

The noise dηt(z) is Gaussian, with zero mean and covariance

(1.3.5)

E
(∫

dt1 dz1h1(z1)ηt1(z1)

∫
dt2 dz2 h2(z2)ηt2(z2)

)
=

1

2

∫
dt dµ(z1, z2, ω)f(t, z1) f(t, z2)∆h1 ∆h2

denoting

(1.3.6) dµ(z1, z2, ω) := δx1−x2

(
(v1 − v2) · ω

)
+
dω dv1 dv2dx1

and defining for any h

(1.3.7) ∆h(z1, z2, ω) := h(z′1) + h(z′2)− h(z1)− h(z2) ,

where z′i := (xi, v
′
i) with notation (1.2.3) for the velocities obtained after scattering. We postpone the

precise definition of a weak solution to (1.3.3) to Section 6.1.

Our result is the following.

Theorem 2. — Consider a system of hard spheres initially distributed according to the grand canonical

measure (1.1.6) where f0 is a function satisfying (1.1.5). Then, there exists T > 0 (depending on f0

as T ∼ C−1
0 β

d+1
2

0 ) such that, in the Boltzmann-Grad limit µε → ∞, the fluctuation field (ζεt )t≥0

converges in law to a Gaussian process, uniquely determined by its covariance, which solves (1.3.3) in

a weak sense on the time interval [0, T ].

The convergence towards the limiting process (1.3.3) was conjectured by Spohn in [68] and the non-

equilibrium covariance of the process at two different times was computed in [67], see also [69]. The

noise emerges after averaging the deterministic microscopic dynamics. It is white in time and space,

but correlated in velocities so that momentum and energy are conserved.

At equilibrium the convergence of a discrete-velocity version of the same process was derived rigorously

by Rezakhanlou in [60], starting from a dynamics with stochastic collisions (see also [43, 42, 70, 72,

73, 51] for fluctuations and space-homogeneous models).

The physical aspects of the fluctuations for the rarefied gas have been thoroughly investigated in

[26, 67, 68]. We also refer to [12], where we gave an outline of our results and strategy. Here we

would like to recall only a few important features.

1) The noise in (1.3.3) originates from dynamical correlations.

It is a very general fact that, when the macroscopic equation is dissipative, the dynamical equation for

the fluctuations contains a term of noise. In the case under study, dynamical correlations correspond

for example to two given particles having interacted directly or indirectly backward in time on [0, t] — a

precise, albeit technical definition will be given later on in terms of a suitable class of pseudo-dynamics

(Definition 4.1.1 below). These correlations have a negligible contribution to the limit πεt → f(t) (see

Corollary 1.2.1). The proof of Theorem 2 provides a further insight on the relation between collisions

and noise. Following [67], we represent the dynamics in terms of a special class of trajectories, for
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which one can classify precisely the dynamical correlations responsible for the term dηt; see Section 1.5

for further explanations. For the moment we just remind the reader that there is no a priori contra-

diction between the dynamics being deterministic, and the appearance of noise from collisions in the

singular limit. Indeed when ε goes to zero, the deflection angles are no longer deterministic (as in the

probabilistic interpretation of the Boltzmann equation). The randomness, which is entirely coded on

the initial data of the hard sphere system, is transferred to the dynamics in the limit.

2) Equilibrium fluctuations can be deduced by the fluctuation-dissipation theorem.

As a particular case, we obtain the result at thermal equilibrium f0 = M , where M is a Maxwellian.

The stochastic process (1.3.3) boils down to a generalized Ornstein-Uhlenbeck process. The noise

term compensates the dissipation induced by the linearized Boltzmann operator, and the covariance

of the noise (1.3.5) can be predicted heuristically by using the invariant measure. More precisely

at equilibrium, one has the equation dζt = Leq ζt dt + dηt where Leq is the linearized Boltzmann

operator around M . To determine the structure of the Gaussian noise, one can formally express the

time-independent quantity E
(
ζt(h1) ζt(h2)

)
=
∫
h1 h2M dz in terms of the initial fluctuations ζ0, and

of dη. Using that Leq is contracting, the limit t → ∞ cancels the dependence on ζ0 and provides

formula (1.3.5), with f = M , for the covariance of the noise; see [69] for details, and also Remark 6.1.2

page 59.

3) Away from equilibrium, the fluctuating equations keep the same structure.

The most direct way to guess (1.3.3)-(1.3.5) is starting from the equilibrium prediction (previous

point) and assuming that M = M(v) can be substituted with f = f(t, x, v). This heuristics is known

as “extended local equilibrium” assumption, in the context of fluctuating hydrodynamics; we refer

again to [69] for details. The hypothesis is based on the remark that the noise in the fluctuating

equation (1.3.3) should be white in space and time (δ−correlated in t and x) and therefore it should be

determined completely by the local properties of the gas. If locally the system is at equilibrium, then the

non equilibrium equation (1.3.3) should be simply the one obtained from the equilibrium equation by

adjusting the local parameters. This procedure turns out to give the right result also for our gas at low

density, even if f = f(t, x, v) is not locally Maxwellian. The reason is that a form of local equilibrium

is still true, in terms of ideal gases; namely, around a little cube of volume µ−1
ε centered in x at time t,

the hard sphere distribution converges, as µε → ∞, to a uniform Poisson measure with constant

density
∫
f(t, x, v)dv and independent velocities distributed according to f(t, x, v)/

∫
f(t, x, v)dv (see

Corollary 4.7 in [69]).

4) Away from equilibrium, fluctuations exhibit long range correlations.

The covariance of the fluctuation field at different points x1, x2 is not zero when |x1−x2| is of order one

(and decays slowly with |x1 − x2|). At variance with (1.3.2) which is δ−correlated, at positive times a

smooth dynamical contribution to the covariance emerges, which is non zero on macroscopic distances.

This feature is typical of non equilibrium fluctuations as discussed in [26]. In the hard sphere gas

at low density, this dynamical contribution originates again from dynamical correlations. The proof

of Theorem 2 will provide an explicit formula describing this effect, showing that the long range

contribution to the covariance formula can be expressed in terms of dynamics involving correlations

(see [67], and Proposition 6.4.1 page 70).

Remark 1.3.1. — Note that a fluctuation theorem in the spirit of Theorem 2 was proved first in the

context of a mean-field limit of Hamiltonian particle systems, interacting by means of smooth, weak and
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long-range forces [17] (see also [36, 32] for early results on quantum mechanical models). However,

this situation is deeply different from ours. The macroscopic limit is governed by the Vlasov equation,

which is a reversible equation with no entropy production. Correspondingly, there is no dynamical noise

in the fluctuating equation: the fluctuations evolve deterministically according to the linearized Vlasov

equation.

1.4. Large deviations

While typical fluctuations are of order O(µ
−1/2
ε ), they may sometimes happen to be large, leading to

a dynamics which is different from the Boltzmann equation. A classical problem is to evaluate the

probability of such an atypical event, namely that the empirical measure remains close to a probability

density ϕ 6= f during a time interval [0, t]. The following explicit formula for the large deviation

functional on [0, t] was obtained by Rezakhanlou [61] in the case of a one-dimensional stochastic

dynamics mimicking the hard-sphere dynamics, and then conjectured for the deterministic hard-sphere

dynamics in [63, 16]:

F̂(t, ϕ) := F̂(0, ϕ0) + sup
p

{∫ t

0

ds

[∫
Td
dx

∫
Rd
dv p(s, x, v)Dsϕ(s, x, v)−H

(
ϕ(s), p(s)

)]}
,(1.4.1)

where the supremum is taken over bounded measurable functions p, and the Hamiltonian is given by

(1.4.2) H(ϕ, p) :=
1

2

∫
dµ(z1, z2, ω)ϕ(z1)ϕ(z2)

(
exp

(
∆p(z1, z2)

)
− 1
)
,

with dµ and ∆p defined in (1.3.6)-(1.3.7). We have denoted Dt the transport operator

(1.4.3) Dtϕ(t, z) := ∂tϕ(t, z) + v · ∇xϕ(t, z) ,

and finally

(1.4.4) F̂(0, ϕ0) :=

∫
D
dz

(
ϕ0 log

(
ϕ0

f0

)
− ϕ0 + f0

)
with ϕ0 = ϕ|t=0, is the large deviation rate for the empirical measure at time zero.

The functional F̂(0) can be obtained by a standard procedure, modifying the measure (1.1.6) in such a

way to make the (atypical) profile ϕ0 typical (1). Similarly, to obtain the collisional term H in F̂(t, ϕ),

one would like to understand the mechanism leading to an atypical path ϕ = ϕ(s) at positive times.

A serious difficulty then arises, due to the deterministic dynamics. Ideally, one should conceive a way

of tilting the initial measure in order to observe a given trajectory. Whether such an efficient bias

exists, we do not know. We shall proceed in a different way and deduce the large deviations from the

cumulant generating function

(1.4.5) Λεt (e
h) :=

1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
in the spirit of the Gärtner-Ellis Theorem which is classical in the large deviation theory [22]. In this

approach, the main difficulty is the explicit characterization of the cumulant generating function which

requires to control the dynamics at all scales in ε. For our purpose, we will actually need to sample

the empirical measure on the whole interval [0, t] and not only at time t, which will be implemented

by a more general functional (see Eq. (4.4.8) below).

1. In [65], at equilibrium, a derivation of large deviations by means of cluster expansion methods is discussed for a

larger range of densities.
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We will be able to evaluate the asymptotic probability of observing any trajectory ϕ satisfying Dtϕ =
∂H
∂p , namely the biased Boltzmann equation

(1.4.6)
Dtϕ =

∫
D

∫
Sd−1

(
ϕ(t, y, w′)ϕ(t, x, v′)e−∆p(t,x,v,y,w,ω)

− ϕ(t, y, w)ϕ(t, x, v)e∆p(t,x,v,y,w,ω)
)
dµ(x,v)((y, w), ω)

for some Lipschitz p, and with initial data

(1.4.7) ϕ(0, x, v) = f0(x, v) ep(0,x,v) .

It is known indeed (see [61]) that (1.4.6) allows to code a large class of macroscopic profiles which can

be attained in a large deviation regime. The perturbed equation (1.4.6) describes a collision process

with biased transition rate.

It can be proved easily (see Chapter 7 and Appendix A) that (1.4.6), in mild form, has a unique

solution in the class of continuous functions with Gaussian decay in v. Such solutions will be called

strong solutions.

Consider M(D) the set of positive measures on D with finite mass (metrized with the topology of

weak convergence). Define the set of trajectories in [0, t] taking values in M(D) as the Skorokhod

space D([0, t],M(D)) and denote by d[0,t] the corresponding distance (see [8] page 121). The large

deviation theorem states as follows – a more complete version is proved in Chapter 7 (see Theorems 8

and 9).

Theorem 3. — Consider a system of hard spheres initially distributed according to the grand canonical

measure (1.1.6) where f0 satisfies (1.1.5). For any r > 0, there exists a time T > 0 (depending only

on C0, β0, r) such that the following holds. Define

Rr,T :=
{
ϕ : [0, T ]× D 7→ R+ : ϕ is the strong solution of (1.4.6)-(1.4.7) on [0, T ] for some p

such that ‖p‖W 1,∞([0,T ]×D) ≤ r
}
.

For any ϕ ∈ Rr,T , in the Boltzmann-Grad limit µε → ∞, the empirical measure satisfies the large

deviation estimates

lim
δ→0

lim sup
µε→∞

1

µε
logPε[d[0,T ](π

ε, ϕ) ≤ δ] = −F̂(T, ϕ) ,

lim
δ→0

lim inf
µε→∞

1

µε
logPε[d[0,T ](π

ε, ϕ) ≤ δ] = −F̂(T, ϕ) .

A companion program for large deviations (including gradient flows) has been developed for spatially

homogeneous models and stochastic particle systems, in the spirit of Kac’s approach for the justification

of kinetic theory [49, 37, 5, 3, 4]. For (regular) homogeneous observables ϕ, the functional F̂ coincides

with the functional obtained for the Kac model (see also [61] for the additional spatial dependence).

Thus a feature of Theorem 3 is that the large deviation behaviour of the mechanical dynamics is also

ruled by the large deviation functional of the stochastic process. It is generally accepted that there is

good similarity between deterministic systems displaying some chaoticity and random stochastic pro-

cesses, an idea that has been used several times in mathematical physics. Our context is rather simple,

because of the property of molecular chaos which underlies the kinetic theory of gases. Traditionally,

the rigorous justification of this theory is based on two approaches, the programs of Grad [34] and Kac

[41], corresponding respectively to the deterministic and the random case which are both effective with
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some limitations. It is therefore natural to ask to what extent the “equivalence” of dynamical system

and stochastic process can be pushed. Our result proves such equivalence up to dynamical events of

exponentially small probability.

For an extensive formal discussion on large deviations in the Boltzmann gas, as well as for some physical

motivations, we refer to [16] (see also [7] for diffusive systems). As argued in the following section,

fluctuations and large deviations are a systematic way to probe the physical system on finer and finer

scales, characterizing all the correlations. In particular, they complement the rigorous explanation of

the transition to irreversibility, by showing that stochastic reversibility is recovered if one retains all

the information discarded in Lanford’s analysis. Finally, we mention that the large deviations add a

formal geometric structure to the limit, of gradient-flow type as discussed in [16] (Section 5.4), which

might motivate further investigations.

1.5. Strategy of the proofs

In this section we provide an overview of the paper and describe, informally, the core of our argument

leading to Theorems 2 and 3.

We should start by recalling the basic features of the proof of Theorem 1. For a deterministic dynamics

of interacting particles, so far there has been only one way to access the law of large numbers rigor-

ously. The strategy is based on the ‘hierarchy of moments’ corresponding to the family of correlation

functions (F εn)n≥1, Eq. (1.1.10). The main role of F εn is to project the measure on finite groups of

particles (groups of cardinality n), out of the total N . The term ‘hierarchy’ refers to the set of linear

BBGKY equations satisfied by this collection of functions (which will be written in Section 3.1), where

the equation for F εn has a source term depending on F εn+1. This hierarchy is completely equivalent

to the Liouville equation (1.1.3) for the family (W ε
N )N≥0, as it contains exactly the same amount

of information. However as N ∼ µε in the Boltzmann-Grad limit (1.1.8), one should make sense of

a Liouville density depending on infinitely many variables, and the BBGKY hierarchy becomes the

natural convenient way to grasp the relevant information. Lanford succeeded to show that the explicit

solution F εn(t) of the BBGKY hierarchy, obtained by iteration of the Duhamel formula, converges to a

product f⊗n(t) (propagation of chaos), where f is the solution of the Boltzmann equation (1.2.1).

This result based on the hierarchy of moments has two important limitations. The first one is the

restriction on its time of validity, which comes from too many terms in the iteration: we are indeed

unable to take advantage of cancellations between gain and loss terms. The second one is a drastic loss

of information. We shall not give here a precise notion of ‘information’. We limit ourselves to stressing

that (F εn)n≥1 is suited to the description of typical events. In the limit, everything is encoded in f , no

matter how large n. Moreover, the Boltzmann equation produces some entropy along the dynamics:

at least formally, f satisfies

∂t
(
−
∫
f log f dv

)
+∇x ·

(
−
∫
f log f v dv

)
≥ 0 ,

which is in contrast with the time-reversible hard-sphere dynamics. Our main purpose here is to

overcome this second limitation (for short times) and to perform the Boltzmann-Grad limit in such a

way as to keep most of the information lost in Theorem 1. In particular, the limiting functional (1.4.1)

coincides with the large deviations functional of a genuine reversible Markov process, in agreement

with the microscopic reversibility [16]. We face a significant difficulty: on the one hand, we know that
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averaging is important in order to go from Newton’s equations to Boltzmann’s equation; on the other

hand, we want to keep track of some of the microscopic structure.

To this end, we need to go beyond the BBGKY hierarchy and turn to a more powerful representation

of the dynamics. We shall replace the family (F εn)n≥1 (or (W ε
N )N≥0) with a third, equivalent, family of

functions (fεn)n≥1, called (rescaled) cumulants (2). Their role is to grasp information on the dynamics

on finer and finer scales. Loosely speaking, fεn(t) will collect events where n particles are “completely

connected” by a chain of interactions. We shall say that the n particles form a cluster. Since a collision

between two given particles is typically of order t/µε, a “complete connection” would account for events

of probability of order (t/µε)
n−1. We therefore end up with a hierarchy of rare events, which we need

to control at all orders to obtain Theorem 3. At variance with (F εn)n≥1, even after the limit µε →∞
is taken, the rescaled cumulant fεn cannot be trivially obtained from the cumulant fεn−1. Each step

entails extra information, and events of increasing complexity, and decreasing probability.

The cumulants, which are a standard probabilistic tool, will be investigated here in the dynamical,

non-equilibrium context. Their precise definition and basic properties are discussed in Chapter 2.

The introduction of cumulants will not entitle us to avoid the BBGKY hierarchy entirely. Un-

fortunately, the equations for (fεn)n≥1 are difficult to handle. But the moment-to-cumulant rela-

tion (F εn)n≥1 → (fεn)n≥1 is a bijection and, in order to construct fεn(t), we can still resort to the same

solution representation of [47] for the correlation functions (F εn(t))n≥1. This formula is an expansion

over collision trees, meaning that it has a geometrical representation as a sum over binary tree graphs,

with vertices accounting for collisions. The formula will be presented in Chapter 3 (and generalized

from the finite-dimensional case to the case of functionals over trajectories, which is needed to deal

with space-time processes). For the moment, let us give an idea of the structure of this tree expansion.

The Duhamel iterated solution for F εn(t) has a peculiar characteristic flow: n hard spheres (of diame-

ter ε) at time t flow backwards, and collide (among themselves or) with a certain number of external

particles, which are added at random times and at random collision configurations. The following

picture (Figure 1) is an example of such flow (say, n = 3).

.

Figure 1

The net effect resembles a binary tree graph. The real graph is just a way to record which pairs of

particles collided, and in which order.

It is important to notice that different subtrees are unlikely to interact: since the hard spheres are

small and the trajectories involve finitely many particles, two subtrees will encounter each other with

small probability. This is a rather pragmatic point of view on the propagation of chaos, and the reason

why F εn(t) is close to a tensor product (if it is so at time zero) in the classical Lanford argument.

Observe that, in this simple argument, we are giving a notion of dynamical correlation which is purely

2. Cumulant type expansions within the framework of kinetic theory appear in [9, 57, 50, 29, 31].
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geometrical. Actually we will use this idea over and over. Two particles are correlated if their generated

subtrees are connected, as represented for instance in the following picture (Figure 2).

Figure 2

The event in Figure 2 has ‘size’ t/µε (the volume of a tube of diameter ε and length t). In Chapter

4, we will give a precise definition of correlation (connection) based on geometrical constraints. It

will be the elementary brick to characterize fεn(t) explicitly in terms of the initial data. The formula

for fεn(t) (Section 4.4) will be supported on characteristic flows with n particles connected, through

their generated subtrees (hence of expected size (t/µε)
n−1). In other words, while F εn projects the

measure on arbitrary groups of particles of size n, the improvement of fεn consists in restricting to

completely connected clusters of the same size.

With this naive picture in mind, let us briefly comment again on information, and irreversibility. One

nice feature of the geometric analysis of dynamical correlations is that it reflects the transition from

a time-reversible to a time-irreversible model. In [11] we identified, and quantified, the microscopic

singular sets where F εn does not converge. These sets are not invariant by time-reversal (they have a

direction always pointing to the past, and not to the future). Looking at F εn(t), we lose track of what

happens in these small sets. This implies, in particular, that Theorem 1 cannot be used to come back

from time t > 0 to the initial state at time zero. The cumulants describe what happens on all the

small singular sets, therefore providing the information missing to recover the reversibility.

At the end of Chapter 4, we give a uniform estimate on these cumulants (Theorem 4), which is the

main advance of this paper. This L1-bound is sharp in ε and n (n-factorial bound), roughly stating

that the unscaled cumulant decays as (t/µε)
n−1nn−2. This estimate is intuitively simple. We have

given a geometric notion of correlation as a link between two collision trees. Based on this notion, we

can draw a random graph telling us which particles are correlated and which particles are not (each

collision tree being one vertex of the graph). Since the cumulant describes n completely correlated

particles, there will be at least n − 1 edges, each one of small ‘volume’ t/µε. Of course there may

be more than n − 1 connections (if the random graph has cycles), but these are hopefully unlikely

as they produce extra smallness in ε. If we ignore all of them, we are left with minimally connected

graphs, whose total number is nn−2 by Cayley’s formula. Thanks to the good dependence in n of these

uniform bounds, we can actually sum up all the family of cumulants into an analytic series, referred

to as ‘cumulant generating function’ (coinciding with formula (1.4.5)).

The second central result of this paper, stated in Chapter 5 (Theorem 5), is the characterization

of the rescaled cumulants in the Boltzmann-Grad limit, with minimally connected graphs. Using

this minimality property, we derive a Hamilton-Jacobi equation for the limiting cumulant generating

function, which is our ultimate point of arrival (allowing us, in particular, to characterize the covariance

of the fluctuation field and the large deviation functional).

The rest of the paper is devoted to the proofs of our main results.
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Chapter 6 proves Theorem 2. Here, the uniform bounds of Theorem 4 are considerably better than

what is required, and the proof amounts to looking at a characteristic function living on larger scales.

Indeed a simple expansion shows that the characteristic function of the fluctuation field is determined,

at leading order, by fε1 , (µ
1−n2
ε fεn)n≥2 so that only the first two cumulants contribute to the limit.

This proves the Gaussian character of the process (implying in particular the Wick Theorem for the

moments of the limiting field). The more technical part of the proof concerns the tightness of the

process for which we adapt a Garsia-Rodemich-Rumsey’s inequality on the modulus of continuity, to

the case of a discontinuous process.

In Chapter 7 we prove Theorem 3, and actually even a slightly more general statement. Our purpose

is to show that the cumulant generating function obtained in Chapter 5 is dual, through the Legen-

dre transform, to a large deviation rate function. Restricting to the class Rr,T of observables, this

rate functional can be identified with the one predicted in the literature, based on the analogy with

stochastic dynamics.

Finally, Chapters 8 and 9 are devoted to the proof of Theorems 4 and 5, respectively. We encounter

here a combinatorial issue. The number of terms in the formula for fεn(t) grows, at first sight, badly

with n, and cancellations need to be exploited to obtain a factorial growth. At this point, cluster

expansion methods [64] (summarized in Chapter 2), applied to the collision trees, enter the game.

The decay (t/µε)
n−1 follows instead from a geometric analysis on hard-sphere trajectories with n− 1

connecting constraints, in the spirit of previous work [9, 11, 57].

Many different types of PDEs appear in this text, which are all solved, locally in time, by an application

of an abstract Cauchy-Kovalevskaya theorem in the spirit of Nishida [45]. The statement of the

theorem, as well as various applications, are provided in the Appendix.

1.6. Remarks, and open problems

We conclude with a few remarks on our results.

— To simplify our proof, we assumed that the initial datum is a quasi-product measure, with the

minimal amount of correlations (only the mutual exclusion between hard spheres is taken into

account). This assumption is useful to isolate the dynamical part of the problem in the clearest

way. More general initial states could be dealt with along the same lines (see [68, 57]). However

the cumulant expansions would contain more terms, describing the deterministic (linearized)

transport of initial correlations.

— Similarly, fixing only the average number of particles (instead of the exact number of particles)

allows to avoid spurious correlations. We therefore work in a grand canonical setting, as is

customary in statistical physics when dealing with fluctuations. Notice that fixing N = N

produces a long range term of order 1/N in the covariance of the fluctuation field. Note also

that the cluster expansion method, which is crucial in our analysis, is developed (with few

exceptions, see [59] for instance) in a grand canonical framework [55].

— Our results could be established in the whole space Rd, or in a parallelepiped box with periodic

or reflecting boundary conditions. Different domains might be also covered, at the expense

of complications in the geometrical estimates of dynamical correlations (see [27, 24, 48] for

instance).
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— We do not deal with the original BBGKY hierarchy of equations, which was written for smooth

potentials, but always restrict to the hard-sphere system. It is plausible that our results could

be extended to smooth, compactly supported potentials as considered in [28, 56] (see [2] for a

fast decaying case), but the proof would be considerably more involved.

— At thermal equilibrium, we expect Theorem 2 to be true globally in time: see [9] for a first step

in this direction (3).
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PART I

DYNAMICAL CUMULANTS





CHAPTER 2

COMBINATORICS ON CONNECTED CLUSTERS

This preliminary chapter consists in presenting a few notions (well-known in statistical mechanics)

that will be essential in our analysis: the content of this chapter is classical, but proofs are given for

completeness and to prepare the less familiar reader to some of the combinatorial notions and techniques

used in this article. We present in particular cumulants, and their link with exponential moments as

well as with cluster expansions. We conclude the chapter with some combinatorial identities that will

be useful throughout this work.

2.1. Generating functionals and cumulants

Let h : D→ R be a bounded continuous function. We shall use the functional notation

(2.1.1) F εn,t
(
h⊗n

)
=

∫
Dn
dZn F

ε
n(t, Zn)h(z1) . . . h(zn) ,

(see formula (3.3.2) below for a generalization) and

Psn = set of partitions of {1, . . . , n} into s parts ,

with

σ ∈ Psn =⇒ σ = {σ1, . . . , σs} , |σi| = κi ,

s∑
i=1

κi = n .

The moment generating functional of the empirical measure (1.2.5), namely Eε
(

exp
(
πεt (h)

))
is related

to the rescaled correlation functions (1.1.10) by the following remark. We recall that

(2.1.2) Eε
(

exp
(
πεt (h)

))
= Eε

[
exp

( 1

µε

N∑
i=1

h
(
zεi (t)

))]
.

Proposition 2.1.1. — We have that

(2.1.3) Eε
(

exp
(
πεt (h)

))
= 1 +

∞∑
n=1

µnε
n!
F εn,t

((
eh/µε − 1

)⊗n)
if the series is absolutely convergent.
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Proof. — Starting from (2.1.2), one has

∑
k≥1

1

k!
Eε
((
πεt (h)

)k)
=
∑
k≥1

1

k!

k∑
n=1

∑
σ∈Pnk

µ−kε Eε
( ∑

i1,...,in
ij 6=i`,j 6=`

h
(
zεi1(t)

)κ1
. . . h

(
zεin(t)

)κn )

=
∑
k≥1

1

k!

k∑
n=1

∑
σ∈Pnk

µ−kε µnε

∫
Dn
dZn F

ε
n(t, Zn)h(z1)κ1 . . . h(zn)κn

where in the last equality we used (1.1.11). On the other hand for fixed n∑
k≥n

µ−kε
k!

∑
σ∈Pnk

n∏
i=1

h(zi)
κi =

∑
k≥n

µ−kε
k!n!

∑
κ1···κn≥1∑

κi=k

(
k

κ1

)(
k − κ1

κ2

)
· · ·
(
k − κ1 − · · · − κn−2

κn−1

) n∏
i=1

h(zi)
κi

=
1

n!

n∏
i=1

∑
κi≥1

h(zi)
κi

µκiε κi!
=

1

n!

n∏
i=1

(
eh(zi)/µε − 1

)
.

Therefore

Eε
(

exp
(
πεt (h)

))
= 1 +

∑
n≥1

µnε

∫
Dn
dZn F

ε
n(t, Zn)

1

n!

n∏
i=1

(
eh(zi)/µε − 1

)
,

which proves the proposition.

The moment generating functional is just a compact representation of the information coded in the

family (F εn(t))n≥1. After the Boltzmann-Grad limit µε → ∞, the right-hand side of (2.1.3) reduces

to

∞∑
n=0

1

n!

(∫
f(t)h

)n
= exp

(∫
f(t)h

)
, i.e. to the solution of the Boltzmann equation.

As discussed in the introduction, our purpose is to keep a much larger amount of information. To this

end, we study the cumulant generating functional which is, by Cramér’s theorem, an obvious candidate

to reach atypical profiles [75]. Namely, we pass to the logarithm and rescale as follows:

(2.1.4) Λεt (e
h) :=

1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
=

1

µε
logEε

(
exp

( N∑
i=1

h
(
zεi (t)

)))
.

The first task is to look for a proposition analogous to the previous one. In doing so, the following

definition emerges naturally, where we use the notation:

(2.1.5) Gσj := G|σj |(Zσj ) , Gσ :=

|σ|∏
j=1

Gσj

for σ = {σ1, . . . , σs} ∈ Psn.

Definition 2.1.2 (Cumulants). — Let (Gn)n≥1 be a family of distributions of n variables invariant

by permutation of the labels of the variables. The rescaled cumulants associated with (Gn)n≥1 form the

family (gn)n≥1 defined, for all n ≥ 1, by

(2.1.6) gn = µn−1
ε

n∑
s=1

∑
σ∈Psn

(−1)s−1(s− 1)!Gσ .
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The scaling factor µn−1
ε (although unnecessary in this chapter) is introduced for later convenience, and

will ensure that the cumulants are of order 1 in ε.

We then have the following result, which is well-known in the theory of point processes (see [21]).

Proposition 2.1.3. — Let (fεn)n≥1 be the family of rescaled cumulants associated with (F εn)n≥1. We

have

Λεt (e
h) =

∞∑
n=1

1

n!
fεn,t

((
eh − 1

)⊗n)
,

if the series is absolutely convergent.

Proof. — Applying Proposition 2.1.1 to h in place of h/µε, expanding the logarithm in a series and

using Definition 2.1.2, we get

1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
=

1

µε

∞∑
n=1

(−1)n−1

n

n∏
`=1

[∑
p`

µp`ε
p`!

F εp`,t
(
(eh − 1)⊗p`

)]

=
1

µε

∞∑
n=1

(−1)n−1

n

∑
p1,...,pn

µp1+···+pn
ε

p1! . . . pn!

n∏
`=1

F εp`,t
(
(eh − 1)⊗p`

)
=

∞∑
p=1

µp−1
ε

p!

p∑
n=1

∑
σ∈Pnp

(−1)n−1(n− 1)!

n∏
`=1

F εp`,t
(
(eh − 1)⊗p`

)
=

∞∑
p=1

1

p!
fεp,t

((
eh − 1

)⊗p)
.

In the third equality, we used that the number of partitions of {1, . . . , p} into n sets with cardinals

p1, . . . , pn is given by

(2.1.7)
∣∣Pnp (p1, . . . , pn)

∣∣ =
1

n!

(
p

p1

)(
p− p1

p2

)
· · ·
(
p− p1 − · · · − pn−1

pn

)
=

1

n!

p!

p1! · · · pn!
,

where the factor n! arises to take into account the fact that the sets of the partition are not ordered.

This proves the result.

Note that cumulants measure departure from chaos in the sense that they vanish identically at or-

der n ≥ 2 in the case of i.i.d. random variables.

2.2. Inversion formula for cumulants

In this section we prove that the cumulants (gn) associated with a family (Gn) in the sense of Defini-

tion 2.1.2, encode all the correlations, meaning that Gn can be reconstructed from (gk)k≤n for all n ≥ 1.

More precisely, the following inversion formula holds.

Proposition 2.2.1. — Let (Gn)n≥1 be a family of distributions and (gn)n≥1 its cumulants in the

sense of Definition 2.1.2. Then the map from (Gn)n≥1 to its cumulants (gn)n≥1 is a bijection and, for

each n ≥ 1, the distribution Gn can be recovered from the cumulants (gk)k≤n by the inversion formula

∀n ≥ 1 , Gn =

n∑
s=1

∑
σ∈Psn

µ−(n−s)
ε gσ .(2.2.1)

Equations (2.2.1) and (2.1.6) are equivalent definitions of (gn)n≥1.
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Proof. — Let us check that

Gn = µ−(n−1)
ε gn +

n∑
s=2

µ−(n−s)
ε

∑
σ∈Psn

gσ .

Replacing the cumulants gσj by their definition, we get

An :=

n∑
s=2

∑
σ∈Psn

µ−(n−s)
ε gσ =

n∑
s=2

∑
σ∈Psn

s∏
j=1

( |σj |∑
kj=1

∑
κj∈P

kj
σj

(−1)kj−1(kj − 1)! Gκj

)
.

Using the Fubini Theorem, we can index the sum by the partitions with r :=

s∑
j=1

kj sets and obtain

An =

n∑
r=2

∑
ρ∈Prn

Gρ

( r∑
s=2

∑
ω∈Psr

(−1)r−s
s∏
i=1

(|ωi| − 1)!
)
.

Note that the partition σ in the definition of An can be recovered as

∀i ≤ s , σi =
⋃
j∈ωi

ρj .

Using the combinatorial identity

n∑
k=1

∑
σ∈Pkn

(−1)k
k∏
i=1

(|σi| − 1)! = 0

(see Lemma 2.5.1 below for a proof), we find that

r∑
s=2

∑
ω∈Psr

(−1)r−s
s∏
i=1

(|ωi| − 1)! = −(−1)r−1(r − 1)! ,

hence it follows that

An = −
n∑
r=2

∑
ρ∈Prn

Gρ(−1)r−1(r − 1)! = −µ−(n−1)
ε gn +Gn ,

where the last equality follows from the definition of gn. Similarly, (2.2.1) ⇒ (2.1.6) can be verified by

induction on n. This completes the proof of Proposition 2.2.1.

2.3. Clusters and the tree inequality

We now prove that the cumulant of order n is supported on clusters (connected groups) of cardinality n.

We shall consider an abstract situation based on a “disconnection” condition, the definition of which

may change according to the context.

Definition 2.3.1. — A connection is a commutative binary relation ∼ on a set V :

x ∼ y , x, y ∈ V .

The (commutative) complementary relation, called disconnection, is denoted 6∼, that is x 6∼ y if and

only if x ∼ y is false.
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Consider the indicator function that n elements {η1, . . . , ηn} are disconnected

Φn
(
η1, . . . , ηn

)
:=

∏
1≤i6=j≤n

1ηi 6∼ηj .

For n = 1, we set Φ1

(
η1) ≡ 1.

The following proposition shows that the cumulant of order n of Φn is supported on clusters of length n,

meaning configurations (η1, . . . , ηn) in which all elements are linked by a chain of connected elements.

Before stating the proposition let us recall some classical terminology on graphs. This definition, as

well as Proposition 2.3.3 and its proof, are taken from [40].

Definition 2.3.2. — Let V be a set of vertices and E ⊂
{
{v, w}, v, w ∈ V , v 6= w

}
a set of edges.

The pair G = (V,E) is called a graph (undirected, no self-edge, no multiple edge). Given a graph G

we denote by E(G) the set of all edges in G. The graph is said connected if for all v, w ∈ V , v 6= w,

there exist v0 = v, v1, v2, . . . , vn = w such that {vi−1, vi} ∈ E for all i = 1, . . . , n.

We denote by CV the set of connected graphs with V as vertices, and by Cn the set of connected graphs

with n vertices when V = {1, . . . , n}. A minimally connected, or tree graph, is a connected graph

with n−1 edges. We denote by TV the set of minimally connected graphs with V as vertices, and by Tn
the set of minimally connected graphs with n vertices when V = {1, . . . , n}.

Finally, the union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

The following result was originally derived by Penrose [54].

Proposition 2.3.3. — The (unrescaled) cumulant of Φn defined as in Definition 2.1.2 is equal to

(2.3.1) ϕn
(
η1, . . . , ηn

)
=
∑
G∈Cn

∏
{i,j}∈E(G)

(−1ηi∼ηj ) .

Furthermore, one has the following “tree inequality”

(2.3.2) |ϕn
(
η1, . . . , ηn

)
| ≤

∑
T∈Tn

∏
{i,j}∈E(T )

1ηi∼ηj .

Proof. — The first step is to check the representation formula (2.3.1) for the cumulant ϕn. The

starting point is the definition of Φn

Φn
(
η1, . . . , ηn

)
=

∏
1≤i 6=j≤n

(1− 1ηi∼ηj ) =
∑
G

∏
{i,j}∈E(G)

(−1ηi∼ηj ) ,

where the sum over G runs over all graphs with n vertices. We then decompose these graphs into

connected components and obtain that

Φn
(
η1, . . . , ηn

)
=

n∑
s=1

∑
σ∈Psn

s∏
k=1

 ∑
Gk∈Cσk

∏
{i,j}∈E(Gk)

(−1ηi∼ηj )

 .

By the uniqueness of the cumulant decomposition as given in Proposition 2.2.1 (without the rescaling),

we therefore find (2.3.1).

The second step is to compare connected graphs and trees. This is achieved by defining a tree partition

scheme, i.e. a map π : Cn → Tn such that for any T ∈ Tn, there is a graph R(T ) ∈ Cn satisfying

π−1({T}) =
{
G ∈ Cn : E(T ) ⊂ E(G) ⊂ E(R(T ))

}
.
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Penrose’s partition scheme is obtained in the following way. Given a graph G, we define its image T

iteratively starting from the root 1

— the first generation of T consists of all i such that {1, i} ∈ G; these vertices are accepted and

labeled in increasing order t1,1, . . . , t1,r1 ;

— the `-th generation consists of all i which are not already in the tree, and such that {t`−1,j , i}
belongs to E(G) for some j ∈ {1, . . . , r`−1}; these vertices are labeled in increasing order

of j = 1, . . . , r`−1, then increasing order of i.

The procedure ends with a unique tree T ∈ Tn. In order to characterize R(T ), we now investigate

which edges of G have been discarded. Denote by d(i) the graph distance of the vertex i to the root

(which is just its generation). Let {i, j} ∈ E(G) \ E(T ) and assume without loss of generality that

d(i) ≤ d(j). By construction d(j) ≤ d(i) + 1. Furthermore, if d(j) = d(i) + 1, the parent i′ of j in

the tree is such that i′ < i. Therefore E(G) \ E(T ) is a subset of the set E′(T ) consisting of edges

within a generation (d(i) = d(j)), and of edges towards a younger uncle (d(j) = d(i) + 1 and i′ < i).

Conversely, we can check that any graph satisfying E(T ) ⊂ G ⊂ E(T ) ∪ E′(T ) belongs to π−1({T}).
We therefore define R(T ) as the graph with edges E(T ) ∪ E′(T ).

The last step is to exploit the non trivial cancellations between graphs associated with the same tree.

There holds, with the above notation,∑
G∈Cn

∏
{i,j}∈E(G)

(−1ηi∼ηj ) =
∑
T∈Tn

∑
G∈π−1(T )

∏
{i,j}∈E(G)

(−1ηi∼ηj )

=
∑
T∈Tn

 ∏
{i,j}∈E(T )

(−1ηi∼ηj )

 ∑
E′⊂E′(T )

∏
{i,j}∈E′

(−1ηi∼ηj )


=
∑
T∈Tn

 ∏
{i,j}∈E(T )

(−1ηi∼ηj )

 ∏
{i,j}∈E′(T )

(1− 1ηi∼ηj )

 .

The conclusion follows from the fact that (1− 1ηi∼ηj ) ∈ [0, 1]. The proposition is proved.

2.4. Number of minimally connected graphs

The following classical result will be used in Chapter 8.

Lemma 2.4.1. — The cardinality of the set of minimally connected graphs on n vertices with degrees

(number of edges per vertex) of the vertices 1, . . . , n fixed respectively at the values d1, . . . , dn is

(2.4.1)
∣∣∣{T ∈ Tn : d1(T ) = d1, . . . , dn(T ) = dn

}∣∣∣ =
(n− 2)!∏n
i=1(di − 1)!

·

Before proving the lemma, let us notice that it implies Cayley’s formula |Tn| = nn−2. Indeed the graph

is minimal, so there are exactly n− 1 edges hence (each edge has two vertices) the sum of the degrees

has to be equal to 2n− 2. Thus

|Tn| =
∑

d1,...,dn
1≤di≤n−1∑
i di=2(n−1)

(n− 2)!∏n
i=1(di − 1)!

=
∑

d1,...,dn
0≤di≤n−2∑
i di=n−2

(n− 2)!∏n
i=1 di!

=

(
n∑
i=1

1

)n−2

.
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Proof. — The lemma can be proved by induction. For n = 2 the result is trivial, so we suppose to have

proved it for the set T d1,...,dn
n := {T ∈ Tn | d1(T ) = d1, . . . , dn(T ) = dn}, for arbitrary d1, . . . , dn,

and consider the set T d1,...,dn+1

n+1 . Since there is always at least one vertex of degree 1, we can assume

without loss of generality that dn+1 = 1. Notice that, if the vertex n+ 1 is linked to the vertex j, then

necessarily dj ≥ 2. We therefore compute the number of minimally connected graphs on n vertices

with degrees d1, . . . , dj−1, dj − 1, dj+1, . . . , dn, and sum then over j (all the ways to attach the vertex

n+ 1 of degree 1). This leads to

|T d1,...,dn+1

n+1 | =
n∑
j=1

(n− 2)!

(dj − 2)!
∏
i 6=j(di − 1)!

,

hence

|T d1,...,dn+1

n+1 | = (n− 2)!∏n+1
i=1 (di − 1)!

n+1∑
j=1

(dj − 1) =
(n− 1)!∏n
i=1(di − 1)!

having used again
∑n+1
j=1 dj = 2(n+ 1− 1).

2.5. Combinatorial identities

The following combinatorial identities have been used in the previous sections.

Lemma 2.5.1. — For n ≥ 2 there holds

n∑
k=1

∑
σ∈Pkn

(−1)k(k − 1)! = 0 ,(2.5.1)

n∑
k=1

∑
σ∈Pkn

(−1)k
k∏
i=1

(|σi| − 1)! = 0 .(2.5.2)

Proof. — From the Taylor series of x 7→ log
(

exp(x)
)
, we deduce that

∀n ≥ 2,

n∑
k=1

∑
`1+···+`k=n

(−1)k

k

1

`1! . . . `k!
= 0 .

Combining (2.1.7) and the previous identity, we get

0 =

n∑
k=1

∑
`1+···+`k=n

(−1)k

k

1

`1! . . . `k!
=

n∑
k=1

(−1)k

k

∑
`1+···+`k=n

k!

n!
]Pkn(`1, . . . , `k)

=
1

n!

n∑
k=1

(−1)k(k − 1)!]Pkn

and this completes the first identity (2.5.1).

From the Taylor series of x 7→ exp
(

log(1 + x)
)
, we deduce that

∀n ≥ 2,

n∑
k=1

1

k!

∑
`1+···+`k=n

(−1)k

`1 . . . `k
= 0 .
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Combining (2.1.7) and the previous identity, we get

0 =

n∑
k=1

1

k!

∑
`1+···+`k=n

(−1)k

`1 . . . `k
=

1

n!

n∑
k=1

∑
σ∈Pkn

(−1)k
k∏
i=1

(|σi| − 1)!

and this completes the second identity (2.5.2).

The lemma is proved.



CHAPTER 3

TREE EXPANSIONS OF THE HARD-SPHERE DYNAMICS

Here and in the next chapter, we explain how the combinatorial methods presented in the previous

chapter can be applied to study the dynamical correlations of hard spheres. The first steps in this

direction are to define a suitable family describing the correlations of order n, and then to obtain a

graphical representation of this family which will be helpful to identify the clustering structure.

3.1. Space correlation functions

For the sake of simplicity, we start by describing correlations in phase space. Recall that the n-particle

correlation function F εn ≡ F εn(t, Zn) defined by (1.1.10) counts how many groups of n particles are, in

average, in a given configuration Zn at time t: see Eq. (1.1.11).

Let us now discuss the time evolution of the correlation functions: by integration of the Liouville

equation (1.1.3), we get that the family (F εn)n≥1 satisfies the so-called BBGKY hierarchy (going back

to [18]) :

(3.1.1) ∂tF
ε
n + Vn · ∇XnF εn = Cεn,n+1F

ε
n+1 in Dεn

with specular boundary reflection

(3.1.2) ∀Zn ∈ ∂Dε+n (i, j) , F εn(t, Zn) := F εn(t, Z
′i,j
n ) ,

where Z
′i,j
N differs from ZN only by (1.1.2). The collision operator in the right-hand side of (3.1.1)

comes from the boundary terms in Green’s formula (using the reflection condition to rewrite the gain

part in terms of pre-collisional velocities):

Cεn,n+1F
ε
n+1 :=

n∑
i=1

Ci,εn,n+1F
ε
n+1

with

(3.1.3)

(Ci,εn,n+1F
ε
n+1)(Zn) :=

∫
F εn+1(Z〈i〉n , xi, v

′
i, xi + εω,w′)

(
(w − vi) · ω

)
+
dωdw

−
∫
F εn+1(Zn, xi + εω,w)

(
(w − vi) · ω

)
− dωdw ,

where (v′i, w
′) is recovered from (vi, w) through the scattering laws (1.1.2), and with the notation

(3.1.4) Z〈i〉n := (z1, . . . , zi−1, zi+1, . . . , zn) .
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Note that the collision operator is defined as a trace, and thus some regularity on F εn+1 is required to

make sense of this operator. The classical way of dealing with this issue (see for instance [28, 66]) is

to consider the integrated form of the equation, obtained by Duhamel’s formula

F εn(t) = Sεn(t)F ε0n +

∫ t

0

Sεn(t− t1)Cεn,n+1F
ε
n+1(t1)dt1 ,

denoting by Sεn the group associated with free transport in Dεn with specular reflection on the bound-

ary ∂Dεn.

Iterating Duhamel’s formula, we can express the solution as a sum of operators acting on the initial

data :

F εn(t) =
∑
m≥0

Qεn,n+m(t)F ε0n+m ,(3.1.5)

where we have defined for t > 0

(3.1.6)
Qεn,n+m(t)F ε0n+m :=

∫ t

0

∫ t1

0

. . .

∫ tm−1

0

Sεn(t− t1)Cεn,n+1S
ε
n+1(t1 − t2)Cεn+1,n+2

. . . Sεn+m(tm)F ε0n+m dtm . . . dt1

and Qεn,n(t)F ε0n := Sεn(t)F ε0n , Qεn,n+m(0)F ε0n+m := δm,0F
ε0
n+m.

3.2. Geometrical representation with collision trees

The usual way to study the Duhamel series (3.1.5) is to introduce “pseudo-dynamics” describing the

action of the operator Qεn,n+m. In the following, particles will be denoted by two different types of

labels: either integers i or labels i∗ (this difference will correspond to the fact that particles labeled

with an integer i will be added to the pseudo-dynamics through the Duhamel formula as time goes

backwards, while those labeled by i∗ are already present at time t). The configuration of the particle

labeled i∗ will be denoted indifferently z∗i = (x∗i , v
∗
i ) or zi∗ = (xi∗, vi∗).

Definition 3.2.1 (Collision trees). — Given n ≥ 1 ,m ≥ 0, an (ordered) collision tree a ∈ An,m
is a family (ai)1≤i≤m with ai ∈ {1, . . . , i− 1} ∪ {1∗, . . . , n∗}.

Note that |An,m| = n(n+ 1) . . . (n+m− 1).

Given a collision tree a ∈ An,m, we define pseudo-dynamics starting from a configuration Z∗n =

(x∗i , v
∗
i )1≤i≤n in the n-particle phase space at time t as follows.

Definition 3.2.2 (Pseudo-trajectory). — Given Z∗n ∈ Dεn, m ∈ N and a ∈ An,m, we consider a

collection of times, angles and velocities (Tm,Ωm, Vm) := (ti, ωi, vi)1≤i≤m satisfying the constraint

0 ≤ tm < · · · < t1 ≤ t = t0 .

We define recursively pseudo-trajectories as follows:

— in between the collision times ti and ti+1 the particles follow the (n + i)-particle (backward)

hard-sphere flow;
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— at time t+i , particle i is adjoined to particle ai at position xai +εωi and with velocity vi, provided

it remains at a distance larger than ε from all the other particles. If (vi − vai(t+i )) · ωi > 0,

velocities at time t−i are given by the scattering laws

(3.2.1)
vai(t

−
i ) := vai(t

+
i )−

(
(vai(t

+
i )− vi) · ωi

)
ωi ,

vi(t
−
i ) := vi +

(
(vai(t

+
i )− vi) · ωi

)
ωi .

We denote by Ψε
n,m = Ψε

n,m(t) (we shall sometimes omit to emphasize the number of created particles

and denote it simply by Ψε
n) the so constructed pseudo-trajectory, and by Zn,m(τ) =

(
Z∗n(τ), Zm(τ)

)
the coordinates of the particles in the pseudo-trajectory at time τ ≤ tm. It depends on the param-

eters a, Z∗n, Tm,Ωm, Vm, and t. We also define Gεm(a, Z∗n) to be the set of parameters (Tm,Ωm, Vm)

such that the pseudo-trajectory exists up to time 0, meaning in particular that on adjunction of a new

particle, its distance to the others remains larger than ε. For m = 0, there is no adjoined particle and

the pseudo-trajectory Ψε
n,0(τ) = Zn,0(∅, Z∗n, τ) for τ ∈ (0, t) is the n-particle (backward) hard-sphere

flow.

For a given time t > 0, the sample path pseudo-trajectory of the n (∗−labeled) particles is denoted

by Z∗n([0, t]).

Remark 3.2.3. — We stress the difference in notation: “zi(τ)” in the above definition denotes the

configuration of particle i in the pseudo-trajectory while the real, N -particle hard-sphere flow is de-

noted ZεN (τ) as in (1.1.7): particle i has configuration zεi (τ) in the hard-sphere flow.

With these notations, the representation formula (3.1.5) for the n-particle correlation function can be

rewritten as

(3.2.2) F εn(t, Z∗n) =
∑
m≥0

∑
a∈An,m

∫
Gεm(a,Z∗n)

dTmdΩmdVm

( m∏
i=1

(
vi − vai(ti)

)
· ωi
)
F ε0n+m

(
Ψε0
n,m

)
,

where

dTm := dt1 . . . dtm 10≤tm≤···≤t1≤t ,

we have denoted by (F ε0n )n≥1 the initial rescaled correlation function, and Ψε0
n,m is the configuration

at time 0 associated with the pseudo-trajectory Ψε
n,m. Note that the variables ωi are integrated over

spheres and the scalar products take positive and negative values (corresponding to the positive and

negative parts of the collision operators). Equivalently, we can introduce decorated trees (a, s1, . . . , sm)

with signs si = ± specifying the collision hemispheres: denoting by A±n,m the set of all such trees, we

can write Eq. (3.2.2) as

(3.2.3) F εn(t, Z∗n) =
∑
m≥0

∑
a∈A±n,m

∫
Gεm(a,Z∗n)

dTmdΩmdVm

( m∏
i=1

si
((
vi − vai(ti)

)
· ωi
)

+

)
F ε0n+m

(
Ψε0
n,m

)
,

where the pseudo-trajectory is defined as before, with the scattering (3.2.1) applied in the case si = +

and the creation at position xi + siεωi.

3.3. Averaging over trajectories

To describe dynamical correlations more precisely, we are going to follow the particle trajectories. As

noted in Remark 3.2.3, pseudo-trajectories provide a geometric representation of the iterated Duhamel

series (3.1.5), but they are not physical trajectories of the particle system. Nevertheless, the probability
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1∗ 2∗ 3∗ 4∗ 5∗ 6∗

Figure 3. An example of pseudo-trajectory with n = 6, m = 10. In this symbolic picture,

time is thought of as flowing upwards (at the top we have a configuration Z∗6 , at the bottom

Ψε0
6,10). The little circles represent hard spheres of diameter ε. Notice that several collisions

are possible between the adjunction times Tm. These collisions are highlighted by blue circles.

For simplicity, the hard spheres have been drawn only at their first time of existence (going

backwards), and at collisions between adjunction times.

on the trajectories of n particles can be derived from the Duhamel series, as we are going to explain

now.

For a given time t > 0, the sample path of n particles labeled i1 to in, among the N hard spheres, is

denoted (zεi1([0, t]), . . . , zεin([0, t])). In the case when ij = j for all 1 ≤ j ≤ n we denote that sample

path by Zεn([0, t]). As Zεn has jumps in velocity, it is convenient to work in the space Dn([0, t]) of

functions that are right-continuous with left limits in Dn. This space is endowed with the Skorokhod

topology. In the case when n = 1 we denote it simply by D([0, t]).

Let Hn be a bounded measurable function on Dn([0, t]) (the assumption on boundedness will be relaxed

later). We define

(3.3.1)

F εn,[0,t](Hn) :=

∫
dZ∗n

∑
m≥0

∑
a∈A±n,m

∫
Gεm(a,Z∗n)

dTmdΩmdVm

×Hn

(
Z∗n([0, t])

)( m∏
i=1

si
((
vi − vai(ti)

)
· ωi
)

+

)
F ε0n+m

(
Ψε0
n,m

)
.

This formula generalizes the representation introduced in Section 3.2 in the sense that, in the case

when Hn(Z∗n([0, t])) = hn(Z∗n(t)), we obtain

F εn,[0,t](Hn) =

∫
F εn(t, Z∗n)hn(Z∗n)dZ∗n .

More generally, in analogy with (1.1.11), Eq. (3.3.1) gives the average (under the initial probability

measure) of the function Hn as stated in the next proposition.

Proposition 3.3.1. — Let Hn be a bounded measurable function on Dn([0, t]). Then

(3.3.2)
Eε
( ∑

i1,...,in
ij 6=ik,j 6=k

Hn

(
zεi1([0, t]), . . . , zεin([0, t])

))
= µnεF

ε
n,[0,t](Hn) .

Proof. — To establish (3.3.2), we first look at the case of a discrete sampling of trajectories

Hn(Zεn([0, t])) =

p∏
i=1

h(i)
n (Zεn(θi))
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for some decreasing sequence of times Θ = (θi)1≤i≤p in [0, t], and some family of bounded continuous

functions
(
h

(i)
n

)
1≤i≤p

with h
(i)
n : Dn → R.

First step. To take into account the discrete sampling Hn, we proceed recursively and define for any

τ ∈ [0, t]

Hn,τ (Zεn([0, t])) :=

∏
θi≤τ

h(i)
n (Zεn(θi))

∏
θj>τ

h(j)
n (Zεn(τ))

 .

In particular, for τ ≤ θp ≤ · · · ≤ θ1, the function Hn,τ depends only on the density at time τ so that

Eε
( ∑

i1,...,in
ij 6=ik,j 6=k

Hn,τ

(
zεi1([0, t]), . . . , zεin([0, t])

))
= µnε

∫
F εn(τ, Z∗n)

p∏
j=1

h(j)
n (Z∗n)dZ∗n .

We then define the biased distribution

F̃ εn(τ, Z∗n) := F εn(τ, Z∗n)

p∏
j=1

h(j)
n (Z∗n) for τ ∈ [0, θp]

and then extend this biased correlation function F̃ εn(τ, Z∗n) on [0, t] so that

Eε
( ∑

i1,...,in
ij 6=ik,j 6=k

Hn,τ

(
zεi1([0, t]), . . . , zεin([0, t])

))
= µnε

∫
F̃ εn(τ, Z∗n)dZ∗n .

In order to characterize F̃ εn(τ), we have to iterate the Duhamel formula (3.1.5) in time slices [θi+1, θi]

as in the proof of Proposition 2.4 of [10] (see also [6, 9]). More precisely we start by writing the

Duhamel formula (3.1.5) on [θ1, t], and bias the data at time θ−1 by h
(1)
n . This gives, with the notation

introduced in Definition 3.2.2 for the pseudo-trajectories Zn,m(τ),

F̃ εn(t, Z∗n) =
∑
k1≥0

Qεn,n+k1
(t− θ1)F̃ εn+k1

(
θ+

1 , Zn,k1
(θ1)

)
=
∑
k1≥0

Qεn,n+k1
(t− θ1)h(1)

n (Z∗n(θ1))F̃ εn+k1

(
θ−1 , Zn,k1

(θ1)
)
.

Similarly

F̃ εn+k1

(
θ−1 , Zn,k1

)
=
∑
k2≥0

Qεn+k1,n+k1+k2
(θ1 − θ2)h(2)

n (Z∗n(θ2))F̃ εn+k1+k2

(
θ−2 , Zn,k1+k2

(θ2)
)
.

We obtain by iteration that

(3.3.3)

F̃ εn(t) =
∑

k1+···+kp+1≥0

Qεn,n+k1
(t− θ1)h(1)

n (Z∗n(θ1))Qεn+k1,n+k1+k2
(θ1 − θ2)

. . . h(p)
n (Z∗n(θp))Q

ε
n+k1+···+kp,n+k1+···+kp+1

(θp)F
ε0
n+k1+···+kp+1

,

which leads to (3.3.2) for discrete samplings.

Second step. More generally any function Hn on (Dn)p can be approximated in terms of products of

functions on Dn, thus (3.3.3) leads to

Eε
( ∑

i1,...,in
ij 6=ik,j 6=k

Hn

(
zεi1([0, t]), . . . , zεin([0, t])

))
= µnε

∑
k1+···+kp+1≥0

Qεn,n+k1
(t− θ1)Qεn+k1,n+k1+k2

(θ1 − θ2)

. . . Qεn+k1+···+kp,n+k1+···+kp+1
(θp)Hn(Z∗n(θ1), . . . , Z∗n(θp))F

ε0
n+k1+···+kp+1
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where the Duhamel series is weighted by the n-particle pseudo-trajectories at times θ1, . . . , θp.

Third step. For any 0 ≤ θp < · · · < θ1 < t, we denote by πθ1,...,θp the projection from Dn([0, t])

to (Dn)p

(3.3.4) πθ1,...,θp(Zn([0, t])) = (Zn(θ1), . . . , Zn(θp)) .

The σ-field of Borel sets for the Skorokhod topology can be generated by the sets of the form π−1
θ1,...,θp

A

with A a subset of (Dn)p (see Theorem 12.5 in [8], page 134). This completes the proof of Proposi-

tion 3.3.1.

To simplify notation, we are going to denote by Ψε
n the pseudo-trajectory during the whole time

interval [0, t], which is encoded by its starting points Z∗n and the evolution parameters (a, Tm,Ωm, Vm).

Similarly we use the compressed notation 1Gε for the constraint that the parameters (Tm,Ωm, Vm)

should be in Gεm(a, Z∗n) as in Definition 3.2.2. The parameters (a, Tm,Ωm, Vm) are distributed according

to the measure

(3.3.5) dµ(Ψε
n) :=

∑
m

∑
a∈A±n,m

dTmdΩmdVm1Gε(Ψ
ε
n)

m∏
k=1

(
sk
((
vk − vak(tk)

)
· ωk

)
+

)
.

The weight coming from the function Hn will be denoted by

(3.3.6) H
(
Ψε
n

)
:= Hn

(
Z∗n([0, t])

)
.

Formula (3.3.1) can be rewritten

(3.3.7) F εn,[0,t](Hn) =

∫
dZ∗n

∫
dµ(Ψε

n) H
(
Ψε
n

)
F ε0

(
Ψε0
n

)
,

and F ε0
(
Ψε0
n

)
stands for the initial data evaluated on the configuration at time 0 of the pseudo-

trajectory (containing n+m particles).

The series expansion (3.3.7) is absolutely convergent, uniformly in ε, for times smaller than some T0 >

0: this determines the time restriction in Theorem 1 (see Remark 1.2.2).



CHAPTER 4

CUMULANTS FOR THE HARD-SPHERE DYNAMICS

To understand the structure of dynamical correlations, we are going to describe how the collision

trees introduced in the previous chapter (which are the elementary dynamical objects) can be grouped

into clusters. We shall identify three different types of correlations (treated in Section 4.1, 4.2, 4.3

respectively). Our starting point will be Formula (3.3.7). We will also need the notation Ψε
n = Ψε

{1,...,n},

where a pseudo-trajectory is labeled by the ensemble of its roots.

Notice that the two collision trees in Ψε
{1,2} do not scatter if and only if Ψε

{1} and Ψε
{2} keep a mutual

distance larger than ε. We shall then write the non-scattering condition as the complement of an

overlapping condition, meaning that Ψε
{1} and Ψε

{2} reach a mutual distance smaller than ε (without

scattering with each other). The scattering, disconnection and overlap situations are represented in

Figure 4 (recall also Figure 3), together with some nomenclature which is made precise below.

external recollision
disconnection

overlap

1∗ 1∗2∗ 2∗

1 ∼r 2 1 ∼o 2

1∗ 2∗

Figure 4

4.1. External recollisions

A pseudo-trajectory Ψε
n is made of n collision trees starting from the roots Z∗n. These elementary

collision trees will be called subtrees, and will be indexed by the label of their root. The parameters

(a, Tm,Ωm, Vm) associated with each collision tree are independent, and can be separated into n subsets.
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The corresponding pseudo-trajectories Ψε
{1}, . . .Ψ

ε
{n} evolve independently until two particles belonging

to different trees collide, in which case the corresponding two trees get correlated. The next definition

introduces the notion of recollision and distinguishes whether the recolliding particles are in the same

tree or not.

Definition 4.1.1 (External/internal recollisions). — A recollision occurs when two pre-existing

particles in a pseudo-trajectory scatter. A recollision between two particles will be called an external

recollision if the two particles involved are in different subtrees (see Figure 4). A recollision between

two particles will be called an internal recollision if the two particles involved are in the same subtree.

Let us now decompose the integral (3.3.7) depending on whether subtrees are correlated or not. Recall

Definitions 2.3.1 and 2.3.2.

Notation 4.1.2. — We denote by

{j} ∼r {j′}
the condition: “there exists an external recollision between particles in the subtrees indexed by j and j′”.

Given λ ⊂ {1, . . . , n}, we denote by ∆∆λ the indicator function that any two elements of λ are connected

by a chain of external recollisions. In other words

(4.1.1) ∆∆λ = 1 ⇐⇒ ∃G ∈ Cλ ,
∏

{j,j′}∈E(G)

1{j}∼r{j′} = 1 .

Notice that ∆∆λ depends only on Ψε
λ. We set ∆∆λ = 1 when |λ| = 1. We extend ∆∆λ to zero out-

side Gε(Z∗λ). We therefore have the partition of unity

(4.1.2) 1Gε
(
Ψε
n

)
=

n∑
`=1

∑
λ∈P`n

(∏̀
i=1

∆∆λi 1Gε
(
Ψε
λi

))
Φ` (λ1, . . . , λ`)

where Φ1 = 1, and Φ` for ` > 1 is the indicator function that the subtrees indexed by λ1, . . . , λ` keep

mutual distance larger than ε. Φ` is defined on ∪iGε(Z∗λi).

Using the notation (3.3.7), we can partition the pseudo-trajectories in terms of the external recollisions

F εn,[0,t](H
⊗n) =

∫
dZ∗n

n∑
`=1

∑
λ∈P`n

∫
dµ(Ψε

n)H
(
Ψε
n

) ( ∏̀
i=1

∆∆λi

)
Φ`
(
λ1, . . . , λ`

)
F ε0

(
Ψε0
n

)
.

There is no external recollision between the subtrees indexed by λ1, . . . , λ`, so the pseudo-trajectories

are defined independently; in particular, assuming from now on that

Hn = H⊗n

with H a measurable function on the space of trajectories D([0, t]), the cross-sections, the weights and

the constraint imposed by Gε factorize

Φ`
(
λ1, . . . , λ`

)
H
(
Ψε
n

)
dµ
(
Ψε
n

)
= Φ`

(
λ1, . . . , λ`

)( ∏̀
i=1

H
(
Ψε
λi

)
dµ
(
Ψε
λi

))
and we get

(4.1.3) F εn,[0,t](H
⊗n) =

∫
dZ∗n

n∑
`=1

∑
λ∈P`n

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
Φ`
(
λ1, . . . , λ`

)
F ε0

(
Ψε0
n

)
.
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The function Φ` forbids any overlap between different subtrees λi in (4.1.3). In particular, notice that

Φ` is equal to zero if |x∗i − x∗j | < ε for some i 6= j (compatibly with the definition of F εn,[0,t]) .

Although the subtrees Ψε
λ1
, . . . ,Ψε

λ`
in the above formula have no external recollisions, they are not yet

fully independent as their parameters are constrained precisely by the fact that no external recollision

should occur. Thus we are going to decompose further the collision integral.

4.2. Overlaps

In order to identify all possible correlations, we now introduce a cumulant expansion of the constraint Φ`
encoding the fact that no external recollision should occur between the different λi.

Definition 4.2.1 (Overlap). — An overlap occurs between two subtrees if two pseudo-particles, one

in each subtree, find themselves at a distance less than ε one from the other for some τ ∈ [0, t] (see

Figure 4).

Notation 4.2.2. — We denote by

λi ∼o λj
the relation: “there exists an overlap between two subtrees belonging to λi and λj respectively”, and we

denote λi 6∼o λj the complementary relation. Therefore

(4.2.1) Φ`
(
λ1, . . . , λ`

)
=

∏
1≤i6=j≤`

1λi 6∼oλj .

The inversion formula (2.2.1) (for unrescaled cumulants) implies that

Φ`
(
λ1, . . . , λ`

)
=
∑̀
r=1

∑
ρ∈Pr`

ϕρ ,

denoting

ϕρ :=

r∏
j=1

ϕρj .

The cumulants associated with the partition {λ1, . . . , λ`} are defined for any subset ρj of {1, . . . , `} as

(4.2.2) ϕρj =

|ρj |∑
u=1

∑
ω∈Puρj

(−1)u−1(u− 1)! Φω ,

where ω is a partition in u subparts of ρj , and recalling the notation

Φω =

u∏
i=1

Φωi , Φωi = Φ|ωi|(λk; k ∈ ωi) .

Note that as stated in Proposition 2.3.3, the function ϕρ is supported on clusters formed by overlapping

collision trees, i.e.

(4.2.3) ϕρj =
∑
G∈Cρj

∏
{i1,i2}∈E(G)

(−1λi1∼oλi2 ) .
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For the time being let us return to (4.1.3), which can thus be further decomposed as

(4.2.4) F εn,[0,t](H
⊗n)=

∫
dZ∗n

n∑
`=1

∑
λ∈P`n

∑̀
r=1

∑
ρ∈Pr`

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
ϕρF

ε0
(
Ψε0
n

)
.

By abuse of notation, the partition ρ can be also interpreted as a partition of {1, . . . , n}

(4.2.5) ∀j ≤ |ρ| , ρj =
⋃
i∈ρj

λi ,

coarser than the partition λ. The relative coarseness (4.2.5) will be denoted by

λ ↪→ ρ .

4.3. Initial clusters

In (4.2.4), the pseudo-trajectory is evaluated at time 0 on the initial distribution F ε0
(
Ψε0
n

)
. Thus the

pseudo-trajectories {Ψε
ρj}j≤r remain correlated by the initial data, so we are finally going to decompose

the initial measure in terms of cumulants.

Given ρ = {ρ1, . . . , ρr} a partition of {1, . . . , n} into r subsets, we define the cumulants of the initial

data associated with ρ as follows. For any subset σ̃ of {1, . . . , r}, we set

(4.3.1) fε0σ̃ :=

|σ̃|∑
u=1

∑
ω∈Puσ̃

(−1)u−1(u− 1)! F ε0ω ,

where ω is a partition of σ̃, and denoting as previously

F ε0ω =

u∏
i=1

F ε0ωi , F ε0ωi = F ε0(Ψε0
ρj ; j ∈ ωi) .

We recall that Ψε0
ρj represents the pseudo-trajectories rooted in Z∗ρj computed at time 0. They in-

volve mj new particles, so there are |ρj |+mj particles at play at time 0, with of course
∑r
j=1(|ρj |+

mj) = n+
∑r
j=1mj = n+m. We stress that the cumulant decomposition depends on ρ (in the same

way as (4.2.2) was depending on λ).

Given ρ = {ρ1, . . . , ρr}, the initial data can thus be decomposed as

F ε0
(
Ψε0
n

)
=

r∑
s=1

∑
σ∈Psr

fε0σ , with fε0σ =

s∏
i=1

fε0σi .

By abuse of notation as above in (4.2.5), the partition σ can be also interpreted as a partition

of {1, . . . , n}
∀i ≤ |σ| , σi =

⋃
j∈σi

ρj ,

coarser than the partition ρ. Hence there holds ρ ↪→ σ.

We finally get

F εn,[0,t](H
⊗n) =

∫
dZ∗n

n∑
`=1

∑
λ∈P`n

∑̀
r=1

∑
ρ∈Pr`

r∑
s=1

∑
σ∈Psr

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
ϕρ f

ε0
σ .
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The n subtrees generated by Z∗n have been decomposed into nested partitions λ ↪→ ρ ↪→ σ (see Figure 5).

λ1 λ2 λ3 λ4 λ5
λ6

ρ2 ρ3

σ2σ1

ρ1

Figure 5. The figure illustrates the nested decomposition λ ↪→ ρ ↪→ σ in (4.3.2). The

configuration Z∗n at time t is represented by n = 14 black dots. Collision trees, depicted by

grey triangles, are created from each dots and all the trees with labels in a subset λi interact

via external recollisions, forming connected clusters (grey mountains). These trees are then

regrouped in coarser partitions ρ and σ in order to evaluate the corresponding cumulants.

Green clusters λ are called forests, blue clusters ρ are called jungles, and black clusters σ are

called initial clusters.

Thus we can write

(4.3.2) F εn,[0,t](H
⊗n) =

∫
dZ∗n

∑
λ,ρ,σ

λ↪→ρ↪→σ

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
ϕρ f

ε0
σ .

The order of the sums can be exchanged, starting from the coarser partition σ: we obtain

(4.3.3) F εn,[0,t](H
⊗n) =

∫
dZ∗n

n∑
s=1

∑
σ∈Psn

s∏
j=1

∑
λ,ρ

λ↪→ρ↪→σj

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
ϕρf

ε0
σj

where the generic variables λ, ρ denote now nested partitions of the subset σj .

4.4. Dynamical cumulants

Using the inversion formula (2.2.1), the cumulant of order n is defined as the term in (4.3.3) such

that σ has only 1 element, i.e. σ = {1, . . . , n}. We therefore define the (scaled) cumulant, recalling

notation (4.3.1),

(4.4.1)

fεn,[0,t](H
⊗n) =

∫
dZ∗nµ

n−1
ε

n∑
`=1

∑
λ∈P`n

∑̀
r=1

∑
ρ∈Pr`

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
ϕρ f

ε0
{1,...,r}(Ψ

ε0
ρ1
, . . . ,Ψε0

ρr ) .



36 CHAPTER 4. CUMULANTS FOR THE HARD-SPHERE DYNAMICS

In the simple case n = 2, the above formula reads

fε2,[0,t](H
⊗2) =

∫
dZ∗2 µε

{∫
dµ(Ψε

{1,2}) 1{1}∼r{2}H
(
Ψε
{1,2}

)
F ε0(Ψε0

{1,2})

−
∫ 2∏

i=1

[
dµ(Ψε

{i}) H
(
Ψε
{i}
)]

1{1}∼o{2}F
ε0
(

Ψε0
{1},Ψ

ε0
{2}

)
+

∫ 2∏
i=1

[
dµ(Ψε

{i}) H
(
Ψε
{i}
)] (

F ε0
(

Ψε0
{1},Ψ

ε0
{2}

)
− F ε0

(
Ψε0
{1}

)
F ε0

(
Ψε0
{2}

))}
,

where we used (4.1.1), (4.2.3) and (4.3.1). The three lines on the right hand side represent the

three possible correlation mechanisms between particles 1∗ and 2∗ (i.e. between the subtrees 1 and 2):

respectively the recollision, the overlap and the correlation of initial data.

More generally, looking at Eq. (4.4.1), we are going to check that fεn,[0,t](H
⊗n) is a cluster of order n,

and identify a minimal structure in the spirit as the Penrose partition scheme recalled in Chapter 2.

— We start with n trees which are grouped into ` forests in the partition λ. In each forest λi we

shall identify |λi|−1 “clustering recollisions”. These recollisions give rise to
∑`
i=1(|λi|−1) = n−`

constraints.

— The ` forests are then grouped into r jungles ρ and in each jungle ρi, we shall identify |ρi| − 1

“clustering overlaps”. These give rise to
∑r
i=1(|ρi| − 1) = `− r constraints.

— The r elements of ρ are then coupled by the initial cluster, and this gives rise to r−1 constraints.

By construction n− 1 =
∑r
i=1(|ρi| − 1) +

∑`
i=1(|λi| − 1) + r− 1. The dynamical decomposition (4.4.1)

implies therefore that the cumulant of order n is associated with pseudo-trajectories with n−1 clustering

constraints, and we expect that each of these n − 1 clustering constraints will provide a small factor

of order 1/µε. To quantify rigorously this smallness, we need to identify n− 1 “independent” degrees

of freedom. For clustering overlaps this will be an easy task. Clustering recollisions will require more

attention, as they introduce a strong dependence between different trees.

Let us now analyze Eq. (4.4.1) in more detail. The decomposition can be interpreted in terms of a

graph in which the edges represent all possible correlations (between points in a tree, between trees

in a forest and between forests in a jungle). In these correlations, some play a special role as they

specify minimally connected subgraphs in jungles or forests: this is made precise in the two following

important notions.

Let us start with the easier case of overlaps in a jungle. The following definition assigns a minimally

connected graph (cf. Definition 2.3.2) on the set of forests grouped into a given jungle.

Definition 4.4.1 (Clustering overlaps). — Given a jungle ρi = {λj1 , . . . , λj|ρi|} and a pseudo-

trajectory Ψε
ρi , we call “clustering overlaps” the set of |ρi| − 1 overlaps

(4.4.2) (λj1 ∼o λj′1), . . . , (λj|ρi|−1
∼o λj′|ρi|−1

)

such that {
{λj1 , λj′1}, . . . , {λj|ρi|−1

, λj′|ρi|−1
}
}

= E(Tρi)

where Tρi is the minimally connected graph on ρi constructed via the Penrose algorithm. Given a

pseudo-trajectory Ψε
ρi with clustering overlaps, we define |ρi| − 1 overlap times as follows: the k-th
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overlap time is

(4.4.3) τov,k := sup
{
τ ≥ 0 : min

q in Ψελjk
q′ in Ψελ

j′
k

|xq′(τ)− xq(τ)| < ε
}
.

Remark 4.4.2. — Contrary to the case of clustering recollisions defined below (Definition 4.4.3),

there is no privileged way of extracting this minimally connected graph, so we choose the Penrose

algorithm (see the proof of Proposition 2.3.1) for simplicity. Remark that the times τov,k are not

ordered.

Each one of the |ρi|−1 overlaps is a strong geometrical constraint which will be used in Part III to gain

a small factor t/µε. More precisely, in Chapter 8 we assign to each forest λjk a root z∗λjk
(chosen among

the roots of Ψε
λjk

). Then, it will be possible to “move rigidly” the whole pseudo-trajectory Ψε
λjk

, acting

just on x∗λjk
. It follows that one easily translates the condition of “clustering overlap” into |ρi| − 1

independent constraints on the relative positions of the roots. In fact remember that the pseudo-

trajectories Ψε
λjk

,Ψε
λj′
k

do not interact with each other by construction. Therefore λjk ∼o λj′k means

that the two pseudo-trajectories meet at some time τov,k > 0 and, immediately after (going backwards),

they cross each other freely. This corresponds to a small measure set in the variable x∗λj′
k

− x∗λjk .

Contrary to overlaps, recollisions are unfortunately not independent from one another. For this reason,

the study of recollisions of trees in a forest needs more care. In this case we need to fix the order of

the recollision times. Then we can identify an ordered sequence of relative positions (between trees)

which do not affect the previous recollisions. One by one and following the ordering, such degrees of

freedom are shown to belong to a small measure set. The precise identification of degrees of freedom

will be explained in Section 8.1 and is based on the following notion.

Definition 4.4.3 (Clustering recollisions). — Given a forest λi = {i1, . . . , i|λi|} and a pseudo-

trajectory Ψε
λi

, we call “clustering recollisions” the set of recollisions identified by the following iterative

procedure.

- The first clustering recollision is the first external recollision in Ψε
λi

(going backward in time); we

rename the recolliding trees j1, j
′
1 and the recollision time τrec,1.

- The k-th clustering recollision is the first external recollision in Ψε
λi

(going backward in time) such

that, calling jk, j
′
k the recolliding trees, {{j1, j′1}, . . . , {jk, j′k}} = E

(
G(k)

)
where G(k) is a graph with

no cycles (and no multiple edges). We denote the recollision time τrec,k.

In particular,

(4.4.4) τrec,1 ≥ · · · ≥ τrec,|λi|−1 and
{
{j1, j′1}, . . . , {j|λi|−1, j

′
|λi|−1}

}
= E(Tλi)

where Tλi is a minimally connected graph on λi.

If q, q′ are the particles realizing the k-th recollision, we define the corresponding recollision vector by

(4.4.5) ωrec,k :=
xq′(τrec,k)− xq(τrec,k)

ε
.

The important difference between Definition 4.4.3 and Definition 4.4.1 is that we have given an order

to the recollision times in Eq. (4.4.4) (which does not exist in Eq. (4.4.3)).



38 CHAPTER 4. CUMULANTS FOR THE HARD-SPHERE DYNAMICS

From now on, in order to distinguish, at the level of graphs, between clustering recollisions and clus-

tering overlaps, we shall decorate edges as follows.

Definition 4.4.4 (Edge sign). — An edge has sign + if it represents a clustering recollision. An

edge has sign − if it represents a clustering overlap.

Collecting together clustering recollisions and clustering overlaps, we obtain r minimally connected

clusters, one for each jungle. In particular, we can construct a graph Gλ,ρ made of r minimally

connected components. To each e ∈ E(Gλ,ρ), we associate a sign (+ for a recollision and − for an

overlap), and a clustering time τ cluste .

Our main results describing the structure of dynamical correlations will be proved in the third part of

this paper. The major breakthrough in this work is to remark that one can obtain uniform bounds

for the cumulant of order n for all n with a controlled growth. We recall indeed that we expect

each clustering to produce a small factor t/µε, so that the (scaled) cumulant fεn(t) of order n defined

in (4.4.1) should be bounded in ε. Moreover the number of minimally connected graphs with n vertices

is nn−2 so we expect fεn(t) to grow as (Ct)n−1n!. This is made precise in the following theorem, which

provides in particular sharp controls on the cumulant generating function Λε[0,t] from which the large

deviation estimates are derived in Chapter 7. The following theorem will be proved in Section 8.2 as

Theorem 10.

Theorem 4. — Consider the system of hard spheres under the initial measure (1.1.6), with f0 satis-

fying (1.1.5). Let H : D([0,∞[) 7→ R be a continuous function such that

(4.4.6) |H⊗n(Zn([0, t]))| ≤ exp
(
αn+

β0

4
sup
s∈[0,t]

|Vn(s)|2
)

for some α ∈ R. Define the scaled cumulant fεn,[0,t](H
⊗n) by (4.4.1), with the notation (3.3.5). Then

there exists a positive constant C such that the following uniform a priori bound holds for any t ≤ T0:

(4.4.7) |fεn,[0,t](H⊗n)| ≤ (Ceα)n
(
t+ ε

)n−1
n! .

In particular there is a constant c < 1 depending only on the dimension such that setting H = eh − 1,

the series defining the cumulant generating function is absolutely convergent on a time [0, Tα] with Tα =

c e−αβ
(d+1)/2
0 /C0:

(4.4.8) ∀t ≤ Tα , Λε[0,t](e
h) :=

1

µε
logEε

(
exp

( N∑
i=1

h
(
zεi ([0, t]

)))
=

∞∑
n=1

1

n!
fεn,[0,t]

(
(eh − 1)⊗n

)
.

Note that (4.4.8) follows easily from the uniform bounds (4.4.7) on the rescaled cumulants, recalling

Proposition 2.1.3.

In the next chapter, we shall prove the existence of the limiting cumulant generating function (Theo-

rem 5) and the form of the limit will be characterized explicitly (Theorem 6). As is known from the

general theory [25, 22, 62] such a result implies upper and lower large deviation bounds, which will

be obtained later on in Chapter 7 (see Sections 7.3.1 and 7.3.2).



CHAPTER 5

CHARACTERIZATION OF THE LIMITING CUMULANTS

Thanks to the uniform bounds obtained in Theorem 4 we expect that, for all n, there is a limit

fn,[0,t](H
⊗n) for fεn,[0,t](H

⊗n) as µε → ∞. Our goal in this chapter is first to obtain a description

of fn,[0,t](H
⊗n) in terms of a series expansion similar to (4.4.1), with a precise definition of the limiting

pseudo-trajectories (see Theorem 5 in Section 5.1 below): the main feature of those pseudo-trajectories

is that they correspond to minimally connected collision graphs.

In Section 5.2 we derive a series expansion for the limiting cumulant generating function (Theorem 6)

which is shown to satisfy a Hamilton-Jacobi equation in Section 5.3 (Theorem 7); the fact that the

limiting graphs have no cycles is crucial for the derivation of this equation.

This Hamilton-Jacobi equation encodes all the dynamical correlations. In particular, the convergence

of the typical density to the Boltzmann equation is recovered from the Hamilton-Jacobi equation in

Section 5.4 and the limit covariance in Section 5.5.

5.1. Limiting pseudo-trajectories and graphical representation of limiting cumulants

In this section we characterize the limiting cumulants fn,[0,t](H
⊗n) by their integral representation.

This means that we have to specify both the limiting pseudo-trajectories and the limiting measure.

We first describe the formal limit of (4.4.1). To this end, we start by giving a definition of minimal

pseudo-trajectories associated with cumulants for fixed ε. Recall that the cumulant fεn,[0,t](H
⊗n) of

order n corresponds to graphs of size n which are completely connected, either by recollisions, or by

overlaps, or by initial correlations. It will be proved in Chapter 9 that

— clusterings coming from the defect of factorization of the initial data are smaller by a factor

O(ε) and thus will not contribute to the limit,

— cycles are created by additional (non clustering) recollisions or overlaps and have a vanishing

contribution in the limit.

Thus only pseudo-trajectories corresponding to minimally connected graphs will be considered in this

section.

Definition 5.1.1 (Minimal cumulant pseudo-trajectories). — Let m ≥ 0. The cumulant

pseudo-trajectory Ψε
n,m associated with the minimally connected graph T ∈ T ±n decorated with edge
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signs
(
sclust
e

)
e∈E(T )

, and the decorated collision tree a ∈ A±n,m is obtained by fixing Z∗n and a collection

of m creation times Tm in decreasing order, and parameters (Ωm, Vm). The cumulant pseudo-trajectory

is constructed backward according to the following rules. At each step the set of particles follows the

backward free transport until two of them approach at a distance ε or we reach a time tk.

At a time tk, a new particle, labeled k, is adjoined at position xak(tk) + skεωk and with velocity vk.

— If sk > 0 then the velocities vk and vak are changed to vk(t−k ) and vak(t−k ) according to the

laws (3.2.1),

— then all particles are transported (backwards) in Dεn+k.

When two particles, say {qe, q′e}, touch, we look at the roots j and j′ of their respective subtrees.

— If e = {j, j′} is not an edge of T or if this edge has already appeared before in the (backward)

process, then the pseudo-trajectory is not admissible.

— Else we have a clustering recollision if sclust
e = + or a clustering overlap if sclust

e = −. We say

that {qe, q′e} is a representative of the edge e, and we denote this by {qe, q′e} ≈ e. The clustering

time is denoted τ clust
e , and the clustering angle can be defined by

ωclust
e :=

xqe(τ
clust
e )− xq′e(τ clust

e )

ε
∈ Sd−1 .

The pseudo-trajectory is admissible if at time 0 all edges of T have appeared in the construction. We

will order the clustering times, and the edges of T accordingly, and we will denote by (Θclust
n−1 ,Ω

clust
n−1 )

the collection of clustering times and angles.

Theorem 4 will be proved in Section 8.2 by establishing, in particular, the uniform convergence of the

series expansion (4.4.1) (on the number of created particles m, see (3.3.5)). We thus focus here on a

fixed m and a fixed tree a ∈ A±n,m.

The clustering constraints provide n − 1 conditions on the roots (z∗i )1≤i≤n of the trees, so only one

root will be free. We set this root to be z∗n. Given (x∗i , v
∗
i ) and v∗j as well as collision parame-

ters (a, Tm,Ωm, Vm), since the trajectories are piecewise affine one can perform the local change of

variables

(5.1.1) x∗j ∈ Td 7→ (τ clust
e , ωclust

e ) ∈ (0, t)× Sd−1

with Jacobian µ−1
ε

(
(vqe(τ

clust+
e )− vq′e(τ clust+

e )) · ωclust
e

)
+
. This provides the identification of measures

(5.1.2) µεdx
∗
i dv
∗
i dx
∗
jdv
∗
j = dx∗i dv

∗
i dv
∗
j dτ

clust
e dωclust

e

(
(vqe(τ

clust
e )− vq′e(τ clust

e )) · ωclust
e

)
+
.

We shall explain in Section 8.1 how to identify a good sequence of roots to perform this change of

variables iteratively (see Figure 6).

For each tree a ∈ A±n,m, and each minimally connected graph T ∈ T ±n , the cumulant pseudo-trajectories

are then reparametrized by the root x∗n, the velocities V ∗n at time t, the sequence (qe, q
′
e)e∈E(T ) of clus-

tering particles, the clustering parameters (Θclust
n−1 ,Ω

clust
n−1 ) and the collision parameters (Tm,Ωm, Vm).

Now let us introduce the limiting cumulant pseudo-trajectories and measure.

Definition 5.1.2 (Limiting cumulant pseudo-trajectories). — Let m ≥ 0. The limiting cumu-

lant pseudo-trajectories Ψn,m associated with the ordered trees T ∈ T ±n and a ∈ A±n,m are obtained by

fixing x∗n and V ∗n ,

— for each e ∈ E(T ), a representative {qe, q′e} ≈ e
— a collection of m ordered creation times Tm, and parameters (Ωm, Vm)

— a collection of clustering times and angles (Θclust
n−1 ,Ω

clust
n−1 ).
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t

τe

x∗i = ? x∗j = ? x∗i − x∗j

Figure 6. On the left figure, two trees (with roots x∗i , x
∗
j ) are built independently in the

time interval [τe, t] and their roots are not fixed a priori. On the right figure, the clustering

condition at time τe imposes a constraint on the relative position x∗i − x∗j of the roots : the

trees are shifted rigidly to satisfy the clustering. This procedure is applied iteratively to

determine all relative positions at time t. Only one root, say x∗n, has to be prescribed.

At each creation time tk, a new particle, labeled k, is adjoined at position xak(tk) and with velocity vk:

— if sk = +, then the velocities vk and vak are changed to vk(t−k ) and vak(t−k ) according to the

laws (3.2.1),

— then all particles follow the backward free flow until the next creation or clustering time.

At each clustering time τ clust
e the particles qe and q′e are at the same position:

— if se = +, then the velocities vqe and vq′e are changed according to the scattering rule, with

scattering vector ωclust
e ,

— then all particles follow the backward free flow until the next creation or clustering time.

Note that, in Definition 5.1.1, positions X∗n at time t were fixed and clustering conditions were con-

sidered as admissibility constraints, while here the positions X∗n at time t are not prescribed: they are

determined according to an algorithm devised in Section 8.1.

We can therefore define the limiting measure, with the notation introduced above:

(5.1.3)

dµsing,T,a (Ψn,m) := dTmdΩmdVmdx
∗
ndV

∗
n dΘclust

n−1 dΩclust
n−1

m∏
i=1

si
(
(vi − vai(ti) · ωi

)
+

×
∏

e∈E(T )

∑
{qe,q′e}≈e

sclust
e

(
(vqe(τ

clust
e )− vq′e(τ clust

e )) · ωclust
e

)
+
.

We stress the fact that this measure is supported on singular pseudo-trajectories, in the sense that the

pseudo-particles interact one with the other at distance 0.

Equipped with these notations, we can now state the result that will be proved in Chapter 9.

Theorem 5. — With the previous notation and the assumptions of Theorem 4, for all t ≤ T0, the

cumulant fεn,[0,t](H
⊗n) converges when µε →∞ to fn,[0,t](H

⊗n) given by

(5.1.4) ∀t ≤ T0 , fn,[0,t](H
⊗n) =

∑
T∈T ±n

∞∑
m=0

∑
a∈A±n,m

∫
dµsing,T,a(Ψn,m)H

(
Ψn,m

) (
f0
)⊗m+n

(Ψ0
n,m) .

In particular by Theorem 4 there exists a constant C > 0 and a time Tα < 1/C depending only

on α,C0, β0 such that

∀t ≤ Tα , |fn,[0,t](H⊗n)| ≤ Cntn−1n! ,
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and the limiting cumulant generating function (4.4.8) has the form

(5.1.5) ∀t ≤ Tα , Λ[0,t](e
h) =

∞∑
n=1

1

n!
fn,[0,t]

(
(eh − 1)⊗n

)
= lim
µε→∞

Λε[0,t](e
h) .

Recall that the convergence time T0, in Theorem 1, of the particle system to the solution f of the

Boltzmann equation depends only on f0 through C0, β0: as noted in Remark 1.2.2, there holds T0 ∼
C−1

0 β
(d+1)/2
0 . The parameter α quantifies the size of the deviations from f which can be observed.

The time Tα is then adjusted accordingly : Tα ∼ T0e
−α.

5.2. Limiting cumulant generating function

The following result provides a graphical expansion of Λ[0,t](e
h).

Theorem 6. — Under the assumptions of Theorem 4, the limiting cumulant generating function Λ[0,t]

satisfies for all t ≤ Tα

(5.2.1) Λ[0,t](e
h) + 1 =

∞∑
K=1

1

K!

∑
T̃∈T ±K

∫
dµsing,T̃ (ΨK,0)(eh)⊗K(ΨK,0)f0⊗K(Ψ0

K,0) ,

where

(5.2.2)
dµsing,T̃ := dx∗KdVK

∏
e={q,q′}∈E(T̃ )

se
(
(vq(τe)− vq′(τe)) · ωe

)
+
dτedωe .

Furthermore the series is absolutely convergent for t ∈ [0, Tα] :

(5.2.3)

∫
d|µsing,T̃ (ΨK,0)| (eh)⊗K(ΨK,0) f0⊗K(Ψ0

K,0) ≤
(
Ct
)K−1

.

Compared to Theorem 5, all dynamical connections are dealt with in a symmetric way, resorting to

one connected graph T̃ ∈ T ±K , rather than a graph T ∈ T ±n encoding recollisions and overlaps and a

tree a ∈ A±n,m encoding collisions.

Proof. — By definition and thanks to Theorem 5,

Λ[0,t]

(
eh
)

=

∞∑
n=1

1

n!

∑
T∈T ±n

∞∑
m=0

∑
a∈A±n,m

∫
dµsing,T,a(Ψn,m)(eh − 1)⊗n

(
f0
)⊗(m+n)

.

Note that the trajectories of particles i ∈ {1, . . . ,m} can be extended on the whole interval [0, t] just

by transporting i without collision on [ti, t] : this is actually the only way to have a set of m + n

pseudo-trajectories which is minimally connected (any additional collision would add a non cluster-

ing constraint, or require adding new particles). It can therefore be identified to some Ψm+n,0 (see

Figure 7).
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Let us now fix K = n+m and symmetrize over all arguments :

Λ[0,t]

(
eh
)

=

∞∑
K=1

1

K!

K∑
n=1

K!

n!(K − n)!
(K − n)!

∑
T∈T ±n

∑
a∈A±n,K−n

∫
dµsing,T,a(Ψn,K−n)(eh − 1)⊗n

(
f0
)⊗K

=

∞∑
K=1

1

K!

K∑
n=1

∑
η

|η|=n

∑
(ηc)≺

∑
T∈T ±η

∑
a∈A±

η,(ηc)≺

∫
dµsing,T,a(Ψη,(ηc)≺)(eh − 1)⊗η

(
f0
)⊗K

where η stands for a subset of {1∗, . . . , n∗, 1, . . . ,K − n} with cardinal n; ηc denotes its complement

and (ηc)≺ indicates that we have chosen an order on the set ηc. We denote by A±η,(ηc)≺ the set of

signed trees with roots η and added particles with prescribed order in (ηc)≺.

Note that the combinatorics of collisions a and recollisions or overlaps T (together with the choice of

the representatives {qe, q′e}e∈E(T )) can be described by a single minimally connected graph T̃ ∈ T ±K .

In order to apply Fubini’s theorem, we then need to understand the mapping

(a, T, {qe, q′e}e∈E(T )) 7→ (T̃ , η) .

It is easy to see that this mapping is injective but not surjective. Given a pseudo-trajectory ΨK,0

compatible with T̃ and a set η of cardinality n, we reconstruct (a, T, {qe, q′e}e∈E(T )) as follows. We

color in red the n particles belonging to η at time t, and in blue the K − n other particles. Then we

follow the dynamics backward. At each clustering, we apply the following rule

— if the clustering involves one red particle and one blue particle, then it corresponds to a collision

in the Duhamel pseudo-trajectory. The corresponding edge of T̃ will be described by a. We

then change the color of the blue particle to red.

— if the clustering involves two red particles, then it corresponds to a recollision in the Duhamel

pseudo-trajectory. The corresponding edge of T̃ is therefore an edge e ∈ E(T ) and the two

colliding particles determine the representative {qe, q′e}.
— if the clustering involves two blue particles, then the pseudo-trajectory is not admissible

for (T̃ , η), as it is not associated to any (a, T, {qe, q′e}e∈E(T )).

1 2 345 6

7

1

2

3

6

7

5

4
η = {1,2, 3} T̃

K = 7

t

12 5 46 7 3

Figure 7. A couple (η, T̃ ) and an associate pseudo-trajectory ΨK,0.



44 CHAPTER 5. CHARACTERIZATION OF THE LIMITING CUMULANTS

However the contribution of the non admissible pseudo-trajectories ΨK,0 to∑
T̃∈T ±η

∫
dµsing,T̃ (Ψη,0)(eh)⊗η

(
f0
)⊗K

is exactly zero. Indeed the blue parts of the trajectories are not weighted, so that the overlap and the

recollision terms associated with the first clustering between two blue particles (i.e. the ± signs of the

corresponding edge) exactly compensate.

We therefore conclude that

Λ[0,t]

(
eh
)

=
∑
K≥1

1

K!

∑
T̃∈T ±K

∫
dµsing,T̃ (ΨK,0)

(
f0
)⊗K K∑

n=1

∑
η∈PnK

(eh − 1)⊗η

=
∑
K≥1

1

K!

∑
T̃∈T ±K

∫
dµsing,T̃ (ΨK,0)(eh)⊗K

(
f0
)⊗K − 1

which is exactly (5.2.1). Note that the compensation mechanism described above does not work

for n = 0 and K = 1, which is the reason for the −1 in the final formula.

The bound (5.2.3) comes from the definition of µsing,T̃ together with the estimates used in the proof

of Theorem 4 to control the collision cross-sections.

5.3. Hamilton-Jacobi equations

We consider test functions on the trajectories which write as

(5.3.1) h(z([0, t])) = g
(
t, z(t)

)
−
∫ t

0

Dsg
(
s, z(s)

)
ds

recalling the notation Dsg := ∂sg + v · ∇xg. The effect of this specific choice will be to integrate

the transport term in the Hamilton-Jacobi equation. We choose complex-valued functions here as we

shall be using properties of analytic functionals of g later; all the results obtained so far can easily be

adapted to this more general setting. To stress the dependence on g, we introduce a specific notation

for the corresponding exponential moment (5.1.5)

I(t, g) := Λ[0,t](e
g(t)−

∫ t
0
Dsg) .(5.3.2)

Note that g is defined here by its final value g(t) and its transport Dg = (Dsg)0≤s≤t, and these two

functions will be considered as two independent variables.

The following statement specifies the functional framework in which I is well defined as a convergent

series, and identifies the equation it satisfies. We recall that for any α ≥ 0, there exists Tα (depending

only on α, C0 and β0) such that the cumulant generating function Λε[0,t](e
h) is uniformly convergent

on [0, Tα] provided that eh − 1 satisfies (4.4.6). We then define

(5.3.3)

Bα :=
{
g ∈ C1([0, Tα]× D;C) : |g(t, z)| ≤ (1− t

2Tα
)(α+

β0

8
|v|2) ,

sup
s∈[0,Tα]

|Dsg(s, z)| ≤ 1

2Tα
(α+

β0

8
|v|2)

}
.
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Let us translate Theorems 4 and 6 in terms of the functional I. For t in [0, Tα], let h be defined as

in (5.3.1) with g in Bα. One has

(5.3.4)

∣∣∣(eh(zi([0,t])) − 1
)⊗n∣∣∣ ≤ e∑n

i=1

∣∣h(zi([0,t]))
∣∣ ≤ eα0n+

β0
8 (1− t

2Tα
)|Vn(t)|2+

β0
8

1
2Tα

∫ t
0
|Vn(s)|2 ds

≤ eαn+
β0
8 sups∈[0,t] |Vn(s)|2 ,

which is the assumption on H = eh − 1 of Theorem 4. In particular, the series

(5.3.5) I(t, g) := −1 +

∞∑
K=1

1

K!

∑
T∈T ±K

∫
dµsing,T (ΨK,0)(eg(t)−

∫ t
0
Dsg(s)ds)⊗K(ΨK,0)f0⊗K(Ψ0

K,0)

is absolutely convergent for t ∈ [0, Tα] and g ∈ Bα. Note that (5.3.5) shows that I is analytic with

respect to g(t): in particular one can differentiate I(t, g) with respect to the final condition g(t), in a

direction Υ and by term-wise derivation of the series (5.3.5) we find:

(5.3.6)

∫
D
dz
∂I(t, g)

∂g(t)
(z)Υ(z) =

∑
K

1

K!

∑
T̃∈T ±K

K∑
i=1

∫
dµsing,T̃ (ΨK,0)Υ(zi(t))

×
(
eg(t)−

∫ t
0
Dsgds

)⊗K
(ΨK,0)

(
f0
)⊗K

(Ψ0
K,0) .

We first state a regularity result on ∂I(t,g)
∂g(t) needed to define the singularity in the Hamilton-Jacobi

equation derived in Theorem 7. Additional results on I in an appropriate functional setting will be

derived later in Proposition 7.2.2 in order to obtain the uniqueness of the Hamilton-Jacobi equation.

Proposition 5.3.1. — For t ≤ Tα and g ∈ Bα, the functional derivative (x, v) 7→ ∂I(t, g)

∂g(t)
(x, v) is a

continuous function in x ∈ Td with values in the space Mv(Rd) of weighted measures in v ∈ Rd: there

is a constant C such that for any g ∈ Bα,

∀t ≤ Tα ,∀x ∈ Td,
∥∥∥∂I(t, g)

∂g(t)
(x, v) exp(

β0

8
|v|2)(1 + |v|)

∥∥∥
Mv(Rd)

≤ C .

Proof. — Given K, we consider the associated integral in the series expansion (5.3.6). The integrand

is uniformly bounded by the assumption (1.1.5) on f0 and inequality (5.3.4)

(5.3.7) ΓK(ΨK,0) :=
(
eg(t)−

∫ t
0
Dsgds

)⊗K
(ΨK,0)

(
f0
)⊗K

(Ψ0
K,0) ≤ eαK−

3β0
8 |VK(0)|2 .

The measure µsing,T̃ is invariant under global translations in x. Thanks to the upper bound (5.3.7),

each integral in (5.3.6) is uniformly bounded in terms of ‖ exp(−β0

8 |v|2)(1 + |v|)−1Υ‖L1
x(L∞v )

(5.3.8)

∣∣∣ ∫ dµsing,T̃ (ΨK,0)ΓK(ΨK,0)Υ(zi(t))
∣∣∣

≤
∣∣∣ ∫ dµsing,T̃ (ΨK,0)eαK−

β0
8 |VK(0)|2

∣∣∣ ‖ exp(−β0

8
|v|2)(1 + |v|)−1Υ‖L1

x(L∞v ) .

Furthermore, using the continuity of g and f0, we deduce that ΓK(ΨK,0) is a continuous function

of the root zi(t), as changing the position of the root boils down to translating rigidly the whole

pseudo-trajectory. Therefore, by density approximation, one can extend the convergence and the

bound (5.3.8) to any Υ such that Υ exp(−β0

8 |v|2)(1 + |v|)−1 ∈ Mx (L∞v ) where Mx is the space of

measures. Proposition 5.3.1 is proved by summing the expansion (5.3.6).
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The next theorem is the key to derive the large deviation functional in Chapter 7. As a byproduct,

it will also allow us to prove that the limit first cumulant f1 solves the Boltzmann equation, and to

derive the equation on the limit covariance.

Theorem 7 (Hamilton-Jacobi equation for the limit cumulant generating function)

For any α > 0, the functional I(t, g) is well defined on [0, Tα] × Bα, and the series defining I(t, g) is

a solution of the mild form of the Hamilton-Jacobi equation on [0, Tα]× Bα :

(5.3.9)


I(t, g) = I(0, g) +

1

2

∫ t

0

dτ

∫
∂I
∂g(τ)

(τ, g)(z1)
∂I
∂g(τ)

(τ, g)(z2)
(
e∆g(τ) − 1

)
dµ(z1, z2, ω) ,

I(0, g) =

∫
dz f0(z)(eg(0,z) − 1) ,

where we used the notation (1.3.6)-(1.3.7)

dµ(z1, z2, ω) := δx1−x2((v1 − v2) · ω)+dωdv1dv2dx1 ,

and

∆g(z1, z2, ω) := g(z′1) + g(z′2)− g(z1)− g(z2) .

We will see in Chapter 7 that this Hamilton-Jacobi equation provides a complete characterization of I
which will be crucial to identify the large deviation functional by means of Legendre transform.

Proof. — At time 0, the exponential moment (5.3.5) reduces to the exponential moment of independent

particles thus only the term K = 1 remains

(5.3.10) I(0, g) = −1 +

∫
dzeg(0,z)f0(z) =

∫
dz f0(z)(eg(0,z) − 1) .

To recover the mild form of the Hamilton-Jacobi equation (5.3.9), we are going to reparametrize each

term of the series (5.3.5) of I(t, g) by singling out the last clustering collision. Given a tree T in T ±K
with K ≥ 2, let τe := τ clust

e ∈ [0, t] be the last clustering time which occurs at the edge e and is

associated with the scattering vector ωe := ωclust
e and the sign se := sclust

e ∈ {−1, 1}. By removing the

edge e, the tree T is split into two trees T1 ∈ T ±K1
and T2 ∈ T ±K2

with sizes K1 +K2 = K and clustering

times belonging to [0, τe]. These trees generate two pseudo-trajectories ΨK1,0,ΨK2,0 on [0, τ ] which are

then constrained to cluster at time τe. The whole pseudo-trajectory ΨK,0 on [0, t] (generated by T ) is

then recovered by merging the pseudo-trajectories ΨK1,0,ΨK2,0 at time τe and extending them on [0, t]

with a scattering, or not, according to the sign se. This procedure is abbreviated by

(5.3.11) ΨK,0 = ΨK1,0 ∧ΨK2,0 .

This leads to∑
T∈T ±K

∫
dµsing,T (ΨK,0)(eg(t)−

∫ t
0
Dsg(s)ds)⊗K(ΨK,0)f0⊗K(Ψ0

K,0)

=
1

2

∑
K1,K2

K1+K2=K

K!

K1!K2!

∑
T1∈T

±
K1

T2∈T
±
K2

∫ t

0

dτe

∫
dµ

[0,τe]
sing,T1

(ΨK1,0)dµ
[0,τe]
sing,T2

(ΨK2,0)f0⊗K1(Ψ0
K1,0)f0⊗K2(Ψ0

K2,0)

×
∑
i∈T1
j∈T2

∑
se=±1

∫
dωe se δxi(τe)−xj(τe)((vi(τ

−
e )− vj(τ−e )) · ωe)+ (eg(t)−

∫ t
0
Dsg(s)ds)⊗K ,

(5.3.12)
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where the edge e = (i, j). By construction the parameters associated with the pseudo-trajectories ΨK1,0

and ΨK2,0 are independent and the corresponding measures on [0, τe] factorize. We used the nota-

tion µ
[0,τe]
sing,T1

to stress the fact that the clustering times of the measure are restricted to [0, τe]. The last

line of the identity (5.3.12) encodes the clustering constraint at τe.

To recover the factorization of the Hamilton-Jacobi equation (5.3.9), we first note that all the particles

evolve in straight line in [τe, t], so that for any k ≤ K

g
(
t, zk(t)

)
−
∫ t

0

Dsg
(
s, zk(s)

)
ds = g

(
τe, zk(τ+

e )
)
−
∫ τe

0

Dsg
(
s, zk(s)

)
ds.

If se = 1, a scattering occurs between the particles (i, j) forming the edge e so that their velocities jump

at time τe; if se = −1 on the other hand, the trajectories are unchanged. With the notation (1.3.7),

the discontinuity at the collision can thus be rewritten as

(eg(t)−
∫ t
0
Dsg(s)ds)⊗K = (eg(τe)−

∫ τe
0

Dsg(s)ds)⊗K1 (eg(τe)−
∫ τe
0

Dsg(s)ds)⊗K2

×
(

1 + 1se=1

[
exp

(
∆g(τe) (zi(τ

−
e ), zj(τ

−
e ), ωe)

)
− 1
])

.(5.3.13)

It follows that except for the interaction at time τe between particles i, j, the test functions factorize.

We can rewrite (5.3.12) as∑
T∈T ±K

∫
dµsing,T (ΨK,0)(eg(t)−

∫ t
0
Dsg(s)ds)⊗K(ΨK,0)f0⊗K(Ψ0

K,0)

=
K!

2

K∑
K1=0

∑
T1∈T

±
K1

T2∈T
±
K2

∑
i∈T1
j∈T2

∫ t

0

dτe
∏
`=1,2

[
1

K`!

∫
dµ

[0,τe]
sing,T`

(ΨK`,0)f0⊗K`(Ψ0
K`,0

)(eg(τe)−
∫ τe
0

Dsg(s)ds)⊗K`
]

×
∫
dωe δxi(τe)−xj(τe)((vi(τ

−
e )− vj(τ−e )) · ωe)+

[
exp

(
∆g(τe) (zi(τ

−
e ), zj(τ

−
e ), ωe)

)
− 1
]
,

(5.3.14)

where only the contribution se = 1 remains. Indeed the constant 1 in the last line of (5.3.13) cancels

out after summing over se = ±1.

Summing (5.3.14) over all K ≥ 1 in order to rebuild I(t, g), the product of the functional deriva-

tives
∂I(τe, g)

∂g(τe)
defined in (5.3.6) can be identified

I(t, g) = I(0, g) +
1

2

∫ t

0

dτe

∫
∂I

∂g(τe)
(τe, g)(z1)

∂I
∂g(τe)

(τe, g)(z2)
(
e∆g(τe) − 1

)
dµ(z1, z2, ωe).

Theorem 7 is proved.

5.4. The Boltzmann equation for the limit first cumulant

The Hamilton-Jacobi equation (5.3.9) encodes all the limiting correlations of the microscopic dynamics.

As a first consequence, we are going to recover the convergence of the density to the solution of the

Boltzmann equation already stated in Theorem 1.

Let us denote t the backward transport operator by Stφ(x, v) := φ(x− tv, v), for any test function φ.
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Proposition 5.4.1. — In the Boltzmann-Grad limit, the rescaled one-particle density converges in

the time interval [0, T0] in the sense of measures

(5.4.1) lim
µε→∞

F ε1 (t) = f1(t) =
∂I(t, 0)

∂g(t)
·

The limit f1 is a mild solution of the Boltzmann equation in a weak form

(5.4.2)

∫
D
f1(t, z)ψ(z) dz =

∫
D
Stf

0(z)ψ(z) dz

+

∫ t

0

ds

∫
St−s

(
f1(s, z′1)f1(s, z′2)− f1(s, z1)f1(s, z2)

)
ψ(z1) dµ(z1, z2, ω) ,

for any continuous bounded test function ψ.

Proof. — We will consider only functional derivatives of I at g = 0, thus α can be chosen arbitrarily

small so that all the equations obtained from Theorem 7 are valid up to the time T0 = T
α
∣∣α=0

.

By definition (5.3.2) of I

(5.4.3) I(t, g) =

∞∑
n=1

1

n!
fn,[0,t]

((
eh − 1

)⊗n)
with h

(
z([0, t])

)
= g(t, z(t))−

∫ t

0

Dsg(s, z(s)) ds ,

is a uniformly convergent series for t ≤ Tα and in particular it is analytic with respect to g(t) for g

in Bα. Given a test function ψ defined on D (and acting at time t), the derivative at g = 0 is given by

(5.4.4)
〈∂I(t, 0)

∂g(t)
, ψ
〉

= f1,[0,t](ψ) =

∫
D
f1(t)ψ(z) dz ,

where 〈 · , · 〉 denotes the duality bracket. Theorem 5 implies that fε1,[0,t] converges to f1,[0,t]. As

F ε1 (t) = fε1 (t), this leads to (5.4.1).

The Hamilton-Jacobi equation (5.3.9) will enable us to obtain rather easily that the equation satisfied

by f1 is the Boltzmann equation. Let us start by computing the derivative with respect to g(t)

of I(0, g). First, we note that for all s ∈ [0, t], then g(s) is a function of g(t) and Dg through the

Duhamel formula

g(t, x+ tv, v) = g(s, x+ sv, v) +

∫ t

s

Dσg(σ, x+ σv, v) dσ ,

which may be recast as follows:

(5.4.5) ∀s ∈ [0, t] , g(s) = Ss−tg(t)−
∫ t

s

Ss−σDσg(σ) dσ .

This formula will be key to track the impact of the variations of g(s) in the functional derivatives

under a perturbation of g at time t (or of Dg later on). Recalling that

I(0, g) =

∫
f0(z)

(
eg(0,z) − 1

)
dz ,

we therefore find that taking the derivative with respect to g(t) in the direction ψ is given by

(5.4.6) 〈∂I(0, g)

∂g(t)
, ψ〉 =

∫
f0(z)

(
S−tψ

)
(z)eg(0,z) dz ,

hence in particular at g = 0

(5.4.7) 〈∂I(0, 0)

∂g(t)
, ψ〉 =

∫ (
Stf

0
)
(z)ψ(z) dz .
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Next differentiating (5.3.9) with respect to g(t) in the direction ψ, we find

(5.4.8)

〈∂I(t, g)

∂g(t)
, ψ〉 =

∫ (
Stf

0
)
(z)ψ(z) dz

+

∫ t

0

ds

∫
∂I(s, g)

∂g(s)
(z1)

〈 ∂2I(s, g)

∂g(s)∂g(t)
, ψ
〉

(z2)
(
e∆g(s) − 1

)
dµ(z1, z2, ω)

+
1

2

∫ t

0

ds

∫
∂I(s, g)

∂g(s)
(z1)

∂I(s, g)

∂g(s)
(z2) ∆Ss−tψ e

∆g(s)dµ(z1, z2, ω).

Note that Proposition 5.3.1 allows to handle the singularity of the measure dµ.

Evaluating the result at g = 0 produces, thanks to (5.4.4), (5.4.5) and (5.4.7),

〈∂I(t, 0)

∂g(t)
, ψ〉 =

∫ (
Stf

0
)
(z)ψ(z) dz +

1

2

∫ t

0

ds

∫
f1(s, z1)f1(s, z2)∆Ss−tψ dµ(z1, z2, ω) .

Finally thanks to (5.4.4) again, we recover that for any smooth function ψ

〈f1(t), ψ〉 =

∫ (
Stf

0
)
(z)ψ(z) dz +

∫ t

0

ds

∫ (
f1(s, z′1)f1(s, z′2)− f1(s, z1)f1(s, z2)

)
Ss−tψ dµ(z1, z2, ω)

=

∫ (
Stf

0
)
(z)ψ(z) dz +

∫ t

0

ds

∫
St−s

(
f1(s, z′1)f1(s, z′2)− f1(s, z1)f1(s, z2)

)
ψ(z1) dµ(z1, z2, ω).

The proposition is proved.

5.5. Equation for the limit covariance

The fluctuation field covariance is defined for any test functions ψ,ϕ on D by

(5.5.1) ∀s ≤ t , Cε(t, s, ψ, ϕ) := Eε (ζεt (ψ)ζεs (ϕ)) .

The Hamilton-Jacobi equation (5.3.9) enables us to deduce dynamical equations characterizing the

limit covariance. For this, we shall need the following notations :

Definition 5.5.1. — The (adjoint) linearized operator is defined as

(5.5.2)

L∗tϕ(z) := v · ∇xϕ(z) + L∗tϕ(z) , with

L∗tϕ(z) :=

∫
dµz(z2, ω)f(t, z2) ∆ϕ(z, z2, ω) ,

with notation (1.2.2) for the measure dµz(z2, ω). We also set

(5.5.3) Covt(ϕ,ψ) :=
1

2

∫
dµ(z1, z2, ω) f(t, z1) f(t, z2) ∆ψ∆ϕ .

Proposition 5.5.2. — The covariance of the particle system converges to a quadratic form C in the

time interval [0, T0] in a weak sense, i.e. for any bounded continuous functions ϕ,ψ

(5.5.4) ∀s ≤ t ≤ T0, lim
µε→∞

Cε(t, s, ψ, ϕ) = C(t, s, ψ, ϕ) .
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The limit C is a solution of the system of equations for t ≤ T0

(5.5.5)



C(t, t, ψ, ϕ) = C(0, 0, S−tψ, S−tϕ) +

∫ t

0

dsCovs(Ss−tψ, Ss−tϕ)

+

∫ t

0

ds C(s, s, Ss−tψ,L∗sSs−tϕ) +

∫ t

0

ds C(s, s,L∗sSs−tψ, Ss−tϕ) ,∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

dσ

(
C(σ, σ, Sσ−tψ, φσ) +

∫ t

σ

ds C
(
s, σ,L∗sSs−tψ, φσ

))
,

where ψ, ϕ and (φσ)σ≤T0 are test functions on D.

It is shown in the appendix that (5.5.5) provides a complete characterization of C(t, s, ψ, ϕ), at least

for a short time: see Proposition A.3.1.

Proof. — The proof of the proposition is split into 2 steps.

Step 1. Convergence of the covariance (5.5.4).

Recall first that the covariance, for fixed ε, is determined by the first two cumulants

∀s ≤ t , Cε(t, s, ψ, ϕ) = Eε

(
1

µε

∑
i

ϕ(zεi (s))ψ(zεi (t))

)
+ Eε

 1

µε

∑
(i1,i2)

ϕ(zεi1(s))ψ(zεi2(t))


− µεEε

(
1

µε

∑
i

ϕ(zεi (s))

)
× Eε

(
1

µε

∑
i

ψ(zεi (t))

)
= fε1,[0,t](ϕ(s)ψ(t)) + fε2,[0,t](ϕ(s)⊗ ψ(t))

where with slight abuse, we denote by fε2,[0,t] = fε2,[0,t] (ψ ⊗ ϕ) the bilinear form obtained by polarization

fε2,[0,t] (ψ ⊗ ϕ) :=
1

2

(
fε2,[0,t]

(
(ψ + ϕ)⊗2

)
− fε2,[0,t]

(
ψ⊗2

)
− fε2,[0,t]

(
ϕ⊗2

) )
.

By the convergence of the cumulants proved in Theorem 5, the limit covariance is

(5.5.6) ∀s ≤ t , C(t, s, ψ, ϕ) := f1,[0,t]

(
ψ(t)ϕ

(
s)
)

+ f2,[0,t]

(
ψ
(
t)⊗ ϕ(s)

)
.

Step 2. Derivation of the system of equations (5.5.5).

We start by establishing the equation for the covariance at a single time t. As in (5.4.4), differentiating

twice I with respect to g(t) in the direction ψ provides〈 ∂2I
∂2g(t)

, ψ ⊗ ψ
〉∣∣g=0

= f1,t(ψ
2) + f2,t(ψ ⊗ ψ) = C(t, t, ψ, ψ) .

The corresponding formula for C(t, t, ϕ, ψ) follows by polarization. Thanks to (5.4.6), there holds〈∂2I(0, g)

∂2g(t)
, ψ ⊗ ψ

〉∣∣g=0
=

∫
f0(z)

(
S−tψ

)2
(z) dz = C(0, 0, S−tψ, S−tψ) .

By using the identity (5.4.5), the functional can be also differentiated at different times

(5.5.7)
〈 ∂2I(s, g)

∂g(s)∂g(t)
, ψ
〉

(z1) =
〈 ∂2I(s, g)

∂g(s)∂g(s)
, Ss−tψ

〉
(z1).
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Thus differentiating (5.4.8) one more time and computing the result at g = 0 provides

(5.5.8)

C(t, t, ψ, ψ) = C(0, 0, S−tψ, S−tψ)

+ 2

∫ t

0

ds

∫ 〈 ∂2I(s, 0)

∂g(s)∂g(s)
, Ss−tψ

〉
(z1)

∂I(s, 0)

∂g(s)
(z2) ∆Ss−tψ dµ(z1, z2, ω)

+
1

2

∫ t

0

ds

∫
∂I(s, 0)

∂g(s)
(z1)

∂I(s, 0)

∂g(s)
(z2)

(
∆Ss−tψ

)2
dµ(z1, z2, ω)

= C(0, 0, S−tψ, S−tψ)

+ 2

∫ t

0

ds

∫ 〈 ∂2I(s, 0)

∂g(s)∂g(s)
(z1), Ss−tψ

〉
f(s, z2) ∆Ss−tψ dµ(z1, z2, ω)

+
1

2

∫ t

0

ds

∫
f(s, z1)f(s, z2)

(
∆Ss−tψ

)2
dµ(z1, z2, ω) ,

where
∂I(s, 0)

∂g(s)
has been replaced by f(s) thanks to Proposition 5.4.1.

With these notations, (5.5.8) can be rewritten as

(5.5.9)

C(t, t, ψ, ψ) = C(0, 0, S−tψ, S−tψ) + 2

∫ t

0

ds C(s, s, Ss−tψ,L∗sSs−tψ) +

∫ t

0

dsCovs(Ss−tψ, Ss−tψ) .

Thus the first equation of the system (5.5.5) is recovered by polarisation.

Now let us turn to the equation on the covariance at two different times. Given φ a test function

defined on [0, t]× D, the integrated covariance can be recovered by differentiating with respect to Dg

in the direction φσ = φ(σ), a given smooth function. Setting

Φ(t, z([0, t])) :=

∫ t

0

φ(σ, z(σ)) dσ =

∫ t

0

φσ dσ ,

one has

〈 ∂
2I(t, 0)

∂g(t)∂Dg
, ψ ⊗ Φ〉 = −f1,[0,t](ψΦ)− f2,[0,t](ψ ⊗ Φ) = −

∫ t

0

C(t, s, ψ, φs) ds,

where the minus sign comes from the fact that the test function is g(t)−
∫ t

0

dsDsg.

We are now going to derive the second equation on the covariance at different times, differentiat-

ing (5.4.8) again. We recall from (5.4.5) that the variations of g(s) in the directions ψ and φ are given

by

(5.5.10) ∀s ∈ [0, t] , δg(s) = Ss−tψ −
∫ t

s

Ss−σφσ dσ.

We start by observing that taking a second derivative in (5.4.6) leads to〈 ∂2I(0, 0)

∂g(t)∂Dg
, ψ ⊗ Φ

〉
= −

∫
dzf0(z)S−tψ(z)

∫ t

0

S−σφ(σ, z)dσ = −
∫ t

0

C
(
0, 0, S−tψ, S−σφσ

)
dσ.

Taking the derivative at intermediate times s ∈ [0, t] on I(s, g) with respect to Dg is more delicate as

there is a contribution of the variation of δg(s) by (5.5.10) and another contribution accounting for

the variations on [0, s]: recalling (5.4.3),

(5.5.11) 〈∂I(s, 0)

∂Dg
,Φ〉 = −

∫ t

s

〈∂I(s, 0)

∂g(s)
, Ss−σφσ

〉
dσ −

∫ s

0

〈∂I(s, 0)

∂Dσg
, φσ

〉
dσ.
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Differentiating (5.4.8) one more time and using (5.5.7), there holds∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

C(0, 0, S−tψ, S−σφσ) dσ

+

∫ t

0

ds

∫ 〈 ∂2I(s, 0)

∂g(s)∂g(s)
, Ss−tψ

〉
(z1)

∂I(s, 0)

∂g(s)
(z2)

(
∆

∫ t

s

Ss−σφσ dσ
)
dµ(z1, z2, ω)

−
∫ t

0

ds

∫
〈 ∂

2I(s, 0)

∂g(s)∂Dg
,Φ〉(z1)

∂I(s, 0)

∂g(s)
(z2)∆Ss−tψ dµ(z1, z2, ω)

+
1

2

∫ t

0

ds

∫
∂I(s, 0)

∂g(s)
(z1)

∂I(s, 0)

∂g(s)
(z2)

(
∆Ss−tψ

)(
∆

∫ t

s

Ss−σφσ dσ
)
dµ(z1, z2, ω) .

Using that ∂I(s,0)
∂g(s) = f(s) by Proposition 5.4.1, the adjoint linearized operator (5.5.2) and the covari-

ance (5.5.3), we get∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

C(0, 0, S−tψ, S−σφσ) dσ +

∫ t

0

ds

∫ t

s

dσ
〈 ∂2I(s, 0)

∂g(s)∂g(s)
, Ss−tψ ⊗ L∗sSs−σφσ

〉
−
∫ t

0

ds 〈 ∂
2I(s, 0)

∂g(s)∂Dg
,L∗sSs−tψ ⊗ Φ〉+

∫ t

0

ds

∫ t

s

dσ Covs

(
Ss−tψ, Ss−σφσ

)
.

From identity (5.5.11), we finally obtain∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

C(0, 0, S−tψ, S−σφσ) dσ +

∫ t

0

ds

∫ t

s

dσ
〈 ∂2I(s, 0)

∂g(s)∂g(s)
, Ss−tψ ⊗ L∗sSs−σφσ

〉
+

∫ t

0

ds

∫ t

s

dσ
〈 ∂2I(s, 0)

∂g(s)∂g(s)
,L∗sSs−tψ ⊗ Ss−σφσ

〉
+

∫ t

0

ds

∫ s

0

dσ
〈 ∂2I(s, 0)

∂g(s)∂Dg
,L∗sSs−tψ ⊗ φσ

〉
+

∫ t

0

ds

∫ t

s

dσ Covs

(
Ss−tψ, Ss−σφσ

)
.

Noticing that

C(s, σ, ψ, φ) =
〈 ∂2I(s, 0)

∂g(s)∂Dσg
, ψ ⊗ φ

〉
,

this can be rewritten in terms on the covariance C.∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

dσ C(0, 0, S−tψ, S−σφσ) +

∫ t

0

ds

∫ t

s

dσ C
(
s, s, Ss−tψ,L

∗
sSs−σφσ

)
+

∫ t

0

ds

∫ t

s

dσ C
(
s, s,L∗sSs−tψ, Ss−σφσ

)
+

∫ t

0

ds

∫ s

0

dσ C
(
s, σ,L∗sSs−tψ, φσ

)
+

∫ t

0

ds

∫ t

s

dσ Covs

(
Ss−tψ, Ss−σφσ

)
.

Finally swapping the integrals in s, σ by Fubini’s Theorem, we get∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

dσ C(0, 0, S−tψ, S−σφσ) +

∫ t

0

dσ

∫ σ

0

ds C
(
s, s, Ss−tψ,L

∗
sSs−σφσ

)
+

∫ t

0

dσ

∫ σ

0

ds C
(
s, s,L∗sSs−tψ, Ss−σφσ

)
+

∫ t

0

dσ

∫ t

σ

ds C
(
s, σ,L∗sSs−tψ, φσ

)
+

∫ t

0

dσ

∫ σ

0

ds Covs

(
Ss−tψ, Ss−σφσ

)
.
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Noticing that (5.5.9) implies

C(σ, σ, Sσ−tψ, φσ) = C(0, 0, S−tψ, S−σφσ) +

∫ σ

0

ds C(s, s, Ss−tψ,L∗sSs−σφσ)

+

∫ σ

0

ds C(s, s,L∗sSs−tψ, Ss−σφσ) +

∫ σ

0

dsCovs(Ss−tψ, Ss−τφσ) ,

the formula for the covariance simplifies∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

dσ

(
C(σ, σ, Sσ−tψ, φσ) +

∫ t

σ

ds C
(
s, σ,L∗sSs−tψ, φσ

))
.

This completes the derivation of the system of equations (5.5.5).





PART II

FLUCTUATIONS AROUND THE BOLTZMANN

DYNAMICS





CHAPTER 6

FLUCTUATING BOLTZMANN EQUATION

The goal of this chapter is to prove Theorem 2, describing the limit of the fluctuation field (ζεt )t, of

which we recall the definition:

ζεt
(
ϕ
)

:=
1√
µε

( N∑
i=1

ϕ
(
zεi (t)

)
− µεEε

(
πεt (ϕ)

))
on test functions ϕ. Namely we prove that, in the Boltzmann-Grad limit, ζεt converges to a process ζt
which solves, in a weak sense clarified below (see Section 6.1), the fluctuating Boltzmann equation

(6.0.1) dζ̂t = Lt ζ̂t dt+ dηt .

We recall that f is the solution of the Boltzmann equation on [0, T0], that the linearized Boltzmann

operator is defined as Lt := −v · ∇x + Lt with the collision part

(6.0.2) Lt ϕ(z1) :=

∫
dµz1(z2, ω)

(
f(t, z′2)ϕ(z′1) + f(t, z′1)ϕ(z′2)− f(t, z2)ϕ(z1)− f(t, z1)ϕ(z2)

)
,

and that dηt(x, v) is a Gaussian noise with zero mean and covariance given in (5.5.3), which we recall

(6.0.3) Covt(ψ,ϕ) :=
1

2

∫
dµ(z1, z2, ω) f(t, z1) f(t, z2) ∆ψ∆ϕ .

where the scattering measures are defined as in (1.3.6) and (1.2.2)

dµz1(z2, ω) = δx1−x2

(
(v1 − v2) · ω

)
+
dωdv2,

dµ(z1, z2, ω) = δx1−x2
((v1 − v2) · ω)+ dω dx1dv1dv2 ,

and we recall the notation

(6.0.4) ∆ψ(z1, z2, ω) = ψ(z′1) + ψ(z′2)− ψ(z1)− ψ(z2) .

The limiting Gaussian process (6.0.1) will be characterized by its covariance in Section 6.1.

In order to obtain the convergence of the fluctuation field, we shall proceed in two steps, establish-

ing first the convergence of the characteristic function in Section 6.2.1, and then some tightness in

Section 6.2.2.
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6.1. Weak solutions for the limit process

A solution ζ̂t to (6.0.1) is a Gaussian process: its law is therefore completely characterized by its

covariance. In this section we study the equation governing this covariance

(6.1.1) Ĉ(t, s, ψ, ϕ) := E
(
ζ̂t(ψ)ζ̂s(ϕ)

)
and prove that it is precisely the equation obtained Proposition 5.5.2, namely (5.5.5). Since there

is a unique solution to (5.5.5) (see Proposition A.3.1), the limiting covariance C(t, s, ψ, ϕ) is equal

to Ĉ(t, s, ψ, ϕ), at least for short times.

6.1.1. Equation for the covariance. — Denote by U(t, s) the semigroup associated with Lτ be-

tween times s < t, meaning that

∂tU(t, s)ϕ− LtU(t, s)ϕ = 0 , U(s, s)ϕ = ϕ ,

and

∂sU(t, s)ϕ+ U(t, s)Lsϕ = 0 , U(t, t)ϕ = ϕ .

By definition, U∗(t, s)ϕ satisfies

(6.1.2) ∂sU∗(t, s)ϕ+ L∗sU∗(t, s)ϕ = 0 , U∗(t, t)ϕ = ϕ ,

and

∂tU∗(t, s)ϕ− U∗(t, s)L∗tϕ = 0 , U∗(s, s)ϕ = ϕ ,

where we recall that L∗s = v · ∇x + L∗s with

(6.1.3) L∗s ψ(z1) :=

∫
dµz1(z2, ω)f(s, z2) ∆ψ(z1, z2, ω) .

Formally, a solution of the limit process (6.0.1) satisfies for any test function ϕ

ζ̂t(ϕ) = ζ0(U∗(t, 0)ϕ) +

∫ t

0

dηs(U∗(t, s)ϕ) .

For any t ≥ s and test functions ϕ,ψ, the covariance is then given by

E
(
ζ̂t(ψ)ζ̂s(ϕ)

)
= E

(
ζ0
(
U∗(t, 0)ψ

)
ζ0
(
U∗(s, 0)ϕ

))
+ E

(∫ t

0

∫ s

0

dησ dησ′
(
U∗(t, σ)ψ

)(
U∗(s, σ′)ϕ

))
+ E

(
ζ0
(
U∗(t, 0)ψ

) ∫ s

0

dησ′
(
U∗(s, σ′)ϕ

))
+ E

(
ζ0
(
U∗(s, 0)ϕ

) ∫ t

0

dησ
(
U∗(t, σ)ψ

))
so that according to (6.0.3) and (6.1.1)

(6.1.4) Ĉ(t, s, ψ, ϕ) = E
(
ζ0
(
U∗(t, 0)ψ

)
ζ0
(
U∗(s, 0)ϕ

))
+

∫ s

0

dσ Covσ (U∗(t, σ)ψ,U∗(s, σ)ϕ) .

Definition 6.1.1. — A weak solution to (6.0.1) is a Gaussian process with covariance satisfy-

ing (6.1.4).

Let us take formally the time derivative of (6.1.4) for t > s. This gives

∂tĈ(t, s, ψ, ϕ) = E
(
ζ0
(
U∗(t, 0)L∗tψ

)
ζ0
(
U∗(s, 0)ϕ

))
+

∫ s

0

dσCovσ
((
U∗(t, σ)L∗tψ

)
,
(
U∗(s, σ)ϕ

))
= Ĉ(t, s,L∗tψ,ϕ) .

For s = t, the time derivative is

∂tĈ(t, t, ψ, ϕ) = Ĉ(t, t,L∗tψ,ϕ) + Ĉ(t, t, ψ,L∗tϕ) + Covt(ψ,ϕ) .
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We recognize here the equation (5.5.5) satisfied by the limit covariance C(s, t, ϕ, ψ) (see Proposi-

tion 5.5.2), written in infinitesimal form:

(6.1.5) ∀s ≤ t,


∂tC(t, s, ψ, ϕ) = C(t, s,L∗tψ,ϕ),

∂tC(t, t, ψ, ϕ) = C(t, t,L∗tψ,ϕ) + C(t, t, ψ,L∗tϕ) + Covt(ψ,ϕ) ,

C(0, 0, ψ, ϕ) =

∫
dzϕ(z)ψ(z)f0(z) .

The link between (5.5.5) and (6.1.4) is made rigorous in Lemma 6.1.5 below. The set of equations (6.1.5)

is used in the physics literature to describe correlations at equal and unequal times: we refer to [26]

which includes a comparison of several equivalent formulations of the right-hand side.

Remark 6.1.2. — The equilibrium case (when f0 = M is a Maxwellian) is much simpler. The linear

operator Leq := −v ·∇x+Leq, where Leq is the (autonomous) linearized operator around M , generates

indeed a semigroup Ueq of self-adjoint contractions on L2(Mdvdx). By the method of [38], one can

construct a martingale solution of the generalized Ornstein-Uhlenbeck equation

(6.1.6) dζ̂t = Leq ζ̂t dt+ dηt .

Moreover, the covariance structure is such that the fluctuations exactly compensate the dissipation :

using the symmetry of the equilibrium measure M(z′1)M(z′2) = M(z1)M(z2) and denoting by U∗eq the

adjoint of Ueq in L2(D), one gets∫ t

0

duCov
(
U∗eq(t, σ)ϕ,U∗eq(t, σ)ϕ

)
= −2

∫ t

0

dσ

∫
U∗eq(t, σ)ϕML∗eq U∗eq(t, σ)ϕ

= −2

∫ t

0

dσ

∫
U∗eq(t, σ)ϕM(−∂σ − v · ∇x) U∗eq(t, σ)ϕ

=

∫
M |ϕ|2 −

∫
M |U∗eq(t, 0)ϕ|2 .

Out of equilibrium the structure of the linearized operator is lost: it is no longer autonomous, and the

semigroup generated by Lt is no longer a contraction.

6.1.2. Functional setting for (6.1.4). — Let us define a functional setting for the semi-

group U∗(t, s), and check that in this setting the right-hand side of (6.1.4) is well defined. By a

Cauchy-Kovalevskaya type argument (see Theorem A.1 and Section A.1) one can prove that there is a

time T0 ∼ C−1
0 β

(d+1)/2
0 such that there is a unique solution f to the Boltzmann equation on the time

interval [0, T0] which satisfies

(6.1.7) ‖f(t)‖L∞−β0/2
≤ 4C0 ,

with

(6.1.8) L∞β :=

{
ϕ = ϕ(x, v) : ‖ϕ‖L∞β := sup

D
exp

(
− β

2
|v|2
)
|ϕ(x, v)| < +∞

}
.

For any β > 0, we introduce the weighted L2 space

(6.1.9) L2
β :=

{
ϕ = ϕ(x, v) : ‖ϕ‖L2

β
:=
(∫

D
exp

(
− β

2
|v|2
)
ϕ2(x, v)dxdv

) 1
2

< +∞
}
.

In particular, (L2
β)β>0 is an increasing sequence of Hilbert spaces and an application of Theorem A.1

leads to the following result: we refer to Section A.2 of the appendix for the proof.

Proposition 6.1.3. — There is a time T ∈ (0, T0] with T ∼ C−1
0 β

(d+1)/2
0 , such that for any ϕ in L2

β0/4

and any s ≤ t ≤ T , U∗(t, s)ϕ is well defined and belongs to L2
3β0/8

.



60 CHAPTER 6. FLUCTUATING BOLTZMANN EQUATION

This proposition implies that the covariance is well defined, as stated in the next proposition.

Proposition 6.1.4. — There exists a time T ∈ (0, T0] with T ∼ C−1
0 β

(d+1)/2
0 , such that for any ϕ

and ψ in L2
β0/4

and all times 0 ≤ s ≤ t ≤ T , the covariance Ĉ(t, s, ψ, ϕ) is well defined by (6.1.4).

Proof of Proposition 6.1.4. — Denote ψ(σ) = U∗(t, σ)ψ and ϕ(σ) = U∗(s, σ)ϕ. Then by the definition

of the covariance (5.5.3) and by (6.1.7), for any ϕ and ψ ∈ L2
β0/4

there holds ∀s ≤ t ≤ T∫ s

0

dσCovσ

((
U∗(t, σ)ψ

)
,
(
U∗(s, σ)ϕ

))
≤ 2

∫ s

0

∫
dµ(z1, z2, ω)f(σ, z1)f(σ, z2)

(
(∆ψ(σ))2 + (∆ϕ(σ))2

)
≤ C

∫ s

0

∫
dµ(z1, z2, ω) exp(−β0

4
(|v1|2 + |v2|2))

(
ψ2(σ, z1) + ϕ2(σ, z1)

)
which is finite since ψ(σ), ϕ(σ) belong to L2

3β0/8
by Proposition 6.1.3. Therefore,

∀s ≤ t ≤ T ,
∫ s

0

dσCovσ

((
U∗(t, σ)ψ

)
,
(
U∗(s, σ)ϕ

))
< +∞ .(6.1.10)

Similarly, the first term in the right-hand side of (6.1.4) is bounded by applying Proposition 6.1.3, and

since ∣∣∣Ĉ(0, 0, ψ, ϕ)
∣∣∣ =

∣∣∣ ∫ dzϕ(z)ψ(z)f0(z)
∣∣∣ <∞

thanks to (1.1.5). This concludes the proof of Proposition 6.1.4.

6.1.3. Identification with the limit covariance. — We now prove that the covariance Ĉ(t, s, ψ, ϕ)

constructed above satisfies the same equation (5.5.5) as the limiting covariance C(t, s, ψ, ϕ).

Lemma 6.1.5. — The covariance Ĉ(t, s) defined by (6.1.4) and Proposition 6.1.4 satisfies (5.5.5)

for (s, t) ∈ [0, T ]2. As a consequence, the covariance Ĉ coincides on [0, T ]2 with the limit covariance C
of the hard sphere system defined by (5.5.4).

Proof of Lemma 6.1.5. — By definition (see Section A.2 of the appendix),

(6.1.11) ∀s ≤ t , U∗(t, s)ψ = Ss−tψ +

∫ t

s

duU∗(u, s)L∗uSu−tψ .

Similarly

U∗(t, s)ψ ⊗ U∗(t, s)ϕ = Ss−tψ ⊗ Ss−tϕ

+

∫ t

s

duU∗(u, s)L∗uSu−tψ ⊗ U∗(u, s)Su−tϕ+

∫ t

s

duU∗(u, s)Su−tψ ⊗ U∗(u, s)L∗uSu−tϕ .

We consider first the case t = s in (6.1.4) which we recall

Ĉ(t, t, ψ, ϕ) =

∫
U∗(t, 0)ψ U∗(t, 0)ϕ f0 +

∫ t

0

dσ Covσ (U∗(t, σ)ψ,U∗(t, σ)ϕ) ,(6.1.12)

and we want to prove that it satisfies (5.5.5), namely (omitting the integration parameters dz to lighten

notation)

Ĉ(t, t, ψ, ϕ) =

∫
S−tψ S−tϕ f

0 +

∫ t

0

dσ Ĉ(σ, σ,L∗σSσ−tψ, Sσ−tϕ)

+

∫ t

0

dσ Ĉ(σ, σ, Sσ−tψ,L∗σSσ−tϕ) +

∫ t

0

dσCovσ(Sσ−tψ, Sσ−tϕ) .
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Noting that Covu(ψ,ϕ) is a linear operator on the tensor product ψ ⊗ ϕ, we find from (6.1.12) that

Ĉ(t, t, ψ, ϕ) =

∫
S−tψ S−tϕ f

0 +

∫ t

0

dσ

∫
U∗(σ, 0)L∗σSσ−tψ ⊗ U∗(σ, 0)Sσ−tϕf

0

+

∫ t

0

dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)L∗σSσ−tϕf

0 +

∫ t

0

dσ Covσ (Sσ−tψ, Sσ−tϕ)

+

∫ t

0

dσ

∫ t

σ

dσ′Covσ (U∗(σ′, σ)L∗σ′Sσ′−tψ,U∗(σ′, σ)Sσ′−tϕ)

+

∫ t

0

dσ

∫ t

σ

dσ′Covσ (U∗(σ′, σ)Sσ′−tψ,U∗(σ′, σ)L∗σ′Sσ′−tϕ) .

To conclude we notice that thanks to (6.1.12) again∫ t

0

dσ Ĉ(σ, σ,L∗σSσ−tψ, Sσ−tϕ) +

∫ t

0

dσ Ĉ(σ, σ, Sσ−tψ,L∗σSσ−tϕ)

=

∫ t

0

dσ

∫
U∗(σ, 0)L∗σSσ−tψ ⊗ U∗(σ, 0)Sσ−tϕf

0 +

∫ t

0

dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)L∗σSσ−tϕf

0

+

∫ t

0

dσ

∫ t

σ

dσ′Covσ (U∗(σ′, σ)L∗σ′Sσ′−tψ,U∗(σ′, σ)Sσ′−tϕ)

+

∫ t

0

dσ

∫ t

σ

dσ′Covσ (U∗(σ′, σ)Sσ′−tψ,U∗(σ′, σ)L∗σ′Sσ′−tϕ) ,

and the result follows.

We now study the case of two different times. Consider ψ, (ϕσ)σ∈[0,t] in L2
β0/4

: recalling

(6.1.13) Ĉ(t, σ, ψ, ϕσ) =

∫
U∗(t, 0)ψ ⊗ U∗(σ, 0)ϕσf

0 +

∫ σ

0

dσ′ Covσ′ (U∗(t, σ′)ψ,U∗(σ, σ′)ϕσ) ,

we want to prove that it satisfies (5.5.5) namely∫ t

0

Ĉ(t, σ, ψ, ϕσ) dσ =

∫ t

0

dσ

(
Ĉ(σ, σ, Sσ−tψ,ϕσ) +

∫ t

σ

dσ′ Ĉ
(
σ′, σ,L∗σ′Sσ′−tψ,ϕσ

))
.(6.1.14)

Note that by the semi-group property in Corollary A.2.1,

(6.1.15) ∀s ≤ σ ≤ t , U∗(t, s)ψ = U∗(σ, s)Sσ−tψ +

∫ t

σ

duU∗(u, s)L∗uSu−tψ ,

so identity (6.1.13) can be written∫ t

0

Ĉ(t, σ, ψ, ϕσ) dσ =

∫ t

0

dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)ϕσf

0

+

∫ t

0

dσ

∫ t

σ

dσ′
∫
U∗(σ′, 0)L∗σ′Sσ′−tψ ⊗ U∗(σ, 0)ϕσf

0

+

∫ t

0

dσ

∫ σ

0

dσ′Covσ′ (U∗(σ, σ′)Sσ−tψ,U∗(σ, σ′)ϕσ)

+

∫ t

0

dσ

∫ σ

0

dσ′
∫ t

σ

duCovσ′ (U∗(u, σ′)L∗uSu−tψ,U∗(σ, σ′)ϕσ) .
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Now we note that the first term on the right-hand side adds up to the third to produce∫ t

0

dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)ϕσf

0 +

∫ t

0

dσ

∫ σ

0

dσ′Covσ′ (U∗(σ, σ′)Sσ−tψ,U∗(σ, σ′)ϕσ)

=

∫ t

0

dσ Ĉ(σ, σ, Sσ−tψ,ϕσ) .

Finally exchanging the role of u and σ′ in the last term on the right-hand side, we find that the two

remaining terms add up to ∫ t

0

dσ

∫ t

σ

dσ′ Ĉ
(
σ′, σ,L∗σ′Sσ′−tψ,ϕσ

)
.

The result follows. By Proposition A.3.1 stating the uniqueness of the solution to (5.5.5), we deduce

that Ĉ(t, s) = C(t, s) for 0 ≤ s ≤ t ≤ T . Lemma Lem: equiv lim cov is proved.

6.2. Convergence of the process

The limiting covariance has been characterized in the previous section. Let θ1, . . . , θ` be a collection of

times in [0, T ]. Given a collection of smooth bounded test functions {ϕj}j≤`, we consider the discrete

sampling

H
(
z([0, T0])

)
=
∑̀
j=1

ϕj
(
z(θj)

)
.

Let us define

(6.2.1)
〈〈
ζε, H

〉〉
:=

1√
µε

∑̀
j=1

[ N∑
i=1

ϕj
(
zεi (θj)

)
− µε

∫
F ε1 (θj , z)ϕj

(
z
)
dz

]
.

The convergence of the fluctuation field ζε is obtained by proving

— the convergence of the characteristic function Eε
(
exp

(
i
〈〈
ζε, H

〉〉))
which implies that the limit-

ing process is a weak solution of (6.0.1) in the sense of Definition 6.1.1

— and the tightness of the fluctuation field.

This will complete the proof of Theorem 2.

6.2.1. Convergence of the characteristic function. — We are going to prove the convergence

of time marginals of the process (ζεt )t≥0.

Proposition 6.2.1. — The characteristic function Eε
(
exp

(
i
〈〈
ζε, H

〉〉))
converges to the characteris-

tic function of the Gaussian process with covariance given by (6.1.4).

Proof. — The characteristic function can be rewritten in terms of the empirical measure

Eε
(

exp
(
i
〈〈
ζε, H

〉〉)
= Eε

(
exp

(
i
√
µε
〈〈
πε, H

〉〉))
exp

−i
√
µε
∑̀
j=1

∫
F ε1 (θj , z)ϕj(z) dz

 .(6.2.1)

Thanks to Proposition 2.1.3, we get

logEε
(

exp
(
i
〈〈
ζε, H

〉〉) )
= µε

∞∑
n=1

1

n!
fεn,[0,t]

((
e

iH√
µε − 1

)⊗n)− i
√
µε
∑̀
j=1

∫
F ε1 (θj , z)ϕj(z) dz .
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As H is bounded, the series converges uniformly on [0, T0] for any µε large enough. At leading order,

only the terms n = 1 and n = 2 will be relevant in the limit since by Theorem 10∣∣∣fεn,[0,t] ((e iH√
µε − 1

)⊗n) ∣∣∣ ≤ (C‖H‖∞√
µε

)n
n! .

Expanding the exponential with respect to µε, we notice that the term of order
√
µε cancels so

logEε
(
exp

(
i
〈〈
ζε, H

〉〉))
= −1

2
fε1,[0,t]

(
H2
)
− 1

2
fε2,[0,t]

(
H⊗2

)
+O

(‖H‖3∞√
µε

)
.

As the cumulants fε1,[0,t]
(
H2
)
, fε2,[0,t]

(
H⊗2

)
converge (see Theorem 5), the characteristic function has

a limit

lim
µε→∞

Eε
(
exp

(
i
〈〈
ζε, H

〉〉))
= exp

−1

2

∑
i,j≤`

C(θi, θj , ϕi, ϕj)

 ,

where the limiting covariance is given by (5.5.6) and thus by (6.1.4) thanks to Lemma 6.1.5. Proposi-

tion 6.2.1 is proved.

Remark 6.2.2. — The moments of the fluctuation field can be obtained by computing derivatives

of (6.2.1). As a byproduct of our analysis, one then verifies the Wick’s pairing rule: for all n ≥ 1, the

moments of order 2n+ 1 vanish in the limit µε →∞ and

lim
µε→∞

∣∣∣∣∣∣∣∣Eε
 2n∏
j=1

ζεθj (ϕj)

− ∑
σ∈Pn2n
|σk|=2

∏
{i,j}∈σ

Eε
(
ζεθi(ϕi)ζ

ε
θj (ϕj)

)∣∣∣∣∣∣∣∣ = 0 .

We omit the details of this computation, which is not to be used in this paper.

6.2.2. Tightness and proof of Theorem 2. — In this section we prove a tightness property for

the law of the process (ζεt )t∈[0,T0]. This is made possible by considering test functions in a space with

more regularity than L2
β0

. In order to construct a convenient function space let us consider a Fourier-

Hermite basis of D: let {ẽj1(x)}j1∈Zd be the Fourier basis of Td and {ej2(v)}j2∈Nd be the Hermite

basis of L2(Rd) constituted of the eigenmodes of the harmonic oscillator −∆v + |v|2. This provides

a basis
{
hj(z) = ẽj1(x)ej2(v)

}
j=(j1,j2)

of Lipschitz functions on D, exponentially decaying in v, such

that for all j = (j1, j2)

(6.2.2) ‖hj‖∞ ≤ c , ‖∇hj‖∞ = ‖∇vhj‖∞+‖∇xhj‖∞ < c(1+ |j|) , ‖v ·∇xhj‖∞ < c(1+ |j|) 3
2 ,

with |j| := |j1| + |j2| and for some constant c (see [35]). Then we define for any real number k ∈ R
the Sobolev-type space Hk(D) by the norm

(6.2.3) ‖ϕ‖2k :=
∑

j=(j1,j2)

(1 + |j|2)k
(∫

D
dz ϕ(z)hj(z)

)2

.

Following [8] (Theorem 13.2 page 139), the tightness of the law of the process in D
(
[0, T0],H−k(D)

)
(for some large positive k) is a consequence of the following proposition.
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Proposition 6.2.3. — There is k > 0 large enough such that

∀δ′ > 0 , lim
δ→0

lim
µε→∞

Pε
(

sup
|s−t|≤δ
s,t∈[0,T0]

∥∥ζεt − ζεs∥∥−k ≥ δ′) = 0 ,(6.2.4)

lim
A→∞

lim
µε→∞

Pε
(

sup
t∈[0,T0]

∥∥ζεt ∥∥−k ≥ A) = 0 .(6.2.5)

The identification of the limit Gaussian law in Proposition 6.2.1 together with the above tightness

property complete the characterization of the limiting process and therefore the proof of Theorem 2.

The proof of Proposition 6.2.3 relies on the following modified version of the Garsia, Rodemich, Rumsey

inequality [75] which will be used to control the modulus of continuity (its derivation is postponed to

Section 6.3).

Proposition 6.2.4. — Given b ≥ 4, choose two functions Ψ(u) = ub and p(u) = uγ/b with γ belonging

to ]2, 3[. Let ϕ : [0, T0]→ R be a given function and define for a > 0

(6.2.6) Ba :=

∫ T0

0

∫ T0

0

dsdt Ψ

( |ϕt − ϕs|
p(|t− s|)

)
1|t−s|>a .

The modulus of continuity of ϕ is controlled by

(6.2.7) sup
0≤s,t≤T0
|t−s|≤δ

∣∣ϕt − ϕs∣∣ ≤ 2 sup
0≤s,t≤T0
|t−s|≤2a

∣∣ϕt − ϕs∣∣ + C B1/b
a δ

γ−2
b ,

for some constant C depending only on b and γ.

In the standard Garsia, Rodemich, Rumsey inequality, (6.2.6) is assumed to hold with a = 0 leading

to a stronger conclusion as ϕ is then proved to be Hölder continuous. The cut-off a > 0 allows us to

consider functions ϕ which may be discontinuous.

Proof of Proposition 6.2.3. — At time 0, all the moments of ζε0 are bounded, so (6.2.5) can be deduced

from the control of the initial fluctuations and the bound (6.2.4) on the modulus of continuity. Thus

it is enough to prove (6.2.4). For this, we are going to show that

∀δ′ > 0 , lim
δ→0

lim
µε→∞

Pε

∑
j

1

(1 + |j|2)k
sup
|s−t|≤δ
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′

 = 0 ,(6.2.8)

where {hj(z)}j=(j1,j2) is the family of test functions introduced above.

We are going to apply Proposition 6.2.4 to the functions t 7→ ζεt (hj) with b = 4 and a time scale cut-off

a vanishing as αε = µ
−7/3
ε . In order to do so, the short time fluctuations have first to be controlled.

This will be achieved thanks to the following lemma.

Lemma 6.2.5. — The time scale cut-off will be denoted by αε = µ
−7/3
ε . For the basis of functions

introduced in (6.2.2), there is k > 0 large enough so that

∀δ′ > 0 , lim
µε→∞

Pε

∑
j

1

(1 + |j|2)k
sup

|s−t|≤2αε
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′

 = 0 .(6.2.9)

To control the fluctuations on time scales of order δ, it will be enough to rely on averaged estimates

of the following type.
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Lemma 6.2.6. — There exists a constant C such that for any function h and for any ε > 0 and s, t

in [0, T0]

(6.2.10) Eε
((
ζεt (h)− ζεs (h)

)4) ≤ C ‖h‖2∞(‖∇h‖2L∞ + ‖h‖2∞)
(
|t− s|2 +

1

µε
|t− s|

)
.

We postpone the proofs of the two previous statements and conclude first the proof of (6.2.8).

Notice that Lemma 6.2.6 implies that the random variable associated with any function hj satisfy-

ing (6.2.2)

(6.2.11) Bαε(hj) :=

∫ T0

0

∫ T0

0

ds dt

∣∣ζεt (hj)− ζεs (hj)
∣∣4

|t− s|γ 1|t−s|>αε

has finite expectation

(6.2.12) Eε
(
Bαε(hj)

)
≤ C(1 + |j|)2

∫ T0

0

∫ T0

0

dsdt

(
|t− s|2−γ +

1

µε
|t− s|1−γ1|t−s|>αε

)
.

Setting now γ = 7/3, we get an upper bound uniform with respect to ε for αε = µ
−7/3
ε

(6.2.13) Eε
(
Bαε(hj)

)
≤ C(1 + |j|)2

(
1 +

α2−γ
ε

µε

)
≤ C ′(1 + |j|)2 .

From Proposition 6.2.4, a large modulus of continuity of t 7→ ζεt (hj) induces a deviation of the random

variable Bαε(hj). This implies that on average

Pε
(∑

j

1

(1 + |j|2)k
sup
|s−t|≤δ
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′)

≤ Pε
(∑

j

1

(1 + |j|2)k
sup

|s−t|≤2αε
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′

16

)
+ Pε

(∑
j

√
Bαε(hj)

(1 + |j|2)k
≥ δ′

C δ
γ
2−1

)
.

(6.2.14)

The first term in (6.2.14) tends to 0 by Lemma 6.2.5 and the second one can be estimated by the

Markov inequality and by the upper bound (6.2.13), along with the Cauchy-Schwarz inequality

Pε
(∑

j

√
Bαε(hj)

(1 + |j|2)k
≥ δ′

C δ
γ
2−1

)
≤ C1

δγ−2

δ′2

∑
j

1

(1 + |j|2)k
Eε
(
Bαε(hj)

)
≤ C2

δ′2
δγ−2 ,

for some constants C1, C2 and k large enough. As γ = 7/3, the limit (6.2.8) holds and Proposition 6.2.3

is proved.

6.2.3. Averaged time continuity. — We prove now Lemma 6.2.6. Denoting

H(z([0, t])) := h(z(t))− h(z(s)) ,

the moments can be recovered by taking derivatives of the exponential moments

(6.2.15) Eε
((
ζεt (h)− ζεs (h)

)4)
=

(
∂4

∂λ4
Eε
(
exp

(
iλ
〈〈
ζε, H

〉〉)))
|λ=0

.

We recall from Proposition 2.1.3 that

logEε
(
exp

(
iλ
〈〈
ζε, H

〉〉))
= µε

∞∑
n=1

1

n!
fεn,[0,t]

((
e

iλH√
µε − 1

)⊗n)−√µε iλF ε1 (H) = O(λ2).
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Thus expanding the exponential moment at the 4th order leads to

Eε
(
exp

(
iλ
〈〈
ζε, H

〉〉))
=1 + µε

∞∑
n=1

1

n!
fεn,[0,t]

((
e

iλH√
µε − 1

)⊗n)−√µεiλF ε1 (H)

− λ4

2

(
1

2
fε1,[0,t]

(
H2
)

+
1

2
fε2,[0,t]

(
(H)⊗2

))2

+ o(λ4) .

The fourth moment can be recovered by taking the 4th derivative with respect to λ

(6.2.16)

E
((
ζεt (h)− ζεs (h)

)4)
= 3

(
fε1,[0,t]

(
H2
)

+ fε2,[0,t]
(
H⊗2

))2

+
1

µε

4∑
n=1

∑
κ1+···+κn=4

Cκ f
ε
n,[0,t](H

κ1 ⊗ · · · ⊗Hκn)

denoting abusively by fεn,[0,t] the n-linear form obtained by polarization. Point 3. of Theorem 10

applied with δ = t− s implies

(6.2.17)
∣∣∣fε1,[0,t] (H2

)
+ fε2,[0,t]

(
H⊗2

)∣∣∣ ≤ C (‖∇h‖∞ + ‖h‖∞) ‖h‖∞ |t− s| (t+ ε) .

Furthermore for any κ1 + · · ·+ κn = 4, Point 3. of Theorem 10 implies also∣∣∣fεn,[0,t](Hκ1 ⊗ · · · ⊗Hκn)
∣∣∣ ≤ C ‖h‖3∞ (t+ ε)3(t− s)(‖∇h‖∞ + ‖h‖∞) .

Combined with (6.2.16), this leads to

(6.2.18) E
((
ζεt (h)− ζεs (h)

)4) ≤ C(t+ ε)2‖h‖2∞(‖∇h‖2∞ + ‖h‖2∞) |t− s|
(
|t− s|+ t+ ε

µε

)
.

This concludes the proof of Lemma 6.2.6.

Remark 6.2.7. — Notice that since the assumption (8.0.3) is satisfied, the norms ‖h exp(−β0v
2/4)‖L∞

and ‖∇h exp(−β0v
2/4)‖L∞ could have been used instead of ‖h‖L∞ and ‖∇h‖L∞ .

6.2.4. Control of small time fluctuations. — We are now going to prove Lemma 6.2.5 by lo-

calizing the estimates into short time intervals. For this divide [0, T0] into overlapping intervals Ii :=

[iαε, (i+ 2)αε] of size 2αε. Define also the set of trajectories such that at least two distinct collisions

occur in the particle system during the time interval Ii

(6.2.19) Ai :=
{

At least two collisions occur in the Newtonian dynamics {zε`(t)}`≤N during Ii

}
.

We are going to show that the probability of A = ∪iAi vanishes in the limit

(6.2.20) lim
ε→0

Pε(A) = 0.

Assuming the validity of (6.2.20) for the moment, let us first conclude the proof of Lemma 6.2.5 by

restricting to the event Ac. By construction for any trajectory in Ac, there is at most one collision

during each time interval Ii. Then, except for at most 2 particles, the particles move in straight lines

as their velocities remain unchanged and it is enough to track the variations of the test functions with
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respect to the positions. Thus, for any t, s in Ii and a smooth function hj , we get

√
µε
(
ζεt
(
hj
)
− ζεs

(
hj
))

=

N∑
`=1

(
hj
(
zε`(t)

)
− hj

(
zε`(s)

))
− µε

∫
dz
(
F ε1 (t, z)− F ε1 (s, z)

)
hj(z)

=

N∑
`=1

∫ t

s

du vε`(u) · ∇hj
(
zε`(u)

)
− µε

∫
dz
(
F ε1 (t, z)− F ε1 (s, z)

)
hj(z) +O(‖hj‖∞) ,

where the error occurs from the fact that at most two particles may have collided in the time inter-

val [s, t] ⊂ Ii. Using the Duhamel formula, the particle density (at fixed ε) can be also estimated by

the free transport up to small corrections which may occur from the collision operator Cε1,2F
ε
2

µε

∫
dz
(
F ε1 (t, z)− F ε1 (s, z)

)
hj(z) = µε

∫ t

s

du

∫
dzF ε1 (u, z) v · ∇hj(z) + µεαεO(‖hj‖∞) .(6.2.21)

Recall that µεαε → 0 when µε tends to infinity. Setting h̄j(z) := v · ∇hj(z), the time difference can

be rewritten for any trajectory in Ac as a time integral

ζεt
(
hj
)
− ζεs

(
hj
)

=
1√
µε

∫ t

s

du

(
µε〈πεu, h̄j〉 − µε

∫
F ε1 (u, z)h̄j(z)dz

)
+

1√
µε
O(‖hj‖∞)(6.2.22)

=

∫ t

s

du ζεu(h̄j) +
1√
µε
O(‖hj‖∞) .

Thus thanks to (6.2.22), we get

U := Pε

Ac⋂
∑

j

1

(1 + |j|2)k
sup

|s−t|≤2αε
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′




≤ Pε

Ac⋂
∑

j

1

(1 + |j|2)k
sup
i≤ T0

αε

sup
s,t∈Ii

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′




≤ Pε

Ac⋂
∑

j

1

(1 + |j|2)k
sup
i≤ T0

αε

sup
s,t∈Ii

∣∣ ∫ t

s

du ζεu(h̄j)
∣∣2 ≥ δ′

2


 ,

where the error term in (6.2.22) was controlled by choosing k large enough and ε small enough so

that 1√
µε
� δ′/2. At this stage, the constraint Ac can be dropped and by the Bienaymé-Tchebichev

inequality there holds

U ≤
∑
j

1

δ′(1 + |j|2)k
Eε

 sup
i≤ T0

αε

sup
s,t∈Ii

∣∣ ∫ t

s

du ζεu(h̄j)
∣∣2(6.2.23)

≤
T0
αε∑
i=1

∑
j

1

δ′(1 + |j|2)k
Eε
(

sup
s,t∈Ii

∣∣ ∫ t

s

du ζεu(h̄j)
∣∣2) .

Using the Cauchy-Schwarz inequality and then the fact that t, s belong to Ii = [iαε, (i+ 1)αε], we get

(6.2.24)

Eε
(

sup
s,t∈Ii

∣∣ ∫ t

s

du ζεu(h̄j)
∣∣2) ≤ Eε

(
sup
s,t∈Ii

|t− s|
∫ t

s

du |ζεu(h̄j)|2
)

≤ αε
∫ (i+1)αε

iαε

du Eε
(
ζεu
(
h̄j
)2) ≤ c α2

ε(1 + |j|)3.
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In the last inequality, an argument similar argument to (6.2.18) leads to the control of the second

moment of ζεu
(
h̄j
)

by ‖h̄j‖2∞ ≤ c(1 + |j|)3 as h̄j = v · ∇xhj (see (6.2.2)).

Combining (6.2.23) and (6.2.24), we deduce that for k large enough

U ≤
T0
αε∑
i=1

∑
j

c α2
ε(1 + |j|)3

δ′(1 + |j|2)k
≤ C

δ′
αε

ε→0−−−→ 0.(6.2.25)

Thus to complete the proof of Lemma 6.2.5, it remains only to show (6.2.20), i.e. that the probability

concentrates on Ac. To the estimate the probability of the set Ai introduced in (6.2.19), we distinguish

two cases :

— A particle has at least two collisions during Ii. This event will be denoted by A1
i if the cor-

responding particle has label 1, and can be separated into two subcases: either particle 1

encounters two different particles during Ii, or it encounters the same one due to space period-

icity.

— Two collisions occur involving different particles. This event will be denoted by A1,2
i if the

corresponding particles are 1 and 2.

The occurence of two collisions in a time interval of length αε has a probability which can be estimated

by using Proposition 3.3.1 with n = 1, 2, which allows to reduce to an estimate on pseudo-trajectories

thanks to the Duhamel formula: noticing that the space-periodic situation leads to an exponentially

small contribution, since it forces the velocity of the colliding particles to be of order 1/αε, we find

(6.2.26) Pε (Ai) ≤ µεPε
(
A1
i

)
+ µ2

εPε
(
A1,2
i

)
≤ C

(
µε + µ2

ε

)
α2
ε ≤ Cαεµ−1/3

ε ,

where we used that αε = µ
−7/3
ε . Summing over the T0

αε
time intervals, we deduce that Pε (A) ≤

CT0µ
−1/3
ε . Thus the probability of A vanishes as ε tends to 0. This completes the proof of (6.2.20)

and thus of Lemma 6.2.5.

Remark 6.2.8. — Remark that the proof of Lemma 6.2.5 still holds for sequences of functions (hj)j≥1

satisfying

‖hj‖∞ � µ1/2
ε (1 + j2) , Eε

(
ζεu
(
v · ∇hj

)2) ≤ c (1 + |j|)3 .

6.3. The modified Garsia, Rodemich, Rumsey inequality

Proposition 6.2.4 is a slight adaptation of [75]. For simplicity we suppose that T0 = 1 and set

(6.3.1) Ba :=

∫ 1

0

∫ 1

0

dsdt Ψ

( |ϕt − ϕs|
p(|t− s|)

)
1|t−s|>a .

Step 1:

We are first going to show that there exists w,w′ ∈ [0, 2a] such that∣∣ϕ1−w′ − ϕw
∣∣ ≤ 8

∫ 1

0

Ψ−1

(
4Ba
u2

)
dp(u) ≤ 8(4Ba)1/b

∫ 1

0

d(u
γ
b )

u2/b
≤ C B1/b

a .(6.3.2)

Define

(6.3.3) Ba(t) =

∫ 1

0

ds Ψ

(
ϕt − ϕs
p(|t− s|)

)
1|t−s|>a with Ba =

∫ 1

0

dtBa(t).



6.3. THE MODIFIED GARSIA, RODEMICH, RUMSEY INEQUALITY 69

There is t0 ∈ (0, 1) such that Ba(t0) ≤ Ba. Suppose that t0 > 2a, then we are going to prove that

there is w ∈ [0, 2a] such that

(6.3.4)
∣∣ϕw − ϕt0∣∣ ≤ 4

∫ 1

a

Ψ−1

(
4Ba
u2

)
dp(u).

If t0 < 1− 2a, we can show the reverse inequality∣∣ϕ1−w′ − ϕt0
∣∣ ≤ 4

∫ 1

a

Ψ−1

(
4Ba
u2

)
dp(u).

Combining both inequalities, will be enough to complete (6.3.2).

Let us assume that t0 > 2a, we are going to build a sequence {tn, un}n
t0 > u1 > t1 > u2 > . . .

such that tn−1 > 2a and un is defined by

(6.3.5) p(un) =
1

2
p(tn−1), i.e. un =

1

24/γ
tn−1.

The sequence will be stopped as soon as tn < 2a.

Initially t0 > 2a and u1 is defined by (6.3.5). Suppose that the sequence has been built up to tn−1.

By construction

tn−1 − un =

(
1− 1

24/γ

)
tn−1 > a since tn−1 > 2a.

Thus ∫ un

0

ds Ψ

( |ϕtn−1 − ϕs|
p(|tn−1 − s|)

)
=

∫ un

0

ds Ψ

( |ϕtn−1 − ϕs|
p(|tn−1 − s|)

)
1|tn−1−s|>a ≤ Ba(tn−1).

Furthermore ∫ un

0

dtBa(t) ≤ Ba,

thus there is tn ∈ [0, un] such that

Ba(tn) ≤ 2Ba
un

and Ψ

( |ϕtn−1 − ϕtn |
p(|tn−1 − tn|)

)
≤ 2Ba(tn−1)

un
≤ 4Ba
un−1 un

≤ 4Ba
u2
n

.

We deduce that

|ϕtn−1 − ϕtn | ≤ Ψ−1

(
4Ba
u2
n

)
p(|tn−1 − tn|) ≤ Ψ−1

(
4Ba
u2
n

)
p(tn−1).

Suppose that tn > 2a then using that

un > tn ⇒ p(un) > p(tn) = 2p(un+1),

we get

p(tn−1) = 2p(un) = 4
(
p(un)− p(un)/2

)
≤ 4
(
p(un)− p(un+1)

)
and also

(6.3.6) |ϕtn−1
− ϕtn | ≤ 4Ψ−1

(
4Ba
u2
n

)(
p(un)− p(un+1)

)
≤ 4

∫ un

un+1

Ψ−1

(
4Ba
u2

)
dp(u).

We then iterate the procedure to define tn+1.

If tn < 2a, we set w = tn and we stop the procedure at step n with the inequality

(6.3.7) |ϕtn−1
− ϕw| = |ϕtn−1

− ϕtn | ≤ 4

∫ un

0

Ψ−1

(
4Ba
u2

)
dp(u),
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where we used that

p(tn−1) = 2p(un) ≤ 4
(
p(un)− p(0)

)
.

Summing the previous inequalities of the form (6.3.6), we deduce (6.3.4) from

(6.3.8) |ϕt0 − ϕw| ≤
n∑
i=1

|ϕti−1
− ϕti | ≤ 4

∫ u1

0

Ψ−1

(
4Ba
u2

)
dp(u).

This completes the proof of (6.3.2).

Step 2: proof of (6.2.7).

We are going to proceed by a change of variables. Given x < y such that y − x > 4a, we set

py−x(u) = p((y − x)u) and ψt = ϕ(x+ (y − x)t)

B
(ψ)
a

y−x
=

∫ 1

0

∫ 1

0

dsdt Ψ

( |ϕt − ϕs|
py−x(|t− s|)

)
1{|t−s|> a

|y−x|}

=
1

|y − x|2
∫ y

x

∫ y

x

ds′dt′ Ψ

( |ψt′ − ψs′ |
p(|t′ − s′|)

)
1{|t′−s′|>a} ≤

Ba
|y − x|2 .

Applying (6.3.2) to the function ψ, there exists w,w′ ∈ [0, 2a] such that

∣∣ψ1− w′
y−x
− ψ w

y−x

∣∣ ≤ 8

∫ 1

0

Ψ−1

4B
(ψ)
a

y−x

u2

 dpy−x(u) ≤ 8

∫ 1

0

Ψ−1

(
4Ba

|y − x|2u2

)
dpy−x(u).

Changing again variables, we get for some constant C depending only on γ, b∣∣ϕy−w′ − ϕx+w

∣∣ ≤ 8 (y − x)
γ
b−

2
b

∫ 1

0

Ψ−1

(
4Ba
u2

)
dp(u) ≤ CB1/b

a (y − x)
γ−2
b .

By bounding
∣∣ϕy−ϕy−w′ ∣∣ and

∣∣ϕx+w−ϕy
∣∣ by the supremum of the local fluctuations in a time interval

less than 2a, we conclude to (6.2.7). The proposition is proved.

6.4. Spohn’s formula for the covariance

For the sake of completeness, we are going to show that the covariance Ĉ of the Ornstein-Uhlenbeck

process computed in (6.1.4) coincides with the formula obtained by Spohn in [67] and recalled below

in (6.4.1). Formula (6.4.1) is striking as the recollision operator R1,2 emphasizes the contribution to

the covariance of the recollisions in the microscopic dynamics.

Proposition 6.4.1. — Recall that U(t, s) stands for the semi-group associated with the time depen-

dent operator Lτ for τ between times s < t. Given two times t ≥ s, there holds

C(s, t, ϕ, ψ) =

∫
dz U∗(t, s)ψ(z) ϕ(z) f(s, z)(6.4.1)

+

∫ t

0

dτ

∫
dxdvdwR1,2 (f(τ), f(τ)) (x, v, w) (U∗(t, τ)ψ) (x, v) (U∗(s, τ)ϕ) (x,w) ,

where the recollision operator R1,2 is defined by

(6.4.2) R1,2(g, g)(z1, z2) :=

∫ (
g(z′1)g(z′2)− g(z1)g(z2)

)
dµz1,z2(ω) .
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Proof. — The covariance at time t = s = 0 is indeed given by

E (ζ0(ϕ)ζ0(ψ)) =

∫
dzϕ(z)f0ψ(z) =

∫
dzϕ(z)ψ(z)f(0, z) .

We will simply derive (6.4.1) when s = t and the case s < t can be easily deduced. The covariance Covt
introduced in (5.5.3) can be rewritten in terms of the operator Σt

(6.4.3) Σtψ(z1) := −
∫
dµz1(z2, ω)

[
f(t, z1)f(t, z2) + f(t, z′1)f(t, z′2)

]
∆ψ ,

with the notation dµz1 as in (1.2.2) and ∆ψ as in (6.0.4). Indeed, one can check that for any functions

ϕ,ψ, the covariance can be recovered as follows∫
ϕΣtψ(z1)dz1 = −1

2

∫
dµ(z1, z2, ω)

[
f(t, z1)f(t, z2) + f(t, z′1)f(t, z′2)

]
∆ψ(ϕ(z1) + ϕ(z2))

=
1

2

∫
dµ(z1, z2, ω)f(t, z1)f(t, z2)(∆ψ)(∆ϕ) = Covt(ϕ,ψ) .

The covariance Ĉ of the Ornstein-Uhlenbeck process computed in (6.1.4) reads

(6.4.4)

C(t, t, ϕ, ψ) =

∫
dz1 U∗(t, 0)ψ(z1) f0 U∗(t, 0)ϕ(z1) +

∫ t

0

du

∫
dz1 ϕ(z1)

[
U(t, u) Σu U∗(t, u)ψ

]
(z1) .

The following identity is the key to identify (6.4.4) and (6.4.1)

(6.4.5) Σtϕ(z1) = −
(
ftL∗t + Ltft

)
ϕ(z1) + ∂tf(t, z1)ϕ(z1) +

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)ϕ(z2) .

Let us postpone for a while the proof of this identity and complete first the proof of (6.4.1).

Replacing the expression (6.4.5) of Σu in the second line of (6.4.4) and recalling that U(t, t)ϕ = ϕ, we

get that∫ t

0

du

∫
dz1 ϕ(z1)

[
U(t, u) Σu U∗(t, u)ψ

]
(z1)

=

∫ t

0

du

∫
dz1 ϕ(z1)

[
U(t, u)

(
−
(
Lufu + fuL∗u

)
+ ∂uf(u)

)
U∗(t, u)ψ

]
(z1)

+

∫ t

0

du

∫
dz1dz2 U∗(t, u)ϕ(z1) R1,2

(
f(u), f(u)

)
(z1, z2) U∗(t, u)ψ(z2) .

Noticing that the time derivative is given by

∂u

[
U(t, u) fu U∗(t, u)

]
= U(t, u)

(
−
(
Lufu + fuL∗u

)
+ ∂uf(u)

)
U∗(t, u) ,

we conclude that∫ t

0

du

∫
dz1 ϕ(z1)

[
U(t, u) Σu U∗(t, u)ψ

]
(z1) =

∫
dz1

(
ϕ(z1) ftψ(z1)− ϕ(z1) U(t, 0)f0 U∗(t, 0)ψ(z1)

)
+

∫ t

0

du

∫
dz1dz2 U∗(t, u)ϕ(z1) R1,2

(
f(u), f(u)

)
(z1, z2) U∗(t, u)ψ(z2) .

Finally the covariance (6.4.4) reads

C(t, t, ϕ, ψ) =

∫
dzϕ(z) ftψ(z) +

∫ t

0

du

∫
dz1dz2 U∗(t, u)ϕ(z1)R1,2

(
f(u), f(u)

)
(z1, z2) U∗(t, u)ψ(z2) .
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This completes the proof of Proposition 6.4.1. It remains then to establish the identity (6.4.5). Let us

write the decomposition Σt = Σ+
t + Σ−t with

Σ+
t ψ(z1) := −

∫
dµz1(z2, ω)f(t, z′1)f(t, z′2)∆ψ , Σ−t ψ(z1) := −

∫
dµz1(z2, ω)f(t, z1)f(t, z2)∆ψ .

Recall that L∗T was computed in (6.1.3). We get

f(t)L∗tϕ(z1) = f(t) v1 · ∇ϕ(z1) +

∫
dµz1(z2, ω)f(t, z1)f(t, z2)∆ϕ = f(t) v1 · ∇ϕ(z1)− Σ−t ϕ(z1) .

and

Ltf(t)ϕ(z1) = −v1 · ∇[f(t)ϕ](z1) +

∫
dµz1(z2, ω)

(
f(t, z′1)f(t, z′2)

(
ϕ(z′1) + ϕ(z′2)

)
− f(t, z1)f(t, z2)

(
ϕ(z2) + ϕ(z1)

))
= −v1 · ∇[f(t)ϕ](z1) +

∫
dµz1(z2, ω)

(
f(t, z′1)f(t, z′2)∆ϕ

+
[
f(t, z′1)f(t, z′2)− f(t, z1)f(t, z2)

](
ϕ(z1) + ϕ(z2)

))
= −v1 · ∇[f(t)ϕ](z1)− Σ+

t ϕ(z1) +

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)

(
ϕ(z1) + ϕ(z2)

)
,

where we used the notation (6.4.2). As a consequence, we get that

f(t)L∗tϕ(z1) + Ltf(t)ϕ(z1) = −ϕ v1 · ∇f(t, z1)− Σtϕ(z1) +

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)

(
ϕ(z1) + ϕ(z2)

)
.

As f solves the Boltzmann equation, we have

∂tf(t, z1) = −v1 · ∇f(t, z1) +

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2) .

This leads to further simplifications as

f(t)L∗tϕ(z1) + Ltf(t)ϕ(z2) = ϕ ∂tf(t, z1)− Σtϕ(z1) +

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)ϕ(z2) ,

thus (6.4.5) holds. Proposition 6.4.1 is proved.



CHAPTER 7

LARGE DEVIATIONS

This chapter is devoted to the study of large deviations, and to the proof of Theorem 3. We are going

to evaluate the probability of an atypical event, namely that the empirical measure remains close to

a probability density ϕ (which is different from the solution to the Boltzmann equation f) during a

short time interval.

It is well known, see e.g. [22, 25], that the large deviation functional can be deduced from the ex-

ponential moments by Legendre transform. We recall the definition (5.3.2) of the limiting cumulant

generating function

I(t, g) := Λ[0,t](e
g(t)−

∫ t
0
Dsg) = lim

µε→∞
Λε[0,t](e

g(t)−
∫ t
0
Dsg) ,(7.0.1)

which is well defined (see Theorem 5) in the set

(7.0.2)

Bα :=
{
g ∈ C1([0, Tα]× D;C) : |g(t, z)| ≤ (1− t

2Tα
)(α+

β0

8
|v|2) ,

sup
s∈[0,Tα]

|Dsg(s, z)| ≤ 1

2Tα
(α+

β0

8
|v|2)

}
,

as long as t ≤ Tα. The Legendre transform of I defines implicitly the large deviation functional

(see (7.0.8) below), and one of the goals of this chapter is to identify it with the following functional,

as previously conjectured by Rezakhanlou [63] and Bouchet [16]:

F̂(t, ϕ) := F̂(0, ϕ0) + sup
p

{〈〈
p,Dϕ

〉〉
−
∫ t

0

H
(
ϕ(s), p(s)

)
ds

}
,(7.0.3)

where the supremum is taken over bounded measurable functions p on [0, t]×D, and the Hamiltonian

is given by

(7.0.4) H(ϕ, p) :=
1

2

∫
dµ(z1, z2, ω)ϕ(z1)ϕ(z2)

(
exp

(
∆p
)
− 1
)
.

We have denoted as in (6.2.1) the duality on [0, t]× D by〈〈
ϕ,ψ

〉〉
:=

∫ t

0

ds

∫
D
dz ϕ(s, z) ψ(s, z) .

We will be able to prove that F̂ describes indeed the large deviations only for a restricted class of

functions, constructed as follows. Consider the biased Boltzmann equation already introduced in
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(1.4.6) :

Dϕ =

∫ (
ϕ(z′)ϕ(z′2) exp(−∆p)− ϕ(z)ϕ(z2) exp(∆p)

)
dµz(z2, ω) with ϕ(0) = f0ep(0) ,(7.0.5)

where p is a Lipschitz function in space and time, and define for any r, T > 0 the set

(7.0.6)
Rr,T :=

{
ϕ : [0, T ]× D 7→ R+ : ϕ is a strong solution of (7.0.5) on [0, T ] for some p

such that ‖p‖W 1,∞([0,T ]×D) < r
}
.

We shall prove the following theorem in Section 7.1 :

Theorem 8. — For any r > 0, there is α > 0 (depending on r, C0 and β0), and a time T ∈ (0, Tα]

(recalling that Tα is defined in Theorem 5) such that

(7.0.7) ∀ϕ ∈ Rr,T , ∀t ≤ T , F̂(t, ϕ) = F(t, ϕ) ,

where F is the Legendre transform of I

(7.0.8) F(t, ϕ) := sup
g∈Bα

{
−
〈〈
ϕ,Dg

〉〉
+ 〈ϕ(t), g(t)〉 − I(t, g)

}
.

Building on Theorem 5 and standard methods of the large deviation theory [22], we shall then prove

the following large deviation principle in Section 7.3.

Theorem 9. — Consider a system of hard spheres initially distributed according to the grand canonical

measure (1.1.6) where f0 satisfies (1.1.5). Let r > 0 be fixed, and the associate parameters α > 0

and T > 0 of Theorem 8. In the Boltzmann-Grad limit µε → ∞, the empirical measure satisfies the

following large deviation estimates :

— For any closed set F ⊂ D([0, T ],M(D)),

lim sup
µε→∞

1

µε
logPε (πε ∈ F) ≤ − inf

ϕ∈F
F(T, ϕ) .(7.0.9)

— For any open set O ⊂ D([0, T ],M(D)),

lim inf
µε→∞

1

µε
logPε (πε ∈ O) ≥ − inf

ϕ∈O∩Rr,T
F(T, ϕ) .(7.0.10)

7.1. Identification of the large deviation functional

In this section, we prove Theorem 8. From now on, we fix a real number r > 0. The main step

of the proof will be to provide a more explicit formula for I(t, g) by using that the Hamilton-Jacobi

equation (5.3.9) has a unique solution.

7.1.1. Mild solutions of the Hamilton-Jacobi equation. — For any α > 0, fix a function g

in Bα. At the formal level, the Hamilton-Jacobi equation (5.3.9) states that for any t ∈ [0, Tα]

(7.1.1) ∂tI(t, g) = H
(∂I(t, g)

∂g(t)
, g(t)

)
with H

(
ϕ, p

)
=

1

2

∫
ϕ(z1)ϕ(z2)

(
e∆p − 1

)
dµ(z1, z2, ω) ,

with initial condition

(7.1.2) I(0, g) =
〈
f0, (eg(0) − 1)

〉
.



7.1. IDENTIFICATION OF THE LARGE DEVIATION FUNCTIONAL 75

As noticed before, all the limiting cumulants at time 0, except the first one, equal zero so that I(0, g)

coincides with the exponential moment of independent variables distributed according to f0 and tilted

by the function g(0).

We would like to use a method of characteristics to obtain a mild solution Î(t, g) of (7.1.1)-(7.1.2).

Given t in [0, Tα], define the Hamiltonian system on the time interval [0, t]

Dsϕt =
∂H
∂p

(ϕt, pt) , with ϕt(0) = f0ept(0) ,(7.1.3)

Ds(pt − g) = −∂H
∂ϕ

(ϕt, pt) , with pt(t) = g(t) .(7.1.4)

The subscript t stresses the fact that the functions ϕt(s), pt(s) depend on t. As customary, the boundary

conditions are prescribed in terms of the initial time (for (7.1.3)) and the final time t (for (7.1.4)).

The condition (7.1.3) is identical to the biased Boltzmann equation (7.0.5) used to define Rr,T . Note

that (7.1.4) reads

Ds(pt − g) = −
∫
ϕt(z2)

(
exp(∆pt)− 1

)
dµz(z2, ω) with pt(t) = g(t) .(7.1.5)

The local well-posedness of the Hamiltonian equations (7.1.3)-(7.1.4) will be obtained by a Cauchy-

Kovalevskaya argument after recasting the system in more symmetric variables (see Section 7.2 and

Appendix A.4).

Let us now explain how the functions ϕt, pt can be used to build a more explicit representation of the

functional I. For g ∈ Bα and (ϕt, pt) solution to (7.1.3)-(7.1.4), define the action associated with the

Hamiltonian system (7.1.3)-(7.1.4) by

Î(t, g) := 〈f0, (ept(0) − 1)〉+
〈〈
Ds(pt − g), ϕt

〉〉
+

∫ t

0

H(ϕt(s), pt(s))ds .(7.1.6)

Proposition 7.1.1. — Let α > 0 and g ∈ Bα. Assume that the Hamiltonian system (7.1.3)-(7.1.4)

admits a unique continuous solution on [0, T ] for any forcing g̃ in a neighborhood of g in Bα. Denote

by (ϕt, pt) the solution on [0, T ] associated with g. Then the functional Î defined by (7.1.6) satisfies

the Hamilton-Jacobi equation (5.3.9) on [0, T ] and the following identities:

(7.1.7)
∂Î
∂g(t)

(t, g) = ϕt(t) ,
∂Î
∂Dg

(t, g) = −ϕt .

Proof. — Let us first compute the time derivative of Î(t, g) for a fixed function g

∂tÎ(t, g) =〈f0, ept(0)δpt(0)〉+ 〈Dt(pt − g)(t), ϕt(t)〉+H(ϕt(t), pt(t))(7.1.8)

+
〈〈
Dsδpt, ϕt

〉〉
+
〈〈
Ds(pt − g), δϕt

〉〉
+
〈〈
δϕt,

∂H
∂ϕ

(ϕt, pt)
〉〉

+
〈〈
δpt,

∂H
∂p

(ϕt, pt)
〉〉
,

where δ stands for the derivative with respect to the variations of the final time; for example

∀s ≤ t, δpt(s) = lim
u→0

pt+u(s)− pt(s)
u

·

In particular, we will prove that

(7.1.9) δpt(t) = −∂t(pt(t)− g(t)) = −Dt(pt(t)− g(t)) ,
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where the time derivative is only with respect to the argument s 7→ pt(s)−g(s). The first part of (7.1.9)

follows by

pt+u(t)− pt(t)
u

=
pt+u(t)− pt+u(t+ u) + pt+u(t+ u)− pt(t)

u

=
pt+u(t)− pt+u(t+ u) + g(t+ u)− g(t)

u
−−−→
u→0

−∂t(pt(t)− g(t)) ,

thanks to the boundary condition (ps−g)(s) = 0. Using once again the boundary condition, we deduce

that v · ∇x(pt − g)(t) = 0 so that the second equality in (7.1.9) is proved.

Integrating by parts the first term in the second line of (7.1.8), we get〈〈
Dsδpt, ϕt

〉〉
= −

〈〈
δpt, Dsϕt

〉〉
+ 〈δpt(t), ϕt(t)〉 − 〈δpt(0), ϕt(0)〉

= −
〈〈
δpt, Dsϕt

〉〉
− 〈Dt(pt(t)− g(t)), ϕt(t)〉 − 〈δpt(0), f0ept(0)〉 ,

where we used the boundary conditions ϕt(0) = f0ept(0) and the identity (7.1.9). From the equa-

tions (7.1.3)-(7.1.4), we deduce that the integral contributions of δpt and δϕt vanish. Therefore Î
satisfies the Hamilton-Jacobi equation

(7.1.10) ∂tÎ(t, g) = H(ϕt(t), pt(t)) .

The mild form (5.3.9) is then a consequence of identities (7.1.7) by time integration.

Let us now fix t and differentiate (7.1.6) with respect to g(t) and Dsg. The corresponding varia-

tions δg(t) and δDsg are independent. We get

∂Î(t, g) =〈f0, ept(0)δpt(0)〉+
〈〈
Dsδpt, ϕt

〉〉
−
〈〈
δDsg, ϕt

〉〉
+
〈〈
Ds(pt − g), δϕt

〉〉
+
〈〈
δϕt,

∂H
∂ϕ

(ϕt, pt)
〉〉

+
〈〈
δpt,

∂H
∂p

(ϕt, pt)
〉〉
.

By integration by parts and using the boundary conditions ϕt(0) = f0ept(0) and pt(t) = g(t), we obtain〈〈
Dsδpt, ϕt

〉〉
= −

〈〈
δpt, Dsϕt

〉〉
+ 〈δpt(t), ϕt(t)〉 − 〈δpt(0), ϕt(0)〉

= −
〈〈
δpt, Dsϕt

〉〉
+ 〈δg(t), ϕt(t)〉 − 〈δpt(0), f0ept(0)〉 .

Thus

∂Î(t, g) =〈f0, ept(0)δpt(0)〉 −
〈〈
δDsg, ϕt

〉〉
−
〈〈
δpt, Dsϕt

〉〉
+ 〈δg(t), ϕt(t)〉 − 〈δpt(0), f0ept(0)〉

+
〈〈
Ds(pt − g), δϕt

〉〉
+
〈〈
δϕt,

∂H
∂ϕ

(ϕt, pt)
〉〉

+
〈〈
δpt,

∂H
∂p

(ϕt, pt)
〉〉
.

Combining this identity and equations (7.1.3)-(7.1.4) to simplify the Hamiltonian contribution, this

completes the statement (7.1.7)

∂Î(t, g) = 〈δg(t), ϕt(t)〉 −
〈〈
δDsg, ϕt

〉〉
.

Proposition 7.1.1 is proved.

As a consequence of Theorem 7 page 46 and Proposition 7.1.1, the functionals I, Î are both solutions of

the Hamilton-Jacobi equation (7.1.1) and we are going to deduce that they coincide on some short time

interval. The proof of the following result is postponed to Section 7.2.1 as this requires to reparametrize

the Hamiltonian variables in order to show the uniqueness of the Hamilton-Jacobi equation.
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Proposition 7.1.2. — Let α > 0 be given. There exists a time T ?α > 0 such that the functional Î is

well defined on [0, T ?α]× Bα and the functionals I, Î coincide on [0, T ?α]× Bα:

I(t, g) = Î(t, g) for any t ≤ T ?α , g ∈ Bα .

7.1.2. Identification of the Legendre transform F . — In this section, we prove Theorem 8. Fix

a function ϕ̄ satisfying the biased Boltzmann equation (7.0.5) for some p̄ such that

(7.1.11) ‖p̄‖W 1,∞([0,T0]×D) < r .

Noticing that

∂H
∂p

(ϕ̄, p̄) =

∫ (
ϕ̄(z′)ϕ̄(z′2) exp(−∆p̄)− ϕ̄(z)ϕ̄(z2) exp(∆p̄)

)
dµz(z2, ω) ,

this biased Boltzmann equation can be rewritten in the more compact form (7.1.3) which we recall

Dtϕ̄ =
∂H
∂p

(ϕ̄, p̄) , with ϕ̄(0) = f0ep̄(0).(7.1.12)

By Appendix A.1 (see (A.1.4)), Equation (7.1.12) has a unique solution on [0, T0e
−5r] such that

(7.1.13) sup
t∈[0,T0e−5r]

∥∥∥ϕ̄(t) exp
(β0

4
|v|2
)∥∥∥
∞
≤ 4C0e

r .

We then set

T := min(T0e
−5r, T ?α) ,

with T ?α as in Proposition 7.1.2. Note that ϕ̄ is smooth, non-negative and that the conservation of

mass, momentum and energy are satisfied :

(7.1.14) 〈Dsϕ̄, 1〉 = 〈Dsϕ̄, vi〉 = 〈Dsϕ̄, |v|2〉 = 0 .

Remark 7.1.3. — It has been shown in [37, 4] that the functional F̂ is not relevant to describe

the large deviations of some functions ϕ which are weak solutions of the homogeneous Boltzmann

equation but do not conserve energy. Such functions are much more irregular than those in Rr,T (see

e.g. (7.1.14)), thus the counterexample in [37] does not contradict Theorem 8.

Equation (7.1.12) implies that p̄ is a critical point of the variational problem (7.0.3) on [0, T ], which

we recall:

F̂(t, ϕ̄) := F̂
(
0, ϕ̄(0)

)
+ sup

p

{〈〈
p,Dsϕ̄

〉〉
−
∫ t

0

H
(
ϕ̄(s), p(s)

)
ds

}
,

where the supremum is taken over bounded p on [0, t]×D. Indeed since ϕ̄ ≥ 0, the function p 7→ H(ϕ̄, p)

is convex and one can check that for any bounded p and for all t ∈ [0, T ],〈〈
p,Dsϕ̄

〉〉
−
∫ t

0

H
(
ϕ̄(s), p(s)

)
ds ≤

〈〈
p̄, Dsϕ̄

〉〉
−
∫ t

0

H
(
ϕ̄(s), p̄(s)

)
ds+

〈〈
p− p̄, Dsϕ̄−

∂H
∂p

(
ϕ̄, p̄

)〉〉
≤
〈〈
p̄, Dsϕ̄

〉〉
−
∫ t

0

H
(
ϕ̄(s), p̄(s)

)
ds ,

where the last term in the first inequality is equal to 0 thanks to (7.1.12) and the fact that p, p̄ are

bounded. The previous inequality implies that the supremum F̂ is reached at p̄:

∀t ∈ [0, T ] , F̂(t, ϕ̄) = F̂
(
0, ϕ̄(0)

)
+
〈〈
p̄, Dsϕ̄

〉〉
−
∫ t

0

H
(
ϕ̄(s), p̄(s)

)
ds .(7.1.15)
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We turn now to the analysis of F(t, ϕ̄). By the identification of I and Î in Proposition 7.1.2, the

variational problem (7.0.8) can be rewritten, for all t ≤ T ,

(7.1.16) F(t, ϕ̄) := sup
g∈Bα

{
−
〈〈
ϕ̄,Dsg

〉〉
+ 〈ϕ̄(t), g(t)〉 − Î(t, g)

}
.

Let us first build a critical point ḡ for this variational problem. Given p̄ satistfying (7.1.11) and ϕ̄

solving (7.1.12), we define ḡ as the solution of

(7.1.17) Dsḡ = Dsp̄+
∂H
∂ϕ

(ϕ̄, p̄) with ḡ(t) = p̄(t) .

By assumption (7.1.11) on p̄, we get∣∣Dsp̄
∣∣ ≤ (1 + |v|)‖p̄‖W 1,∞ ≤ (1 + |v|)r

and there holds ∣∣∣∣∂H∂ϕ (ϕ̄, p̄)

∣∣∣∣ =

∣∣∣∣∫ ϕ̄(z2)
(

exp(∆p̄)− 1
)
dµz(z2, ω)

∣∣∣∣
≤
∣∣∣∣∫ ϕ̄(z2)

∣∣∆p̄∣∣ exp
(∣∣∆p̄∣∣)dµz(z2, ω)

∣∣∣∣
≤ CC0r exp(5r)β

− d2
0

(
|v|+ β

− 1
2

0

)
,

where we used the weighted estimate (7.1.13) on ϕ̄ to control the divergence of the cross section. The

constant C is universal and depends only on the dimension. Thus we deduce from (7.1.17) that

(7.1.18)
∣∣Dsḡ(s, x, v)

∣∣ ≤ CC0r exp(5r)β
− d2
0

(
|v|+ β

− 1
2

0

)
+ (1 + |v|)r and

∣∣ḡ(t, x, v)
∣∣ ≤ r .

Given r > 0 which quantifies the size of the observables in the large deviation principle, the parameter α

is then chosen large enough by using the estimates (7.1.18) so that ḡ belongs to Bα. Note that the

larger α is chosen, the smaller Tα = c e−αβ
(d+1)/2
0 /C0 will be, and hence also the time of validity of

Theorem 8.

By construction ϕ̄ belongs to Rr,T and (ϕ̄, p̄, ḡ) satisfy the Hamiltonian system (7.1.3)-(7.1.4) on [0, T ],

so from Proposition 7.1.1, the following holds

∂Î
∂g(t)

(t, ḡ) = ϕ̄(t) ,
∂Î
∂Dg

(t, ḡ) = −ϕ̄ .

This implies that ḡ is a critical point of

(7.1.19) (g(t), Dsg) 7→ −
〈〈
ϕ̄,Dsg

〉〉
+ 〈ϕ̄(t), g(t)〉 − Î(t, g) .

Since Î(t, g) = I(t, g) = Λ[0,t]

(
eg(t)−

∫ t
0
Dsg
)

is strictly convex with respect to (g(t), Dg), the supremum

in (7.1.16) is reached at ḡ. Thus

F(t, ϕ̄) = 〈ϕ̄(t), ḡ(t)〉 −
〈〈
ϕ̄,Dsḡ

〉〉
− Î(t, ḡ)(7.1.20)

= 〈ϕ̄(t), ḡ(t)〉 − 〈f0, (ep̄(0) − 1)〉 −
〈〈
Dsp̄, ϕ̄

〉〉
−
∫ t

0

H(ϕ̄(s), p̄(s))ds ,

where Î(t, ḡ) is replaced by its explicit representation (7.1.6) in the second line. As ḡ(t) = p̄(t)

and ϕ̄(0) = f0ep̄(0), an integration by parts leads to

F(t, ϕ̄) = 〈ϕ̄(0), p̄(0)〉+ 〈f0 − ϕ̄(0)〉+
〈〈
p̄, Dsϕ̄

〉〉
−
∫ t

0

H(ϕ̄(s), p̄(s))ds .
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As the initial large deviation functional is given by

F̂(0, ϕ(0)) =
〈
ϕ0 log

(
ϕ0

f0

)
− ϕ0 + f0

〉
and F̂(t, ϕ̄) by (7.1.15), this shows that F(t, ϕ̄) = F̂(t, ϕ̄) on [0, T ]. The proof of Theorem 8 is

complete, provided that we can construct solutions of the Hamiltonian equations to define Î, and

prove the uniqueness of solutions to the Hamilton-Jacobi equation.

7.2. Symmetrization of the Hamiltonian system: proof of I = Î

This section is devoted to the proof of Proposition 7.1.2.

In order to prove the two missing statements, i.e. the local well-posedness of the Hamiltonian equa-

tions (7.1.3)-(7.1.4), and the uniqueness for the Hamilton-Jacobi equation (5.3.9), the idea is to apply

Theorem A.1, which requires to define suitable functional settings in which we have loss continuity

estimates of the type (A.0.2).

To do so, it will be convenient to reparametrize the Hamiltonian variables and instead of p, ϕ to

consider

(7.2.1) (ψ, η) := (ϕe−p, ep) .

In these new variables, the Hamiltonian (7.0.4) is rewritten in a more symmetric form

H′(ψ, η) :=
1

2

∫
ψ(z1)ψ(z2)

(
η(z′1)η(z′2)− η(z1)η(z2)

)
dµ(z1, z2, ω)(7.2.2)

= −1

4

∫ (
ψ(z′1)ψ(z′2)− ψ(z1)ψ(z2)

)(
η(z′1)η(z′2)− η(z1)η(z2)

)
dµ(z1, z2, ω).

7.2.1. Uniqueness for the Hamilton-Jacobi equation. — Consistently we characterize g using

the variables γ(s) := eg(s) and φ(s) := Dsg(s) which are related by the continuity equation

(7.2.3) ∀s ≤ t , Dsγ(s)− φ(s)γ(s) = 0 .

The functional I(t, g) becomes then

J (t, φ, γ) := Λ[0,t]

(
γe−

∫ t
0
φ
)

(7.2.4)

and the Hamilton-Jacobi equation (5.3.9) can be rewritten in terms of the new Hamiltonian H′

(7.2.5) J (t) = J (0) +

∫ t

0

F (J (s)) ds ,

when φ and γ(t) are related by (7.2.3) and where

F
(
J (s, φ, γ(s))

)
:= H′

(
∂J
∂γ

(φ, γ(s)), γ(s)

)
=

1

2

∫
∂J
∂γ

(φ, γ(s))(z1)
∂J
∂γ

(φ, γ(s))(z2)
(
γ(s, z′1)γ(s, z′2) − γ(s, z1)γ(s, z2)

)
dµ(z1, z2, ω) ,

with initial condition (7.1.2)

(7.2.6) J (0, 0, γ(0)) = 〈f0, (γ(0)− 1)〉 .
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Inspired by Appendix A, we define the scale of function spaces

Bα,β,t :=
{

(φ, γ) ∈ C0([0, t]× D;C)× C0(D;C) : |γ(x, v)| ≤ exp
((

1− t

2Tα

)
(α+

β

8
|v|2)

)
,

sup
s∈[0,t]

|φ(s, x, v)| ≤ 1

2Tα
(α+

β

8
|v|2)

}
.

Finally let us set

(7.2.7) ‖J (t)‖α,β := sup
(φ,γ)∈Bα,β,t

∣∣J (t, φ, γ)
∣∣ .

Proposition 7.2.1. — Let α0 > 0 be given. There exists THJ
α0
∈ (0, Tα0 ] such that the Hamilton-

Jacobi equation (7.2.5) has locally a unique solution J in [0, THJ
α0

], in the class of functionals which

satisfy:

— for any 0 ≤ α < α′ ≤ α0, 0 ≤ β < β′ ≤ β0, t ∈ [0, Tα0 ] and (φ, γ) ∈ Bα,β,t

(7.2.8)
∥∥∥∂J (t, φ, γ)

∂γ

∥∥∥
M
(

(1+|v|) exp
((

1− t
2Tα̂

)
(α+ β

8 |v|2)
)
dxdv

) ≤ C
(

1

α′ − α +
1

β′ − β

)
‖J (t)‖α′,β′ ;

— the derivative
∂J (t, φ, γ)

∂γ
is a continuous function on D, and there is a constant C such that

for any (φ, γ) ∈ Br,Tα0
,

(7.2.9) ∀t ≤ Tα0
,

∥∥∥∂J (t, φ, γ)

∂γ
(1 + |v|) exp(

β0

8
|v|2)

∥∥∥
C0(D)

≤ C .

Proof. — According to Theorem A.1, there is a unique solution to (7.2.5) provided that for all 0 ≤
α < α′ ≤ α0, 0 ≤ β < β′ ≤ β0

(7.2.10) ‖F (J (t))− F (J ′(t))‖α,β ≤ C
(

1

α′ − α +
1

β′ − β

)
‖(J − J ′)(t)‖α′,β′ .

It suffices to prove that (7.2.10) holds if J satisfies (7.2.8)-(7.2.9). Let us write

F (J )− F (J ′) =
1

2

∫
∂(J − J ′)

∂γ
(s, φ, γ(s))(z1)

∂(J + J ′)
∂γ

(s, φ, γ(s))(z2)

×
(
γ(s, z′1)γ(s, z′2) − γ(s, z1)γ(s, z2)

)
dµ(z1, z2, ω) .

If (φ, γ) belongs to Bα,β,t then

∀s ≤ t ,
∣∣γ(s, x, v)

∣∣ ≤ exp
((

1− s

2Tα

)(
α+

β

8
|v|2)

)
,

so we deduce that for any α′, β′ with 0 ≤ β < β′ ≤ β0, 0 ≤ α < α′ ≤ α0∣∣∣F (J (s))− F (J ′(s))
∣∣∣ ≤ C∥∥∥∂(J (s, φ, γ)− J ′(s, φ, γ)

)
∂γ

∥∥∥
M
(

(1+|v|) exp
((

1− s
2Tα0

)
(α+ β

8 |v|2)
)
dxdv

)
×
∥∥∥∂(J (s, φ, γ) + J ′(s, φ, γ)

)
∂γ

(1 + |v|) exp(
β0

8
|v|2)

∥∥∥
C0(D)

≤ C
(

1

α′ − α +
1

β′ − β

)
‖J (s)− J ′(s)‖α′,β′

where C is a generic constant depending only on α0, β0. Taking the supremum on all couples (φ, γ)

in Bα,β,t, we obtain that∥∥∥F (J (s))− F (J ′(s))
∥∥∥
α,β
≤ C

(
1

α′ − α +
1

β′ − β

)∥∥∥J (s)− J ′(s)
∥∥∥
α′,β′

.
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Proposition 7.2.1 is proved.

Having in mind to use the uniqueness criterion of Proposition 7.2.1 to establish Proposition 7.1.2, we

now need to rewrite I and Î in the new variables and to prove some regularity estimates.

7.2.2. Regularity of the limiting cumulant generating function J . —

Proposition 7.2.2. — Let α0 > 0 be fixed. For t ≤ Tα0 , the functional J (t, φ, γ) defined by (7.2.4)

is an analytic function of γ, on Bα0,t. For any α′ ∈]α, α0], β′ ∈]β, β0] and all (φ, γ) ∈ Bα,β,t, the

derivative
∂J (t, φ, γ)

∂γ
satisfies the loss continuity estimate (7.2.8). Moreover, the derivative

∂J (t, φ, γ)

∂γ
is a continuous function on D satisfying the estimate (7.2.9).

Proof. — Thanks to (5.3.6) we find that
∂J (t, φ, γ)

∂γ
is a function on D, for which we are going to

establish properties (7.2.8) and (7.2.9).

Step 1. Proof of (7.2.8). Let (φ, γ) be in Bα,β,t and let Υ be a continuous function on D satisfying

|Υ(x, v)| ≤ (1 + |v|) exp
((

1− t

2Tα0

)
(α+

β

8
|v|2)

)
.

It is easy to check that for a suitable choice of λ > 0, the couple (φ, γ + λeiθΥ) belongs to Bα′,β′,t.
Indeed it suffices to notice that∣∣∣γ + λeiθΥ

∣∣∣ < (1 + λ(1 + |v|)
)

exp
((

1− t

2Tα0

)
(α+

β

8
|v|2)

)
≤ exp

((
1− t

2Tα0

)
(α+

β

8
|v|2) + 2λ+

λ

2
|v|2
)

≤ exp
((

1− t

2Tα0

)
(α′ +

β′

8
|v|2)

)
,

provided that λ ≤ min
(α′ − α

4
,
β′ − β

4

)
. Then by analyticity, choosing λ = min

(α′ − α
4

,
β′ − β

4

)
,

the derivative can be estimated by a contour integral∫
D
dz
∂J (t, φ, γ)

∂γ
(z) Υ(z) =

1

2πλ

∫ 2π

0

J
(
t, φ, (γ + λeiθΥ)

)
e−iθdθ ,

and we conclude that for all (φ, γ) in Bα,β,t,∥∥∥∂J (t, φ, γ)

∂γ

∥∥∥
M
(

(1+|v|) exp
((

1− t
2Tα0

)
(α+ β

8 |v|2)
)) ≤ C

(
1

α′ − α +
1

β′ − β

)
‖J (t)‖α′,β′ .

This completes (7.2.8).

Step 2. Proof of (7.2.9). For the second estimate, we use the series expansion (5.3.6). The mea-

sure µsing,T̃ is invariant under global translations, and since Υ depends only on one variable in D, (5.3.6)

still makes sense if exp(−β0

8 |v|2)Υ is only a measure. Up to changing the parameter of the weights, we

get the result.

Proposition 7.2.2 is proved.
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7.2.3. Definition and regularity of Ĵ . — The same change of variables is used to de-

fine Ĵ (t, φ, γ(t)) which is the counterpart of Î(t, g) introduced in (7.1.6) :

Ĵ (t, φ, γ) :=〈f0, (ηt(0)− 1)〉+
〈〈
Dηt, ψt

〉〉
−
〈〈
φt, ψt ηt

〉〉
+

∫ t

0

H′
(
ψt(s), ηt(s)

)
ds,(7.2.11)

where (ψ, η) = (ϕe−p, ep).

In these new variables, the Hamiltonian equations (7.1.3)-(7.1.4) on the time interval [0, t] can be

rewritten

(7.2.12)

Dsψt + ψt φt =
∂H′
∂η

(ψt, ηt), ψt(0) = f0,

Dsηt − ηt φt = −∂H
′

∂ψ
(ψt, ηt), ηt(t) = γ(t) .

Note that the structure of this Hamiltonian system is more symmetric than (7.1.3)-(7.1.4) and it can

be interpreted as a system of modified Boltzmann equations. Indeed (7.2.12) can be written

(7.2.13)

Dsψt = −ψt φt +

∫
dµz1(z2, ω) ηt(z2)

(
ψt(z

′
1)ψt(z

′
2)− ψt(z1)ψt(z2)

)
with ψt(0) = f0,

Dsηt = ηt φt −
∫
dµz1(z2, ω)ψt(z2)

(
ηt(z

′
1)ηt(z

′
2)− ηt(z1)ηt(z2)

)
with ηt(t) = γ .

In particular contrary to (7.1.3), the boundary conditions in (7.2.13) are time independent.

We are now going to check that the modified Hamiltonian equations (7.2.13) admit unique solutions.

From this, we will deduce that Ĵ is well defined and satisfies the regularity assumptions of Proposi-

tion 7.2.1.

Proposition 7.2.3. — Let α > 0 be fixed. There exists a time TH′

α ∈ (0, Tα] such that for any (φ, γ)

in Bα,β0,Tα and t in [0, TH′

α ], there is a unique solution (ψt, ηt) to the system of modified Hamiltonian

equations (7.2.13) on [0, t] such that for the norm introduced in (6.1.8)

(7.2.14) sup
s∈[0,t]

‖ψt(s)‖L∞−3β0/4
≤ C, sup

s∈[0,t]

‖ηt(s)‖L∞
β0/2
≤ C .

If (φ, γ) take real values and γ > 0 then (ψt, ηt) are both positive functions. For any t ∈ [0, TH′

α ],

the functional Ĵ (t, φ, γ) is well defined and depends analytically on γ. Furthermore, it satisfies esti-

mates (7.2.8) and (7.2.9).

Proof. —

Step 1. Well-posedness of the system of modified Hamiltonian equations (7.2.13).

This is once again a consequence of the Cauchy-Kovalevskaya argument of Appendix A. The proof is

therefore postponed to the appendix A.4. Let us just point out here that to implement the strategy,

it is more convenient to rewrite (7.2.13) in a mild form, denoting Ss the transport operator in D:

(7.2.15) ∀s ≤ t,
ψt(s) = Ssf

0 +

∫ s

0

Ss−σF1

(
φt(σ), ηt(σ), ψt(σ)

)
dσ ,

ηt(s) = Ss−tγt −
∫ t

s

Ss−σF2

(
φt(σ), ηt(σ), ψt(σ)

)
dσ ,
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with

F1(φ, η, ψ) = −ψ φ+

∫
dµz1(z2, ω) η(z2)

(
ψ(z′1)ψ(z′2)− ψ(z1)ψ(z2)

)
,

F2(φ, η, ψ) = η φ−
∫
dµz1(z2, ω)ψ(z2)

(
η(z′1)η(z′2)− η(z1)η(z2)

)
.

The positivity of (ψt, ηt) is proved by rewriting (7.2.12) in the form

Dsψt + ψt

(
φt +K1(ψt, ηt)

)
=

∫
dµz1(z2, ω) ηt(z2)ψt(z

′
1)ψt(z

′
2) with ψt(0) = f0,

Dsηt + ηt

(
− φt +K2(ψt, ηt)

)
= −

∫
dµz1(z2, ω)ψt(z2)ηt(z

′
1)ηt(z

′
2) with ηt(t) = γ.

The first equation is a transport equation with a (nonlinear) damping term φt + K1(ψt, ηt) and a

source term which is nonnegative (as long as ψt, ηt are positive). It therefore preserves the positivity.

The second equation is a backward transport equation with a damping term −φt + K2(ψt, ηt) and a

source term which is nonpositive (as long as ψt, ηt are positive). It also preserves the positivity. The

solution (ψt, ηt) obtained by iteration (using the fixed point argument) is therefore positive.

Step 2. Regularity estimates on Ĵ (t, φ, γ).

Since the solution (ψt, ηt) to the Hamiltonian equations is obtained as a fixed point of a contracting

(polynomial) map depending linearly on γ (see (7.2.15)), it is straightforward to check that (ψt, ηt)

depends analytically on γ (for instance using the iterated Duhamel series expansion). Proceeding as

in Proposition 7.1.1, we can show

∂Ĵ (t, φ, γ)

∂γ
= ψt(t) .

The estimates (7.2.14) on ψt lead directly to (7.2.9). The inequality (7.2.8) can be obtained by a

contour estimate as in the derivation of Proposition 7.2.2. Proposition 7.2.3 is proved.

7.2.4. Conclusion of the proof of Proposition 7.1.2. — By Proposition 7.2.3, the functional Ĵ
is well defined on some time interval [0, TH′

α ], so Î is also well defined and the formal computations in

Proposition 7.1.1 are justified. By implementing a proof similar to the one of Proposition 7.1.1, Ĵ is

a solution of the Hamilton-Jacobi equation (7.2.5) in [0, TH′

α ]

∀t ≤ TH′

α , ∂tĴ (t, φ, γ(t)) = H′
(
∂Ĵ
∂γ

, γ(t)

)
.

The regularity assumptions of Proposition 7.2.1 hold for J (see Proposition 7.2.2) and for Ĵ (see

Proposition 7.2.3), thus J and Ĵ coincide on [0, T ?α]× Bα, up to requiring T ?α ≤ min(TH′

α , THJ
α ).

Given g, the functions (ψ, η) are positive by Proposition 7.2.3, so that ϕ = ψη and p = log η are well

defined. Going back to the original variables, we conclude that I and Î coincide on [0, T ?α]× Bα̂.

7.3. The large deviation estimates

In this section, we fix α according to (7.1.18), and T as in Theorem 8. Recall thatM(D) stands for the

set of positive measures with finite mass on D. We are now going to prove the large deviation estimates
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of Theorem 9 in terms of the functional F given by the Legendre transform for ϕ ∈ D([0, T ],M(D))

F(T, ϕ) := sup
g∈Bα

{
−
〈〈
ϕ,Dg

〉〉
+ 〈ϕ(T ), g(T )〉 − I(T, g)

}
.

The method of the proof is standard (see e.g. the textbook [22] or [25]) as the difficult work has been

achieved already in Theorems 4 and 5 to derive the convergence of the cumulant generating function

of the particle system to the limiting functional I(t, g). For the sake of completeness, we sketch the

main steps of the proof.

We first start by proving upper and lower large deviation bounds in a topology weaker than the

Skorokhod topology. This weak topology on D([0, T ],M(D)) is generated by open sets of the form

below, for any ν ∈ D([0, T ],M(D)) and for test functions g in Bα and δ > 0:

(7.3.1) Oδ,g(ν) :=
{
ν′ ∈ D([0, Tα],M(D)) :

∣∣(〈〈ν′, Dg〉〉−〈ν′T , gT 〉)−(〈〈ν,Dg〉〉−〈νT , gT 〉)∣∣ < δ/2
}
.

Then, in Section 7.3.3, the topology will be enhanced to the Skorokhod topology by a tightness argu-

ment.

7.3.1. Upper bound. — We are going to prove the large deviation upper bound (7.0.9) for any

compact set F of D([0, T ],M(D)) in the weak topology

lim sup
µε→∞

1

µε
logPε (πε ∈ F) ≤ − inf

ϕ∈F
F(T, ϕ) .(7.3.2)

General closed sets will be considered in Section 7.3.3.

We are first going to show that for any density ϕ in F and δ > 0, there exists g ∈ Bα̂ and an open

set Oδ,g(ϕ) of ϕ such that

lim sup
µε→∞

1

µε
logPε (πε ∈ Oδ,g(ϕ)) ≤ −F(T, ϕ) + δ .(7.3.3)

Then by compactness, for any δ > 0, a finite covering of F ⊂ ∪i≤KOδ,gi(ϕi) can be extracted so that

lim sup
µε→∞

1

µε
logPε (πε ∈ F) ≤ − inf

i≤K
F(T, ϕi) + δ ≤ − inf

ϕ∈F
F(T, ϕ) + δ .

Letting δ → 0, we recover the upper bound (7.3.2).

We turn now to the derivation of (7.3.3). For any density ϕ in F, we know from (7.0.8) that there

exists g ∈ Bα such that

F(T, ϕ) ≤ −
〈〈
ϕ,Dg

〉〉
+ 〈ϕ(T ), g(T )〉 − I(T, g) + δ/2 .

This leads to the upper bound

Pε (πε ∈ Oδ,g(ϕ)) ≤ exp
(
µε
δ

2
+ µε

〈〈
ϕ,Dg

〉〉
− µε〈ϕ(T ), g(T )〉

)
× Eε

(
exp

(
− µε

〈〈
πε, Dg

〉〉
+ µε〈πεT , g(T )〉

))
≤ exp

(
µε
δ

2
+ µε

〈〈
ϕ,Dg

〉〉
− µε〈ϕ(T ), g(T )〉+ µε Iε(T, g)

)
,

with

Iε(t, g) := Λε[0,t]
(
eg−

∫ t
0
Dg
)
.



7.3. LARGE DEVIATIONS 85

Passing to the limit thanks to Theorem 5, this completes (7.3.3)

lim sup
µε→∞

1

µε
logPε

(
πε ∈ Oδ,g(ϕ)

)
≤ I(T, g) +

〈〈
ϕ,Dg

〉〉
− 〈ϕ(T ), g(T )〉+ δ/2 ≤ −F(T, ϕ) + δ .

Remark 7.3.1. — Note that the proof of the upper bound holds actually up to time Tα =

ce−αβ
d+1

2
0 /C0, if the supremum in (7.0.8) is taken over the functions g satisfying the assumptions

sup
t∈[0,Tα]

|g(t, z)| ≤ 1

2
(α+

β0

8
|v|2), sup

t∈[0,Tα]

|Dtg(t, z)| ≤ 1

2Tα
(α+

β0

8
|v|2) .

The restriction to T will appear in the proof of the lower bound when using the fact that the supremum

in (7.0.8) is reached for some g ∈ Bα.

7.3.2. Lower bound. — We are going to prove the large deviation lower bound (7.0.10) for any

open set O in the weak topology

lim inf
µε→∞

1

µε
logPε (πε ∈ O) ≥ − inf

ϕ∈O∩Rr,T
F(T, ϕ) ,(7.3.4)

where the restricted set Rr,T of trajectories was defined in (7.0.6) (see also Theorem 3).

Contrary to the proof of the upper bound which was a direct consequence of the convergence to I
of the cumulant generating function (Theorem 5), the derivation of the lower bound follows from the

Gärtner-Ellis method [22] and it requires an additional regularity assumption on F . For this, we

consider observables ϕ such that the supremum in (7.0.8) is reached for some g ∈ Bα̂

F(T, ϕ) = 〈ϕ(T ), g(T )〉 −
〈〈
ϕ,Dg

〉〉
− I(T, g) .(7.3.5)

It was shown in (7.1.20) that identity (7.3.5) is valid for any ϕ in Rr,T . Even though (7.3.5) should

be valid for a larger class of functions, we restrict to functions ϕ in O ∩Rr,T for simplicity.

Let us fix ϕ ∈ O ∩ Rr,T and denote by g the associated test function as in (7.3.5). There exists a

collection of test functions g(1), . . . , g(`) in Bα̂ such that the following open neighborhood of ϕ

(7.3.6)
Oδ,{g(i)}(ϕ) :=

{
ν ∈ D([0, T ],M(D)) : ∀i ≤ ` ,∣∣∣〈〈ν,Dg(i)

〉〉
− 〈ν(T ), g(i)(T )〉 −

(〈〈
ϕ,Dg(i)

〉〉
− 〈ϕ(T ), g(i)(T )〉

)∣∣∣ < δ
}

is included in O for any δ > 0 small enough. We impose also that g is one of the test func-

tions g(1), . . . , g(`). To complete the lower bound

lim inf
µε→∞

1

µε
logPε (πε ∈ O) ≥ −F(T, ϕ) ,

it is enough to show that

lim inf
δ→0

lim inf
µε→∞

1

µε
logPε

(
πε ∈ Oδ,{g(i)}(ϕ)

)
≥ −F(T, ϕ) .(7.3.7)

We start by tilting the measure

Pε
(
Oδ,{g(i)}(ϕ)

)
≥ exp

(
− δµε + µε

〈〈
ϕ,Dg

〉〉
− µε〈ϕ(T ), g(T )〉

)
× Eε

(
exp

(
− µε

〈〈
πε, Dg

〉〉
+ µε〈πεT , g(T )〉

)
1O

δ,{g(i)}(ϕ)

)
≥ exp

(
− δµε + µεIε(T, g) + µε

〈〈
ϕ,Dg

〉〉
− µε〈ϕ(T ), g(T )〉

)
Eε,g

(
1O

δ,{g(i)}(ϕ)

)
,
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where we defined the tilted measure for any function Ψ on the particle trajectories as

Eε,g (Ψ(πε)) := exp (−µεIε(T, g))Eε
(

exp
(
− µε

〈〈
πε, Dg

〉〉
+ µε〈πεT , g(T )〉

)
Ψ(πε)

)
.

If we can show that the trajectory ϕ is typical under the tilted measure

∀δ > 0 , lim
µε→∞

Pε,g
(
πε ∈ Oδ,{g(i)}(ϕ)

)
= 1 ,(7.3.8)

this will complete the proof of (7.3.7).

Let g̃ be one of the functions g(1), . . . , g(`) used to define the weak neighborhood Oδ,{g(i)}(ϕ).

Choose u ∈ C in a neigborhood of 0 so that the function below is analytic

u ∈ C 7→ I(T, ug̃ + g) = lim
µε→∞

Iε(T, ug̃ + g) .

As a consequence the derivative and the limit as µε → ∞ commute, so that taking the derivative

at u = 0, we get

−
〈〈

∂I
∂Dg

(T, g), Dg̃

〉〉
+

〈
∂I

∂g(T )
(T, g), g̃(T )

〉
= lim
µε→∞

Eε,g
(
−
〈〈
πε, Dg̃

〉〉
+ 〈πεT , g̃(T )〉

)
.

Note that in the above equation, the functional derivative is taken over both coordinates Dg, g(T ) of

the functional I(T, g). As the supremum in (7.0.8) is reached at g, we deduce from (7.3.5) that

−
〈〈

∂I
∂Dg

(T, g), Dg̃

〉〉
+

〈
∂I

∂g(T )
(T, g), g̃(T )

〉
= 〈ϕ(T ), g̃(T )〉 −

〈〈
ϕ,Dg̃

〉〉
.(7.3.9)

This allows us to characterize the mean under the tilted measure

lim
µε→∞

Eε,g
(
〈πεT , g̃(T )〉 −

〈〈
πε, Dg̃

〉〉)
= 〈ϕ(T ), g̃(T )〉 −

〈〈
ϕ,Dg̃

〉〉
.(7.3.10)

Taking twice the derivative, we obtain

lim
µε→∞

µεEε,g
([(
〈πεT , g̃(T )〉 −

〈〈
πε, Dg̃

〉〉)
− Eε,g

(
〈πε(T ), g̃(T )〉 −

〈〈
πε, Dg̃

〉〉)]2)
<∞ .

Combined with (7.3.10), this implies that the empirical measure concentrates to ϕ in a weak sense

lim
µε→∞

Eε,g
([(
〈πεT , g̃(T )〉 −

〈〈
πε, Dg̃

〉〉)
−
(
〈ϕ(T ), g̃(T )〉 −

〈〈
ϕ,Dg̃

〉〉)]2)
= 0 .

In particular, this holds for any test functions g(1), . . . , g(`) defining the neighborhood Oδ,{g(i)}(ϕ)

in (7.3.6). This completes (7.3.8).

7.3.3. Tightness. — In this section, we are going to prove a tightness property in the Skorokhod

topology which will enhance the large deviations proven so far in a coarser topology (see Corollary 4.2.6

of [22]).

Let (hj)j≥0 denote the basis of Fourier-Hermite functions (as in (6.2.2)). We define a distance on the

set of measures M(D) by

(7.3.11) d(µ, ν) :=
∑
j

2−j
∣∣∣∣∫ dz hj(z)

(
dµ(z)− dν(z)

)∣∣∣∣ .
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Proposition 7.3.2. — The norm of the empirical measure is concentrated in compact sets

lim
A→∞

lim
µε→∞

1

µε
logPε

(
sup

t∈[0,T0]

d(πεt , 0) ≥ A
)

= −∞(7.3.12)

and the modulus of continuity is controlled by

∀δ′ > 0, lim
δ→0

lim
µε→∞

1

µε
logPε

 sup
|t−s|≤δ
t,s∈[0,T0]

d(πεt , π
ε
s) > δ′

 = −∞ .(7.3.13)

Thus the sequence of measures (πεt ) is exponentially tight.

Before proving Proposition 7.3.2, let us first show that it implies large deviation estimates in the

Skorokhod space of trajectories D([0, T ],M(D)) (for a definition see Section 12 in [8]). First of all

notice that the upper bound (7.0.9) holds for closed sets F and not only compact sets as the sequence

of measures (Pε) is tight and the closed sets for the Skorokhod topology are also closed for the weak

topology.

We consider now an open set O for the strong topology and ϕ a trajectory in O ∩ Rr,T , recalling

that Rr,T is defined in (7.0.6). We would like to apply the same proof as in Section 7.3.2 and to reduce

the estimates to sample paths in a weak open set of the form (7.3.6). We proceed in several steps.

First note that there exists δ > 0 such that{
ν : sup

t≤T
d(νt, ϕt) < 2δ

}
⊂ O .

Since ϕ belongs to Rr,T , the density ϕ is continuous in time. Choosing a time step γ > 0 small enough,

we can restrict to computing the distance at discrete timesν : sup
i∈N
iγ≤T

d(νiγ , ϕiγ) < δ

⋂
{
ν : sup

|t−s|≤γ
d(νt, νs) < δ

}
⊂ O .

Since ϕ is continuous in time and we consider only T/γ times, the first set above can be approximated

by a set of the form Oδ(ϕ) as in (7.3.6). As a consequence we have shown that there is an open set

Oδ(ϕ) such that

Pε (πε ∈ O) ≥ Pε

(
πε ∈ Oδ(ϕ)

⋂{
sup
|t−s|≤γ

d(πεt , π
ε
s) < δ

})

≥ Pε (πε ∈ Oδ(ϕ))− Pε

({
sup
|t−s|≤γ

d(πεt , π
ε
s) > δ

})
.

By Proposition 7.3.2 the last term can be made arbitrarily small for γ small. Thus the proof of the

lower bound reduces now to the one of weak open sets as in Section 7.3.2.

Proof of Proposition 7.3.2. — To prove (7.3.12), let us first note that the test functions used for defin-

ing the distance in (7.3.11) are uniformly bounded, thus the distance is bounded in terms of the total

number N of particles

d(πεt , 0) ≤ C N
µε
·
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As the number of particles is fixed only by the initial distribution, it is simple to obtain the exponential

decay claimed in (7.3.12)

Pε
(

sup
t∈[0,T0]

d(πεt , 0) ≥ A
)
≤ Pε

(
N ≥ Aµε

C

)
≤ c1 exp

(
− c2µεA

)
.(7.3.14)

By the inequality (7.3.14) and the boundedness of the test functions used in (7.3.11), it is enough to

consider a finite number of test functions. Indeed, for any δ′ there is K = K(δ′) such that

d(µ, ν) > δ′ ⇒
∑
|j|≤K

2−j
∣∣∣∣∫ dz hj(z)

(
dµ(z)− dν(z)

)∣∣∣∣ > δ′

2
·

By the union bound, we can then reduce (7.3.13) to controlling a single test function h

∀δ′ > 0 , lim
δ→0

lim
ε→0

1

µε
logPε

(
sup
|t−s|≤δ

∣∣〈πεt , h〉 − 〈πεs , h〉∣∣ > δ′

)
= −∞ ,(7.3.15)

where t, s are restricted to [0, T ]. Next, we localize the constraint on the time interval [0, T ] to smaller

time intervals

Pε

(
sup
|t−s|≤δ

∣∣〈πεt , h〉 − 〈πεs , h〉∣∣ > δ′

)
≤

T/δ∑
i=2

Pε

(
sup

t,s∈[(i−2)δ,iδ]

∣∣〈πεt , h〉 − 〈πεs , h〉∣∣ > δ′

)
.(7.3.16)

By assumption (1.1.5), the initial density f0 is bounded, up to a multiplicative constant C0(2π/β0)d/2

by the Maxwellian Mβ0
(uniformly distributed in x). By modifying the weights W ε0

N in (1.1.6), we

deduce that the probability of any event A under Pε can be bounded from above in terms of the

probability P̃ε with initial density Mβ0
(its expectation is denoted by Ẽε)

Pε(A) ≤ Z̃
ε

Zε Ẽε(C
N 1A) ≤ Z̃

ε

Zε Ẽε(C
2N )

1
2 Ẽε(1A)

1
2 ≤ exp(Cµε) P̃ε(A)

1
2 ,

for some constant C and Z̃ε stands for the partition function of this new density. Using the fact that

the probability P̃ε is time invariant, we can reduce the estimate of the events in (7.3.16) to a single

time interval. Thus (7.3.15) will follow if one can show that

∀δ′ > 0 , lim
δ→0

lim
ε→0

1

µε
log P̃ε

(
sup

t,s∈[0,2δ]

∣∣〈πεt , h〉 − 〈πεs , h〉∣∣ > δ′

)
= −∞ .(7.3.17)

By the Markov inequality and using the notation Lδ = log | log δ|, we get

P̃ε

(
sup

t,s∈[0,2δ]

∣∣〈πεt , h〉 − 〈πεs , h〉∣∣ > δ′

)
≤ e−δ′ Lδ µεẼε

(
exp

(
sup

t,s∈[0,2δ]

Lδ

∣∣∣ N∑
i=1

h
(
zεi (t)

)
− h
(
zεi (s)

)∣∣∣))
(7.3.18)

≤ e−δ′ Lδ µεẼε
(

exp
( N∑
i=1

sup
t,s∈[0,2δ]

Lδ
∣∣h(zεi (t))− h(zεi (s))∣∣)) .

The last inequality is very crude, but it is enough for the large deviation asymptotics and it allows us

to reduce to a sum of functions depending only on the trajectory of each particle via

h̃
(
z([0, 2δ])

)
:= sup

t,s∈[0,2δ]

Lδ
∣∣h(z(t))− h(z(s))∣∣ .
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Thanks to Proposition 2.1.3, the last expectation in (7.3.18) can be rewritten in terms of the cumulants

(7.3.19)
1

µε
log Ẽε

(
exp

( N∑
i=1

h̃
(
zεi ([0, 2δ])

)))
=

∞∑
n=1

1

n!

∣∣∣f̃εn,[0,2δ](( exp(h̃)− 1
)⊗n)∣∣∣ ,

where f̃εn stands for the dynamical cumulant under the new distribution.

For n ≥ 2, the statement 1 of Theorem 10 page 93 can be applied∣∣∣f̃εn,[0,2δ](( exp(h̃)− 1
)⊗n)∣∣∣ ≤ n!

(
C(2δ + ε)

)n−1 | log δ|2n‖h‖∞ ,
with Lδ = log | log δ|. The term n = 1 is controlled thanks to the statement 3 of Theorem 10∣∣∣f̃ε1,[0,2δ]( exp(h̃)− 1

)∣∣∣ ≤ δ (‖∇h‖∞Lδ + 1) eLδ‖h‖∞ ≤ δ (‖v · ∇xh‖∞Lδ + 1) | log δ|‖h‖∞ .
Thus (7.3.19) converges to 0 as ε→ 0, then δ tends to 0. Furthermore Lδ diverges to ∞ as δ vanishes,

one deduces from (7.3.18) that (7.3.17) holds for any δ′ > 0. This completes the proof of (7.3.15) and

therefore of Proposition 7.3.2.

7.4. Proof of the large deviation theorem

Theorem 3 is derived by combining Theorems 9 and 8. Indeed given ϕ ∈ Rr,T , the upper bound

is obtained by considering in (7.0.9) the closed sets {d[0,T ](π
ε, ϕ) ≤ δ}, where d[0,T ] stands for the

distance metrizing the Skorokhod topology. Since F is lower semi-continuous (by property of the

Legendre transform) there holds

lim
δ→0

inf
ψ,

d[0,T ](ψ,ϕ)≤δ

F(T, ψ) ≥ F(T, ϕ) ,

which gives the result since F(T, ϕ) = F̂(T, ϕ) thanks to Theorem 8. The lower bound is obtained

directly thanks to (7.0.10) and Theorem 8.





PART III

UNIFORM A PRIORI BOUNDS AND

CONVERGENCE OF THE CUMULANTS





CHAPTER 8

CLUSTERING CONSTRAINTS AND CUMULANT ESTIMATES

In this chapter we consider the cumulants fεn,[0,t](H
⊗n), whose definition (Eq. (4.4.1)) we recall:

(8.0.1) fεn,[0,t](H
⊗n) =

∫
dZ∗nµ

n−1
ε

n∑
`=1

∑
λ∈P`n

∑̀
r=1

∑
ρ∈Pr`

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
ϕρ f

ε0
{1,...,r} .

We prove the upper bound stated in Theorem 4 page 38 which is a consequence of the following more

general statement :

Theorem 10. — Consider the system of hard spheres under the initial measure (1.1.6), with f0 sat-

isfying (1.1.5). Let Hn : D([0,∞[) 7→ R be a continuous factorized function:

Hn

(
Zn([0,∞[

)
=

n∏
i=1

H(i)
(
zi([0,∞[)

)
and define the scaled cumulant fεn,[0,t](Hn) by polarization of the n linear form (4.4.1). Then there

exists a positive constant C and a time T0 such that the following uniform a priori bounds hold:

1. If Hn is bounded, then on [0, T0]

|fεn,[0,t](Hn)| ≤ n!

(
CC0

β
(d+1)/2
0

)n
(t+ ε)n−1

n∏
i=1

‖H(i)‖∞ .

2. If Hn has a controlled growth

(8.0.2)
∣∣Hn(Zn([0, t]))

∣∣ ≤ exp
(
α n+

β0

4
sup
s∈[0,t]

|Vn(s)|2
)
,

then on [0, T0]

|fεn,[0,t](Hn)| ≤
(
CC0e

α

β
(d+1)/2
0

)n
(t+ ε)n−1n! .

3. Fix δ > 0. If Hn measures in addition of (8.0.2), the time regularity in the time interval [t−δ, t],
i.e. if for some i ∈ {1, . . . , n}

(8.0.3)
∣∣Hn(Zn([0, t]))

∣∣ ≤ CLip min
(

sup
t′

|t−t′|≤δ

|zi(t)− zi(t′)|, 1
)

exp
(
αn+

β0

4
sup
s∈[0,t]

|Vn(s)|2
)
,

then on [0, T0]

(8.0.4) |fεn,[0,t](Hn)| ≤ CLipδ
(
CC0 e

α

β
(d+1)/2
0

)n
(t+ ε)n−1n! .
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The key idea behind this result is that the clustering structure of fεn,[0,t](H
⊗n) imposes strong geometric

constraints on the integration parameters (Z∗n, Tm, Vm,Ωm) (where we recall that m is the size of the

collision tree), which imply that the integral defining fεn,[0,t](H
⊗n) involves actually only a set of

parameters with small measure of size O(1/µn−1
ε ). More precisely, what we prove is that:

— there are n − 1 “independent” geometric constraints (clustering conditions) and each of them

provides a small factor O(1/µε);

— the integration measure (which is unbounded because of possibly large velocities in the collision

cross-sections) does not induce any divergence.

Section 8.1 is devoted to characterizing the small measure set. Actually we only provide necessary

conditions for the parameters (Z∗n, Tm, Vm,Ωm) to belong to such a set (which is enough to get an

upper bound). This characterization can be expressed as a succession of geometric conditions on the

relative positions x∗1, . . . , x
∗
n of the n particles at time t.

Section 8.2 then explains how to control the integral defining fεn,[0,t](H
⊗n). Recall that, by (4.4.6) and

by conservation of the energy,

|H(Ψε
n)| = |Hn

(
Z∗n([0, t])

)
| ≤ eαn+

β0
4 |V

∗
n (0)|2+

β0
4 |Vm(0)|2 .

Since the initial data satisfy a Gaussian bound

(f0)⊗n+m(Ψε0
n ) ≤ Cn+m

0 e−
β0
2 |V

∗
n (0)|2− β0

2 |Vm(0)|2 ,

the growth of |H(Ψε
n)| is easily controlled, so the main difficulty is to control the cross-sections

(8.0.5) C
(
Ψε
n

)
:=

m∏
k=1

sk

((
vk − vak(tk)

)
· ωk

)
+

in the measure dµ
(
Ψε
n

)
. In order for this term not to create any divergence for large m, we need

a symmetry argument as in the classical proof of Lanford, but intertwined here with the estimates

on the size of the small measure set. A similar procedure is used in Section 8.1 to cure high energy

singularities arising from the geometric constraints themselves.

8.1. Dynamical constraints

Let λ ↪→ ρ be a nested partition of {1∗, . . . , n∗}. We fix the velocities V ∗n at time t, as well as the

collision parameters (m, a, Tm, Vm,Ωm) of the pseudo-trajectories. We recall that Vm = (v1, . . . , vm)

where vi is the velocity of particle i at the moment of its creation.

We denote by

V2 := (V ∗n )2 + V 2
m =

n∑
i=1

(v∗i )
2

+

m∑
i=1

v2
i

(twice) the total energy of the whole pseudo-trajectory Ψε
n appearing in (8.0.1), and by K = n+m its

total number of particles. We also indicate by V2
i (resp. V2

λ for any λ ⊂ {1∗, . . . , n∗}) and Ki (resp. Kλ)

the corresponding energy and number of particles of the collision tree with root at z∗i (resp. Z∗λ), that

is:

(8.1.1)

V2
i = (v∗i )

2
+

∑
j created in Ψε{i}

v2
j ,

Ki = 1 + #
(

particles created in Ψε
{i}

)
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and

(8.1.2)

V2
λ =

∑
i tree in λ

V2
i ,

Kλ =
∑

i tree in λ

Ki .

Note that V2 =
∑n
i=1 V2

i and K =
∑n
i=1Ki = n+m.

In what follows, it will be important to remember the notations and definitions introduced in Chapter 4,

as well as the rules of construction of pseudo-trajectories explained in Section 3.2. In particular we

recall that, because of these rules, V2/2 is the energy at time zero of the configuration Ψε0
n , while V2

i /2

is not, in general, the energy of Ψε0
{i} (because of external recollisions which can perturb the velocities

of the particles inside the tree), unless Ψε
{i} does not recollide with the other Ψε

{j}, j 6= i.

– Clustering recollisions. We first study the constraints associated with clustering recollisions in the

pseudo-trajectory of the generic forest Ψε
λ1

. Up to renaming the integration variables, we can assume

that

λ1 = {1, . . . , `1} .
We call x∗λ1

:= x∗`1 the root of the forest.

Proposition 8.1.1. — The set of configurations Z∗`1 at time t compatible with the forest λ1 =

{1, . . . , `1} on [0, t] satisfies the following estimate :

(8.1.3)

∫
dX∗`1−1∆∆λ1

1Gε
(
Ψε
λ1

)
≤
(

Ct

β
1/2
0 µε

)`1−1 ∑
T∈Tλ1

∏
j∈λ1

(
β0V2

j +Kj

)dj(T )
,

where dj(T ) is the degree of the vertex j in the graph T .

By definition of ∆∆λ1
and by Definition 4.4.3 of clustering recollisions, there exist `1 − 1 clustering

recollisions occurring at times τrec,1 ≥ τrec,2 ≥ · · · ≥ τrec,`1−1. Moreover, the corresponding chain of

recolliding trees {j1, j′1}, . . . , {j`1−1, j
′
`1−1} is a minimally connected graph T ∈ Tλ1 , equipped with an

ordering of the edges. We shall denote by T≺ a minimally connected graph equipped with an ordering

of edges, and by T ≺λ1
the set of all such graphs on λ1. Hence we have

∆∆λ1 =
∑

T≺∈T ≺λ1

∆∆λ1,T≺

almost surely, where ∆∆λ1,T≺ is the indicator function that the clustering recollisions for the forest λ1

are given by T≺. We also recall that, by definition, ∆∆λ1
is equal to zero whenever two particles find

themselves at mutual distance strictly smaller than ε.

It will be convenient to represent the set of graphs T ≺λ1
in terms of sequences of merged subforests.

The subforests are obtained following the dynamics of the pseudo-trajectory Ψε
λ1

backward in time,

and putting together the groups of trees that recollide. An example is provided by Figure 8.

More precisely, we define the map which associates to any ordered tree the sequence of merging clusters

T ≺λ1
3 T≺ 7→

(
λ(k), λ

′
(k)

)
k

by the following iteration :

— start from λ1 = {1, . . . , `1};
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z∗2 z∗3 z∗4 z∗7z∗1 z∗5 z∗6

τrec,1
τrec,2

τrec,3
τrec,4
τrec,5
τrec,6

1

2 3

5

6

7

1

2

3 4

5

6

λ1 = {1, 2, 3, 4, 5, 6, 7}

T≺ ∈ T ≺λ1 4T ∈ Tλ1

1

2 3

4

5
7

6

1

2

3

4

5 7

6

c1

c2

c3

c4
c5

c6

λ(1) = {7} λ′(1) = {6} → c1

λ(2) = {4} λ′(2) = {3} → c2

λ(3) = {2} λ′(3) = {1} → c3

λ(4) = {6, 7} λ′(4) = {5} → c4
λ(5) = {5, 6, 7} λ′(5) = {3, 4} → c5

λ(6) = {3, 4, 5, 6, 7} λ′(6) = {1, 2} → c6

Figure 8. An example of pseudo-trajectory Ψε
λ1

(`1 = 7) satisfying the constraint ∆∆λ1,T≺ ,

together with its minimally connected graph T , ordered graph T≺, and sequence of merged

subforests
(
λ(k), λ

′
(k)

)
k
. The roots of the trees z∗i = (x∗i , v

∗
i ) and the clustering recollision

times appear in the picture on the top.

— take the first edge {j1, j′1} of T≺, and set
(
λ(1), λ

′
(1)

)
= ({j1}, {j′1}); these two elements are

merged into a single cluster c1; set L1 := c1 ∪ (λ1 \ {j1, j′1});
— at step k > 1, take

(
λ(k), λ

′
(k)

)
of Lk−1 in such a way that jk ∈ λ(k), j

′
k ∈ λ′(k) where {jk, j′k} is

the k-th edge of T≺, and merge them into a single cluster ck; set Lk := ck∪
(
Lk−1 \ {λ(k), λ

′
(k)}

)
.

We can assume without loss of generality that maxλ′(k) < maxλ(k).

The last step is given by
(
λ(`1−1), λ

′
(`1−1)

)
, which merges the two remaining clusters.

However this map is not a bijection, because the merged subforests do not specify which vertices

of jk ∈ λ(k) and j′k ∈ λ′(k) are connected by the edge. A bijection is therefore given by

(8.1.4) T ≺λ1
3 T≺ →

(
λ(k), λ

′
(k), jk ∈ λ(k), j

′
k ∈ λ′(k)

)
k
.

We define the root of the subforest λ(k) by

x∗λ(k)
:= x∗maxλ(k)

,
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and same definition for the root of λ′(k). We can then define

x̂k := x∗λ′
(k)
− x∗λ(k)

, k = 1, . . . , `1 − 1

as the relative position between the two recolliding subforests at time t. It is easy to see that, for any

given root position x∗λ1
= x∗`1 ∈ Td, the map of translations

(8.1.5) X∗`1−1 =
(
x∗1, . . . , x

∗
`1−1

)
7→ X̂`1−1 := (x̂1, . . . , x̂`1−1)

is one-to-one on Td(`1−1) and such that

dX∗`1−1 = dX̂`1−1 .

Thus (8.1.5) is a legitimate change of variables in (8.0.1).

Our purpose is to prove iteratively that, for k = `1 − 1, . . . , 1, the variable x̂k associated with the k-th

clustering recollision has to be in a small set, the measure of which is uniformly small of size O(1/µε).

We define Ψε
λ(k)

(respectively Ψε
λ′

(k)
) the pseudo-trajectory with starting particles λ(k) (λ′(k)).

Since τrec,k ≥ (τrec,s)s>k, the collision trees in λ1 \
(
λ(k) ∪ λ′(k)

)
do not affect the subforests λ(k), λ

′
(k)

in the time interval (τrec,k, t). The clustering structure prescribed by T≺ implies that Ψε
λ′

(k)
and Ψε

λ(k)
,

regarded as independent trajectories, reach mutual distance ε at some time τrec,k ∈ (0, τrec,k−1).

Given (x̂s)s<k fixed by the previous recollisions, we are going to vary x̂k so that an external recollision

between the subforests occurs. This corresponds to moving rigidly Ψε
λ′

(k)
and Ψε

λ(k)
by acting on their

relative distance x̂k. In fact, the recollision condition depends only on this distance.

Given a sequence of merged subforests
(
λ(k), λ

′
(k)

)
k

and a set of variables (x̂s)s<k (with |x̂s| > ε),

the k−th clustering recollision condition is defined by

x̂k ∈ Bk :=
⋃

q in the subforest λ(k)

q′ in the subforest λ′(k)

Bqq′ ,

with

(8.1.6) Bqq′ :=
{
x̂k ∈ Td : |xq′(τrec,k)− xq(τrec,k)| = ε for some τrec,k ∈ (0, τrec,k−1)

}
.

Here xq(τ), xq′(τ) are the particle trajectories in the flows Ψε
λ(k)

,Ψε
λ′

(k)
(and τ is of course restricted to

their existence times). In other words there exists a time τrec,k ∈ (0, τrec,k−1) and a vector ωrec,k ∈ Sd−1

such that

(8.1.7) xq′(τrec,k)− xq(τrec,k) = ε ωrec,k .

The particle trajectories xq(τ), xq′(τ) are piecewise affine (because there are almost surely a finite

number of collisions and recollisions within the trees Ψε
λ(k)

,Ψε
λ′

(k)
). We will denote by v

(δτj)
q , v

(δτj)
q′ the

velocities of q and q′ on the interval δτj . Moreover, (xq(τ)− xq′(τ))− (x∗λ(k)
− x∗λ′

(k)
) does not depend

on x̂k := x∗λ′
(k)
− x∗λ(k)

, because all positions in the collision tree are translated rigidly. This means

that x̂k has to be in a tube of radius ε around the parametric curve (x∗λ(k)
− x∗λ′

(k)
)− (xq(τ)− xq′(τ)).

This tube is a union of cylinders, with two spherical caps at both ends (see Figure 9). Note however

that we have to remove from this tube the ball corresponding to the exclusion at the creation time (or

at time t if q and q′ exist up to time t).
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Figure 9. The tube Bqq′ leading to a recollision between particles q and q′. The tube has

section µ−1
ε .

Therefore

Bqq′ =
⋃
j

Bqq′(δτj)

for a suitable finite decomposition of (0, τrec,k−1) (depending on all the history). We therefore end up

with the estimate (see Figure 9)

|Bqq′ | ≤
C

µε

∑
j

|v(δτj)
q − v(δτj)

q′ | |δτj |

for some pure constant C > 0 depending only on the dimension d.

We sum now over all q, q′ to obtain an estimate of the set Bk. To exploit the conservation of energy,

we exchange the sums over δτj and over q, q′. We get

|Bk| ≤
C

µε

∑
j

|δτj |
∑
q,q′

|v(δτj)
q − v(δτj)

q′ | .

Applying the Cauchy-Schwarz inequality, the sum over q, q′ is bounded by√∑
q

(
v

(δτj)
q

)2√
Kλ(k)

Kλ′
(k)

+

√∑
q′

(
v

(δτj)
q′

)2√
Kλ′

(k)
Kλ(k)

≤ Vλ(k)

√
Kλ(k)

Kλ′
(k)

+Vλ′
(k)

√
Kλ′

(k)
Kλ(k)

where we use the notations for energy and mass of subforests introduced at the beginning of this

section. In the above inequality, we have used the independence of Ψε
λ(k)

and Ψε
λ′

(k)
on [τrec,k, t], and

bounded their energies in δτj with Vλ(k)
and Vλ′

(k)
respectively (see Eq.s (8.1.1)-(8.1.2)). Therefore we

infer that

(8.1.8)

|Bk| ≤
C

β
1/2
0 µε

∫
dτrec,k1τrec,k≤τrec,k−1

(
β0V2

λ(k)
+Kλ(k)

)(
β0V2

λ′
(k)

+Kλ′
(k)

)
=

C

β
1/2
0 µε

∫
dτrec,k1τrec,k≤τrec,k−1

∑
jk∈λ(k)

j′k∈λ
′
(k)

(
β0V2

jk
+Kjk

)(
β0V2

j′k
+Kj′k

)
.

In this way we have obtained an estimate which depends only on the energy and the number of particles

enclosed in the trees Ψε
λ(k)

,Ψε
λ′

(k)
.
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Coming back to Equation (8.0.1) we observe that, if ∆∆λ1
= 1, then there exist merged subforests such

that x̂k ∈ Bk for k = `1−1, . . . , 1. Hence, iterating the procedure leading to (8.1.8) for k = `1−1, . . . , 1,

leads to an upper bound on the cost of the clustering recollisions in λ1:

(8.1.9)∫
dX∗`1−1 ∆∆λ1

1Gε
(
Ψε
λ1

)
≤

∑
(
λ(k),λ

′
(k)

)
∫
dx̂11B1

∫
dx̂2 . . .

∫
dx̂`1−11B`1−1

≤
(

C

β
1/2
0 µε

)`1−1 ∫ t

0

dτrec,1 · · ·
∫ τrec,`1−2

0

dτrec,`1−1

∑
(
λ(k),λ

′
(k)

)
∑

jk∈λ(k)

j′k∈λ
′
(k)

`1−1∏
k=1

(
β0V2

jk
+Kjk

) (
β0V2

j′k
+Kj′k

)

=

(
Ct

β
1/2
0 µε

)`1−1
1

(`1 − 1)!

∑
(
λ(k),λ

′
(k)

)
∑

jk∈λ(k)

j′k∈λ
′
(k)

`1−1∏
k=1

(
β0V2

jk
+Kjk

) (
β0V2

j′k
+Kj′k

)
.

Using the bijection (8.1.4) and compensating the 1/(`1 − 1)! with the ordering of the edges in T≺, we

rewrite this result as∫
dX∗`1−1∆∆λ1

1Gε
(
Ψε
λ1

)
≤
(

Ct

β
1/2
0 µε

)`1−1 ∑
T∈Tλ1

∏
{j,j′}∈E(T )

(
β0V2

j +Kj

) (
β0V2

j′ +Kj′
)
,

where E(T ) is the set of edges of T . Equivalently, we obtain (8.1.3).

– Clustering overlaps. We are now going to estimate the constraints associated with clustering overlaps

in the pseudo-trajectory of the generic jungle ρ1. Up to a renaming of the summation variables, we

can assume that

ρ1 = {λ1, . . . , λr1} .
The number of particles in the jungle at time t is |ρ1|, and at time 0 is Kρ1

= |ρ1| + mρ1
. We recall

that each forest λi has a root x∗λi , which did not play any role in the previous estimate of clustering

recollisions. We call x∗ρ1
:= x∗λr1

the root of the jungle.

Proposition 8.1.2. — Consider some forests λ1, . . . , λr1 whose internal dynamics is fixed (prescribed

by the velocities and relative positions at time t, as well as the creation parameters). The set of con-

figurations Z∗|ρ1| at time t compatible with the jungle ρ1 = {λ1, . . . , λr1} on [0, t] satisfies the following

estimate :

(8.1.10)

∫
dx∗λ1

· · · dx∗λr1−1
|ϕρ1 | ≤

(
C

β
1/2
0 µε

)r1−1

(t+ ε)
r1−1

∑
T∈Tρ1

∏
λj∈ρ1

(
β0V2

λj +Kλj

)dλj (T )

.

The argument is similar, but not identical, to the one just seen for clustering recollisions. Below we

shall indicate the differences, without repeating the identical parts.

By definition of ϕρ1
, and by Definition 4.4.1, the clustering overlaps are extracted from the

graph of all overlaps between the forests {λ1, . . . , λr1} via the Penrose algorithm : we denote

by (λj1 , λj′1), · · · , (λjr1−1
, λj′r1−1

) the (ordered) edges of the resulting minimally connected graph

T ∈ Tρ1 . Then, thanks to the tree inequality stated in Proposition 2.3.3,

(8.1.11) |ϕρ1 | ≤
∑
T∈Tρ1

∏
{λj ,λj′}∈E(T )

1λj∼oλj′ .
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Note that, as mentioned in Section 4.4, we have more flexibility when dealing with overlaps than with

recollisions, as
(

Ψε
λj

)
1≤j≤r1

are completely independent trajectories, whatever the ordering of the

overlap times. We therefore have more freedom in choosing the integration variables.

We can then define

x̂k := x∗λ′
[k]
− x∗λ[k]

, k = 1, . . . , r1 − 1

as the relative position between the two overlapping forests at time t. As in the case of clustering

recollisions, for any given root position x∗ρ1
:= x∗λr1

∈ Td, the map of translations

(8.1.12)
(
x∗λ1

, . . . , x∗λr1−1

)
7−→ X̂r1−1 := (x̂1, . . . , x̂r1−1)

is one-to-one on Td(r1−1) and it has unit Jacobian determinant. Thus (8.1.12) is a legitimate change

of variables in (8.0.1).

Given a graph T ∈ Tρ1
and the corresponding sequence

(
λ[k], λ

′
[k]

)
k
, the k−th clustering overlap

condition is defined by

x̂k ∈ B̃k :=
⋃

q in the forest λ[k]

q′ in the forest λ′[k]

B̃qq′ ,

with

B̃qq′ =
{
x̂k ∈ Td : ∃τ ∈ [0, t] such that |xq(τ)− xq′(τ)| ≤ ε

}
where we used (4.4.3), and xq(τ), xq′(τ) are the particle trajectories in the flows Ψε

λ[k]
,Ψε

λ′
[k]

. This set

has small measure

(8.1.13) |B̃k| ≤
C

β
1/2
0 µε

(t+ ε)
(
β0V2

λ[k]
+Kλ[k]

)(
β0V2

λ′
[k]

+Kλ′
[k]

)
for some constant C > 0. Notice that the correction of O(ε) comes from the extremal spherical caps

of the tubes in Figure 9 (since 1λ[k]∼oλ′[k]
= 1 inside those regions).

Remark 8.1.3. — Note that overlaps can be classified in two types

— those arising at time t or involving a particle q at its creation time tq : in this case, the distance

between the overlapping particles at τov satisfies only the inequality

|xq(τov)− xq′(τov)| ≤ ε .
This corresponds to one spherical end of the tube in Figure 9;

— and the regular ones, for which the two overlapping particles are exactly at distance ε at τov.

We then have the same parametrization as for recollisions

(8.1.14) xq(τov)− xq′(τov) = εωov .

This corresponds to the tube in Figure 9 minus the spherical end.

We finally obtain (8.1.10).

– Initial clustering. Finally, we are going to estimate the non-overlap constraints in the initial data,

which are encoded in (4.3.1).

Recall that fε0{1,...,r}(Ψ
ε0
ρ1
, . . . ,Ψε0

ρr ) is a measure of the correlations between all the different clusters of

particles Ψε0
ρ1
, . . . ,Ψε0

ρr at time zero, and its definition has been adapted to reconstruct the dynamical

cumulants. An estimate of this correlation is obtained by integrating over the root coordinates of the

jungles x∗ρ1
, . . . , x∗ρr−1

, as stated in the following proposition.
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We recall that Kρi := mρi + |ρi| denotes the number of particles in the configuration Ψε,0
ρi at time 0,

and that K :=

r∑
i=1

Kρi = m+ n.

Proposition 8.1.4. — Under Assumption (1.1.5), there exists C > 0 (depending only on the dimen-

sion d) such that, for ε small enough,∫
Td(r−1)

|fε0{1,...,r}(Ψε0
ρ1
, . . . ,Ψε0

ρr )| dx∗ρ1
. . . dx∗ρr−1

≤ (r − 2)! (CC0)K exp
(
− β0

2
V2
)
εd(r−1)

for all Ψε0
ρi ∈ DεKρi at time 0. We have used the convention 0! = (−1)! = 1.

Recall that fε0{1,...,r} is extended to DK \ DεK by setting F ε0ωi = 0 in (4.3.1) wherever it is not defined.

The following proof is an application of known cluster expansion techniques, see e.g. [55] and references

therein.

Proof. — Set ZK := (Ψε0
ρ1
, . . . ,Ψε0

ρr ) with Ψε0
ρi ∈ DεKρi at time 0. To make notation lighter we shall

omit the superscripts ε0 and also omit to specify the exclusion constraints inside each Ψε
ρi in the

sequel. We define Φr+p the indicator function of the mutual exclusion between the elements of the

set {Ψε
ρ1
, . . . ,Ψε

ρr , z̄1, . . . , z̄p} (where Ψε
ρ1
, . . . ,Ψε

ρr form r clusters and z̄1, . . . , z̄p are the configurations

of p single particles):

Φr+p =
∏
h6=h′

1ηh 6∼ηh′ ,

with (η1, . . . , ηr+p) = (Ψε
ρ1
, . . . ,Ψε

ρr , z̄1, . . . , z̄p) and “ηh 6∼ ηh′” meaning that the minimum distance

between elements of ηh and ηh′ is larger than ε. So we start from

(8.1.15) F ε0K (ZK) =
(f0)⊗K(ZK)

Zε
∑
p≥0

µpε
p!

∫
Dp

(f0)⊗p(Z̄p) Φr+p(Ψ
ε
ρ1
, . . . ,Ψε

ρr , Z̄p) dZ̄p .

We want to expand Φr+p in order to compensate the factor Zε whose definition we recall

(8.1.16) Zε :=
∑
p≥0

µpε
p!

∫
Dp

(f0)⊗p(Z̄p) Φp(Z̄p) dZ̄p ,

and to identify the elements in the decomposition

F ε0K (Ψε
ρ1
, . . . ,Ψε

ρr ) =

r∑
s=1

∑
σ∈Psr

s∏
i=1

fε0|σi|(Ψ
ε
σi) .

This will enable us to compute, and estimate, fε0{1,...,r}(Ψ
ε
ρ1
, . . . ,Ψε

ρr ). To do so, we naturally de-

velop Φr+p into s clusters (each of them corresponding to one connected graph containing at least one

element of {Ψε
ρ1
, . . . ,Ψε

ρr}), plus a background σ̄0 of mutually excluding particles (for which we do not

expand the exclusion condition). Such a partition can be reconstructed isolating first the background

component, and then splitting {Ψε
ρ1
, . . . ,Ψε

ρr} in s parts, to which we adjoin the remaining single

particles (see Figure 10).

This amounts to introducing truncated functions ϕ via the following formula:

(8.1.17) Φr+p(Ψ
ε
ρ1
, . . . ,Ψε

ρr , Z̄p)=
∑

σ̄0⊂{1,...,p}

Φ|σ̄0|(Z̄σ̄0
)

r∑
s=1

∑
σ∈Psr

∑
σ̄1,...,σ̄s⊂{1,··· ,p}
∪si=0σ̄i={1,...,p}
σ̄k∩σ̄h=∅,k 6=h

s∏
i=1

ϕ(Ψε
σi , Z̄σ̄i) .
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σ1

σ̄1

σ2

σ̄2

σ3

jungle clusters Ψρi

background particles z̄i

σ̄0

Figure 10. Initial configurations are decomposed in s clusters containing at least one jun-

gle Ψε
ρ1
, . . . ,Ψε

ρr , plus a background of mutually excluding particles (for which we do not

expand the exclusion condition).

Note that the σ̄i may be empty (in particular all σ̄i are empty if |σ̄0| = p). By (2.3.1), we see that

ϕ(Ψε
ρ1
, . . . ,Ψε

ρr , Z̄p) =
∑

G∈Cr+p

∏
(h,h′)∈E(G)

(−1ηh∼ηh′ ) ,

where the sum runs over the set of connected graphs with r + p vertices; more generally,

ϕ(Ψε
σi , Z̄σ̄i) =

∑
G∈C|σi|+|σ̄i|

∏
(h,h′)∈E(G)

(−1ηh∼ηh′ ) .

Using the symmetry in the exchange of particle labels, we get, denoting s̄i := |σ̄i|,(
p

s̄1

)(
p− s̄1

s̄2

)
. . .

(
p− s̄1 − · · · − s̄s−1

s̄s

)
=

p!

s̄0! s̄1! . . . s̄s!

choices for the repartition of the background particles, so that∑
p≥0

1

p!

∫
Dp

Φr+p(Ψ
ε
ρ1
, . . . ,Ψε

ρr , Z̄p) dZ̄p =

r∑
s=1

∑
σ∈Psr

∑
p≥0

∑
s̄0,...,s̄s≥0∑

s̄i=p

∫
Dp

Φs̄0(Z̄s̄0)

s̄0!

s∏
i=1

ϕ(Ψε
σi , Z̄s̄i)

s̄i!
dZ̄p .

Therefore, plugging (8.1.17) into (8.1.15) first and then using (8.1.16), we obtain

F ε0K (ZK) =
(f0)⊗K(ZK)

Zε
r∑
s=1

∑
σ∈Psr

∑
p≥0

∑
s̄0,...,s̄s≥0∑

s̄i=p

(
µs̄0ε
s̄0!

∫
(f0)⊗s̄0(Z̄s̄0)Φs̄0(Z̄s̄0)dZ̄s̄0

)

×
s∏
i=1

µs̄iε
s̄i!

∫
(f0)⊗s̄i(Z̄s̄i)ϕ(Ψε

σi , Z̄s̄i)dZ̄s̄i

= (f0)⊗K(ZK)

r∑
s=1

∑
σ∈Psr

s∏
i=1

∑
s̄i≥0

µs̄iε
s̄i!

∫
(f0)⊗s̄i(Z̄s̄i)ϕ(Ψε

σi , Z̄s̄i)dZ̄s̄i ,

hence finally

(8.1.18) fε0{1,...,r}(Ψ
ε
ρ1
, . . . ,Ψε

ρr ) = (f0)⊗K(ZK)
∑
p≥0

µpε
p!

∫
(f0)⊗p(Z̄p)ϕ(Ψε

ρ1
, . . . ,Ψε

ρr , Z̄p)dZ̄p .
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Applying again Proposition 2.3.3 implies that ϕ is bounded by

(8.1.19) |ϕ(Ψε
ρ1
, . . . ,Ψε

ρr , Z̄p)| ≤
∑

T∈Tr+p

∏
(h,h′)∈E(T )

1ηh∼ηh′

where Tr+p is the set of minimally connected graphs with r+p vertices labelled by Ψε
ρ1
, . . . ,Ψε

ρr , z̄1, . . . , z̄p.

By Lemma 2.4.1, the number of minimally connected graphs with specified vertex degrees d1, . . . , dr+p
is given by

(r + p− 2)!/

r+p∏
i=1

(di − 1)! .

On the other hand, the product of indicator functions in (8.1.19) is a sequence of r + p − 1 con-

straints, confining the space coordinates to balls of size ε centered at the positions of the clusters

Ψε
ρ1
, . . . ,Ψε

ρr , z̄1, . . . , z̄p. Such clusters have cardinality Kρ1
, . . . ,Kρr ≥ 1 with the constraint∑

i

Kρi = K .

We deduce that for some C > 0 depending only on the dimension d∫
Td(r−1)

|fε0{1,...,r}(Ψε
ρ1
, . . . ,Ψε

ρr )|dx∗ρ1
. . . dx∗ρr−1

≤ (CC0)Kεd(r−1)e−
β0
2 V2 ∑

p≥0

(r + p− 2)!

p!
(CC0ε

dµε)
p

∑
d1,...,dr+p≥1

∏r
i=1K

di
ρi∏r+p

i=1 (di − 1)!

≤ (CC0)Kεd(r−1)e−
β0
2 V2 ∑

p≥0

(r + p− 2)!

p!
(C0ε

dµε)
p e2K+p

≤ (CC0)Kεd(r−1)e−
β0
2 V2

2r−2(r − 2)!
∑
p≥0

(CC0ε
dµε)

p e2K+p .

In the second inequality we used that
r∏
i=1

∑
di≥1

Kdi
ρi

(di − 1)!
≤

r∏
i=1

Kρie
Kρi ≤

r∏
i=1

e2Kρi = e2K .

Since Cεdµε is arbitrarily small with ε, this proves Proposition 8.1.4.

8.2. Decay estimate for the cumulants

We shall now prove the bound provided in Theorem 10. In the previous section, we considered a

nested partition λ ↪→ ρ ↪→ σ (with |σ| = 1) of the set {1∗, . . . , n∗}. We fixed the velocities V ∗n as

well as the collision parameters of the pseudo-trajectories (m, a, Tm, Vm,Ωm). We then exhibited n−1

“independent” conditions on the positions X∗n for the pseudo-trajectories to be compatible with the

partitions λ, ρ. Now we shall conclude the proof of Theorem 10, by integrating successively on all the

available parameters. The order of integration is pictured in Figure 11.

For the proof of the first two statements in Theorem 10, we start by controlling the weight, simply

using the bounds

(8.2.1) |H(Ψε
n)| ≤

n∏
i=1

‖H(i)‖∞ or |H(Ψε
n)| ≤ eαn+

β0
4 V2

.
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x∗2 x∗3 x∗4 x∗7x∗1

λ1 λ2 λ3

x∗5 x∗6

ρ1
λ4 λ5 λ6

ρ2 ρ3
σ1

x∗8 x
∗
9 x∗10 x∗11 x∗12 x∗13 x

∗
14

Figure 11. In this contribution to the cumulant of order n = 14, we integrate over the

positions of the roots in the following order: (i) first we integrate over the initial clus-

tering x̂ρ2 = x∗10 − x∗14 and x̂ρ1 = x∗7 − x∗14; (ii) secondly over the clustering overlaps

x̂λ4 = x∗9 − x∗10 and x̂λ1 = x∗4 − x∗5 , x̂λ2 = x∗5 − x∗7; (iii) finally over the clustering recol-

lisions : x̂
(λ1)
3 = x∗2 − x∗3, x̂

(λ1)
2 = x∗1 − x∗2, x̂

(λ1)
1 = x∗3 − x∗4, x̂

(λ3)
1 = x∗6 − x∗7, x̂

(λ4)
1 =

x∗8 − x∗9, x̂
(λ6)
3 = x∗13 − x∗14, x̂

(λ6)
2 = x∗12 − x∗13, x̂

(λ6)
1 = x∗11 − x∗12. Notice that the

variable x∗14 remains free.

Then we use that nothing depends on the root coordinates of the jungles x∗ρ1
, . . . , x∗ρr−1

inside the

integrand in (8.0.1), except the initial datum fε0{1,...,r}. Therefore by Fubini and according to Proposi-

tion 8.1.4,

(8.2.2)

∫
Td(r−1)

|fε0{1,...,r}(Ψε0
ρ1
, . . . ,Ψε0

ρr )|dx∗ρ1
. . . dx∗ρr−1

≤ (r − 2)! (CC0)K exp
(
− β0

2
V2
)
εd(r−1)

for some C > 0, uniformly with respect to all other parameters.

Next, the clustering condition on the jungles gives an extra smallness when integrating over the roots

of the forests (see (8.1.10))

(8.2.3)

r∏
i=1

∫
|ϕρi |

ri−1∏
j=1

dx∗λj ≤
(

C

β
1/2
0 µε

)`−r
(t+ ε)

`−r
r∏
i=1

∑
T∈Tρi

∏
λj∈ρi

(
β0V2

λj +Kλj

)dλj (T )

,

uniformly with respect to all other parameters, for some possibly larger constant C.

The clustering condition on the forests gives finally an extra smallness when integrating over the

remaining variables x̂k, according to (8.1.3). Notice however that the latter inequality cannot be

directly applied to (4.4.1), due to the presence of the cross section factors (8.0.5) in the measure

(3.3.5).

It is then useful to combine the estimate with the sum over trees a|λi . The argument is depicted

in Figure 12. We will present the arguments for λ1, assuming without loss of generality that λ1 =

{1, . . . , `1}. We will denote by ã the restriction of the tree a to λ1 with fixed total numbers of particles

K1, · · · ,K`1 , and by ãk, Ck the tree variables and the cross section factors associated with the sk
creations occurring in the time interval (τrec,k, τrec,k−1) for 1 ≤ k ≤ `1.



8.2. DECAY ESTIMATE FOR THE CUMULANTS 105

ã3

ã2

ã1

τrec,1

τrec,2
0

|ã1| = s1 = 5

|ã2| = s2 = 1

|ã3| = s3 = 1
number of creations per slice

Figure 12. Integration over time slices.

As in the first line of (8.1.9), we have that

(8.2.4)∑
ã

∫
dX∗`1−1 ∆∆λ1

1Gε
(
Ψε
λ1

)
|C
(
Ψε
λ1

)
|

≤
∑

(
λ(k),λ

′
(k)

)
∑
ã1

|Cε1
(
Ψλ1

)
|
∫
dx̂11B1

∑
ã2

|C2
(
Ψε
λ1

)
|
∫
dx̂2 . . .

∫
dx̂`1−11B`1−1

∑
ã`1

|C`1
(
Ψε
λ1

)
| .

We can therefore apply iteratively the inequality (8.1.8) and the classical Cauchy-Schwarz argument

used in Lanford’s proof. Denote by

Sk :=

k∑
i=1

si

the number of particles added before time τrec,k, so that

S`1 = mλ1

(denoting abusively τrec,`1 = 0). We get

(8.2.5)

∑
ãk

∣∣Ck(Ψλ1

)∣∣ ≤ Sk∏
s=Sk−1+1

(
s−1∑
u=1

|vs − vu(ts)|+
`1∑
u=1

|vs − v∗u(ts)|
)

≤
Sk∏

s=Sk−1+1

(
(`1 + s− 1)|vs|+

s−1∑
u=1

|vu(ts)|+
`1∑
u=1

|v∗u(ts)|
)

≤ 1

β
sk/2
0

Sk∏
s=Sk−1+1

(
(`1 +mλ1)(1 + β

1/2
0 |vs|) + β0|Vλ1 |2

)
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and

(8.2.6)∑
ã

∫
dX∗`1−1 ∆∆λ1

1Gε
(
Ψλ1

)
|C
(
Ψλ1

)
| ≤

(
C

β
1/2
0 µε

)`1−1(
1

β0

)mλ1
/2

(t+ ε)
`1−1

×
∑
T∈Tλ1

∏
j∈λ1

(
β0V2

j +Kj

)dj(T )
mλ1∏
s=1

(
(`1 +mλ1

)(1 + β
1/2
0 |vs|) + β0|Vλ1

|2
)
,

for some positive C.

Recall that

exp

(
− β0

16m
|V |2

)
β0|V |2 ≤ Cm.

Combining (8.2.6) with the bound (8.2.1) on H, (8.2.2) and (8.2.3) leads therefore to

(8.2.7)

∫ ∣∣∣ ∑
a

∏̀
i=1

∆∆λi C
(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)
ϕρ f

ε0
{1,...,r}(Ψ

ε0
ρ1
, . . . ,Ψε0

ρr )
∣∣∣ dX∗n

≤ (r − 2)! (CC0)K exp
(
αn− β0

8
V2
)
εd(r−1)

(
C

β
1/2
0 µε

)n−r
(t+ ε)

n−r

×

 r∏
i=1

∑
T∈Tρi

∏
λj∈ρi

(
β0V2

λj +Kλj

)dλj (T )

∏̀
i=1

∑
T∈Tλi

∏
j∈λi

(
β0V2

j +Kj

)dj(T )


× (m+ n)m

(
1

β0

)m/2 m∏
s=1

(1 + β
1/2
0 |vs|) ,

valid uniformly with respect to all other parameters. Here and below, we indicate by C a large enough

constant, depending only on the dimension d and changing from line to line.

The following step then consists in integrating (8.2.7) with respect to the remaining parameters

(Tm,Ωm, Vm) and V ∗n (withm fixed for the time being). Recalling the condition that t1 ≥ t2 ≥ · · · ≥ tm,

we get∫ ∣∣∣ ∑
a

∏̀
i=1

∆∆λi C
(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)
ϕρ f

ε0
{1,...,r}(Ψ

ε0
ρ1
, . . . ,Ψε0

ρr ) dTmdΩmdVm

∣∣∣dZ∗n
≤ (r − 2)! (CC0)Kεd(r−1)

(
C

β
1/2
0 µε

)n−r
(t+ ε)

n−r (CC0t)
m

m!
(m+ n)m

(
1

β0

)m/2
×

∑
T1∈Tρ1

. . .
∑

Tr∈Tρr

∑
T̃1∈Tλ1

. . .
∑

T̃`∈Tλ`

∫
exp

(
αn− β0

16
V2

) m∏
s=1

(1 + β
1/2
0 |vs|)dV ∗n dVm

× sup

exp
(
− β0

16
V2
)  r∏

i=1

∏
λj∈ρi

(
β0V2

λj +Kλj

)dλj (Ti)

∏̀
i=1

∏
j∈λi

(
β0V2

j +Kj

)dj(T̃i) .

Using the facts that ∫
exp

(
−β0

16
|w|2

)
β

1/2
0 |w|dw ≤ Cβ−d/20 ,

exp

(
−β0

16
|V |2

)(
β0|V |2 +K

)D ≤ CK (16D)
D
,
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for positive K,D, we arrive at

(8.2.8)

∫ ∣∣∣ ∑
a

∏̀
i=1

∆∆λi C
(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)
ϕρ f

ε0
{1,...,r}(Ψ

ε0
ρ1
, . . . ,Ψε0

ρr ) dTmdΩmdVm

∣∣∣dZ∗n
≤ (r − 2)!

(
Cβ
−1/2
0 (t+ ε)

µε

)n−r
εd(r−1)(CC0 β

− d+1
2

0 t)m(C0e
αβ
−d/2
0 )n

×

 r∏
i=1

∑
T∈Tρi

∏
λj∈ρi

(
dλj (T )

)dλj (T )

∏̀
i=1

∑
T̃∈Tλi

∏
j∈λi

(
dj(T̃ )

)dj(T̃ )

 .

For each forest (jungle) we ended up with a factor
∑
T∈Tk

∏k
i=1 (di(T ))

di(T )
where k is the cardinality

of the forest (jungle). Applying again Lemma 2.4.1, and using that for any integer i

ii

(i− 1)!
≤ i exp(i− 1) ≤ exp(2i),

this number is bounded above by

(k − 2)!
∑

d1,··· ,dk
1≤di≤k−1∑
i di=2(k−1)

k∏
i=1

ddii
(di − 1)!

≤ (k − 2)! e4(k−1)
∑

d1,··· ,dk
1≤di≤k−1∑
i di=2(k−1)

1 .

The last sum is also bounded by Ck. Taking the sum over the number of created particles m, we arrive

at

(8.2.9)

∫ ∣∣∣∣∣
∫ ∏̀

i=1

[
µ(dΨε

λi)∆∆λi C
(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)]
× ϕρ fε0{1,...,r}(Ψε0

ρ1
, . . . ,Ψε0

ρr )

∣∣∣∣∣ dZ∗n
≤ (r − 2)!

µn−1
ε

(
CC0e

α β
− d+1

2
0 (t+ ε)

)n(εr−1β
r/2
0

(t+ ε)r

)
r∏
i=1

(ri − 2)!
∏̀
j=1

(`j − 2)!
∑
m

(CC0 β
− d+1

2
0 t)m

valid uniformly with respect to all partitions λ ↪→ ρ, and for t small enough. Finally, summing (8.2.9)

over the partitions λ ↪→ ρ we find (recalling the convention 0! = (−1)! = 1)

n∑
`=1

∑
λ∈P`n

∑̀
r=1

∑
ρ∈Pr`

(r − 2)!

r∏
i=1

(ri − 2)!
∏̀
j=1

(`j − 2)!

=

n∑
`=1

∑
`1,··· ,``≥1∑

i `i=n

∑̀
r=1

∑
r1,··· ,rr≥1∑

i ri=`

n!

`!`1! . . . ``!

`!

r!r1! . . . rr!
(r − 2)!

r∏
i=1

(ri − 2)!
∏̀
j=1

(`j − 2)!

≤ n!

1 +
∑
r≥2

1

r(r − 1)

2n

.

This concludes the proof of the first two estimates in Theorem 10.

The third statement (8.0.4) is obtained in a very similar way. If the pseudo-particle i has no collision

nor recollision during [t− δ, t] then

sup
|t−t′|≤δ

|zi(t)− zi(t′)| ≤ δ|vi(t)| ≤ δ|Vn(t)| .

This is enough to gain a factor δ from the assumption on Hn.
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If a collision occurs during [t − δ, t], then by localizing the time integral of this collision in Duhamel

formula, one gets the additional factor δ (with a factor m corresponding to the symmetry breaking in

the time integration dTm).

Finally, it may happen that a recollision occurs during [t− δ, t]. This imposes an additional geometric

constraint and the recollision time has to be integrated now in [t− δ, t]. Thus an additional factor δ is

also obtained (together with a factor n corresponding to the symmetry breaking in the time integration

dΘclust
n−1 ). This completes the proof of (8.0.4).

Remark 8.2.1. — Note that the sum over m in (8.2.9) is converging uniformly in ε, which means

that the contribution of pseudo-trajectories involving a large number m of created particles can be

made as small as needed. In particular, to study the convergence as ε→ 0, it will be enough to look at

pseudo-trajectories with a controlled number m ≤ m0 of added particles.



CHAPTER 9

MINIMAL TREES AND CONVERGENCE OF THE CUMULANTS

The goal of this chapter is to prove Theorem 5 p. 41, which can be restated as follows.

Theorem 11. — Let Hn : (D([0,+∞[))n 7→ R be a continuous factorized function Hn(Zn([0, t])) =∏n
i=1H

(i)(zi([0, t])) such that

(9.0.1)
∣∣Hn(Zn([0, t]))

∣∣ ≤ exp
(
αn+

β0

4
sup
s∈[0,t]

|Vn(s)|2
)
,

with β0 defined in (1.1.5).

Then the scaled cumulant fεn,[0,t](Hn) converges for any t ≤ T0 to the limiting cumulant introduced

in (5.1.4)

fn,[0,t](Hn) =
∑
T∈T ±n

∑
m

∑
a∈A±n,m

∫
dµsing,T,a(Ψn,m)H(Ψn,m)f0⊗(n+m)(Ψ0

n,m) .

After some preparation in Section 9.1, we present in Section 9.2 the leading order asymptotics

of fεn,[0,t](H
⊗n) by eliminating all pseudo-trajectories involving non clustering recollisions and over-

laps. Section 9.3 is devoted to the conclusion of the proof, by estimating the discrepancy between the

remaining pseudo-trajectories Ψε
n and their limits Ψn.

9.1. Truncation of cumulants

An inspection of the arguments in the previous chapter shows that initial clusterings are negligible

compared to dynamical clusterings. Indeed Estimate (8.2.9) shows that the leading order term in the

cumulant decomposition (4.4.1) corresponds to choosing r = 1: this term is indeed of order

Cnn!(t+ ε)n−1

while the error is smaller by one order of ε. We are therefore reduced to studying

µn−1
ε

n∑
`=1

∑
λ∈P`n

∫ (∏̀
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
ϕ{1,...,`} f

ε0
{1}(Ψ

ε0
ρ1

) .
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We shall furthermore consider only trees of controlled size: we define, for any integer m0,

(9.1.1) fε,m0

n,[0,t](H
⊗n) := µn−1

ε

n∑
`=1

∑
λ∈P`n

∫
dZ∗n

∫ ∏̀
i=1

[
dµm0(Ψε

λi)∆∆λiH
(
Ψε
λi

)]
ϕ{1,...,`} f

ε0
{1}(Ψ

ε0
ρ1

) ,

where the measure on the pseudo-trajectories is defined as in (3.3.5) by

dµm0
(Ψε

λi) :=
∑

mi≤m0

∑
a∈A±λi,mi

dTmidΩmidVmi 1Gε(Ψ
ε
λi)

mi∏
k=1

(
sk
((
vk − vak(tk)

)
· ωk

)
+

)
.

Then by Remark 8.2.1, we have

(9.1.2) lim
m0→∞

∣∣fεn,[0,t](H⊗n)− fε,m0

n,[0,t](H
⊗n)
∣∣ = 0 uniformly in ε .

Next let us define

f̃εn,[0,t](H
⊗n) := µn−1

ε

n∑
`=1

∑
λ∈P`n

∫
dZ∗n

∫ ∏̀
i=1

[
dµ(Ψε

λi)∆̃∆λiH
(
Ψε
λi

)]
ϕ̃{1,...,`} f

ε0
{1}(Ψ

ε0
ρ1

)

where ∆̃∆λi is the characteristic function supported on the forests λi having exactly |λi|−1 recollisions,

and ϕ̃{1,...,`} is supported on jungles having exactly `− 1 regular overlaps, so that

— all recollisions and overlaps are clustering;

— all overlaps are regular in the sense of Remark 8.1.3.

Since f̃εn,[0,t](H
⊗n) is defined simply as the restriction of fεn,[0,t](H

⊗n) to some pseudo-trajectories (with

a special choice of initial data), the same estimates as in the previous chapter show that

|f̃εn,[0,t](H⊗n)| ≤ Cnn!(t+ ε)n−1 .

Furthermore, defining its truncated counterpart

f̃ε,m0

n,[0,t](H
⊗n) := µn−1

ε

n∑
`=1

∑
λ∈P`n

∫
dZ∗n

∫ ∏̀
i=1

[
dµm0

(Ψε
λi)∆̃∆λiH

(
Ψε
λi

)]
ϕ̃{1,...,`} f

ε0
{1}(Ψ

ε0
ρ1

)

there holds

(9.1.3) lim
m0→∞

∣∣f̃εn,[0,t](H⊗n)− f̃ε,m0

n,[0,t](H
⊗n)
∣∣ = 0 uniformly in ε .

The limits (9.1.2) and (9.1.3) imply that it is enough to prove that the truncated decomposi-

tions fε,m0

n,[0,t](H
⊗n) and f̃ε,m0

n,[0,t](H
⊗n) are close: we shall indeed see in the next section that non

clustering recollisions or overlaps as well as non regular overlaps induce some extra smallness.

Note finally that the estimates provided in Theorem 10 show that the series fεn,[0,t](H
⊗n)/n! converges

uniformly in ε for t ≤ Tα, so a termwise (in n) convergence as ε→ 0 is sufficient for our purposes. We

therefore shall make no attempt at optimality in the dependence of the constants in n, α,C0, β0 in this

chapter.
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9.2. Removing non clustering recollisions/overlaps and non regular overlaps

Let us now estimate |fε,m0

n,[0,t](H
⊗n)− f̃ε,m0

n,[0,t](H
⊗n)|. We first show how to express non clustering recol-

lisions/overlaps as additional constraints on the set of integration parameters (Z∗n, Tm, Vm,Ωm). This

argument is actually very similar to the argument used to control (internal) recollisions in Lanford’s

proof (which focuses primarily on the expansion of the first cumulant).

Proposition 9.2.1. — Denote by Bε the set of integration parameters leading to pathological cumu-

lant pseudo-trajectories :

(9.2.1)
Bε :=

{
(Z∗n,m, Tm,Ωm, Vm) : m ≤ m0

and Ψε has a non clustering recollision/overlap or a non regular overlap
}
.

Then, there exists a constant C (depending on α,C0, β0) such that∣∣fε,m0

n,[0,t](H
⊗n)− f̃ε,m0

n,[0,t](H
⊗n)
∣∣ ≤ Cn(t+ 1)n+d−1n!ε1/8 .

In the coming section we discuss one elementary step, which is the estimate of a given non clustering

event, by treating separately different geometrical cases – we shall actually only deal with non clustering

recollisions, the case of overlaps being simpler. Then in Section 9.2.2 we apply the argument to provide

a global estimate.

9.2.1. Additional constraint due to non clustering recollisions and overlaps. — We consider

a partition λ of {1∗, . . . , n∗} in ` forests λ1, . . . , λ`. We fix the velocities V ∗n , as well as the collision

parameters (Tm, Vm,Ωm), with m ≤ m0`. As in Section 8.1 we denote by V2 := (V ∗n )2 + V 2
m (twice)

the total energy and by K = n + m the total number of particles, and by V2
i and Ki the energy and

number of particles of the collision tree Ψε
{i} with root at z∗i .

Let us consider a pseudo-trajectory (compatible with λ) involving a non clustering recollision. We

denote by trec the time of occurrence of the first non clustering recollision (going backwards in time)

and we denote by q, q′ ∈ {1∗, . . . , n∗} ∪ {1, . . . ,m} the labels of the two particles involved in that

recollision. By definition, they belong to the same forest, say λ1, and we denote by Ψε
{i} and Ψε

{i′}
their respective trees (note that it may happen that i = i′ in the case of an internal recollision).

The recollision between q and q′ imposes strong constraints on the history of these particles, especially

on the first deflection of the couple q, q′, moving up the forest (thus forward in time) towards the root.

These constraints can be expressed by different equations depending on the recollision scenario.

Self-recollision. Let us assume that moving up the tree starting at the recollision time, the first

deflection of q and q′ is between q and q′ themselves at time t̄: this means that the recollision occurs

due to periodicity in space.

This has a very small cost, as described in the following proposition (with the notation of Section 8.1).

Proposition 9.2.2. — Let q and q′ be the labels of the two particles recolliding due to space period-

icity, and denote by t̄ the first time of deflection of q and q′, moving up their respective trees from the

recollision time. The following holds:
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q

q̄
q̄′

time trec

time t̄ = τk

q′

time t̄
C R

q̄

time trec

q
q′

Figure 13. The first deflection of q and q′ can be either the creation of one of them (say q),

or a clustering recollision.

— If q is created next to q′ at time t̄ with collision parameters ω̄ and v̄, and if v̄q is the velocity

of q at time t̄+, then denoting by Ψε
{i} their collision tree there holds∫

1Self-recollision with creation of q at time t̄

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ C

µε
V2d+1(1 + t)d+1 .

— If t̄ corresponds to the k-th clustering recollision in Ψε
λ1

, between the trees Ψε
{jk} and Ψε

{j′k}
, then∫

1Self-recollision with a clustering recollision at time t̄ dx̂k ≤
C

µ2
ε

(V(1 + t))
d+1

.

Note that in the first case the admissible collision parameters (t̄, ω̄, v̄) belong to a small set of

size O(1/µε). In the second case, the condition is expressed in terms of the root x̂k with the notation

of Section 8.1: it is not independent of the condition (8.1.6) defining Bqq′ , but it reinforces it as the

estimate provides a factor 1/µ2
ε instead of 1/µε.

Generic non clustering recollision. Without loss of generality, we may assume that the first deflection

moving up the tree from time trec involves q. We denote by t̄ the time of that first deflection and

by c 6= q, q′ the particle involved in the collision with q (see Figure 14). The parent q̄ of q is the

particle q or c existing at time t̄+, and we denote by v̄q the velocity of q̄ at time t̄+ . Similarly we

denote by v̄q′ the velocity of particle q′ at time t̄.

time t̄

time trec

c

q

q′

q̄

C

c
q

q′

q̄
c̄

R

time trec

time t̄ = τk

Figure 14. The first deflection of q can be either a collision, or a clustering recollision.

The result is the following.

Proposition 9.2.3. — Let q and q′ be the labels of the two particles involved in the first non clustering

recollision. Assume that the first deflection moving up their trees from time trec involves q and a

particle c 6= q′, at some time t̄. Then with the above notation
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— If t̄ is the creation time of q (or c), denoting by ω̄ and v̄ the corresponding collision parameters,

by Ψε
{i} their collision tree and by Ψε

{i′} the collision tree of q′, there holds∫
1Recollision with a creation at time t̄

∣∣(v̄ − v̄q(t̄)) · ω̄∣∣dt̄dω̄dv̄ ≤ CV2d+ 3
2 (1 + t)d+ 1

2 min

(
1,

ε1/2

|v̄q − v̄q′ |

)
.

— If t̄ corresponds to the k-th clustering recollision in Ψε
λ1

, between Ψε
{jk} and Ψε

{j′k}
, and if Ψε

{i′}
is the collision tree of q′, then∫

1Recollision with a clustering recollision at time t̄ dx̂k ≤
C

µε
V

3
2 (1 + t)

1
2 min

(
1,

ε1/2

|v̄q − v̄q′ |

)
.

Note that as in the periodic situation, the recollision condition in the first case provides some smallness

on the set of admissible parameters (t̄, ω̄, v̄), while the recollision condition in the second case is

expressed in terms of the root x̂k, and reinforces the condition (8.1.6) defining Bqq′ by a factor ε1/2.

However in both cases the estimate involves a singularity in velocities that has to be eliminated.

The geometric analysis of these scenarios and the proof of Propositions 9.2.2 and 9.2.3 are postponed

to Section 9.4. The estimates in the first case were actually already proved in [9], while the second

one (the case of a clustering recollision) requires a slight adaptation.

Elimination of the singularity. It finally remains to eliminate the singularity 1/|v̄q− v̄q′ |, using the next

deflection moving up the tree. Note that this singularity arises only if the first non clustering recollision

is not a self-recollision, which ensures that the recolliding particles have at least two deflections before

the non clustering recollision. The result is the following.

Proposition 9.2.4. — Let q and q′ be the labels of two particles with velocities vq and vq′ , and denote

by t̄ the time of the first deflection of q or q′ moving up their trees.

— If the deflection at t̄ corresponds to a collision in a tree Ψε
{i} with parameters ω̄, v̄, then∫

1Recollision with a creation at time t̄ min

(
1,

ε1/2

|vq − vq′ |

) ∣∣(v̄ − v̄q) · ω̄∣∣dt̄dv̄dω̄ ≤ CtVd+1ε
1
8 .

— if t̄ corresponds to the k-th clustering recollision in the tree Ψε
λ1

, between Ψε
{jk} and Ψε

{j′k}
, then∫

min

(
1,

ε1/2

|vq − vq′ |

)
dx̂k ≤

Cε
1
8Vt
µε

·

The proposition is also proved in Section 9.4 of this chapter.

9.2.2. Removing pathological cumulant pseudo-trajectories. —

Proof of Proposition 9.2.1. — We first consider the case of pathological pseudo-trajectories involving a

non regular clustering overlap. By definition (see Remark 8.1.3), this means that the corresponding τov

has to be equal either to t or to the creation time of one of the overlapping particles. In other words,

instead of being a union of tubes of volume O((t + ε)/µε), the set B̃k describing the k-th clustering

overlap (see (8.1.13)) reduces to a union of balls of volume O(εd), so that

|B̃k| ≤ CεdKλ[k]
Kλ′

[k]
.

The non clustering condition is therefore reinforced and we gain additional smallness.
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Let us now consider the case of pathological pseudo-trajectories involving some non clustering recolli-

sion/overlap. We can assume without loss of generality that the first non clustering recollision (recall

that we leave the case of regular overlaps to the reader) occurs in the forest λ1 = {1, . . . , `1}. The

compatibility condition on the jungles gives smallness when integrating over the roots of the jungles

(see (8.2.3)). The compatibility condition on the forests λ2, . . . , λ` is obtained by integrating (8.2.4)

as in Section 8.2. We now have to combine the recollision condition with the compatibility conditions

on λ1 to obtain the desired estimate. As in the previous chapter, we denote by ã the restriction of

the tree a to λ1, and by ãk, Ck the tree variables and the cross section factors associated with the sk
creations occurring in the time interval (τrec,k, τrec,k−1).

We start from (8.2.4), adding the recollision condition: we get∑
ã

∫
dx∗λ1,1 . . . dx

∗
λ1,`1−1 ∆∆λ1

1G
(
Ψε
λ1

)
|C
(
Ψε
λ1

)
|1Ψελ1

has a non clustering recollision

≤
∑
ã1

|C1
(
Ψε
λ1

)
|
∫
dx̂11B1

∑
ã2

|C2
(
Ψε
λ1

)
|
∫
dx̂2 . . .

×
∫
dx̂`1−11B`1−1

∑
ã`1

|C`1
(
Ψε
λ1

)
|1Ψελ1

has a non clustering recollision .

As shown in the previous section, the set of parameters leading to the additional recollision can be

described in terms of a first deflection at a time t̄. We then have to improve the iteration scheme

of Section 8.2, on the time interval [τrec,k, τrec,k+1] containing the time t̄. There are two different

situations depending on whether the time t̄ corresponds to a creation, or to a clustering recollision.

If t̄ corresponds to a creation of a particle, say c, the condition on the recollision can be expressed in

terms of the collision parameters (t̄, v̄, ω̄) = (tc, vc, ωc). We therefore have to

— use (8.2.5) to control the collision cross sections
∣∣Cj(Ψε

λ1

)∣∣ for integration variables indexed

by s ∈ {c+ 1, . . . , Sj};
— use the integral with respect to t̄, ω̄, v̄ to gain a factor

C(1 + V)2d+3/2(1 + t)d+1/2 min

(
1,

ε1/2

|v̄q − vq′ |

)
by Proposition 9.2.3. Note that the geometric condition for the recollision between q and q′

does not depend on the parameters which have been integrated already at this stage, and to

simplify from now on all velocities are bounded by V;

— use (8.2.5) to control the collision cross sections
∣∣Cj(Ψε

λ1

)∣∣ for s ∈ {Sj−1 + 1, . . . , c− 1};
— use the integral with respect to x̂j to gain smallness due to the clustering recollision.

Note that, since t̄ is dealt with separately, we shall lose a power of t as well as a factor m ≤ `m0 in the

time integral. We shall also lose another factor K2 corresponding to all possible choices of recollision

pairs (q, q′): at this stage we shall not be too precise in the control of the constants in terms of n,

and m0, contrary to the previous chapter.

If t̄ = τrec,k corresponds to a clustering recollision, we use the same iteration as in Section 8.2:

— use (8.2.5) to control the collision cross sections
∣∣Ck(Ψε

λ1

)∣∣;
— use the integral with respect to x̂k to gain some smallness due to the clustering recollision,

multiplied by the additional smallness due to the non clustering recollision.

As in the first case, we shall lose a factor K2 corresponding to all possible choices of recollision pairs.
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After this first stage, we still need to integrate the singularity with respect to velocity variables, which

requires introducing the next deflection (moving up the root).

We therefore perform the same steps as above, but integrate the singularity

min

(
1,

ε1/2

|vq − vq′ |

)
by using Proposition 9.2.4.

Remark 9.2.5. — Note that it may happen that the two deflection times used in the process are in

the same time interval [τrec,k, τrec,k+1], which does not bring any additional difficulty. We just set apart

the two corresponding integrals in the collision parameters if both correspond to the creation of new

particles.

Integrating with respect to the remaining variables in (Tm,Ωm, Vm) and following the strategy described

above leads to the bound

(9.2.1)

∣∣∣∣∣
∫ (∏̀

i=1

∆∆λi C
(
Ψε
λi

)
1G
(
Ψε
λi

)
H
(
Ψλi

))
ϕ{1,...,`}f

ε0
{1}1Bε dTmdΩmdVmdZ

∗
n

∣∣∣∣∣
≤ `!ε 1

8 (`m0)4Cn
(

(t+ ε)

µε

)n−1

(Ct)m(1 + t)d .

Finally summing over m ≤ `m0 and over all possible partitions, we find

∀n ≥ 1,
∣∣fε,m0

n,[0,t](H
⊗n)− f̃ε,m0

n,[0,t](H
⊗n)
∣∣ ≤ Cn(t+ 1)n+d−1n!ε1/8 ,

where C depends on C0, α, β0 and m0. This concludes the proof of Proposition 9.2.1.

9.3. Convergence of the cumulants

In order to conclude the proof of Theorem 11, we now have to compare f̃ε,m0

n,[0,t](H
⊗n) and fn,[0,t](H

⊗n)

defined in (5.1.4) as

fn,[0,t](H
⊗n) =

∑
T∈T ±n

∑
m

∑
a∈A±n,m

∫
dµsing,T,a(Ψn,m)H(Ψn,m)

(
f0
)⊗(n+m)

(Ψ0
n,m) .

The comparison will be achieved by coupling the pseudo-trajectories and this requires discarding the

pathological trajectories leading to non clustering recollisions/overlaps and non regular overlaps. Thus

we define the modified limiting cumulants by restricting the integration parameters to the set Gε, which

avoids internal overlaps in collision trees of the same forest at the creation times, and by removing the

set Bε introduced in (9.2.1)

f̃m0

n,[0,t](H
⊗n) :=

∑
T∈T ±n

∑
m

∑
a∈A±n,m

∫
dµm0

sing,T,a(Ψn,m)H(Ψn,m)1Gε\Bε
(
f0
)⊗(n+m)

(Ψ0
n,m) ,

where dµm0

sing,T,a stands for the measure with at most m0 collisions in each forest. We stress the fact

that f̃m0

n,[0,t](H
⊗n) depends on ε only through the sets Bε and Gε. We are going to check that

(9.3.1) lim
m0→∞

lim
ε→0
|fn,[0,t](H⊗n)− f̃m0

n,[0,t](H
⊗n)| = 0 .

The analysis of the two previous sections may be performed for the limiting cumulants so that restrict-

ing the number of collisions to be less than m0 in each forest and the integration parameters outside
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the set Bε leads to a small error. The control of internal overlaps, associated with Gε, relies on the

same geometric arguments as discussed in Section 9.2.1: indeed, in order for an overlap to arise when

adding particle k at time tk, one should already have a particle which is at distance less than 2ε from

particle ak, which is a generalized recollision situation (replacing ε by 2ε). This completes (9.3.1).

In order to compare f̃m0

n,[0,t](H
⊗n) and f̃ε,m0

n,[0,t](H
⊗n), we first compare the initial measures, namely fε0{1}

with (f0)⊗(n+m). This is actually an easy matter as returning to (8.1.18) we see that the leading order

term in the decomposition of fε0{1} is F 0
n+m, which is well known to tensorize asymptotically as µε goes

to infinity (for fixed n+m), as stated by the following proposition.

Proposition 9.3.1 ([28]). — If f0 satisfies (1.1.5), there exists C > 0 such that

∀m,
∣∣∣ (F 0

m −
(
f0
)⊗m)

1Dmε (Zm)
∣∣∣ ≤ Cmε e− 3β0

8 |Vm|
2

.

At this stage, we are left with a final discrepancy between f̃m0

n,[0,t](H
⊗n) and f̃ε,m0

n,[0,t](H
⊗n) which is due

to the initial data and H being evaluated at different configurations (namely Ψn and Ψε
n). We then

need to introduce a suitable coupling.

In Chapter 5, we used the change of variables (5.1.1) to reparametrize the limiting pseudo-trajectories

in terms of x∗n, V
∗
n and n−1 recollision parameters (times and angles). In the same way, for fixed ε, we

can use the parametrization of clustering recollisions (4.4.5) and of regular clustering overlaps (8.1.14)

to reparametrize the non pathological pseudo-trajectories in terms of x∗n, V
∗
n and n − 1 recollision

parameters (times and angles). The cumulant pseudo-trajectories Ψε
n,m associated with the minimally

connected graph T ∈ T ±n and tree a ∈ A±n,m are obtained by fixing x∗n and V ∗n ,

— for each e ∈ E(T ), a representative {qe, q′e} ≈ e,
— a collection of m ordered creation times Tm, and parameters (Ωm, Vm);

— a collection of clustering times (τ clust
e )e∈E(T ) and clustering angles (ωclust

e )e∈E(T ).

At each creation time tk, a new particle, labeled k, is adjoined at position xak(tk) + εωk and with

velocity vk:

— if sk = +, then the velocities vk and vak are changed to vk(t−k ) and vak(t−k ) according to the

laws (3.2.1),

— then all particles follow the backward free flow until the next creation or clustering time.

For Ψn,m to be admissible, at each time τ clust
e the particles qe and q′e have to collide with the following

rules xqe(τ
clust
e )− xq′e(τ clust

e ) = εωclust
e :

— if se = +, then the velocities vqe and vq′e are changed according to the scattering rule, with

scattering vector ωclust
e .

— then all particles follow the backward free flow until the next creation or clustering time.

As in (5.1.3), we define the measure for each tree a ∈ A±n,m and each minimally connected graph T ∈ T ±n

(9.3.2)

dµεsing,T,a := dTmdΩmdVmdx
∗
ndV

∗
n dΘclust

n−1 dω
clust
n−1

m∏
i=1

si
(
(vi − vaj (ti) · ωi

)
+

×
∏

e∈E(T )

∑
{qe,q′e}≈e

sclust
e

(
(vqe(τ

clust
e )− vq′e(τ clust

e )) · ωclust
e

)
+

1Gε\Bε

denoting by Θclust
n−1 and Ωclust

n−1 the n− 1 clustering times τ clust
e and angles ωclust

e for e ∈ E(T ).

We can therefore couple the pseudo-trajectories Ψn and Ψε
n by their (identical) collision and clustering

parameters. The error between the two configurations Ψε
n and Ψn is due to the fact that collisions,
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recollisions and overlaps become pointwise in the limit but generate a shift of size O(ε) for fixed ε. We

then have

|Ψε
n(τ)−Ψn(τ)| ≤ C(n+m) ε for all τ ∈ [0, t] .

Such discrepancies concern only the positions, as the velocities remain equal in both flows.

It follows that ∣∣∣ (f0
)⊗(n+m)

(Ψε0
n )−

(
f0
)⊗(n+m)

(Ψ0
n)
∣∣∣ ≤ Cn,m0εe

− 3β
8 |Vm+n|2 ,

having used the Lipschitz continuity (1.1.5) of f0. Using the same reasoning for H (assumed to be

continuous), we find finally that for all n,m0

lim
ε→0
|f̃ε,m0

n,[0,t](H
⊗n)− f̃m0

n,[0,t](H
⊗n)| = 0 .

This result, along with Proposition 9.2.1, Estimates (9.1.2), (9.1.3) and (9.3.1) proves Theorem 11.

9.4. Analysis of the geometric conditions

In this section we prove Propositions 9.2.2 to 9.2.4. Without loss of generality, we will assume that

the velocities Vj are all larger than 1.

Self-recollision: proof of Proposition 9.2.2. Denote by q, q′ the recolliding particles. By definition

of a self-recollision, their first deflection (going forward in time) involves both particles q and q′. It

can be either a creation (say of q without loss of generality, in the tree Ψε
{i} of q′), or a clustering

recollision between two trees (say Ψε
{jk} and Ψε

{j′k}
in Ψε

λ1
) (see Figure 13).

• If the first deflection corresponds to the creation of q, we denote by (t̄, ω̄, v̄) the parameters encoding

this creation. We also denote by v̄q the velocity of the parent q̄ just before the creation in the backward

dynamics, and by Ψε
{i} the collision tree of q′ (and q). Denoting by vq and vq′ the velocities of q and q′

after adjunction of q (in the backward dynamics) there holds

(9.4.1) εω̄ + (vq − vq′)(trec − t̄) = εωrec + ζ with ζ ∈ Zd \ {0}
which implies that vq − vq′ has to belong to the intersection Kζ of a cone of opening ε with a ball of

radius 2V.

Note that the number of ζ’s for which the sets are not empty is at most O
(
Vdtd

)
.

— If the creation of q is without scattering, then vq − vq′ = v̄ − v̄q has to belong to the union of

the Kζ ’s, and∫
1Self-recollision with creation at time t̄ without scattering

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄
≤ CVdtd sup

ζ

∫
1v̄−v̄q∈Kζ

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ Cεd−1Vd(Vt)d+1 .

— If the creation of q is with scattering, then vq − vq′ = v̄ − v̄q − 2(v̄ − v̄q) · ω̄ ω̄ has to belong to

the union of the Kζ ’s. Equivalently v̄ − v̄q lies in the union of the Sω̄Kζ ’s (obtained from Kζ

by symmetry with respect to ω̄), and there holds∫
1Self-recollision with creation at time t̄ with scattering

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄
≤ CVdtd sup

ζ

∫
1v̄−v̄q∈Sω̄Kζ

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ Cεd−1Vd(Vt)d+1 .
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• If the first deflection corresponds to the k-th clustering recollision between Ψε
{jk} and Ψε

{j′k}
in the

forest Ψε
λ1

for instance, in addition to the condition x̂k ∈ Bqq′ which encodes the clustering recollision

(see Section 8.1), we obtain the condition

(9.4.2)
εωrec,k + (vq − vq′)(trec − τrec,k) = εωrec + ζ with ζ ∈ Zd

and vq − vq′ = v̄q − v̄q′ − 2(v̄q − v̄q′) · ωrec,k ωrec,k

denoting by v̄q, v̄q′ the velocities before the clustering recollision in the backwards dynamics, and

by ωrec,k the impact parameter at the clustering recollision. We deduce from the first relation that vq−
vq′ has to be in a small cone Kζ of opening ε, which implies by the second relation that ωrec,k has to

be in a small cone Sζ of opening ε.

Using the change of variables (5.1.1), it follows that∫
1Self-recollision with clustering at time t̄ dx̂k ≤ Cεd−1t

∑
ζ

∫
1ωrec,k∈Sζ

(
(v̄q − v̄q′) · ωrec,k

)
dωrec,k

≤ Cε2(d−1) (tV)
d+1

.

This concludes the proof of Proposition 9.2.2.

Non clustering recollision: proof of Proposition 9.2.3

Denote by q, q′ the recolliding particles. Without loss of generality, we can assume that the first

deflection (when going up the tree) involves only particle q, at some time t̄. It can be either a creation

(with or without scattering), or a clustering recollision.

• If the first deflection of q corresponds to a creation, we denote by (t̄, ω̄, v̄) the parameters encoding

this creation, and by (x̄q, v̄q) the position and velocity of the parent q̄ before the creation in the

backward dynamics. Note that locally in time (up to the next deflection) v̄q is constant, and x̄q is an

affine function. In the same way, denoting by (x̄q′ , v̄q′) the position and velocity of the particle q′, we

have that v̄q′ is locally constant while x̄q′ is affine.

There are actually three subcases :

(a) particle q is created without scattering : vq = v̄ ;

(b) particle q is created with scattering : vq = v̄ + (v̄ − v̄q) · ω̄ ω̄ ;

(c) another particle is created next to q, and q is scattered : vq = v̄q + (v̄ − v̄q) · ω̄ ω̄.

The equation for the recollision states

(9.4.3)
x̄q(t̄) + εω̄ − x̄q′(t̄) + (vq − v̄q′)(trec − t̄) = εωrec + ζ in cases (a)-(b),

x̄q(t̄)− x̄q′(t̄) + (vq − v̄q′)(trec − t̄) = εωrec + ζ in case (c) .

We fix from now on the parameter ζ ∈ Zd ∩ BVt encoding the periodicity, and the estimates will be

multiplied by Vdtd at the very end. Define

δx :=
1

ε
(x̄q′(t̄)− εω̄ − x̄q(t̄) + ζ) =: δx⊥ +

1

ε
(v̄q′ − v̄q)(t̄− t0) in cases (a)-(b) ,

δx :=
1

ε
(x̄q′(t̄)− x̄q(t̄) + ζ) =: δx⊥ +

1

ε
(v̄q′ − v̄q)(t̄− t0) in case (c) ,

τrec := (trec − t̄)/ε and τ := (t̄− t0)/ε ,

where δx⊥ is orthogonal to v̄q′ − v̄q (this constraint defines the parameter t0). Then (9.4.3) can be

rewritten

(9.4.4) vq − v̄q′ =
1

τrec

(
ωrec + δx⊥ + τ(v̄q′ − v̄q)

)
.



9.4. ANALYSIS OF THE GEOMETRIC CONDITIONS 119

We know that vq − v̄q′ belongs to a ball of radius V. In the case when |τ(v̄q′ − v̄q)| ≥ 2, the triangular

inequality gives

1

2τrec

∣∣τ(v̄q′ − v̄q)
∣∣ ≤ 1

τrec

∣∣∣ωrec + δx⊥ + τ(v̄q′ − v̄q)
∣∣∣ = |vq − v̄q′ | ≤ Vi,i′

and we deduce that
1

τrec
≤ 2V
|τ ||v̄q′ − v̄q|

hence, by (9.4.4), vq− v̄q′ belongs to a cylinder of main axis δx⊥+ τ(v̄q′ − v̄q) and of width 2V/|τ ||v̄q−
v̄q′ |. In any case, (9.4.4) forces vq − v̄q′ to belong to a cylinder Rζ of main axis δx⊥ + τ(v̄q′ − v̄q)
and of width CVmin

(
1

|τ ||v̄q−v̄q′ |
, 1
)

. In any dimension d ≥ 2, the volume of this cylinder is less

than CVd min
(

1
|τ ||v̄q−v̄q′ |

, 1
)

.

Case (a). Since vq = v̄, Equation (9.4.4) forces v̄− v̄q′ to belong to the cylinder Rζ . Recall that τ is a

rescaled time, with

|(v̄q − v̄q′)τ | ≤
t

ε
|v̄q − v̄q′ |+ |δx‖| ≤

C

ε
(Vt+ 1) .

Then ∫
|v̄|≤V

1v̄−v̄q′∈Rζ
∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ CVd+1

∫ C(Vt+1)/ε

−C(Vt+1)/ε

min

(
1

|u| , 1
)
ε

du

|v̄q − v̄q′ |

≤ CVd+1 ε
(
| log(Vt+ 1)|+ | log ε|

)
|v̄q − v̄q′ |

·

Cases (b) and (c). By definition, vq belongs to the sphere of diameter [v̄, v̄q]. The intersection I of this

sphere and of the cylinder v̄q′ +R is a union of spherical caps, and we can estimate the solid angles of

these caps.

θ ≤ θmax ≤ C
(
η
R

)1/2

η

R

θmax

Figure 15. Intersection of a cylinder and a sphere. The solid angle of the spherical caps is

less than Cd min(1, (η/R)1/2).

A basic geometrical argument shows that ω̄ has therefore to be in a union of solid angles of measure

less than C min
(( V
|τ ||v̄q−v̄q′ ||v̄q−v̄|

)1/2
, 1
)

. Integrating first with respect to ω̄ and v̄, then with respect
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to t̄, we obtain∫
|v̄|≤V

1vq∈I
∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ CVd+1

∫ C(Vt+1)/ε

−C(Vt+1)/ε

min
( 1

|u|1/2 , 1
)
ε

du

|v̄q − v̄q′ |

≤ CVd+ 3
2
ε1/2t

1
2

|v̄q − v̄q′ |
·

We obtain finally that∫
1Recollision of type (a)(b)(c)

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ CV2d+ 3
2 (1 + t)d+ 1

2
ε

1
2

|v̄q − v̄q′ |
·

• If the first deflection of q corresponds to a clustering recollision. With the notation of Section 8.1

we assume the clustering recollision is the k-th recollision in Ψε
λ1

between the trees Ψε
jk

and Ψε
j′k

,

involving particles q ∈ Ψε
{jk} and c ∈ Ψε

{j′k}
(with c 6= q′) at time t̄ = τrec,k. Then in addition to the

condition

x̂k ∈ Bqc
which encodes the clustering recollision (see Section 8.1), we obtain the condition

(9.4.5)

(
x̄q(τrec,k)− xq′(τrec,k)

)
+ (vq − v̄q′)(trec − τrec,k) = εωrec + ζ ,

and vq = v̄q − (v̄q − v̄c) · ωrec,k ωrec,k

denoting by (x̄q, v̄q) and (x̄c, v̄c) the positions and velocities of q and c before the clustering recollision

(in the backward dynamics). Note that, as previously, v̄q and v̄c are locally constant. Defining as

above

δx :=
1

ε
(x̄q(τrec,k)− xq(τrec,k) + ζ) =: δx⊥ + (v̄q′ − v̄q)(τrec,k − t0)/ε with δx⊥ ⊥ (v̄q′ − v̄q) ,

and the rescaled times

τrec := (trec − τrec,k)/ε and τ =: (τrec,k − t0)/ε ,

we end up with the equation (9.4.4), which forces vq− v̄q′ to belong to a cylinder R of main axis δx⊥−
τ(v̄q−v̄q′) and of width CVmin

(
1

|τ(v̄q−v̄q′ )|
, 1
)

, where Ψε
{i′} is the collision tree of q′. Then vq has to be

in the intersection of the sphere of diameter [v̄q, v̄c] and of the cylinder v̄q′+R. This implies that ωrec,k

has to belong to a union of spherical caps S, of solid angle less than C min
(( V
|τ ||v̄q−v̄q′ ||v̄q−v̄c|

)1/2
, 1
)

.

Using the (local) change of variables x̂k 7→ (τrec,k, εωrec,k), it follows that∫
1Recollision of type (d)dx̂k ≤

C

µε

∫
1ωrec,k∈S |(v̄q − v̄c) · ωrec,k|dωrec,kdτrec,k

≤ C

µε
V

3
2 (1 + t)

1
2

ε1/2

|v̄q − v̄q′ |
·

This concludes the proof of Proposition 9.2.3.

Integration of the singularity in relative velocities: proof of Proposition 9.2.4

We start with the obvious estimate

(9.4.6) min
(

1,
ε1/2

|vq − vq′ |
)
≤ ε 1

4 + 1|vq−vq′ |≤ε1/4 .

Thus we only need to control the set of parameters leading to small relative velocities.
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Without loss of generality, we shall assume that the first deflection (when going up the tree) involves

particle q. It can be either a creation (with or without scattering), or a clustering recollision, say

between q ∈ Ψε
{jk} and c ∈ Ψε

{j′k}
.

• If the first deflection of q corresponds to a creation, we denote by (t̄, ω̄, v̄) the parameters encoding

this creation, and by (x̄q, v̄q) and (x̄q′ , v̄q′) the positions and velocities of the pseudo-particles q and q′

before the creation.

There are actually four subcases :

(a) particle q′ is created next to particle q in the tree Ψε
{i}: |vq − vq′ | = |v̄ − v̄q| ;

(b) particle q′ is not deflected and particle q is created without scattering next to q̄ in the tree Ψε
{i}:

|vq − vq′ | = |v̄ − v̄q′ | ;

(c) particle q′ is not deflected and particle q is created with scattering next to q̄ in the tree Ψε
{i}:

vq = v̄ − (v̄ − v̄q) · ω̄ ω̄ ;

(d) particle q′ is not deflected, another particle is created next to q in the tree Ψε
{i}, and q is

scattered so vq = v̄q + (v̄ − v̄q) · ω̄ ω̄ .

In cases (a) and (b), we obtain that v̄ has to be in a small ball of radius ε1/4. Then,∫
1Small relative velocity of type (a)(b)

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ CVtεd/4 .
In cases (c) and (d), we obtain that vq has to be in the intersection of a small ball of radius ε1/4 and

of the sphere of diameter [v̄, v̄q]. This condition imposes that ω̄ has to be in a spherical cap of solid

angle less than ε
1
8 /|v̄ − v̄q|1/2 (see Figure 15). We find that∫

1Small relative velocity of type (c)(d)

∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ CVd+ 1
2 tε

1
8 .

Combining these two estimates with (9.4.6), we get∫
min

(
1,

ε1/2

|vq − vq′ |
)∣∣(v̄ − v̄q) · ω̄∣∣dt̄dω̄dv̄ ≤ CVd+1tε

1
8 .

• If the first deflection of q corresponds to the k-th clustering recollision in Ψε
λ1

between q ∈ Ψε
{jk}

and c ∈ Ψε
{j′k}

at time t̄ = τrec,k, in addition to the condition x̂k ∈ Bqc which encodes the clustering

recollision (see Section 8.1), we obtain a condition on the velocity.

There are actually two subcases :

(e) q′ = c and |vq − vq′ | = |v̄q − v̄q′ | ;

(f) q′ is not deflected, and vq = v̄q − (v̄q − v̄c) · ωrec,k ωrec,k .

In case (e), there holds∫
1Small relative velocity of type (e)dx̂k ≤

C

µε

∫
1|v̄q−v̄q′ |≤ε1/4

∣∣(v̄q − v̄q′) · ω∣∣dωdτrec,k ≤
Ctε

1
4

µε
·

In case (f), we obtain that vq has to be in the intersection of a small ball of radius ε1/4 and of the

sphere of diameter [v̄q, v̄c]. This condition imposes that ωrec,k has to be in a spherical cap of solid

angle less than ε
1
8 /|v̄q − v̄c|1/2 (see Figure 15). We find∫
1Small relative velocity of type (f)dx̂k ≤

C

µε
ε

1
8

∫ ∣∣v̄q − v̄c∣∣1/2dτrec,k ≤
CtV 1

2 ε
1
8

µε
·
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Combining these two estimates with (9.4.6), we get∫
min

(
1,

ε1/2

|vq − vq′ |1/2
)
dx̂k ≤

CVtε 1
8

µε
·

This concludes the proof of Proposition 9.2.4.



APPENDIX A

THE ABSTRACT CAUCHY-KOVALEVSKAYA THEOREM

In this appendix we recall the well-known Cauchy-Kovalevskaya theorem, in a generalized Banach

framework as devised namely by F. Treves [71], L. Nirenberg [52], T. Nishida [53]. This result is

used to prove the existence and uniqueness of a solution for short times for the Boltzmann equation

(Section A.1), for the linearized Boltzmann equation (proof of Proposition 6.1.3 in Section A.2), for

the covariance equation (5.5.5) (Proposition A.3.1 in Section A.3), and for the modified Hamiltonian

equations (7.2.15) (proof of Proposition 7.2.3 in Section A.4).

We state the result as proved in [45] (Théorème A (1)).

Theorem A.1 ([45]). — Let (Xρ)ρ>0 be a decreasing sequence of Banach spaces with increasing

norms ‖ · ‖ρ. Consider the equation

(A.0.1) u(t) = u0(t) +

∫ t

0

F
(
t, s, u(s)

)
ds , t ≥ 0

where

— there are A0 > 0, ρ0 > 0 such that t 7→ u0(t) is continuous for t ∈ [0, A0(ρ0 − ρ)[ with values

in Xρ for all ρ < ρ0, and there is R0 > 0 such that

∀t ∈ [0, A0(ρ0 − ρ)[ , ‖u0(t)‖ρ ≤ R0 ;

— F (·, ·, 0) = 0, and there are R > R0 > 0, T > 0 such that F is continuous from [0, T ]× [0, T ]×
BR(Xρ′) to Xρ for all ρ < ρ′ ≤ ρ0, with BR the open ball of radius R. Moreover there is a

constant CR such that for all u, v ∈ BR(Xρ′), for all (t, s) ∈ [0, T ],

(A.0.2) ‖F (t, s, u)− F (t, s, v)‖ρ ≤ CR
ρ0

ρ′ − ρ‖u− v‖ρ′ , ρ0/2 ≤ ρ < ρ′ ≤ ρ0 .

Then there exists a constant c (not depending on any of the previous parameters) such that (A.0.1)

has a unique solution on the time interval [0, T ] with T = c/C4R0
, which is continuous in time and

satisfies

sup
ρ0/2≤ρ<ρ0

0≤t<4T (1−ρ/ρ0)

‖u(t)‖ρ
(

1− t

4T (1− ρ/ρ0)

)
≤ 2R0

and in particular

‖u(t)‖ρ0/2 ≤ 4R0 , t ∈ [0, T ] .

1. The (suboptimal) estimate on the existence time, as well as the estimates as stated in Theorem A.1, follow from

a simple adaptation of the argument in [45], pages 367-368.
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A.1. Local well-posedness for the biased Boltzmann equation

The local well-posedness of the Boltzmann equation (1.2.1) can be deduced directly from the previous

theorem (as pointed out first in [74]). In this section, we are going to consider the well-posedness of

the biased Boltzmann equation (1.4.6) recalled below

(A.1.1) Dtϕ =

∫ (
ϕ(t, z′)ϕ(t, z′2)e−∆p − ϕ(t, z)ϕ(t, z2)e∆p

)
dµz(z2, ω) with ϕ(0) = f0ep̄(0),

with ‖p‖W 1,∞([0,T ]×D) ≤ r.

We first define the weighted L∞ spaces

L∞β :=

{
ϕ = ϕ(x, v) : ‖ϕ‖L∞β := sup

D

(
exp

(
− β

2
|v|2
)
|ϕ(x, v)|

)
< +∞

}
.

Note that, by assumption (1.1.5), the initial data f0 belongs to L∞−β0
so that

‖ϕ(0)‖L∞−β0
≤ C0e

r .

Note also that these functional spaces are invariant by the free transport operator St over D.

The mild formulation of (A.1.1) states

(A.1.2) ϕ(t) = Stϕ(0) +

∫ t

0

St−sQp(ϕ(s), ϕ(s))ds

where the collision term

Qp(ϕ,ϕ)(z) :=

∫ (
ϕ(t, z′)ϕ(t, z′2)e−∆p − ϕ(t, z)ϕ(t, z2)e∆p

)
dµz(z2, ω)

satisfies the following loss continuity estimate for β0/2 ≤ β < β′ ≤ β0

(A.1.3)

‖Qp(ϕ,ϕ)‖L∞−β ≤ 2‖ϕ‖2L∞−β′ e
4r sup

v

(∫
exp

(
−β
′ − β
2
|v|2
)

exp

(
−β
′

2
|w|2)

)
|v − w|dwdω

)
≤ cd‖ϕ‖2L∞−β′ e

4r β0

β′ − β β
−(d+1)/2
0 ,

where the constant cd depends only on the dimension d.

Then choosing T0 = cdC
−1
0 β

(d+1)/2
0 , we obtain by Theorem A.1 that the mild formulation of the

Boltzmann equation (A.1.2) has a unique solution ϕ which is continuous on [0, T0e
−5r] and satisfies

sup
β0/2<β<β0

0≤t<4T0e
−5r(1−β/β0)

‖ϕ(t)‖L∞−β
(

1− t

4T0e−5r(1− β/β0)

)
≤ 2C0 ,

and

(A.1.4) ‖ϕ(t)‖L∞−β0/2
≤ 4C0e

r , t ∈ [0, T0e
−5r] .
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A.2. Well-posedness of the linearized Boltzmann (adjoint) equation.

We prove now Proposition 6.1.3. Let us recall the definition (6.1.9) of the function spaces

L2
β :=

{
ϕ = ϕ(x, v) : ‖ϕ‖2L2

β
:=

∫
D

exp
(
− β

2
|v|2
)
ϕ2(x, v)dxdv < +∞

}
.

We need to prove that if ϕ is in L2
β0/4

, then U∗(t, s)ϕ belongs to L2
3β0/8

for any s ≤ t ≤ T for T small

enough. We get from (6.1.2)-(6.1.3) the backward Duhamel formula

(A.2.1) U∗(t, s)ϕ = Ss−tϕ+

∫ t

s

Ss−σL∗σ U∗(t, σ)ϕdσ .

Using the uniform bound (A.1.4), we first establish a loss continuity estimate for the operator L∗s
defined by (6.1.3). By the Cauchy-Schwarz inequality, for any function ϕ and any β0

4 ≤ β′ < β ≤ 3β0

8 ,

(A.2.2)

‖L∗s ϕ‖2L2
β
≤
∫
dxdv exp(−β

2
|v|2)

(∫
|v − w|2f2(s, x, w) exp(

β′

2
|w|2)dwdω

)
×
(∫

(∆ϕ)2(s, x, w) exp(−β
′

2
|w|2)dwdω

)
≤ cdC2

0‖ϕ‖2L2
β′
β
−d/2
0 sup

v

(
exp(−β − β

′

2
|v|2)

∫
|v − w|2 exp(−5β0

16
|w|2)dw

)
≤ cdC2

0β
−(d+1)
0

β0

β − β′ ‖ϕ‖
2
L2
β′
,

where cd denotes a constant depending only on the dimension d which may change from line to line.

Since the transport Ss preserves the spaces L2
β , we are in position to apply Theorem A.1. The only

difference is that (A.2.1) defines a backward evolution, rather than a forward one, and that the L2
β

spaces are increasing rather than decreasing. Up to these slight adaptations, Theorem A.1 provides

the existence of T ≤ T0, also of the form T = cdβ
(d+1)/2
0 /C0, such that for any ϕ ∈ L2

β0/4
, (A.2.1) has

a unique solution satisfying U∗(t, s)ϕ ∈ L2
3β0/8

for any s ≤ t ≤ T . Proposition 6.1.3 is proved.

Notice that, for the linear equation (A.2.1), the fixed point argument leading to the Cauchy-

Kovalevskaya theorem provides in particular a convergent series representation for the solution, of the

form

(A.2.3) U∗(t, s)ϕ = Ss−tϕ+
∑
n≥1

∫ t

s

dσ1 · · ·
∫ t

σn−1

dσnSs−σ1
L∗σ1
· · ·L∗σnSσn−tϕ .

In particular, the following properties are easily verified.

Corollary A.2.1. — For T ≤ T0 as in Proposition 6.1.3 and for any s ≤ t ≤ T , U∗(t, s) is a

semigroup satisfying

U∗(t, s) = U∗(σ, s)U∗(t, σ) , σ ∈ [s, t]

and

U∗(t, s)ϕ = Ss−tϕ+

∫ t

s

dσ U∗(σ, s)L∗σSσ−tϕ .
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A.3. Well-posedness of the covariance equation

Proposition A.3.1. — There exists a time T > 0 of the form T = cdβ
(d+1)/2
0 /C0 such that the

system (5.5.5) has a unique solution C on [0, T ]2, which is defined as a bilinear form on L2
β0/4

.

Proof. — System (5.5.5) consists in two equations. Let us start by solving the first one, namely

(A.3.1)

C(t, t, ψ, ϕ) = C(0, 0, S−tψ, S−tϕ) +

∫ t

0

dsCovs(Ss−tψ, Ss−tϕ)

+

∫ t

0

ds C(s, s, Ss−tψ,L∗sSs−tϕ) +

∫ t

0

ds C(s, s,L∗sSs−tψ, Ss−tϕ) .

We are going to apply Theorem A.1, with the family of spaces Xβ of bilinear forms defined by

Xβ :=
{
C := C(ψ,ϕ) / ‖C‖Xβ <∞

}
, ‖C‖Xβ := sup

‖ψ‖
L2
β
≤1,‖ϕ‖

L2
β
≤1

∣∣C(ψ,ϕ)
∣∣ .

Notice that, since the spaces L2
β are increasing, the spaces Xβ are decreasing. Given β ≤ β0 and ψ,ϕ

in L2
β of norm smaller than 1, there holds∣∣C(0, 0, S−tψ, S−tϕ)

∣∣ ≤ ∫ f0(z)|S−tψ(z)||S−tϕ(z)| dz

≤ C0

∫
e( β2−

β0
2 )|v|2e−

β
4 |v|

2 |S−tψ(z)|e− β4 |v|2 |S−tϕ(z)| dxdv

so by the Cauchy-Schwarz inequality we infer∥∥C(t = 0, t = 0)
∥∥
Xβ/2

≤ C0 .

Similarly, as in the proof of Proposition 6.1.4 page 60, we find that∣∣Covs(Ss−tψ, Ss−tϕ)
∣∣ ≤ 1

2

∫
dµ(z1, z2, ω)f(s, z1)f(s, z2)|∆Ss−tψ||∆Ss−tϕ|

≤ C C2
0

∫
dµ(z1, z2, ω)e( β2−

β0
4 )(|v1|2+|v2|2)

(
e−

β
2 |v1|2ψ2(s, z1) + e−

β
2 |v1|2ϕ2(s, z1)

)
e−

β
2 |v2|2

≤ cdC2
0β
−(d+1)/2
0

if ψ,ϕ belong to L2
β for β ≤ 3β0/8, and norm bounded by 1.

Finally setting

F (t, s, C(s, s, ·, ·)) := C(s, s, Ss−t·,L∗sSs−t·) + C(s, s,L∗sSs−t·, Ss−t·)
let us prove the loss estimate (A.0.2). There holds, for β0/4 ≤ β′ < β ≤ 3β0/8,∣∣F (t, s, C(s, s, ψ, ϕ))

∣∣ ≤ 2‖C(s, s)‖Xβ‖Ss−tψ‖L2
β
‖L∗sSs−tϕ‖L2

β

≤ cdC0β
−(d+1)/2
0

β0

β − β′ ‖C(s, s)‖Xβ‖ψ‖L2
β′
‖ϕ‖L2

β′

where we have used the fact that the spaces L2
β are increasing, along with the loss estimate (A.2.2).

Thanks to Theorem A.1, we find that there exists a time T > 0, proportional to β
(d+1)/2
0 /C0, such

that (A.3.1) has a unique solution which is continuous on [0, T ], with values in Xβ0/4.

The argument is the same for the second equation of (5.5.5), namely

(A.3.2)

∫ t

0

C(t, σ, ψ, φσ) dσ =

∫ t

0

dσ

(
C(σ, σ, Sσ−tψ, φσ) +

∫ t

σ

ds C
(
s, σ,L∗sSs−tψ, φσ

))
,
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applying Theorem A.1 to

K(t, ψ,Φ) :=

∫ t

0

C(t, σ, ψ, φσ) dσ

which satisfies, thanks to the Fubini theorem,

K(t, ψ,Φ) =

∫ t

0

dσ C(σ, σ, Sσ−tψ, φσ) +

∫ t

0

dsK(s,L∗sSs−tψ,Φ) .

Note that K(t) is now a bilinear form on L2
β × L∞((0, t);L2

β). The same estimates as above allow to

conclude.

A.4. Well-posedness of the modified Hamiltonian equations

We are now going to check the well-posedness of the modified Hamiltonian equations (7.2.15) which

are recalled below

(A.4.1) ∀s ≤ t,
ψt(s) = Ssf

0 +

∫ s

0

Ss−σF1

(
φt(σ), ηt(σ), ψt(σ)

)
dσ ,

ηt(s) = Ss−tγt −
∫ t

s

Ss−σF2

(
φt(σ), ηt(σ), ψt(σ)

)
dσ ,

with ψt(0) = f0, ηt(t) = γ and

F1(φ, η, ψ) = −ψ φ+

∫
dµz1(z2, ω) η(z2)

(
ψ(z′1)ψ(z′2)− ψ(z1)ψ(z2)

)
,

F2(φ, η, ψ) = η φ−
∫
dµz1(z2, ω)ψ(z2)

(
η(z′1)η(z′2)− η(z1)η(z2)

)
.

This is a coupled system and ηt satisfies a backward equation, so this is not exactly the standard

formulation to apply Theorem A.1.

Let us fix α > 0 and a time t ≤ Tα. Using the fact that (φ, γ) belongs to Bα,β0,Tα , we have in particular

that

sup
s∈[0,t]

∣∣φ(s, x, v)
∣∣ ≤ C(1 + |v|2) and γ(t) ∈ L∞β0/4

,

where the constant C depends on α, β0, C0. Recall moreover that f0 belongs to L∞−β0
, so let us define

C̄ := 4
(
‖γ‖L∞

β0/4
+ ‖f0‖L∞−β0

)
.

By a computation as in (A.1.3), one can check that for any 3β0/4 < β1 < β′1 ≤ β0 and β0/4 ≤ β′2 <

β2 < β0/2 there are constants C1 and C2 such that

‖F1(φ, η, ψ)‖L∞−β1
≤ C1β0

β′1 − β1
‖ψ‖L∞

−β′1

(
1 + ‖ψ‖L∞

−β′1
‖η‖L∞

β0/2

)
,(A.4.2)

‖F2(φ, η, ψ)‖L∞β2
≤ C2β0

β2 − β′2
‖η‖L∞

β′2

(
1 + ‖ψ‖L∞−3β0/4

‖η‖L∞
β′2

)
.(A.4.3)

The second equation in (A.4.1) evolves backward so that as in Section A.2, the regularity in (A.4.3) is

coded in the opposite direction of the forward flow.

By the method of Theorem A.1, a fixed point argument can be implemented (by solving at each

iteration both the forward and backward equations). In this way, we find a time TH′

α > 0 such that
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there exists a unique solution (ψt, ηt) to (A.4.1) on [0, t] for any t ≤ TH′

α , satisfying

sup
s∈[0,t]

‖ηt(s)‖L∞
β0/2
≤ C̄ , sup

s∈[0,t]

‖ψt(s)‖L∞−3β0/4
≤ C̄ .

Step 1 of the proof of Proposition 7.2.3 is now complete.
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