N
N

N

HAL

open science

Statistical dynamics of a hard sphere gas: fluctuating
Boltzmann equation and large deviations

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond, Sergio Simonella

» To cite this version:

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond, Sergio Simonella. Statistical dynamics

of a hard sphere gas: fluctuating Boltzmann equation and large deviations. 2020. hal-02920308v1

HAL Id: hal-02920308
https://hal.science/hal-02920308v1

Preprint submitted on 24 Aug 2020 (v1), last revised 25 Aug 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02920308v1
https://hal.archives-ouvertes.fr

Thierry Bodineau
Isabelle Gallagher
Laure Saint-Raymond

Sergio Simonella

STATISTICAL DYNAMICS OF A HARD

SPHERE GAS:

FLUCTUATING BOLTZMANN EQUATION

AND LARGE DEVIATIONS




T. Bodineau
CMAP, CNRS, Ecole Polytechnique, I.P. Paris, Route de Saclay, 91128 Palaiseau Cedex, FRANCE.

E-mail : thierry.bodineau@polytechnique.edu

I. Gallagher

DMA, Ecole normale supérieure, CNRS, PSL Research University,
45 rue d’Ulm, 75005 Paris, FRANCE, and Université de Paris.

E-mail : gallagher@math.ens.fr

L. Saint-Raymond

UMPA UMR 5669 du CNRS, ENS de Lyon,Université de Lyon,
46 allée d’Ttalie, 69007 Lyon, FRANCE.

E-mail : Laure.Saint-Raymond@ens-1lyon.fr

S. Simonella

UMPA UMR 5669 du CNRS, ENS de Lyon, Université de Lyon,
46 allée d’Ttalie, 69007 Lyon, FRANCE.

E-mail : sergio.simonella@ens-lyon.fr

We are very grateful to H. Spohn and M. Pulvirenti for many enlightening discussions on the subjects
treated in this text. We thank also F. Bouchet, F. Rezakhanlou, G. Basile, D. Benedetto, L. Bertini
for sharing their insights on large deviations and A. Debussche, A. de Bouard, J. Vovelle for their
explanations on SPDEs.



STATISTICAL DYNAMICS OF A HARD SPHERE GAS:
FLUCTUATING BOLTZMANN EQUATION AND LARGE
DEVIATIONS

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond,
Sergio Simonella

Abstract. — We present a mathematical theory of dynamical fluctuations for the hard sphere gas in
the Boltzmann-Grad limit. We prove that: (1) fluctuations of the empirical measure from the solution
of the Boltzmann equation, scaled with the square root of the average number of particles, converge
to a Gaussian process driven by the fluctuating Boltzmann equation, as predicted in [42]; (2) large
deviations are exponentially small in the average number of particles and are characterized, under
regularity assumptions, by a large deviation functional as previously obtained in [38] in a context of
stochastic processes. The results are valid away from thermal equilibrium, but only for short times.
Our strategy is based on uniform a priori bounds on the cumulant generating function, characterizing
the fine structure of the small correlations.
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CHAPTER 1

INTRODUCTION

This paper is devoted to a detailed analysis of the correlations arising, at low density, in a deterministic
particle system obeying Newton’s laws. In this chapter we start by defining our model precisely, and
recalling the fundamental result of Lanford on the short-time validity of the Boltzmann equation. After
that, we state our main results, Theorem 2 and Theorem 3 below, regarding small fluctuations and
large deviations of the empirical measure, respectively. Finally, the last section of this introduction
describes the essential features of the proof, the organization of the paper, and presents some open
problems.

1.1. The hard-sphere model

We consider a system of N > 0 spheres of diameter ¢ > 0 in the d-dimensional torus TN with d > 2.

The positions (x5,...,x5) € T and velocities (v§,...,v%) € R¥ of the particles satisfy Newton’s
laws

dxe dve
(1.1.1) ;;1 = e, ;;Z —0 aslongas |x{(t) —x5(t)| >e for 1<i#j<N,

with specular reflection at collisions

£ 1> 1 £ £ 1> £ £ £
(Vi), =v; — = (vi — Vj) (x5 - Xj) (x; *Xj)

2
(1.1.2) 61 if x5 (t) —x5(t)| =¢.
£ / > > £
(v§) ==v5+ ;Q(Vf —v3) - (x; —x5) (%7 —%5)
Observe that these boundary conditions do not cover all possible situations, as for instance triple
collisions are excluded. Nevertheless the hard-sphere flow generated by (1.1.1)-(1.1.2) (free transport

of N spheres of diameter ¢, plus instantaneous reflection

£ g g 4 15 /
(viovs) = ()5 (v))
at contact) is well defined on a full measure subset of D% (see [1], or [17] for instance) where D5, is
the canonical phase space

vi={ZneDV /Vi#j, |v;i—=z;|>e}.

We have denoted Zy = (Xn, Vy) € (T4 x RY)Y the positions and velocities in the phase space DY :=
(T? x RYN with Xy := (z1,...,2zn5) € T™ and Vi := (v1,...,vn) € R, We set Zy = (21,...,2N)
with Z; = (l‘i, Ui).
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The probability density W5, of finding N hard spheres of diameter ¢ at configuration Zy at time ¢t is
governed by the Liouville equation in the 2d/N-dimensional phase space

(1.1.3) OWg+ VN -Vx W5 =0 on Djy,
with specular reflection on the boundary. If we denote

8vai(i,j) = {ZN €DV /lz; — x| =e, +(vi—v;)-(xi—x5)>0

and Wk, 0 € [1, N2\ {35}, k#¢C, |ep -z > 5},

then
(1.1.4) VZn € 0D (i) i £, Wit Zn) = Wil(t, Z37),
where Z;\i,’j differs from Zy only by (v;,v;) — (v, 113), given by (1.1.2).
The canonical formalism consists in fixing the number N of particles, and in studying the probability
density W of particles in the state Zy at time ¢, as well as its marginals. The main drawback of this

formalism is that fixing the number of particles creates spurious correlations (see e.g.[16, 35]). We
are rather going to define a particular class of distributions on the grand canonical phase space
D= | DY,
N>0
where the particle number is not fixed but given by a modified Poisson law (actually D% = § for

large N). For notational convenience, we work with functions extended to zero over DV \ D%,. Given
a probability distribution f°: D — R satisfying

(1.1.5) | (z,v)| 4+ |V fO(x,v)] < Cy exp ( - %|v|2) , Co>0, 8>0,
the initial probability density is defined on the configurations (N, Zy) € DY as
1 1 N &
(1.1.6) WA Zv) = o2 5 [T (i) 1 (Z)
i=1

where p. > 0 and the normalization constant Z¢ is given by

N N
e K
2=1+ ) ﬁ/ﬂw dZy [ £°(zi) 10z, (Zy) -

N>1 i=1
Here and below, 14 will be the characteristic function of the set A. We will also use the symbol 1«,»

Wy ”

for the characteristic function of the set defined by condition “x”.

Note that in the chosen probability measure, particles are “exchangeable”, in the sense that W5’ is
invariant by permutation of the particle labels in its argument. Moreover, the choice (1.1.6) for the
initial data is the one guaranteeing the “maximal factorization”, in the sense that particles would
be i.i.d. were it not for the indicator function (‘hard-sphere exclusion’).

Our fundamental random variable is the time-zero configuration, consisting of the initial positions and
velocities of all the particles of the gas. We will denote A the total number of particles (as a random

variable) and Zj(/) = (zfo)iz1 N the initial particle configuration. The particle dynamics

(1.1.7) t Zi(t) = (25 (1) =y,

is then given by the hard-sphere flow solving (1.1.1)-(1.1.2) with random initial data Z5} (well defined
with probability 1). The probability of an event X with respect to the measure (1.1.6) will be de-
noted P.(X), and the corresponding expectation symbol will be denoted E.. Notice that particles are
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identified by their label, running from 1 to /. We shall mostly deal with expectations of observables

of type E( Zfil ...). Unless differently specified, we always imply that E. (Y, ...) = E.( Zi\il ).

The average total number of particles A is fixed in such a way that

(1.1.8) limE, (M) et =1.

e—0

The limit (1.1.8) ensures that the Boltzmann-Grad scaling holds, i.e.that the inverse mean free path
is of order 1 [19]. Thus from now on we will set

He = gi(dil) .
Let us define the rescaled initial n-particle correlation function
1
FZO(ZH) = ME_" Z H / dZn+1 N dzn+p Wf;gp(Zner) .
p=0 £ /D7

We say that the initial measure admits correlation functions when the series in the right-hand side is
convergent, together with the series in the inverse formula

n S _:U’E)p
W;O(Zn) =pu. Z ( p' /]I;) dzn+1 . dznﬂ, Fﬁgp(Zner)
p=0 ’ i

In this case, the set of functions (F,io)n>1 describes all the properties of the system.

For any symmetric test function A, : D” — R, the following holds :

£ £ N' 15 £
EE( Z hn(Zilo,...,ZiS)) :]EE<5NZ”mhn(Z10’,..7Zn0))
iy i itk
(1.1.9) s / i Wi Z)
pz::n A N A
=u” | dZ, F°(Z,) hn(Z,) .
]D)n

Starting from the initial distribution W5, the density W5 (¢) evolves on D5, according to the Liouville
equation (1.1.3) with specular boundary reflection (1.1.4). At time t > 0, the (rescaled) n-particle
correlation function is defined as

e 1
(1.1.10) FE(t, Zy) = pe ZE/D Azni1 - Aznip Wi (t, Zngp)
p=0 7 /D

and, as in (1.1.9), we get

i B ha(ah (05 0)) =2 [ 20 F (0 Z0) a(20).
11y-009ln
iy i ok
where we used the notation (1.1.7). Notice that F5(t, Z,) = 0 for Z,, € D"\ D5. In the following we
shall denote the empirical measure

1 N
(1.1.12) e = ;Z5z5<t> .
€ =1



4 CHAPTER 1. INTRODUCTION

Tested on a (one-particle) function h : D — R, it reads

1 N
(1.1.13) w5 (h) = @Zh(zf“”

By definition, Ff describes the average behavior of (exchangeable) particles :

(1.1.14) /F1 t,z)h

1.2. Lanford’s theorem : a law of large numbers

In the Boltzmann-Grad limit p. — oo, the average behavior is governed by the Boltzmann equation :

Of +v-Vof = / / (f(tw) (2 0)) = Flt2w) f(t2,0) ) (0 = w) - w) | dwduw,
Rd Jgd—1

F0,2,0) = fO(x,v)

(1.2.1)

where the precollisional velocities (v',w’) are defined by the scattering law
(1.2.2) V=0 — (v—w) w)w, wi=w+ (v-—w) w)w.

More precisely, the convergence is described by Lanford’s theorem [28] (in the canonical setting — for
the grand-canonical setting see [27], where the case of smooth compactly supported potentials is also
addressed), which we state here in the case of the initial measure (1.1.6).

Theorem 1 (Lanford [28]). — Consider a system of hard spheres initially distributed according to
the grand canonical measure (1.1.6) with fO satisfying the estimates (1.1.5). Then, in the Boltzmann-
Grad limit p. — oo, the rescaled one-particle density F(t) converges uniformly on compact sets to the
solution f(t) of the Boltzmann equation (1.2.1) on a time interval [0, Ty] (which depends only on f°
through Coy, o). Furthermore for each n, the rescaled n-particle correlation function F£(t) converges
almost everywhere in D™ to f"(t) on the same time interval.

We refer to [22, 44, 11, 17, 14, 6, 35] for details on this result and subsequent developments.

The propagation of chaos derived in Theorem 1 implies in particular that the empirical measure
concentrates on the solution of Boltzmann equation. Indeed, computing the variance for any test
function h, we get that

EE((wf(h) - / Fy(t,2) h(z) dZ)Z)

N

(1.2.3) ZEE(%ZhQ(Zf Zh (1)) - (/Ff(t,z)h(z) dz)’
€ i= € iAj
7/F1 dz+/F2 (t, Z) h(z1)h(22) dZs — (/Ff(t,z) h(2) dz>2 ——o,

where the convergence to 0 follows from the fact that F5 converges to f®2? and Ff to f almost
everywhere. This computation can be interpreted as a law of large numbers and we have that, for all
6 > 0, and smooth h,

(1.2.4) P, <

/ftz dz‘>5>—>0.

He—>00
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Remark 1.2.1. — The restriction to the time interval [0, Ty| in the statement of Theorem 1 is probably
of technical nature: it originates from a Cauchy-Kowalevski argument in the Banach space of measur-
able sequences F' = (Fp)n>1 with F, : D" — R, endowed with norm sup,,>; supp. (|Fn\e0‘"+§“’n|2>
for suitable o, 6 € R.

1.3. The fluctuating Boltzmann equation

Describing the fluctuations around the Boltzmann equation is a way to capture part of the information
which has been lost in the limit ¢ — 0.

As in the classical central limit theorem, we expect these fluctuations to be of order 1/,/nic, which is
the typical size of the remaining correlations. We therefore define the fluctuation field (¢ as follows:
for any test function h: D — R

(13.1) ¢ (h) = \/;T€<wf(h) _ / FE(t, =) h(2) dz> .

Initially the empirical measure starts close to the density profile f and (5 converges in law towards a
Gaussian white noise (y with covariance

E(¢o(h1) Co(h2)) = /hl(z) ha(2) 2(2) dz .

In this paper we prove that in the limit u. — oo, starting from “almost independent” hard spheres, (©
converges to a Gaussian process, solving formally

(1.3.2) dG = Ly G dt + dny

where L; is the linearized Boltzmann operator around the solution f(¢) of the Boltzmann equa-
tion (1.2.1)

Lih(z,v) == —v-Vih(z,v) + /Rd /SuH dw dw((v —w) - w)
x (f(t,z,w)h(z,v") + f(t,z,0")h(z, ") — f(t,z,0)h(z,w) — f(t,z,w)h(z,0)).

The noise dn,(z,v) is Gaussian, with zero mean and covariance

E (/ dty dz1hy(z1)n, (21) /dtg dzg ho(z2)ne, (22))

(1.3.3)

(1.3.4) )

= 5 /dtd:u’(zh 22, OJ)f(t, Zl) f(t7 ZQ)Ah/l AhQ
denoting
(1.3.5) du(z1, 29,w) = 0y —ay ((vl — vg) ~w)+dw dvy dvadx

and defining for any h
Ah(z1, 29,w) = h(2]) + h(z5) — h(z1) — h(22),

where z} := (;,v}) with notation (1.2.2) for the velocities obtained after scattering. We postpone the
precise definition of a weak solution to (1.3.2) to Section 6.1.2.

Our result is the following.
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Theorem 2. — Consider a system of hard spheres initially distributed according to the grand canon-
ical measure (1.1.6) where f° is a smooth function satisfying (1.1.5). Then in the Boltzmann-Grad
limit p. — oo, the fluctuation field (¢f),~, converges in law to a Gaussian process solving (1.3.2) in a
weak sense on a time interval [0,T*].

The convergence towards the limiting process (1.3.2) was conjectured by Spohn in [43] and the non-
equilibrium covariance of the process at two different times was computed in [42], see also [44]. The
noise emerges after averaging the deterministic microscopic dynamics. It is white in time and space,
but correlated in velocities so that momentum and energy are conserved.

At equilibrium the convergence of a discrete-velocity version of the same process at equilibrium was
derived rigorously in [37], starting from a dynamics with stochastic collisions (see also [25, 24, 30]
for fluctuations in space-homogeneous models).

The physical aspects of the fluctuations for the rarefied gas have been thoroughly investigated in
[16, 42, 43]. We also refer to [8], where we gave an outline of our results and strategy. Here we would
like to recall only a few important features.

1) The noise in (1.3.2) originates from recollisions.

It is a very general fact that, when the macroscopic equation is dissipative, the dynamical equation
for the fluctuations contains a term of noise. In the case under study, “recollisions” are a class of
mechanical events giving a negligible contribution to the limit 7§ — f(¢) (see (1.2.4)) — for example,
two particles colliding twice with each other in a finite time. The proof of Theorem 2 provides a further
insight on the relation between collisions and noise. Following [42], we represent the dynamics in terms
of a special class of trajectories, for which one can classify precisely the recollisions responsible for the
term drny; see Section 1.5 for further explanations. For the moment we just remind the reader that there
is no a priori contradiction between the dynamics being deterministic, and the appearance of noise
from collisions in the singular limit. Indeed when e goes to zero, the deflection angles are no longer
deterministic (as in the probabilistic interpretation of the Boltzmann equation). The randomness,
which is entirely coded on the initial data of the hard sphere system, is transferred to the dynamics in
the limit.

2) Equilibrium fluctuations can be deduced by the fluctuation-dissipation theorem.

As a particular case, we obtain the result at thermal equilibrium f° = M, where M is Maxwellian
with inverse temperature §. The stochastic process (1.3.2) boils down to a generalized Ornstein-
Uhlenbeck process. The noise term compensates the dissipation induced by the linearized Boltzmann
operator, and the covariance of the noise (1.3.4) can be predicted heuristically by using the invariant
measure [44].

3) Away from equilibrium, the fluctuating equations keep the same structure.

The most direct way to to guess (1.3.2)-(1.3.4) is starting from the equilibrium prediction (previous
point) and assuming that M = M (v) can be substituted with f = f(¢,2,v). This heuristics is known
as “extended local equilibrium” assumption, in the context of fluctuating hydrodynamics. It is based
on the remark that the noise is white in space and time, and therefore only the local (in (z,t)) features
of the gas should be relevant. If the system has a “local equilibrium”, this is enough to determine the
equations. This procedure gives the right result also for our gas at low density (even if f = f(¢,z,v)
is not locally Maxwellian). The reason is that a form of local equilibrium is still true; namely, around
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a little cube centered in x at time ¢, the hard sphere system is described by a Poisson measure with
constant density [ f(¢,z,v)dv [44].

4) Away from equilibrium, fluctuations exhibit long range correlations.

The covariance of the fluctuation field (at equal times and) at different points x1, x5 is not zero
when |z — 22| is of order one (and decays slowly with |21 — 22|). This is typical of non equilibrium
fluctuations [16]. In the hard sphere gas at low density, it is again related to recollisions, and the proof
of Theorem 2 will provide an explicit formula quantifying this effect.

1.4. Large deviations

While typical fluctuations are of order O(ue 1 2), they may sometimes happen to be large, leading to
a dynamics which is different from the Boltzmann equation. A classical problem is to evaluate the
probability of such an atypical event, namely that the empirical measure remains close to a probability
density ¢ # f during a time interval [0,7*]. The following explicit formula for the large deviation
functional was obtained by Rezakhanlou [38] in the case of a one-dimensional stochastic dynamics
mimicking the hard-sphere dynamics, and then conjectured for the three-dimensional deterministic
hard-sphere dynamics by Bouchet [9]:

(a1 Fitg) = Foe) +owd [Las [ an [ avpts.ro) Dapts.0) - 1ot 06|}

where the supremum is taken over bounded measurable functions p, and the Hamiltonian is given by

(142) Hiop) =y [ duler,za)o(e(ea) (exp (49) = 1).
We have denoted D; the transport operator

(1.4.3) Dyp(t, z) == Opp(t,z) + v - Vyo(t, 2) ,

and finally

(1.4.4) F(0,00) = /Ddz ((po log (‘;8) — o+ f0>

with ¢ = ¢|i=0, is the large deviation rate for the empirical measure at time zero. F (0) can be
obtained by a standard procedure, modifying the measure (1.1.6) in such a way to make the (atypical)
profile ¢q typical. Similarly, to obtain the collisional term H in F (t, ), one would like to understand
the mechanism leading to an atypical path ¢ = ¢(t) at positive times. A serious difficulty then arises,
due to the deterministic dynamics. Ideally, one should conceive a way of tilting the initial measure in
order to observe a given trajectory. Whether such an efficient bias exists, we do not know. But we
shall proceed in a different way, inspecting somehow the dynamics at all scales in €. This strategy,
which will be informally described in the next section, leads to Theorem 3. The remarkable feature of
this result is that the large deviation behaviour of the mechanical dynamics is also ruled by the large
deviation functional of the stochastic process.

Denote by M the set of probability measures on D (with the topology of weak convergence) and
by D([0,T*], M) the Skorokhod space (see [4] page 121).
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Theorem 3. — Consider a system of hard spheres initially distributed according to the grand canonical
measure (1.1.6) where fO satisfies (1.1.5). There exists a time T* and a functional F = F(T*,-) such
that, in the Boltzmann-Grad limit u. — oo, the empirical measure satisfies the following large deviation
estimates :

— For any compact set F C D([0,T*], M),

1
(1.4.5) limsup — logP. (7° € F) < — inf F(T™*, ¢);
pe—oo  He pEF

— For any open set O C D([0,T*], M),

| c .
4. R > *
(1.4.6) hrEn inf - logP. (7 € O) e1nf F(T*, ),

where R is a non trivial subset of D([0,T*], M).

Moreover there exists a non trivial subset of R, and a time T < T*, such that the functionals F(T,-)
and F(T,-) coincide on R.

The functional F is determined by the solution of a variational problem (see (7.0.3) below) and the
set R is chosen such that the extremum of this variational principle is attained in a class of sufficiently
small and regular functions: see (7.1.5).

For an extensive formal discussion on large deviations in the Boltzmann gas, we refer to [9].

1.5. Strategy of the proofs

In this section we provide an overview of the paper and describe, informally, the core of our argument
leading to Theorems 2 and 3.

We should start recalling the basic features of the proof of Theorem 1. For a deterministic dynamics
of interacting particles, so far there has been only one way to access the law of large numbers rigor-
ously. The strategy is based on the ‘hierarchy of moments’ corresponding to the family of correlation
functions (F3),~;, Eq.(1.1.10). The main role of F} is to project the measure on finite groups of
particles (groups of cardinality n), out of the total A". The term ‘hierarchy’ refers to the set of linear
BBGKY equations satisfied by this collection of functions (which will be written in Section 3.1), where
the equation for F; has a source term depending on [, ;. This hierarchy is completely equivalent
to the Liouville equation (1.1.3) for the family (W5 )y, as it contains exactly the same amount
of information. However as N' ~ p. in the Boltzmann-Grad limit (1.1.8), one should make sense of
a Liouville density depending on infinitely many variables, and the BBGKY hierarchy becomes the
natural convenient way to grasp the relevant information. Lanford succeeded to show that the ex-
plicit solution F£(t) of the BBGKY, obtained by iteration of the Duhamel formula, converges to a
product f®"(t) (propagation of chaos), where f is the solution of the Boltzmann equation (1.2.1).

The hierarchy of moments has two important limitations. The first one is the restriction on its time of
validity, which comes from too many terms in the iteration: we are indeed unable to take advantage
of cancellations between gain and loss terms. The second one is a drastic loss of information. We shall
not give here a precise notion of ‘information’. We limit ourselves to stressing that (F};),~ is suited
to the description of typical events. In the limit, everything is encoded in f, no matter how large n.
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Moreover, the Boltzmann equation produces some entropy along the dynamics: at least formally, f
satisfies

3t(f/flogfdv)+vro(f/flogfvdv)20,

which is in contrast with the time-reversible hard-sphere dynamics. Our main purpose here is to
overcome this second limitation (for short times) and to perform the Boltzmann-Grad limit in such a
way as to keep most of the information lost in Theorem 1. In particular, the limiting functional (1.4.1)
coincides with the large deviations functional of a genuine reversible Markov process, in agreement
with the microscopic reversibility [9]. We face a significant difficulty: on the one hand, we know that
averaging is important in order to go from Newton’s equation to Boltzmann’s equation; on the other
hand, we want to keep track of some of the microscopic structure.

To this end, we need to go beyond the BBGKY hierarchy and turn to a more powerful representation
of the dynamics. We shall replace the family (F};), -, (or (W5)y~o) With a third, equivalent, family of
functions (f), <, called (rescaled) cumulants®. Their role is to grasp information on the dynamics
on finer and finer scales. Loosely speaking, f- will collect events where n particles are “completely
connected” by a chain of interactions. We shall say that the n particles form a cluster. Since a collision
between two given particles is typically of order -1, a “complete connection” would account for events

(=1 We therefore end up with a hierarchy of rare events, which we need

of probability of order u.
to control at all orders to obtain Theorem 3. At variance with (F};),~,, even after the limit p. — oo
is taken, the rescaled cumulant f; cannot be trivially obtained from the cumulant fS_;. Each step

entails extra information, and events of increasing complexity, and decreasing probability.

The cumulants, which are a standard probabilistic tool, will be investigated here in the dynamical,
non-equilibrium context. Their precise definition and basic properties are discussed in Chapter 2.

The introduction of cumulants will not entitle us to avoid the BBGKY hierarchy entirely. Un-
fortunately, the equations for (f;),~, are difficult to handle. But the moment-to-cumulant rela-
tion (F2), o, — (f2),,>, is a bijection and, in order to construct fZ(t), we can still resort to the same
solution representation of [28] for the correlation functions (F2(t)), -,. This formula is an expansion
over collision trees, meaning that it has a geometrical representation as a sum over binary tree graphs,
with vertices accounting for collisions. The formula will be presented in Chapter 3 (and generalized
from the finite-dimensional case to the case of functionals over trajectories, which is needed to deal
with space-time processes). For the moment, let us give an idea of the structure of this tree expansion.
The Duhamel iterated solution for FZ(t) has a peculiar characteristic flow: n hard spheres (of diame-
ter €) at time ¢ flow backwards, and collide (among themselves or) with a certain number of external
particles, which are added at random times and at random collision configurations. The following

picture is an example of such flow (say, n = 3):

/2\ A /§\

1. Cumulant type expansions within the framework of kinetic theory appear in [5, 35, 29, 18|
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The net effect resembles a binary tree graph. The real graph is just a way to record which pairs of
particles collided, and in which order.

It is important to notice that different subtrees are unlikely to interact: since the hard spheres are
small and the trajectories involve finitely many particles, two subtrees will encounter each other with
small probability. This is a rather pragmatic point of view on the propagation of chaos, and the reason
why FZ(t) is close to a tensor product (if it is so at time zero) in the classical Lanford argument.
Observe that, in this simple argument, we are giving a notion of dynamical correlation which is purely
geometrical. Actually we will use this idea over and over. Two particles are correlated if their generated
subtrees are connected, as represented for instance in the following picture:

P

which is an event of ‘size’ u-' (the volume of a tube of diameter e and length 1). In Chapter 4,
we will give precise definitions of correlation (connection) based on geometrical constraints. It will
be the elementary brick to characterize fZ(t) explicitly in terms of the initial data. The formula
for fE(t) (Section 4.4) will be supported on characteristic flows with n particles connected, through

their generated subtrees (hence of expected size pie (nfl)).

In other words, while F; projects the
measure on arbitrary groups of particles of size m, the improvement of f; consists in restricting to

completely connected clusters of the same size.

With this naive picture in mind, let us briefly comment again on information, and irreversibility. One
nice feature of the geometric analysis of recollisions is that it reflects the transition from a time-
reversible to a time-irreversible model. In [7] we identified, and quantified, the microscopic singular
sets where FS does not converge. These sets are not invariant by time-reversal (they have a direction
always pointing to the past, and not to the future). Looking at F¢(t), we lose track of what happens
in these small sets. This implies, in particular, that Theorem 1 cannot be used to come back from time
t > 0 to the initial state at time zero. The cumulants describe what happens on all the small singular
sets, therefore providing the information missing to recover the reversibility.

At the end of Chapter 4, we give a uniform estimate on these cumulants (Theorem 4), which is the
main advance of this paper. This L'-bound is sharp in ¢ and n (n-factorial bound), roughly stating

(n=D;n=2 This estimate is intuitively simple. We have given

that the unscaled cumulant decays as p
a geometric notion of correlation as a link between two collision trees. Based on this notion, we can
draw a random graph telling us which particles are correlated and which particles are not (each collision
tree being one vertex of the graph). Since the cumulant describes n completely correlated particles,
there will be at least n — 1 edges, each one of small ‘volume’ u_!. Of course there may be more than
n — 1 connections (the random graph has cycles), but these are hopefully unlikely as they produce
extra smallness in €. If we ignore all of them, we are left with minimally connected graphs, whose total
number is n”~2 by Cayley’s formula. Thanks to the good dependence in n of these uniform bounds,
we can actually sum up all the family of cumulants into an analytic series, referred to as ‘cumulant

generating function’.
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The second central result of this paper, stated in Chapter 5 (Theorem 5), is the characterization
of the rescaled cumulants in the Boltzmann-Grad limit, with minimally connected graphs. Using
this minimality property, we actually derive a Hamilton-Jacobi equation for the limiting cumulant
generating function. Wellposedness and uniqueness for this equation can be achieved by abstract
methods, based on analyticity. All the information of the microscopic mechanical model is actually
encoded in this Hamilton-Jacobi equation which, in particular, allows us to characterize the large
deviation functional. which is our ultimate point of arrival. From this Hamilton-Jacobi equation, we
can also obtain differential equations for the limiting family of cumulants (fy),~;. These equations,
which we may call Boltzmann cumulant hierarchy, have a remarkable structure and have been written
first in [16].

The rest of the paper is devoted to the proofs of our main results.

Chapter 6 proves Theorem 2. Here, the uniform bounds of Theorem 4 are considerably better than
what is required, and the proof amounts to looking at a characteristic function living on larger scales.
The more technical part of the proof concerns the tightness of the process for which we adapt a
Garsia-Rodemich-Rumsey’s inequality on the modulus of continuity, to the case of a discontinuous
process.

In Chapter 7 we prove Theorem 3. Our purpose is to show that the functional obtained in Chapter 5
is dual, through the Legendre transform, to a large deviation rate function. In the absence of global
convexity, we will not succeed in proving a full large deviation principle. However, restricting to a class
of regular profiles, the variational problem is uniquely solved and the rate functional can be identified
with the one predicted in the physical literature, based on the analogy with stochastic dynamics.

Finally, Chapters 8 and 9 are devoted to the proof of Theorems 4 and 5, respectively. We encounter
here a combinatorial issue. The number of terms in the formula for f2(¢) grows, at first sight, badly
with n, and cancellations need to be exploited to obtain a factorial growth. At this point, cluster
expansion methods ([39]) enter the game (summarized in Chapter 2), applied to the collision trees.

(n

The decay pe b follows instead from a geometric analysis on hard-sphere trajectories with n — 1

connecting constraints, in the spirit of previous work [5, 7, 35].

1.6. Remarks, and open problems

We conclude with a few remarks on our results.

— To simplify our proof, we assumed that the initial datum is a quasi-product measure, with the
minimal amount of correlations (only the mutual exclusion between hard spheres is taken into
account). This assumption is useful to isolate the dynamical part of the problem in the clearest
way. More general initial states could be dealt with along the same lines ([43, 35]). However
the cumulant expansions would contain more terms, describing the deterministic (linearized)
transport of initial correlations.

— Similarly, fixing only the average number of particles (instead of the exact number of particles)
allows to avoid spurious correlations. We therefore work in a grand canonical setting, as is
customary in statistical physics when dealing with fluctuations. Notice that fixing N' = N
produces a long range term of order 1/N in the covariance of the fluctuation field. Note also
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that the cluster expansion method, which is crucial in our analysis, is developed (with few
exceptions, see [36] for instance) in a grand canonical framework [33].

Our results could be established in the whole space R?, or in a parallelepiped box with periodic
or reflecting boundary conditions. Different domains might be also covered, at the expense of
complications in the geometrical estimates of recollisions (see [15] for instance).

We do not deal with the original BBGKY hierarchy of equations, which was written for smooth
potentials, but always restrict to the hard-sphere system. It is plausible that our results could
be extended to smooth, compactly supported potentials as considered in [17, 34] (see [2] for a
fast decaying case), but the proof would be considerably more involved.

At thermal equilibrium, we expect Theorem 2 to be true globally in time: see [5] for a first step
in this direction.



PART 1

DYNAMICAL CUMULANTS






CHAPTER 2

COMBINATORICS ON CONNECTED CLUSTERS

This preliminary chapter consists in presenting a few notions (well-known in statistical mechanics)
that will be essential in our analysis. We present in particular cumulants, and their link with expo-
nential moments as well as with cluster expansions. We conclude the chapter with some combinatorial
identities that will be useful throughout this work.

2.1. Generating functionals and cumulants

Let h: D — R be a bounded continuous function. We shall use the notation

(2.1.1) (F(t),h®™) = dZ, FE(t, Zp)h(21) - . - h(zn) ,
Dn
and
P, = set of partitions of {1,...,n} into s parts ,
with
oc€P, =o0={o1,...,05}, |oi| =k, Zni:n.
i=1

The moment generating functional of the empirical measure (1.1.13), namely ]Ea(exp (Wf(h))) is re-

lated to the rescaled correlation functions (1.1.10) by the following remark. We recall that

N
(2.1.2) E8<exp (ﬂf(h))) =E. lexp (:Zh(zf(t)))] .

g .

Proposition 2.1.1. — We have that

(2.1.3) Eg(exp (wf(h))) —1+ i ’LT <Fg(t), (eh/“f - 1)®">

if the series is absolutely convergent.
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Proof. — Starting from (2.1.2), one has

Z%Es((ﬂf(h))k) =Z% Xk: > u;’“JEE( Z h(z;(t))’“...h(zgn(t))“")

E>1 n=1locePy LANTI
R,

1 N n € K1 K
=SSN | dZa B Za) b))

k>1 n=loePp b

where in the last equality we used (1.1.11). On the other hand for fixed n

S S [ =Y Y (Zfl)(’f;jl)---(k‘“;,;;;‘“”Q)ﬁw

k>n 7 oePpi=1 E>n T Kk >1 i=1
> ki=k
R h(z:)/ e
=11 o M el ol H( 1)
1=1K;>1
Therefore
£ n ISy 1 e z
]EE (eXP (7Tt (h))) - 1 + ;,ug /n dZ F t Z nf H ( h( 1)/HE - ) )

which proves the proposition. O

The moment generating functional is just a compact representation of the information coded in the
family (£5(¢)),>;- After the Boltzmann-Grad limit y. — oo, the right-hand side of (2.1.3) reduces

o)
1 n
to Z - ( / f(t)h) = exp (/f(t)h), i.e. to the solution of the Boltzmann equation.
= n
As discussed in the introduction, our purpose is to keep a much larger amount of information. To this

end, we study the cumulant generating functional which is, by Cramér’s theorem, an obvious candidate
to reach atypical profiles [46]. Namely, we pass to the logarithm and rescale as follows:

(2.1.4) As(eh) = ’uilogIE5 (exp (ug Wf(h))) = MilogEE(exp (ﬁf:h(zf(t)))) .
< € i=1

The first task is to look for a proposition analogous to the previous one. In doing so, the following
definition emerges naturally, where we use the notation:

o]
(215) G G|UJ\( HGUJ
for o ={o1,...,05} € P5.

Definition 2.1.2 (Cumulants). — Let (Gy,)n>1 be a family of distributions of n variables invari-
ant by permutation of the labels of the variables. The cumulants associated with (Gp)n>1 form the
family (gn)n>1 defined, for alln > 1, by

ZZ D s —1)!G,.

s=1locPs

We then have the following result, which is well-known in the theory of point processes (see [12]).
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Proposition 2.1.3. — Let (u;(n_l)ffl)

have

be the family of cumulants associated with (Fy),~,. We
n>1 e

I SE TN

n=1
if the series is absolutely convergent.

Proof. — Applying Proposition 2.1.1 to h in place of h/u., expanding the logarithm in a series and
using Definition 2.1.2, we get

1 & (=)t

1 1ogE. (exp (us 7TE(h))) Zf[l [Z /;:: (B, (1), (" = 1)®”>]

He He 71— n

1 > (—1) -1 MP1+"+Pn n h
=— FE (1), (e" —1)®Pe
pe == n m;pn pil...pn! 1,1;[1< . (0): (e )
=ty > (=D = D (L (), (" = 1))
p=1 n=1 O'EP;" /=1
[e's) 1 ®
g
DI HONCIESN
which proves the result. O

Note that cumulants measure departure from chaos in the sense that they vanish identically at or-
der n > 2 in the case of i.i.d. random variables.

2.2. Inversion formula for cumulants

In this paragraph we prove that the cumulants (g,) associated with a family (G,) in the sense of
Definition 2.1.2, encode all the correlations, meaning that G,, can be reconstructed from (gi)r<y, for
all n > 1. More precisely, the following inversion formula holds.

Proposition 2.2.1. — Let (Gp)n>1 be a family of distributions and (gn)n>1 its cumulants in the
sense of Definition 2.1.2. Then for each n > 1, the distribution G, can be recovered from the cumu-
lants (gk)k<n by the formula

n

(2.2.1) Vn>1, Gn=>_ > 4o

s=1ocP?

Proof. — Clearly G; = ¢g1. Suppose that the inverse formula (2.2.1) holds up to the level n — 1 and
let us check (2.2.1) at level n, i.e. that

(2.2.2) CnlZ) = 9n(Z0)+ D> Y 9o

s=2 aEPf’L

Replacing the cumulants g, by their definition, we get

=3 Y 0= ST 30 ot -1ty
s=20€Ps s=20€Ps j=1 k;=1
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denoting by P‘k, the set of partitions of V in k parts .

S
Using the Fubini Theorem, we can index the sum by the partitions with r := Z k; sets and obtain
j=1

(2.2.3) Z Yo (Z Y (- H (i = 1)) -
r=2 pePr s=2 wePs i=1

Note that the partition o in the definition of A, can be recovered as

Vi <s, ai:Upj.

JEw;

Using the combinatorial identity

ZZ llllavlfl)'*o

k=1cePk
(see Lemma 2.5.1 below for a proof), we find that
Yoy el = D= (=) = 1)L,
s=2 weP i=1
hence it follows that
Z Z Gp(=1)"" 1 (r—=D!=—gn(Zyn) + Gn(Zn),
r=2 peP;,

where the last equality follows from the definition of g,,. This completes the proof of Proposition 2.2.1.
O

2.3. Clusters and the tree inequality

We now prove that the cumulant of order n is supported on clusters (connected groups) of cardinality n.
We shall consider an abstract situation based on a “disconnection” condition, the definition of which
may change according to the context.

Definition 2.3.1. — A connection is a commutative binary relation ~ on a set V:
r~y, z,yeV.

The (commutative) complementary relation, called disconnection, is denoted #, that is x  y if and
only if x ~ y is false.

Consider the indicator function that n elements {ny,...,n,} are disconnected
D, (7]1, - ,nn) = H 1y, m, -
1<i#j<n

For n =1, we set @ (771) =1.

The following proposition shows that the cumulant of order n of ®,, is supported on clusters of length n,
meaning configurations (71, ...,7,) in which all elements are linked by a chain of connected elements.
Before stating the proposition let us recall some classical terminology on graphs. This definition, as
well as Proposition 2.3.3 and its proof, are taken from [23].
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Definition 2.3.2. — Let V be a set of vertices and E C {{U,w}, v,w eV, v# w} a set of edges.
The pair G = (V, E) is called a graph (undirected, no self-edge, no multiple edge). Given a graph G
we denote by E(Q) the set of all edges in G. The graph is said connected if for all v,w € V, v # w,
there exist vg = v,v1, V2, ...,0, = w such that {vi_1,v;} € E foralli=1,... n.

We denote by Cy the set of connected graphs with V' as vertices, and by C,, the set of connected graphs
with n vertices when V.= {1,...,n}. A minimally connected, or tree graph, is a connected graph
with n—1 edges. We denote by Ty the set of minimally connected graphs with V' as vertices, and by Ty,
the set of minimally connected graphs with n vertices when V. =1{1,... ,n}.

Finally, the union of two graphs G1 = (V1, E1) and Go = (Va, Es) is Gy UGy = (V4 U Vi, E1 U Es).

The following result was originally derived by Penrose [32].

Proposition 2.3.3. — The cumulant of ®,, defined as in Definition 2.1.2 is equal to

(2.3.1) on(m,.om)= > JI (~Lpwn)-

GeCy {i,j}EE(G)

Furthermore, one has the following “tree inequality”

(2.3.2) Iapn(m,..-,nn)lﬁz H Loy, -

TET, {i,j}€E(T)

Proof. — The first step is to check the representation formula (2.3.1) for the cumulant ¢,. The
starting point is the definition of ®,
(I)n(7717~-~777n) = H (171{771:’“7;‘}) :Z H (71717‘,"’77]‘)7
1<i#j<n G {i,j}€E(G)

where the sum over G runs over all graphs with n vertices. We then decompose these graphs in
connected components and obtain that

Sl =SS T S T taen)

s=10€P; k=1 \GrECs, {i,j}EE(GY)

By identification with the formula (2.2.1), we therefore deduce that

@n(nlv"wnn) = Z H (71771'"‘77)')'
GeCn {i,j}€E(G)

The second step is to compare connected graphs and trees, defining a tree partition scheme, i.e. a
map 7 : C,, = T, such that for any T € Ty, there is a graph R(T) € C, satisfying

' ({T}) ={GeC,/E(T)C E(G) C E(R(T))}.

Penrose’s partition scheme is obtained in the following way. Given a graph G, we define its image T
iteratively starting from the root 1
— the first generation of T consists of all ¢ such that {1,i} € G; these vertices are labeled in
increasing order t11,...,t1,r,-
— the ¢-th generation consists of all ¢ which are not already in the tree, and such that {t,_q ;,¢}
belongs to E(G) for some j € {1,...,ry_1}; these vertices are labeled in increasing order
of j=1,...,rp_1, then increasing order of i.
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The procedure ends obviously with a unique tree 7' € T,,. In order to characterize R(T'), we then have
to investigate which edges of G have been discarded. Denote by d(¢) the graph distance of the vertex i
to the root (which is just its generation). Let {4, j} € E(G)\ E(T) and assume without loss of generality
that d(i) < d(j). By construction d(j) < d(i) + 1. Furthermore, if d(j) = d(i) + 1, the parent i’ of j
in the tree is such that ¢’ < . Therefore E(G) \ E(T) is a subset of the set E'(T) consisting of edges
within a generation (d(i) = d(j)), and of edges towards a younger uncle (d(j) = d(i) + 1 and i’ < i).
Conversely, we can check that any graph satisfying E(T) C G C E(T) U E'(T) belongs to 7~ *({T'}).
We therefore define R(T') as the graph with edges E(T)U E'(T).

The last step is to exploit the non trivial cancellations between graphs associated with the same tree.
There holds, with the above notation,

Z H (_177i~7lj) = Z Z H (_1"]i"‘77j)

GeCn {i,j}€E(G) TeT, Gen—1(T) {i,j}€E(GQ)
= Z mwz] Z H m~77]
TeTn \{s, j}EE(T) E'CE'(T) {i,j}eE’
= Z 771“”7] 1 - 1?7i~77j)
TeTn {w}eE(T) {ZJ}EE’(T)
The conclusion follows from the fact that (1 —1,,~,,) € . The proposition is proved. O
4. Number of minimally connected graphs
The following classical result will be used in Chapter 8.
Lemma 2.4.1. — The cardinality of the set of minimally connected graphs on n vertices with degrees
(number of edges per vertex) of the vertices 1,...,n fixved respectively at the values dy,...,d, is
(n—2)!
(2.4.1) HTEE (T):dl,...,dn(T):dnH:n7~
Proof. — We notice preliminarily that this implies Cayley’s formula |7,,| = n"~2. Indeed the graph is

minimal, so there are exactly n — 1 edges hence (each edge has two vertices) the sum of the degrees
has to be equal to 2n — 2. Thus

di,...,d 1=1 dy,...,dn i=1
1<d;<n-—1 0<d; <n—2
> di=2(n—1) > di=n—2

The lemma can be proved by induction. For n = 2 the result is trivial, so we suppose to have proved it
for the set le’ dn =T €T, | di(T)=dy,...,d,(T) =d,}, for arbitrary di,...,d,, and consider
the set ’le’ dnsr ={T € Th+1 | &i(T) =di,...,dpt1(T) = dpy1}. Since there is always at least
one vertex of degree 1, we can assume without loss of generality that d,,;1 = 1. Notice that, if the
vertex n + 1 is linked to the vertex j, then necessarily d; > 2. We therefore compute the number of
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minimally connected graphs on n vertices with degrees di,...,d;_1,d; —1,d;11,...,dy,, and sum then
over j (all the ways to attach the vertex n + 1 of degree 1). This leads to

n

d1 ..... dnt1) _ (Tl*2)'
17 |*z(dj—2)!1‘[i¢j(di—l)!’

j=1
hence
—2) R (n—1)!
L Lot L
17 (di — 1) ; ! [Ti= (di = 1)!
having used again En+ dj =2(n+1-1). O

2.5. Combinatorial identities

In the previous paragraphs and later in this work the following combinatorial identities are used.

Lemma 2.5.1. — For n > 2 there holds

(2.5.1) Z Z k—1)!=0,

k=1oecPk

(2.5.2) Z > (- H los| — 1)1 =0.

k=1oecPk

Proof. — From the Taylor series of x +— log (exp(x)), we deduce that

S (—1)* 1
Vn > 2, Z Z Tm:o.

k=161+-+L,=n

The number of partitions of {1,...,n} into k sets with cardinals (1, ..., ¢ is given by

1 /n\/n—1¢ n—»~0;—- =L 1 n!
k I 1 L k=1 = T 5
(2.5.3) ﬁPn(él,...,Ek)—k! <€1)< 0 ) ( O ) KV

where the factor k! arises to take into account the fact that the sets of the partition are not ordered.
Combining (2.5.3) and the previous identity, we get

n (—l)k 1 n (—l)k k!
0=2. 2 él!...éklzz P DI CACTRY

k=1 01+ +ﬁ,;n k=1 Oy 4l =n

nlz k—1)4Pk

and this completes the first identity (2.5.1).

From the Taylor series of z — exp (log(l + a:)), we deduce that

(-1)*
(2.5.4) Vn > 2, Z > i =0.

k=1l detlp=n L
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Combining (2.5.3) and the previous identity, we get

~ 1 -DE 1
0=> 2 Ei...)fkm;oepk(l)kn(lml)!

and this completes the second identity (2.5.2).

The lemma is proved.



CHAPTER 3

TREE EXPANSIONS OF THE HARD-SPHERE DYNAMICS

Here and in the next chapter, we explain how the combinatorial methods presented in the previous
chapter can be applied to study the dynamical correlations of hard spheres. The first steps in this
direction are to define a suitable family describing the correlations of order n, and then to obtain a
graphical representation of this family which will be helpful to identify the clustering structure.

3.1. Space correlation functions

For the sake of simplicity, we start by describing correlations in phase space. Recall that the n-particle
correlation function Fg = FZ(t, Z,,) defined by (1.1.10) counts how many groups of n particles are, in
average, in a given configuration Z,, at time ¢: see Eq. (1.1.11).

Let us now discuss the time evolution of the correlation functions: by integration of the Liouville
equation (1.1.3), we get that the family (F?),>1 satisfies the so-called BBGKY hierarchy (going back
to [10]) :

(3.1.1) OF: +V, Vx, Fo=C5, 1 Foy in D

n

with specular boundary reflection
(312) VZ, € 8D5L+<Z>])7 Fﬁ(ta Zn) = F’IEL(t7Z7,”Li’j)7

where Z;\i,’j differs from Zy only by (1.1.2). The collision operator in the right-hand side of (3.1.1)
comes from the boundary terms in Green’s formula (using the reflection condition to rewrite the gain
part in terms of pre-collisional velocities):

n

€ 5 o § i,€ 5
Cn,n+1Fn+1 T Cn,n—i—anJrl

i=1

with

(Crtwin Fra) (Zn) = / 2 (Z0 i)+ e, w') (w = v1) - w) | dewdu
(3.1.3)
—/F§+1(Zn,xi + Ew,w)((w —v;) -w)i dwdw ,

where (v}, w’) is recovered from (v;, w) through the scattering laws (1.1.2), and with the notation

(3.1.4) ZT@ = (21, ey Zim1s Zidly oo s 2n) -
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Note that the collision operator is defined as a trace, and thus some regularity on F; is required to
make sense of this operator. The classical way of dealing with this issue (see for instance [17, 41]) is
to consider the integrated form of the equation, obtained by Duhamel’s formula

t
Fi() = S3OF + [ it —0)C P (bt
0

denoting by S¢ the group associated with free transport in D¢ with specular reflection on the bound-
ary 0D;,.

Iterating Duhamel’s formula, we can express the solution as a sum of operators acting on the initial
data :

(315) Z Qn n+m Fﬁgﬁn ?

m>0

where we have defined for ¢t > 0

fL,n+m Frigm . / / / t - tl)cn n+1S€+1(t1 2 )0781+1,n+2
S8 (tm)FE0, dty, ... dty

n+m n+m

(3.1.6)

= S0 P20

n+m-*

and Q5 (1) F0 := SS(t)F2°, Q5 i (0)FEY

n n,n+m n+m °

3.2. Geometrical representation with collision trees

The usual way to study the Duhamel series (3.1.5) is to introduce “pseudo-dynamics” describing the
action of the operator @7, ,,;,,. In the following, particles will be denoted by two different types of
labels: either integers ¢ or labels ix (this difference will correspond to the fact that particles labeled
with an integer ¢ will be added to the pseudo-dynamics through the Duhamel formula as time goes
backwards, while those labeled by ix are already present at time t). The configuration of the particle
labeled i will be denoted indifferently z} = (27, v}) or 2z = (Tix, Vix)-

19 Y

Definition 3.2.1 (Collision trees). — Given n > 1,m > 0, an (ordered) collision tree a € A,
is a family (a;)1<i<m with a; € {1,...,i =1} U {1l%,...,nx}.

Note that |A,m|=n(n+1)...(n+m —1).

Given a collision tree a € A, ,, we define pseudo-dynamics starting from a configuration 7} =
(xF,v})1<i<n In the n-particle phase space at time ¢ as follows.

R

Definition 3.2.2 (Pseudo-trajectory). — Given Z} € D5, m € N and a € A, ,,, we consider a
collection of times, angles and velocities (Ty,, Qpm, Vin) = (ti, wi, Vi)1<i<m Satisfying the constraint

0<tm < <ti<t=tp.

We define recursively pseudo-trajectories as follows:
— in between the collision times t; and t;41 the particles follow the (n + i)-particle (backward)
hard-sphere flow;
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— at time t;r, particle i is adjoined to particle a; at position x4, +cw; and with velocity v;, provided
it remains at a distance larger than & from all the other particles. If (v; — va, (t1)) - wi > 0,
velocities at time t; are given by the scattering laws

Va, (t;) = Va, (t;r) - ((vai (tj) - vi) 'wi) Wi
vi(t7) == vi + ((va, (t7) — vi) - w;) ws .

We denote by V5, . = V7 (t) (we shall sometimes omit to emphasize the number of created par-

(3.2.1)

ticles and simply denote generically by V%) the so constructed pseudo-trajectory, and by Zy m(7) =
(Z:;(T)7 Zm(T)) the coordinates of the particles in the pseudo-trajectory at time T < t,,. It depends on
the parameters a, Z%, Ty, Qm, Vin, and t. We also define GE,(a, Z7) the set of parameters (T, Qm, Vin)
such that the pseudo-trajectory exists up to time 0, meaning in particular that on adjunction of a new
particle, its distance to the others remains larger than €. For m = 0, there is no adjoined particle and
the pseudo-trajectory V5, (1) = Zno(0, Zy,7) for 7 € (0,t) is the n-particle (backward) hard-sphere
flow.

For a given time t > 0, the sample path pseudo-trajectory of the n (x—labeled) particles is denoted
by Z;(10,1]).

Remark 3.2.8. — We stress the difference in notation: “z;(1)” in the above definition denotes the
configuration of particle i in the pseudo-trajectory while the real, N -particle hard-sphere flow is de-
noted Z5.(7) as in (1.1.7).

With these notations, the representation formula (3.1.5) for the n-particle correlation function can be
rewritten as

322  Ftz)=Y Y / AT, dS2,d Vi, (H (0i — v, (t)) - wi) F2O (w0 ),
m>0 a€dp,m Y Im(®:25) i=1
where
dTm = dtl e dtm 10§tm§---§t1§t 5
e0

n,m

we have denoted by (F2°),>1 the initial rescaled correlation function, and ¥ is the configuration
at time 0 associated with the pseudo-trajectory W7 , . Note that the variables w; are integrated over
spheres and the scalar products take positive and negative values (corresponding to the positive and
negative parts of the collision operators). Equivalently, we can introduce decorated trees (a, s, ..., Sm)
with signs s; = + specifying the collision hemispheres: denoting by Aim the set of all such trees, we

can write Eq. (3.2.2) as

(3:23) Fi(t,Zp)=>_ >, /

m=>0 aEA%,'m

o AT, dQm AV, (H s ((vi — va, (t)) - wi)+) FEO (U0,
e (a,Z i=1

where the pseudo-trajectory is defined as before, with the scattering (3.2.1) applied in the case s; = +
and the creation at position x; + s;ew;.

3.3. Averaging over trajectories
To describe dynamical correlations. More precisely, we are going to follow the particle trajectories. As

noted in Remark 3.2.3, pseudo-trajectories provide a geometric representation of the iterated Duhamel
series (3.1.5), but they are not physical trajectories of the particle system. Nevertheless, the probability
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S N

FIGURE 1. An example of pseudo-trajectory with n = 6, m = 10. In this symbolic picture,
time is thought of as flowing upwards (at the top we have a configuration Zg, at the bottom
wg 10) The little circles represent hard spheres of diameter . Notice that several collisions
are possible between the adjunction times 7,,. For simplicity, the hard spheres have been
drawn only at their first time of existence (going backwards), and at collisions between
adjunction times.

on the trajectories of n particles can be derived from the Duhamel series, as we are going to explain
now.

For a given time ¢ > 0, the sample path of n particles labeled i; to i,, among the N hard spheres, is
denoted (z5 ([0,%]),...,2; ([0,#])). In the case when i; = j for all 1 < j < n we denote that sample
path by Z:([0,t]). As ZZ has jumps in velocity, it is convenient to work in the space D, ([0,¢]) of
functions that are right-continuous with left limits in D™. This space is endowed with the Skorokhod
topology. In the case when n =1 we denote it simply D(]0,]).

Let H, be a bounded measurable function on D,,([0,¢]) (the assumption on boundedness will be relaxed
later). We define

F5 0.4( /dz* Z Z /g . dT;,d,dV,,

m>0 G.Ai

(3.3.1) -

X H (H Si — Va; tl)) ) )Frigm(@;?M) :

This formula generalizes the representation introduced in Section 3.2 in the sense that, in the case
when H,(Z%([0,t])) = hn(Z):(t)), we obtain

Fijo(Ha) = [ Fit. 20k (Z)4Z;

More generally, in analogy with (1.1.11), Eq.(3.3.1) gives the average (under the initial probability
measure) of the function H,, as stated in the next proposition.

Proposition 3.3.1. — Let H, be a symmetric bounded measurable function on Dy ([0,t]). Then
(332) Ee( - Z Hn(Zfl([O,t]),, zn([o t]))) :N?Ffz,[O,t](Hn)'

iy ik
Proof. — 'To establish (3.3.2), we first look at the case of a discrete sampling of trajectories

Hn(Z:,(10,1])) = H hi(Z:,(6))
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for some decreasing sequence of times © = (6;)1<;<p in [0,t], and some family of bounded continuous
functions (hﬁ?) with hg) : D™ — R.
1<i<p

First step. To take into account the discrete sampling H,,, we proceed recursively and define for any
T € (0,1

Hyr(25,(10,) := | [ w0 (Z50600) | | T] 1925 (7)

0, <t 0;>T

In particular, for 7 <6, < --- < 6y, the function H,, ; depends only on the density at time 7 so that

B X0 G (0o, (0) =0 [ FinZ) [T 707

iy Fino ik
We then define the biased distribution

Fe(1,2%) = Fi(r, Z7) Hh(J zr) for 7€10,6,]

and then extend this biased correlation function F£(7, Z*) on [0,t] so that

B3 Hur(h (0.0),-.. 2, (0,1)) —ME/FETZ)dZ*.

iy i ot

In order to characterize F2 (7, Z), we have to iterate the Duhamel formula (3.1.5) in time slices [0 1, 6;]
as in the proof of Proposition 2.4 of [6] (see also [3, 5]). On [f;41,6;], F<(7, Z%) is the product of the
weight [, Y )(Z;’;) by a correlation function which satisfies the BBGKY hierarchy. Therefore the
expansion (3.1.5) can be applied to describe its evolution in [6;41,6;]. We obtain by iteration on ¢ that

F’IEL(t) = Z Qn n+k1 ) n+ky (01)
k120
(3.3.3)

Z Q5 nik, (T — el)hg)(Z:L(el))Qi+k1,n+k1+k2 (01 — 62)

kit 4kpt12>0
0
. h’l(’Lp) (Z;(ep))QfL+k1++k:p,n+k:1++kp+1 (ep)F’li+k1++kp+1 ’

which leads to (3.3.2) for discrete samplings.

Second step. More generally any function H,, on (D™)P can be approximated in terms of products of
functions on D™, thus (3.3.3) leads to

EE( Z H, (ZZ ([0,2]),- .-, zn([o t]))) pe Z thn—i-lﬁ (t— 01)Q2+k1,n+k)1+k2 (01 — 62)

T Fit-thpy1>0
ik
* 0
M sz-{—kl+~~+kp,n+k1+~~+kp+1 (HP)HTL(Z:L(Ql)’ R Zn(op)) ’ri+k1+~~~+kp+1
where the Duhamel series is weighted by the n-particle pseudo-trajectories at times 61, ...,0,.

Third step. For any 0 < 0, < --- < 0; < t, we denote by my,
o (D™)P

(3.3.4) T01....0,(Zn([0,2])) = (Zn(01), .., Zn(6p)) -

9, the projection from D, ([0,t])

.....
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The o-field of Borel sets for the Skorokhod topology can be generated by the sets of the form 1,_..79pA
with A a subset of (D™)P (see Theorem 12.5 in [4], page 134). This completes the proof of Proposi-
tion 3.3.1. O

To simplify notation, we are going to denote by ¢ the pseudo-trajectory during the whole time
interval [0, t], which is encoded by its starting points Z; and the evolution parameters (a, Ty, Qm, Vin)-
Similarly we use the compressed notation 1ge for the constraint that the parameters (75, Qm, Vin)
should be in GZ, (a, Z) as in Definition 3.2.2. The parameters (a, Tp,, Qm, Vi) are distributed according
to the measure

(3.3.5) du(¥5) =3 S dTnddViale-(¥5) ] (sk ((vk = Vay (t5)) .wk>+> .
m aEA%,m k=1

The weight coming from the function H,, will be denoted by
(3.3.6) H(WS) = H(Z5([0,1])) -

Formula (3.3.1) can be rewritten

(33.7) F o) = [ dz; [ dutws) w(ws) Fo(w30).

and F0(W?) stands for the initial data evaluated on the configuration at time 0 of the pseudo-
trajectory (containing n + m particles).

The series expansion (3.3.7) is absolutely convergent, uniformly in €, for times smaller than some Ty >
0: this determines the time restriction in Theorem 1. More precisely, T is defined by the following
condition:

(3.3.8) vt € [0, To] , sup {sup/d|u|(\llfl) FO(0e0) I L) RPN

n>1 | Dn



CHAPTER 4

CUMULANTS FOR THE HARD-SPHERE DYNAMICS

To understand the structure of dynamical correlations, we are going to describe how the collision
trees introduced in the previous chapter (which are the elementary dynamical objects) can be grouped
into clusters. We shall identify three different types of correlations (treated in Section 4.1, 4.2, 4.3
respectively). Our starting point will be Formula (3.3.7). We will also need the notation U5, = ¥, .,
where a pseudo-trajectory is labeled by the ensemble of its roots. Notice that the two collision trees
in \I/?l,?} do not scatter if and only if \Il‘?l} and \Iﬁ?} keep a mutual distance larger than . Therefore we
shall write the non-scattering condition as the complement of an overlap condition, meaning that \Il‘?l}
and \I'f{Q} reach a mutual distance smaller than e (without scattering with each other). The scattering,
disconnection and overlap situations are represented in the following picture (recall also Figure 1),
together with some nomenclature which is made precise below.

1% D 1x D 1% Vs
external recollision . . overlap
disconnection
]. ~p 2 1 ~o 2

4.1. External recollisions

A pseudo-trajectory W¢ is made of n collision trees starting from the roots Z). These elementary
collision trees will be called subtrees, and will be indexed by the label of their root. The parameters
(@, Tony O, Vi) associated with each collision tree are independent, and can be separated into n subsets.

The corresponding pseudotrajectories \Ilil oo \I/?n} evolve independently until two particles belonging
to different trees collide, in which case the corresponding two trees get correlated. The next definition
introduces the notion of recollision and distinguishes whether the recolliding particles are in the same
tree or not.
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Definition 4.1.1 (External/internal recollisions). — A recollision occurs when two pre-existing
particles in a pseudo-trajectory scatter. A recollision between two particles will be called an external
recollision if the two particles involved are in different subtrees. A recollision between two particles will
be called an internal recollision if the two particles involved are in the same subtree.

Let us now decompose the integral (3.3.7) depending on whether subtrees are correlated or not. Recall
Definitions 2.3.1 and 2.3.2.

Notation 4.1.2. — We denote by
{3} ~ {0}

the condition: “there exists an external recollision between particles in the subtrees indexed by j and j

/7}

Given X C {1,...,n}, we denote by A, the indicator function that any two elements of A are connected
by a chain of external recollisions. In other words
(4.1.1) My=1 <+ 3IGeCly, I 1h~ur=1

{4.5'}€E(G)

Notice that Xy depends only on ¥5. We set My = 1 when |A\| = 1. We extend Xy to zero out-
side G*(Z5). We therefore have the partition of unity

(4.1.2) 1g- (W Z > (HmA 1g- (5, )) By (Ai,. .. N)

=1 \eP’

where ®1 = 1, and ®y for £ > 1 is the indicator function that the subtrees indexed by A1, ..., s keep
mutual distance larger than . ®, is defined on U;G*(Z5 ).

Using the notation (3.3.7), we can partition the pseudo-trajectories in terms of the external recollisions

FrjonH /dZ*Z > /du (U5)H (%) (me)«m Ay A FEO(090)

=1 XePL

There is no external recollision between the subtrees indexed by A1,..., Ay, so the pseudo-trajectories
are defined independently; in particular, assuming from now on that

H, = H®"

with H a measurable function on the space of trajectories D([0,t]), the cross-sections, the weights and
the constraint imposed by G¢ factorize
¢
Dy (Moo AVH (W) dia(W5) = Be(h, A (TTH(95,)du(v5,))
i=1

and we get

(4.1.3)  Fq(H®™) /dZ*Z Z/ Hdu (v5.) \I/ii)z&Ai) Dy(Ar, ..o, A) FO(T50)
=1 \eP.

The function @, forbids any overlap between different forests in (4.1.3). In particular, notice that ®,
is equal to zero if |z} — 27| < ¢ for some i # j (compatibly with the definition of F; 0 t]) .

Although the subtrees W5 ,..., ¥ in the above formula have no external recollisions, they are not yet
fully independent as their parameters are constrained precisely by the fact that no external recollision
should occur. Thus we are going to decompose further the collision integral.
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4.2. Overlaps

In order to identify all possible correlations, we now introduce a cumulant expansion of the constraint ®,
encoding the fact that no external recollision should occur between the different ;.

Definition 4.2.1 (Overlap). — An overlap occurs between two subtrees if two pseudo-particles, one
in each subtree, find themselves at a distance less than € one from the other for some T € [0,t].

Notation 4.2.2. — We denote by
Ai ~o Aj

the relation: “there exists an overlap between two subtrees belonging to \; and \; respectively”, and we
denote A\; oo Aj the complementary relation. Therefore

(4.2.1) DA, he) = H Lxistor; -

1<i#j<t

The inversion formula (2.2.1) implies that

L
(A M) =D 9y,

r=1peP;

denoting
-
p = H Ppj -
j=1

The cumulants associated with the partition {A1,...,A\¢} are defined for any subset p; of {1,...,¢} as

‘p]

(4.2.2) = > ()M u—1)d,,

u=1 wE'P“
Pj

where w is a partition of p;, and recalling the notation

=[]0 Pu =Py (Aksk € wi).
i=1

Note that as stated in Proposition 2.3.3, the function ¢, is supported on clusters formed by overlapping
collision trees, i.e.

(423) Pp; = Z H (71&1’\'0)\712) .

GeCp; {i1,i2}€E(G)

For the time being let us return to (4.1.3), which can thus be further decomposed as

(4.2.4) Fr j0.9(H®™) /dZ*Z > Z > / Hdu us,)H ‘I’f\i)l&xi) PO (U5) -

=1 )\E’PZ r=1pePy;

By abuse of notation, the partition p can be also interpreted as a partition of {1,...,n}
(4.2.5) vi<ll,  pi= U N,
1Ep;

coarser than the partition A. The relative coarseness (4.2.5) will be denoted by

A=p.
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4.3. Initial clusters

In (4.2.4), the pseudo-trajectory is evaluated at time 0 on the initial distribution FEO(\IIZO). Thus the
pseudo-trajectories {\IIZJ }j<r remain correlated by the initial data, so we are finally going to decompose
the initial measure in terms of cumulants.

Given p = {p1,...,pr} a partition of {1,...,n} into r subsets, we define the cumulants of the initial
data associated with p as follows. For any subset & of {1,...,r}, we set

5]
(4.3.1) =30 (- 1) E,

u=1lweP¥

where w is a partition of &, and denoting as previously
u
FP=T]F, FY=F0%jcw).

i=1
We recall that \I/ff; represents the pseudo-trajectories rooted in Z;j computed at time 0. They in-
volve m; new particles, so there are |p;| + m; particles at play at time 0, with of course Z;Zl(|pj| +
mj) =n+ Z;zl m; =n+ m. We stress that the cumulant decomposition depends on p (in the same
way as (4.2.2) was depending on \).

Given p = {p1,...,pr}, the initial data can thus be decomposed as

S

FEO(ws) ZZ S0, with 50 =T 0

s=1c0ePs i=1
By abuse of notation as above in (4.2.5), the partition o can be also interpreted as a partition
of {1,...,n}

Vi < o], Ui:UPja

Jj€o;
coarser than the partition p. Hence there holds p — o.

We finally get

= [z Y YT YT [ Hdu (V) H5,) 20, ) o, f2°.

{=1 \ePt r=1 pEP; s= loePs

n

The n subtrees generated by Z have been decomposed into nested partitions A < p < o (see Figure 2).

Thus we can write

(4.3.2) Fy 0.9 (HE™) /dZ* > / Hdu o5, H ‘I’ii)l&xi) @p 150

X, p,o
A= p—a

The order of the sums can be exchanged, starting from the coarser partition o: we obtain

wss)  Fer= [ SITY [( Hdu (5)H(T3,) 8, ) 9,22

s=1loePs j=1_ *r»

)ﬁ—>pf—>a

where the generic variables A, p denote now nested partitions of the subset o;.
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o1 02

FIGURE 2. The figure illustrates the nested decomposition A — p — o in (4.3.2). The
configuration Z;; at time ¢ is represented by n = 14 black dots. Collision trees, depicted by
grey triangles, are created from each dots and all the trees with labels in a subset A; interact
via external recollisions, forming connected clusters (grey mountains). These trees are then
regrouped in coarser partitions p and o in order to evaluate the corresponding cumulants.
Green clusters A are called forests, blue clusters p are called jungles, and black clusters o are
called initial clusters.

4.4. Dynamical cumulants

Using the inversion formula (2.2.1), the cumulant of order n is defined as the term in (4.3.3) such
that o has only 1 element, i.e. o = {1,...,n}. We therefore define the (scaled) cumulant, recalling
notation (4.3.1),

(4.4.1)

n L L
Froa™) = [zie 32 30 ST S [ (TTan(s)%(05,)80) 2y 7y (W30 950).
i=1

¢=1 xePt r=1 pePy

In the simple case n = 2, the above formula reads

f5 0. (HE?) = /dZS Ns{/dﬂ(qjilg})1{1}NT{2}H(\I]?LQ})FEO(\I/?%Q})
2
) / I [emwi) #5010y 70 (V78 975
i=1

o [T [ty i) ] (77 (it iy ) — 7 () 2 (vi3)) }.
i=1

where we used (4.1.1), (4.2.3) and (4.3.1). The three lines on the right hand side represent the
three possible correlation mechanisms between particles 1* and 2* (i.e. between the subtrees 1 and 2):
respectively the (clustering) recollision, the (clustering) overlap and the correlation of initial data.

More generally, looking at Eq. (4.4.1), we are going to check that fa04 (H®"™) is a cluster of order n.

— We start with n trees which are grouped into ¢ forests in the partition A. In each forest \; we
shall identify |A;|—1 “clustering recollisions”. These recollisions give rise to Zle(\)\i|—1) =n—{

constraints.
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— The ¢ forests are then grouped into r jungles p and in each jungle p;, we shall identify |p;| — 1
“clustering overlaps”. These give rise to >.._,(|p;| — 1) = £ — r constraints.
— The r elements of p are then coupled by the initial cluster, and this gives rise to r—1 constraints.

By construction n—1=>""_,(|p;| = 1)+ Zle(\)\i| —1)47—1. The dynamical decomposition (4.4.1)
implies therefore that the cumulant of order n is associated with pseudo-trajectories with n—1 clustering
constraints, and we expect that each of these n — 1 clustering constraints will provide a small factor
of order 1/u.. To quantify rigorously this smallness, we need to identify n — 1 “independent” degrees
of freedom. For clustering overlaps this will be an easy task. Clustering recollisions will require more
attention, as they introduce a strong dependence between different trees.

Let us now analyze Eq. (4.4.1) in more detail. The decomposition can be interpreted in terms of a
graph in which the edges represent all possible correlations (between points in a tree, between trees
in a forest and between forests in a jungle). In these correlations, some play a special role as they
specify minimally connected subgraphs in jungles or forests: this is made precise in the two following
important notions.

Let us start with the easier case of overlaps in a jungle. The following definition assigns a minimally
connected graph (cf. Definition 2.3.2) on the set of forests grouped into a given jungle.

Definition 4.4.1 (Clustering overlaps). — Given a jungle p; = {Ajl""’)‘jlpi\} and a pseudo-

tragectory Ve, we call “clustering overlaps”™ a set of |pil — 1 overlaps

(4.4.2) Ay ~o Ajr)s e, ()\jlpiH ~o )\j\/pi\—l)
such that
[ b oA, = BT
where T}, s a minimally connected graph on p;. Given a pseudo-trajectory V5, with clustering overlaps,
we define |p;| — 1 overlap times as follows: the k-th overlap time is
(4.4.3) Tov,k := SUD {T >0 | \ lin\iril |zg (T) — 24(T)| < 5} )
ik

q' in ‘Ili .
Tk

Each one of the |p;| —1 overlaps is a strong geometrical constraint which will be used in Part III to gain
a small factor 1/u.. More precisely, in Chapter 8 we assign to each forest \;, a root z;‘\jk (chosen among
the roots of \Ilijk ). Then, it will be possible to “move rigidly” the whole pseudo-trajectory \Ifijk , acting
just on xj{]k It follows that one easily translates the condition of “clustering overlap” into |p;| — 1
independent constraints on the relative positions of the roots. In fact remember that the pseudo-
trajectories \Ilijk , \Ilij;c do not interact with each other by construction. Therefore A;, ~, Aj; means
that the two pseudo-trajectories meet at some time 7oy, > 0 and, immediately after (going backwards),
they cross each other freely. Which corresponds to a small measure set in the variable xﬁj}c — x}‘\%

Contrary to overlaps, recollisions are unfortunately not independent one from the other. For this
reason, the study of recollisions of trees in a forest needs more care. In this case the main idea is
based on fixing the order of the recollision times. Then we can identify an ordered sequence of relative
positions (between trees) which do not affect the previous recollisions. One by one and following the
ordering, such degrees of freedom are shown to belong to a small measure set. The precise identification
of degrees of freedom will be explained in Section 8.1 and is based in the following notion.
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Definition 4.4.2 (Clustering recollisions). — Given a forest \; = {i1,...,i|\,|} and a pseudo-
tragectory WS ., we call “clustering recollisions” the set of recollisions identified by the following iterative
procedure.

- The first clustering recollision is the first external recollision in WS, (going backward in time); we
rename the recolliding trees ji,j1 and the recollision time Trec,1-

- The k-th clustering recollision is the first external recollision in WS (going backward in time) such
that, calling j, j;. the recolliding trees, {{j1,71},.. - {jk-dutt = F (G(k)) where G%) is a graph with
no cycles (and no multiple edges). We denote the recollision time Tyec k.

In particular,
(4.4.4) Treen 2 2 Tee i ond { {030 Ui i1} = B
where Ty, is a minimally connected graph on A;.

If q,q' are the particles realizing the recollision, we define the corresponding recollision vector by

g (Trec k) = Zq(Trec k)
9

(445) Wrec,k +=

The important difference between Definition 4.4.2 and Definition 4.4.1 is that we have given an order
to the recollision times in Eq. (4.4.4) (which is missing in Eq. (4.4.3)).

From now on, in order to distinguish, at the level of graphs, between clustering recollisions and clus-
tering overlaps, we shall decorate edges as follows.

Definition 4.4.3 (Edge sign). — An edge has sign + if it represents a clustering recollision. An
edge has sign — if it represents a clustering overlap.

Collecting together clustering recollisions and clustering overlaps, we obtain r minimally connected
clusters, one for each jungle. In particular, we can construct a graph G, , made of r minimally
connected components. To each e € E(G) ), we associate a sign (+ for a recollision and — for an

overlap), and a clustering time 7¢/4st,

Our main results describing the structure of dynamical correlations will be proved in the third part of
this paper. The major breakthrough in this work is to remark that one can obtain uniform bounds for
the cumulant of order n for all n, with a controlled growth, as stated in the next theorem.

Theorem 4. — Consider the system of hard spheres under the initial measure (1.1.6), with f° satis-
fying (1.1.5). Let H : D([0,0]) — R be a continuous function such that

(4.4.6) |H®"™(Z,,([0,1]))] < exp (aon—l— % sup |Vn(s)|2)

s€[0,t]
for some ag € R. Define the scaled cumulant f;, (H®™) by (4.4.1), with the notation (3.3.5). Then
there exists a positive constant C' and a time T* = T*(Cy, fo) such that the following uniform a priori
bound holds for any t < T*:

€ n ap\n n—1
| fro (M) < (Ce™)" (t+¢)" nl.
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In particular setting H = " — 1 and up to restricting T* = T*(a, Co, Bo), the series defining the
cumulant generating function is absolutely convergent on [0,T*] :

N o
(4.4.7) A g () = ilog E. <exp (> h(Zf([M))) =3 (- 1)

Note that (4.4.7) follows easily from the uniform bounds on the rescaled cumulants, recalling Propo-
sition 2.1.3.



CHAPTER 5

CHARACTERIZATION OF THE LIMITING CUMULANTS

Due to the uniform bounds obtained in Theorem 4, for all n there is a limit f, o(H®")
for ffz,[o,t] (H®™) as pe — oo. Our goal in this chapter is first to obtain a formula for f,, [ ;) (H®") simi-
lar to (4.4.1), with a precise definition of the limiting pseudo-trajectories (see Theorem 5 in Section 5.1
below): the main feature of those pseudo-trajectories is that they correspond to minimally connected
collision graphs. In Section 5.2 we derive a formula for the limiting cumulant generating function
(Theorem 6) which enables us in Section 5.3 to deduce that this function satisfies a Hamilton-Jacobi
equation. The fact that the limiting graphs have no cycles is crucial to the derivation of the equation.
The well-posedness of the Hamilton-Jacobi equation is investigated in Section 5.4. It provides finally
a rather direct access to the dynamical equations satisfied by the limiting cumulants in Section 5.5.

5.1. Limiting pseudo-trajectories and graphical representation of limiting cumulants

In this section we characterize the limiting cumulants f;, 0.4 (H ®n) by their integral representation.
This means that we have to specify both the admissible graphs, the limiting pseudo-trajectories and
the limiting measure.

We first describe the formal limit of (4.4.1). To do this, we start by giving a definition of pseudo-
trajectories associated with cumulants for fixed e. Recall that the cumulant f7 o t](H ®n) of order n
corresponds to graphs of size n which are completely connected, either by recollisions, or by overlaps,
or by initial correlations. The clusterings coming from the initial data, being smaller by a factor O(¢),
will not contribute to the limit, and they will be disregarded in this section. The clusterings associated
with recollisions and overlaps can be expressed as an additional condition for pseudo-trajectories to be
admissible.

Definition 5.1.1 (Cumulant pseudo-trajectories). — Let m > 0. The cumulant pseudo-
trajectory V7 .. associated with the minimally connected graph T € T, decorated with edge
stgns (SCQIUSt)GEE(T)7 and collision tree a € Aim is obtained by fizring Z) and a collection of m

ordered creation times Ty,, and parameters (Qpm,, Vin).

At each creation time t, a new particle, labeled k, is adjoined at position x4, (tx) + Skewr and with
velocity vy,.
— if s;;, > 0 then the velocities v and v,, are changed to vi(t, ) and ve,(t; ) according to the
laws (3.2.1),
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— then all particles are transported (backwards) in D;, .
The cumulant pseudo-trajectory is admissible, if the following holds: for all edges e = {j,j'} € E(T),
there exists a pair of particles q. and q.., respectively in the subtrees j and j', producing a clustering
recollision if s = + or a clustering overlap if s'"* = — at time 7St (respectively TI°¢, 7V ). We
say that {qe,qe} is a representative of the edge e, and we denote this by {q.,q.} ~ e. We also denote

clust __

by Ot the collection of clustering times.

Now let us introduce the limiting cumulant pseudo-trajectories and measure. Since we have established
a uniform convergence of the series expansion (with respect to m), it is enough to look at a fixed m
and a fixed tree a € Aim. We prove in Chapter 9 that there are two situations :

— either the parameters (Z, T, Qm, Vi) are such that there is an additional (non clustering)

recollision in ¥$ but this may happen only for a vanishing set of integration parameters

n,m’
which does not contribute to the limit integral;

— or the parameters (Z%, Ty, 4, Vi) are such that there is no additional (non clustering) recol-
lision in W7 ,

collisions, recollisions and overlaps become pointwise, and the scattering angles decouple from

and we can prove that W¢ = converges to a limit pseudo-trajectory where the

n,m
the dynamics and become random parameters.

Thus all the external recollisions and overlaps in the limiting pseudo-trajectory (corresponding to the

constraints Ay, and ¢, in (4.4.1)) are represented by a minimally connected graph (with positive

edges connecting vertices of the same forest, negative edges connecting vertices of different forests), as

explained before Theorem 4.

The clustering constraints provide n — 1 singular conditions on the roots (z})1<;<, of the trees, so only
one root is free. We set this root to be 2. This will reflect on the limiting measure. For fixed € > 0
the clustering condition associated with the edge e = {i, j} takes the form

T, (Tclust) :qu (Tclust)

w(ﬁ:lust — c Sdfl )
£

Notice that, according to the definitions given in Section 4.4, the clustering recollision constraint

implies the existence of a clustering vector wt = . This is also true for clustering overlaps
(welust = o) after neglecting a set of parameters whose contribution will be shown to vanish, as

e — 0, in Section 9.2.2 below.

Given (7, v;) and v} as well as collision parameters (a, Ty, Qi Vin), since the trajectories are piecewise

R

affine one can perform the local change of variables
(5.1.1) ah € T — (75", wdst) € (0,¢) x S*!
with Jacobian pz ! ((vg, (TSSUF) — vy (7£154F)) - welust) . - This provides the identification of measures

(5.1.2) pedz; dvdzdv; = dxfdvfdv}‘dnfhmdwglu“((qu (TEMS) — g (C1U5Y) ~w§luSt)+ .

e \€

We shall explain in Section 8.1 how to identify a good sequence of roots to perform this change of
variables iteratively. We can therefore define the limiting singular measure for each tree a € .An m> and
each minimally connected graph T € T,

Atsing, .0 (U5, 1) 1= AT dy, dVida,dV;r dOSS A CI‘MHSZ Vi — va, (1) - wi)

> H Z clust ,qu (Tclust) Vg, (Teclust)) . wglust) s

e€E(T) {ge,q, }re

(5.1.3)
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clust

where Q°uSt denotes the collection of clustering vectors (we )e cB(T)"

Definition 5.1.2 (Limiting cumulant pseudo-trajectories). — Let m > 0. The limiting cumu-
lant pseudo-trajectories ¥, ,, associated with the minimally connected graph T € T.F and tree a € Aim
are obtained by fizing x), and V¥,
— for each e € E(T), a representative {qe,q.} ~ e,
— a collection of m ordered creation times T,,, and parameters (Qpm, Vin);
— a collection of clustering times (TE™%).cp(ry and clustering angles (wS™%) e ().
At each creation time ti, a new particle, labeled k, is adjoined at position x,, (ti) and with velocity vy :
— if s, = +, then the velocities vy, and v,, are changed to v(t, ) and ve,(t; ) according to the
laws (3.2.1),
— then all particles follow the backward free flow until the next creation or clustering time.
For U,, ., to be admissible, at each time TSIt the particles q. and q. have to be at the same position:
— if se = +, then the velocities vy, and vy are changed according to the scattering rule, with
scattering vector wSst.
— then all particles follow the backward free flow until the next creation or clustering time.

Thanks to our assumption on the initial data (quasi-product measure), we will show that f{s? o} in
(4.4.1) becomes a pure product as € — 0.
Equipped with these notations, we can now state the result that will be proved in Chapter 9.

Theorem 5. — Under the assumptions of Theorem 4, for all t < T*, f° 0 t](H®") converges
when e — 00 to fr10.4(H®™) given by

(5.1.4) FuoaHE = 575 % / dtsing, 7,0 () H (W n) (F0)°" " (05 ,).

TeTE ™ acAf,,

In particular by Theorem 4 there holds
| frjo.g(HE™)| < C™"nl.

5.2. Limiting cumulant generating function

Thanks to Theorem 4 we know that the limiting cumulant generating function has the form

(5.2.1) A7 Z —Fngon (=D

The following result provides a graphical expansion of Ay (7).

Theorem 6. — Under the assumptions of Theorem 4, the limiting cumulant generating function A 4
satisfies
(5.2.2) Apg(y) +1= Z i Z /dumg # (WK, 0)7® (\I'K,o)f0®K(‘IJg<,o),
TeTZ
where
(5.2.3) g 7 = i AV H Se((vg(Te) — vy (7e)) -we)+d7'edwe .

e={q,¢'}E(T)
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Furthermore the series is absolutely convergent for t € [0,T*] :

(5.2.4) /dlusing,f(\PK’O)W@K( O R W 0) < (C1)*

Proof. — By definition,

0 t] an Z Z Z /d/‘sing,T,a(\I’n’m)(fy — 1)®n (f0)®(m+n) .

n=1"" 7eTF M acAf,,
Note that the trajectories of particles ¢ € {1,...,m} can be extended on the whole interval [0, ] just
by transporting ¢ without collision on [t;,¢] : this is actually the only way to have a set of m + n
pseudotrajectories which is minimally connected (any additional collision would add a non clustering
constraint, or require adding new particles). It can therefore be identified to some ¥,y 0.

Let us now fix K = n + m and symmetrize over all arguments :

Aoa & ZK.ZH, K-ml Y Y [dmmra@oslo =0 (1"

TeTE acAE

*ZK'Z >0 > Z /d#smgTa )< )(r = DET (£0)°F

n <
W\* (n°) TE'Tn ZIG.A . (n)=

where 7 stands for a subset of {1*,...,n*,1,..., K — n} with cardinal n; n° denotes its complement
and (n°)~ indicates that we have chosen an order on the set n°. We denote by An (n°) ~ the set of
signed trees with roots  and added particles with prescribed order in (n¢)~.

Note that the combinatorics of collisions a and recollisions T' (together with the choice of the repre-
sentatives {qe, q; }ecr (1)) can be described by a single minimally connected graph 7' € 7; £, In order
to apply Fubini’s theorem, we then need to understand the mapping

(a7 T, {Qeu qg}eeE‘(T)) = (Tv 77) .

It is easy to see that this mapping is injective but not surjective. Given a pseudo-trajectory ¥y o
compatible with 7' and a set n of cardinality n, we reconstruct (a,T,{qe,q.}ecE(r)) as follows. We
color in red the n particles belonging to n at time ¢, and in blue the K — n other particles. Then we
follow the dynamics backward. At each clustering, we apply the following rule

— if the clustering involves one red particle and one blue particle, then it corresponds to a collision
in the Duhamel pseudo-trajectory. The corresponding edge of T will be described by a. We
then change the color of the blue particle to red.

— if the clustering involves two red particles, then it corresponds to a recollision in the Duhamel
pseudo-trajectory. The corresponding edge of T is therefore an edge e € E(T) and the two
colliding particles determine the representative {ge, ¢, }.

— if the clustering involves two blue particles, then the pseudo-trajectory is not admissible
for (T, n), as it is not associated to any (a, T, {4, @} ecm(T))-

However the contribution of the non admissible pseudo-trajectories ¥ ¢ to

3 [ b 1Pl () (W)
TeTk
is exactly zero, as the overlap and recollision terms associated to the first clustering between two blue
particles (i.e. the £ signs of the corresponding edge) exactly compensate.
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We therefore conclude that

K
Ao ( ZK' Z /dusmgT Vi) ( fo Z Z
n=1nePy

K>1 TETi
=> — K' > /dﬂsmgT (ro)y®F (£ —1
K>1 TETi

which is exactly (5.2.2). Note that the compensation mechanism described above does not work
for n =0 and K = 1, which is the reason for the —1 in the final formula.

The bound (5.2.4) comes from the definition of Hsing 7 together with the estimates used in the proof
of Theorem 4 to control the collision cross-sections. O

5.3. Hamilton-Jacobi equations

For our purpose, it will be convenient to consider test functions on the trajectories which write as

(5.3.1) eh=101) — v(2(t)) exp ( — /0 o (s, z(s))ds) ,

where ¢ : [0,¢] xDD — C and v : D — C are two functions. We choose complex-valued functions here as
we shall be using properties on analytic functionals of v later in this chapter. All the results obtained
so far can easily be adapted to this more general setting. To stress the dependence on ¢ and ~, we
introduce a specific notation for the corresponding exponential moment (5.2.1)

(5.3.2) T (t,6,7) = Apg(ye™ o ?).
For t € [0,T*], « > 0 and 8 > 0, we define the functional space

Base = {(6:7) € €00 x D;©) x COD;C) / y(2)] < =)o)
5.3.3
o3 0+ 21}

sup |o(s, 2)| <
by 2= g

We can now state the main result of this chapter, which shows that J satisfies a Hamilton-Jacobi
equation.

Theorem 7. — For all (¢,7") € Bay,g,,7%, define vy by

(5.3.4) Dyvi — ¢y =0, 7+ =77
Then the functional j(t @, vt) satisfies the following Hamilton-Jacobi equation on [0,T*] :
NS oJ
(535) atj(t7¢77t) o a ( (ba 715)( ) 37 (t7¢7’7t)(22) (%(21)%(2/2)_’Yt(Zl)%(Zz))d//«(Zh22>W) )

where we used the notation (1.3.5)
du(z1, z9,w) = 0y —z, (V1 — v2) - W)y dwdvy dvada; .
Remark 5.3.1. — Note that, if (¢, V) € Ba,pgt and v solves on [0, ]

Dsvs — 957 =0, v =7,
then (¢,7s) € Ba,g,s for all s € [0,1].
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Proof. — We start by choosing (¢,v*) € Ba,,3,,7+ smooth and with compact support (in v), set ¢t < T*
and compute the limit as J goes to zero of the rate of change

1
A5'-7<t7 (ba 7) = g (j(t + 6? ¢7 7t+5) - j(t7 ¢7 715)) .
The following remark is crucial for the computation of As7 (¢, ¢,v), and its limit as ¢ goes to 0 : for
any t' > t,
T(t,¢,7) = Ao (ve™ 1o ?).
This is easily seen by going back to the definition (4.4.7) of Afo :
thanks to (5.2.2)

AT (1,6.7) ZK, 3 [ it # Wi Vi) (1) (W)

TeTZ

] and taking the limit € — 0. Therefore

with
K
= T s alt 4 8y = B et [ (eay) = st

i=1 i=1

(5.3.6) s (g 0) :

m\H

and Wy o are trajectories on [0, 4 ] (having exactly K — 1 connections prescribed by T').

We claim that

(5.3.7) Hs =Hi+Hs2+Hs3
where
K
Hi(Vkyo) = Z (Deve — 7ede) (2i(t)) € — [E d(s,2i(s))ds H’Yt )e = Jo ¢z (s)ds
1=1 J#Z
1 :
7—[62 \I/Ko =3 {H% e Jo #(s:zi(s)ds H’Yt e f0/¢(s’zi(s))d8} ;
i=1
while
(5.3.8) lim Z = Zi / g 7 (Vic0)Hs3(Vic0) () (8% 0) = 0.
TeT;

In the following we identify the contributions of H; and Hs 2, which lead to the Hamilton-Jacobi
equation, and prove that the remainder term 7{;3 goes to zero. We shall use the fact that the
function vy — J(t, ¢,7) is an analytic function of v since the series is converging uniformly. Thus the
derivative with respect to v in the direction T is given by a term-wise derivation of the series (5.2.2):

/Dd (;f’ ZKI ZiZ/dusmgT (Ui o) (Y(zi(t))e™ Jo 9Gi()9))
(5.3.9) TeTF =1

X H - e ZJ(S))S)) (f0)®K (@?{70)

J#i

Contribution of Hi: Let us set

AT (t,¢,7) Z > / At g 7(Vrc0)H1 (Wi 0) (£9) %" (T ).

TeTi
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Thanks to (5.3.9) there holds directly

9J (t
(5:3.10) 81700, = [ a22E2D ) @2~ 2i00)(2).
D
Contribution of H;2: Let us set
Rs2J(t Z K Z /dubmgT (Prc0)Hs2(Vie0) (fo) (‘I’(I)(,O)~

TeTk

If there is no collision on [t,t + 4], then z;(t 4+ 0) — 2z;(t) = (0, dv;(¢)) so

K
Haa(Vico) = 3 0ilt) - Varn(za(0))e™ 5 2008 TT (92 (0))e 8 5 020) 4 0(5)
i=1 J#i

If there is one collision at 7 € [t,t + d], say between j; and ja, we have an additional contribution

1 t s — [P d(s,24,(s))ds
g (’Yt(zjl (T+))'7t(zj2 (T+)) - ’Yt(zjl (T_))'Yt(zjz (T_>))6_ fo ¢<s,zh(8))d56 fo (s, 32( Dd

< I ( )e o ¢<sz7(s>>de)’

i#£j1,J2

but of course it imposes a strong constraint on ju,, 7 as 7 € [t,¢ + 4] :

diging 7 = ATk AVic S{j, 3 ((vjl (1) — v, (7)) - w)+176[t,t+5]d7dw
X H se((vq(Te) — vy (Te)) ~we)+d7'edwe .

e={q,¢'}€E(T)\{j1.,j2}

43

Having at least two collisions in [t,¢ + d] provides a contribution of order O(d) since the two collision

times have to be in [t,t + 0], so we can neglect this term.

Now, since T is a minimally connected graph, removing the edge {j1, o} splits it into two (minimally

connected) graphs :

K K
ZKIZ Z 772](11](2 Z Z ZZ
TeTE {j1.42}€B(T) K1, K TeTi TheTi, 1=172=1

We therefore end up with the following identity

NsaT (t,0,7) = Ago T (L, d,7) + ASHT (8, 6,7) + O(5)
with

K

1 - t S,z;(s S

AT (t,,7) : Z i Z /dubmgT (T r0)vi(t) - Vorya(zi(t))e™ Jo olmzel)d
K

i=1 TeT

<1 ( — [ b(z(s), e>) <f0>®K (09 )

J#i
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and
K1
A& 2j t (b’ . Z K 'K Z Z Z Z /d/’[’smg T, \IlKh )dlusmg TQ(\IJKZa )
Kh , T TeTiE TeTi, 1=172=1
% (f0)®(K1+K2) (\If 0®\PK2 0) H ("Yt(zi(t))e I3 #(s,2i(s)) s) e~ I #(s,25, (s))ds 7f0 P(5,2j5,(8))ds
171,52

% (3 P93 (7)) = 0 ()9 32 () )i 71y ) (05, () = 03, (7)) ), $ et

Putting together all those contributions and recalling (5.3.9) gives rise to

0
ti 8527 (0,6.9) = [ 2L ) (00 9,0) 2

(5.3.11)
3 [ Gt 0o 5 (66700 en) (a1 — uCea)n(a2) e 2,).

Notice that it is very important that the graphs are minimal in this computation: if that had not been
the case, the above splitting in AgQ would not have been possible and would have given rise to second
order derivatives in 7.

Computation of H;3: By definition,

K

[T (s -+ 0y e 5 se0ie) T (e e+ i tesonas) |

i=1 i=1

Hs (Vi) —Hs2(Vio) =

SR

Then we decompose, for any 1 <i < K,
Yers (zi(t +8)) e I AN (it 4 6)) e o Heze)ds

= (Yers — 1) (zi(t +0)) ™ Joolzi(ds ooy o (2t + 6)) (e— S0 b(s,zi(s)ds _ 1) e~ Jo ¢(s.zi(s))ds
Since ¢ and -y are smooth and have compact support, there holds

(Y45 =) (2i(t +8)) = 8 0y (2(t)) + 0(9)
+ (yers = 7e) (2i(t +60)) = (Vews — 7e) (2:(1)) -

Similarly

Yers (zi(t+9)) (e* S0 o(s,2i(s))ds _ 1)
t+6 s

= (m:(0) | 65, 2u()ds +0(8) = ((alt +6) = (=) [ 65, mu(s))ds
t+6

= 7 (2 0)o(t 5(0) +0(0) = (v (2t +0) =7(z0)) [ ols, 5(s))ds

t+48 t+48

+ 7 (2:(t)) ( &(s,2i(t))ds — o(s, zz(s))ds) .

t t
It follows that
1 ¢ ¢
(s (silt + ) e BTSNy (51 1 5)) e J ooz (0ae)

= (&s% (2 () = ve(2:(t)) b(t, zi(t)) + o(1) + E (zs([t, t + 5])))6 Jo $(s:2i()),
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where
E(zi([t,t+4])) == %{(%H — 1) (zi(t +6)) = (vigs — %) (Zz(t))}
- %(’yt(zi(t +0)) — 7 (zi(t / b(s, zi(s
t+6
+5a) [ (dsn0) - ol zi<s>>)ds
satisfies

‘S(zi([t,t—&-é]))’gC sup  |z(t) — zi(s)| .
s€[t,t+8]

Finally we have
K
Ha(ico) = Hoz (Vo) = D (e (24()) = 7 (zalt ))¢(t,zi(t))+o(1)+5(zi([t,t+6}))) — Jd 6(s,5(9))

i=1
X H (’Yt 6 fO #(s, 27(5))d5) + O(K25)
J#i

so by definition of #;, the remainder #s 3 is of the form

K

Z(0(1)+g(zi([t’t+5])))e_f(;¢(s7zi(8))H(,yt(zj(t I IS 6(s,25(s)) 5) —I—O(K2 ).

i=1 j#i

Summing over K and using (5.2.4) to get

1 Bo K
> K 3 [ g (Waco)l exp (aok + 2 Viel?) () (W) < 400
K=1 TeTE

we obtain that the contribution of the terms of order o(1) converges to 0 when & goes to 0. The
arguments used to control H;o show that the error term generated by &£ is O(9).

Conclusion: The above analysis gives rise to
atj(t7 d)v’yt) = lim A5\7(ta ¢a "Yt)
6—0
= Alj(ta (ba ’)’t) + %LI}I%) A572j(t7 ¢7 ’Yt)

and putting together (5.3.10) and (5.3.11) we find that

T (t, dsve) = / W(Z) (Ot +v - Vv — o) (2) dz

oJ

(5.3.12) o7
3 [ G0 G (6,906 (1)) = e ue) duor, 200,

The transport equation (5.3.4) on 7; ylelds finally

0T (0,6,7) = 5 [ Gt 020 (e0) 5 (16 70) ) (a1 ) — 2Ca)n(a) ) e 2,).

The theorem is proved in the case when ® and v are smooth and compactly supported in v. In the
case when (®,v*) belongs to Ba, g, 7+, We use an approximation procedure and take limits in the mild
form of the Hamilton-Jacobi equation: this turns out to be possible thanks to the stability results of
the next section : see in particular Proposition 5.4.1. O
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5.4. Stability of the Hamilton-Jacobi equation

Making sense of the Hamilton-Jacobi equation (5.3.5) requires some regularity in the space variable on
the functional derivatives in order to define the Dirac distribution d,, _»,, as well as some integrability
with respect to the velocity variable. We prove here some properties of the functional 7. We use the
notation

(5.4.1) 1Tl = sup [Tt )]

(¢,7)EBa st

Proposition 5.4.1. — The limiting cumulant generating function v +—  J(t,¢,7) introduced
n (5.3.2) is an analytic function of v, on Ba, pgyt- In particular, the following estimates hold:
0T (t, ¢,7)

for any o €]a, 9], B’ €]8, 6] and all (¢,v) € Ba g, the derivative 9

at v satisfies the

following loss continuity estimate:

I (t, $,7) ( 1 1 )
5.4.2 S AGLLM ) <o —n0 T )| -
( : H HM((HvI)exp ((1—2}*)(a+§|v\2))dmv> o —a [ -0 1T @)l 5
Moreover, the derivative 6‘7(;”;5’7) is a continuous function on D and if (¢,7) € Bay,8o,7* 5
aj(t7¢7 7) ﬂO 2

4. _ — < .

(5.4.3) H N (14 |v]) exp( : [v] )HLOO(D) <y
9T (¢, ¢,7)

Proof. — Thanks to (5.3.9) we find that
establish properties (5.4.2) and (5.4.3).

is a function on D, for which we are going to

oy

Step 1. Proof of (5.4.2). Let (¢,7) be in By g, and let T be a continuous function on D satisfying

Tl < (14 ol o (1= )@+ GlP)).

It is easy to check that for a suitable choice of A > 0, the couple (¢, v + Ae®T) belongs to Bar g t-
Indeed it suffices to notice that

t B 2
(et Lll)

LB A
I+ 23+ S[of?)

‘7 n /\ewT’ <(1+M1+ |v|)) exp ((1 .

oo (- QT*
exp ((1 - 2T* (e +*|U| ).

) Then by analyticity, choosing A = min (

_ / ! /I
provided that A < min( a 5 “ 1 O[,B 1 6)7

the derivative can be estimated by a contour integral

97, ¢,7) _ R
/Ddz o (2) T(z) = 2/, J(t, d,7 + Xe”’Y)e *0db,

and we conclude that for all (¢,~) in By g4,

HE)J(MB,W)H 1

1
<0 Ftat 55 ) 19Ol
M((+]v]) exp ((1— o ><a+%\v|2>) o —a  f-=p

This completes (5.4.2).
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Step 2. Proof of (5.4.3). For the second estimate, we use the series expansion (5.3.9). The singular
measure fig,. 7 is invariant under global translations, and since T depends only on one variable
in D, (5.3.9) still makes sense if exp(—%‘j|v|2)’f is only a measure. Up to changing the parameter
of the weights, we get the result.

Proposition 5.4.1 is proved. O

A natural question at this stage is to know whether the Hamilton-Jacobi equation provides a complete
characterization of the limiting cumulant generating function J (¢, ¢,v). In other words, we need to
prove that the Hamilton-Jacobi equation (5.3.5) has a unique solution (at least in a good class of
functionals). Note that the existence of a solution is not an issue here since we already know that
the Hamilton-Jacobi equation has a solution (by construction of the limit). To prove uniqueness we
use an analyticity-type argument taken from [26]; such analytic techniques will also be used later, in
Chapter 6 — see the statement of Theorem 8). The important point in the proof is the use of the
norm
t
N = s 1T Ollawpor (1= 57 =)

t<T(1—p)

for some well chosen T'.

Proposition 5.4.2. — There exists T €]0,T*] such that the Hamilton-Jacobi equation (5.3.5) has
locally a unique (analytic) solution J, in the class of functionals which satisfy the a priori esti-
mates (5.4.2) and (5.4.3).

Proof. — Assume that there are two different solutions J and J’ of (5.3.5) with same initial data,
analytic with respect to 7, and satisfying the a priori estimates (5.4.2)-(5.4.3). In particular, their
difference is analytic with respect to v and satisfies an estimate similar to (5.4.2). Then we write

// T (5,0, ))( )3(«7(S,¢,7)+J’(S7¢,v))(z)
21 8’}/ 2

x (w(zms(zg — (2 (z2)) ) dula1, 22, 0)

from which we deduce that for any (¢,7) € Ba,ﬁ,t and any o, 8’ with0 < < 8/ < B, 0 < a <o < ag

J(t,6,7) =

)= J'(5,6,%)
‘(j(t’é’%) b9, ‘ = C/ s H — vy ned )HM<<1+U|)exp (¢ 2;*><a+§lv\"‘>)d‘"’”d”)
| T2 2 TN () p Doy,

¢ 1 1 /
<0 [las (4 55 ) 196 - T Gl

where C' is a generic constant depending only on «y, S¢.
Taking the supremum on all couples (¢,~;) € Bq g,t, we obtain that

=0Tl g

[MORNAD

a/’Bl
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We finally introduce the weight in time: we set 8 = pfy and a = pag, and we let 3’ and o’ depend
on s in the following way: 8’ = p(s)Bp and o = p(s)ag with

~ 1 S
i) =5 (10 7)
with T to be chosen small enough. Then

1 s 1 s
= Ll ) d 1_~:7(1_ ),
p—p ( p—) an p=3 Ptz

and we get, for a constant C' depending only on g and Sy,

t

a»ﬁ(lim)SCNU*‘T)(I*TUt_p 0 (p1p>< 1—ﬁ))1ds
1
p—

o) (5t

[EORNAC

gchn7—jq@ —
0

§4QWJ—JQQ—p—;)AOSY
s

<4CTN(T - ).

For T sufficiently small, we obtain that the constant 4C'T is strictly less than 1, which implies finally
that N(J — J’) = 0. Proposition 5.4.2 is proved. O

5.5. Dynamical equations for the limiting cumulant densities

The Hamilton-Jacobi equation (5.3.5) enables us to deduce dynamical equations for the limiting cu-
mulants. More precisely we consider now the case when the weight acts only at the final time (& =0
and v = 7;) and study the limiting cumulant densities (f,,(¢)),>1 defined (by abuse of notation since
they are singular measures)

(654 fupg((y -1 = / AZp oty Za) (7 = V)& (Za) with  4(2(0,1]) = 7(=(1))
Note that ~ is no longer assumed to satisfy a transport equation. Setting

J(t,7) = Ap.g (),
we find from (5.3.12) that

97~ 0 .09) = 2 [ 2 4 ) (et ) iz,

Recalling (5.3.9), there holds on the one hand

@j(w v V) = 3 [z, 2 Ve - 1P )

n>1i= 1

:72 /dZV Vx, falt, Zy) (v = 1)®™(Z,) .

n>1
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On the other hand

‘27 (t. )z )%‘z <t,v><zz>(v<z1>w<z;> —(e)1() ) du(er, 3, 0)

=3 Z Z > Z . AZ§ dZ82) dp(zi,  Fiys ) Fun (b Z ) Foa (£ Zong)
ny: n2

n1>1 i1=1my>14p=1
x (V=) (E) = (2 (z)) (y = DED(ZED) (v = DEem D (Z52)) .
Now let us decompose
V(2 )7(Z,) = v(z0)v(Z,) = (v(z,) = D(V(E,) = 1) = (v(zi,) = D(9(zi,) — 1)
+(r(z,) = 1) = (v(za) = D) + (0(7,) = 1) = (7(z:,) — 1).-
The first contribution can be understood as a recollision term, while the second corresponds to a
collision term. Indeed there holds

5 Yy syt nl,nz AZ{0dZ8 Az, Zigs ) fy (6 Zoy) o (8, Zino)

n1>1 i1=1no>1ix=1

x (3 = DEMD(Z00) (7 — 122D (ZE0) (4(24) — D((E,) — 1) — (1) — D((E) — 1)
DD ( )Z > [ 28a2@duter,z0,)(0 - DD (D)0 - )0 (ZE)

n>2 " nitns=n 11=11i2=1
ni,nz2>1

< ((v(z1) = D(v(2) = 1) = (v(21) = 1)(v(22) = 1)) four (8 Zy ) frua (85 Ziny) -

The change of variables (v;,, U;,,w) — (v}, 7. ,w) gives

217 T19?
1 1 > ny— no— 7
=22 X < )Z Z / dZ{dZ dp(z1, 2, w) (v = DO D(Z0) (y = 122D (Z2)
n>2 'n1+n2>:1n G1=1142=1
n1,n2 =2

X (y(z1) = 1)(v(22) — 1)<fn1 (t, Z’:flhiQ)fnz( Z! 11,22) For (£, Zot ) o (8, an))

where Z “ i Z “ i differ from Z,,, Z,, only by 2, %, Finally defining

R (oo S (Z0) = [ (f|m|<z;i’f>f|nﬂ(Z;,iffd — i (Zn) Finy (Z,) )iz ()
with

(5.5.5) dptz, 2, (W) = 0, —a, (0 — vj) - w)+dw

we can write

’j f\m\ flm )y = 1)®"dZ,,

3|~
i
A

oo
n=2

denoting by S%7 the set of all partitions of {1,...,n} in two parts 7; and n; separating ¢ and j.
Similarly

-yyyyl o [ 42020 e i) (8 Z) o8 Z)

ny1>1li1=1ne>11t2=1

—DFDZE) (G = DR ZE) (1) = 1)~ (1) — 1)

(v
— - 1 - zn+1 N
—Z;Z ) /C Fimits Finan )y = 1) dZn

i,mn+1
E$n+1
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with
Ci)n+1(f|m\7 flﬁn+1|)(Z”) = / (f\m\ (Z;n)flﬂnﬂ\ (Z7/771,+1) - f|77i\(Z77i)f\?7n+1 \ (Zﬁn+1))d/uzz‘ (ZnJrlv w)

denoting by Siﬁfl the set of all partitions of {1,...,n + 1} in two parts separating ¢ and n + 1 and

with
(5.5.6) dpez, (Zng1,w) = 0z —zyy ((vn+1 — ;) - w)+dwdvn+1 )

Putting all those contributions together and identifying the factor of (y — 1)®" provides the following
equation

(5.5.7) Ocfn+ Ve Vi, fo=>_ > C" N ft )+ D D R (f)s Finy) -
=1 pesirit i#] pesi?

In particular the equation for f; is of course the Boltzmann equation

(5.5.8) Oef1+v1-Vafi = CY2(f1, f1)
while the equation for second cumulant density is

(5.5.9) Ofa+ Vo Vx,fa = Ly (f2) + RV(f1, fr)
with

2

Ly (f2)(Z2) := Z/ <f2(zj7Zz/‘)fl(zé)"’fl(zz{)h(zjvZé)_fQ(ZiaZj)fl(ZS)_fl(Zi)fQ(z?nZj))dMZi(z?)aw)'

i=1



PART 11

FLUCTUATIONS AROUND THE BOLTZMANN
DYNAMICS






CHAPTER 6

FLUCTUATING BOLTZMANN EQUATION

The goal of this chapter is to study the limit of the fluctuation field (¢f)i<r+ introduced in (1.3.1), i.e.
defined for any smooth test function ¢ as

1

N
G (o) = = (L elat ) - [ E2 el az).

In this chapter, we prove Theorem 2, namely that, in the Boltzmann-Grad limit, {f converges to a
stochastic process solving (in a sense we make precise below) on [0, 7]

We recall that f is the solution of the Boltzmann equation on [0,7*], that the linearized Boltzmann
operator is defined as £; := —v - V, 4+ L; with the collision part

(6.02)  Lygp(z) = / iz, (22,0) (£ 2)p(21) + S (1 ) p(25) = (b 22)p(21) = [ (1 21)9(2))

and that dn:(z,v) is a Gaussian noise with zero mean and covariance

1
(6.0.3) Covi(p, ) == 3 /du(zhzg,w) ft,z1) f(t,22) AYpAp,
where the scattering measure is defined as in (1.3.5) and (5.5.6)

(6.0.4)
iy, (22, w) = 0y —ay ((v1 — v9) ~w)+dwdv2, dp(z1, 22, W) = Opy—uy ((v1 — v2) ~w)+ dw dx1dvidug ,

and we recall the notation
(6.0.5) A(z1, 22,w) = P(21) + ¥ (25) — P(21) — ¥(z2).
In order to obtain the convergence of the fluctuation field, we shall proceed in two steps, establishing

first the convergence of the characteristic function in Section 6.2, and then some tightness in Section 6.3.
Section 6.1 is devoted to explaining in what sense solutions to (6.0.1) are to be understood.

6.1. Weak solutions for the limit process

In this section we provide a notion of weak solution to (6.0.1).
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Denote by U(t, s) the semigroup associated with £, between times s < ¢, meaning that
OU(t,s)p — LA(t,s)p =0, U(s,8)p =,

and
Ut s)p+U(t, s)Lsp =0, Ut t)p=p.
By definition, ¥ := U*(t, s)p satisfies the backward equation

(6.1.1) Osths + Lps =0, =10
where we recall that £} = v -V, + L} with
(6.1.2) Li(z) := /duz1 (22,w) (s, 22) A(z1, 22, w).

Formally, a solution of the limit process (6.0.1) satisfies for any test function ¢

Celyp) = CoU* (,0)¢ /dnéu*ts ©).

For any ¢ > s and test functions ¢, 1, the covariance is given by

B 9) = B(6olt".000) 600t (5.009)) +E ([ [ a0 000) @ 510009))

B (o o) [ sdnu'(u*(sm')w))+]E<<0(U*(870)<P) [ e wwm)
(6.1.3) = (" (1.0)) G (U (.0)¢ / du Covy (U™ (£, )b, U (s, u)) -

Let us first describe briefly the equilibrium case (when f° = M is a Maxwellian). Denote by Ueq(t, 5)
the semigroup associated with Loy 1= —v -V + Leg, where Leg is the (autonomous) linearized operator
around M, between times s < t. For solutions of the generalized Ornstein-Uhlenbeck equation

(6.1.4) Gy = Leg G dt + dny

the expression of the covariance (6.1.3) simplifies by stationarity of the process at equilibrium
E(G()6 () = E(G-s(8)Co()) = E(Co Uiy (t = 5,00) () )-
Notice that at equilibrium the second term in Formula (6.1.3) is well defined as
t
/ du Cov(ugq(t,u)cp,ugq(t, u)gp) < 400
0

is satisfied for any ¢ € L2?(Mdvdr). Indeed using the symmetry of the equilibrium measure
M (21)M(24) = M (z1)M (22) and denoting by Uz, the adjoint of Uey in L*(ID), one gets

¢
/ du COV(Z/{Cq(t ), Usy (B, u)p) = —2/ du/ (t, u)pMLe, Uy (t,u)p
0

=—2/ du/ (t,u)pM(=0y — v - Vi) Uey (t,u)p

/MW /M| (.02

Note that this means that the fluctuations exactly compensate the dissipation. Moreover since the
operator U, is a semigroup of self-adjoint contractions on L?(Mdvdz), the method of [21] implies that
one can construct a martingale solution to (6.1.4).
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The situation is very different in the non equilibrium case. First, the computation above does not
provide any control on the variance, since a similar integration by parts gives rise to additional terms
coming from the equation (9, + v - V) fu = CY2(fu, fu). Moreover the linearized operator £; is non
autonomous, non self-adjoint, and the corresponding semigroup is not a contraction. It is therefore
unclear how to define the noise dn;, nor a solution to (6.0.1) as in [21]. We shall thus proceed differently,
by defining a function space in which the semi-group U*(t, s) associated with £* is well-defined, and
for which we can define the covariance (6.1.3) of the stochastic process. This will enable us to give a
notion of weak solution to (6.0.1).

6.1.1. Functional setting. — For any 3 > 0, we introduce the weighted L? space

(6.1.5) L% = {cp = ¢(z,v), /Dexp (- §|v|2) ©*(z,v)dzdv < Jroo}

and the associate norm

Nl=

ol = ( [/ exp (= S1of) (o)t

We are going to establish estimates on the semigroup U* (¢, s) in order to define the covariance of the
limiting stochastic process, which will be denoted, for s < t, by

Vo € L3, Cls.tpr9) = / 0z °(2) (U* (£, 0)) (2) (U* (5, 0)¢) (2)
(6.1.6)

+ /0S du Cov,, ((U*(t,u)y), (U (s,u)p)) .

As a corollary of Lanford’s proof, the solution f to the Boltzmann equation has been built on the time
interval [0, T*] by a Cauchy-Kowalewski fixed point argument [45] : it belongs to the functional space

(6.1.7) {g =g(t,x,v), sup exp ((ozo + %|v|2)(1 ))g(t,x,v) < —|—oo}

t,x,v

2T
where the variations in the coefficients o and § have been introduced to compensate the loss in the
continuity estimates for the collision operator.

Proposition 6.1.1. — There is a time T € (0,T*] such that for any ¢ in L%O/z, Ys == U (L, s)p
belongs to Lgﬂo/éi forany s <t<T.

Proof of Proposition 6.1.1. — Denoting by S; the transport operator in D, we get from (6.1.1)-(6.1.2)
that

t
(6.1.8) o= Sevip + / Su Lty dor.

Using the uniform bound (6.1.7), it is easy to see that for any function ¢ and any 6—2" < ' < B, there
is a constant C' such that

C
B—=p
the loss coming from the collision cross-section in (6.1.2). On the other hand, the transport S; preserves
the spaces L%. For T < T™, we introduce the functional space

(6.1.9) LS ¢lls < lls

(6.1.10) X = {¢(s,x,u) 0, T] xD> R, Vse[0,T], e L%O(?)_%)M} .
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We then obtain that ¢ = U*(t, s)p € X, for T small enough, using the following reformulation of the
Cauchy-Kowalewski theorem.

Theorem 8 ([26, 31]). — Let (X,)p,>0 be a decreasing sequence of Banach spaces. Consider the
equation

(6.1.11) u(t) = uo(t) +/0 F(s,u(s))ds

where
— F(-,0) =0, and F is continuous from [0,T] x Br(X,/) to X, for all p" > p. Moreover there is
a constant C' such that for all u,v € Br(X,),

Cllu— vl
(6.1.12) |1F'(t,u) — F(t,0)], < |p’—p|p7 p<p < po.
— wy s continuous from [0,T] to X, and there are constants Ro, po and n such that po —t/n >0
and

Vt e [0,T], Jluo(t)|l, < Ro forp<po and t<n(po— p).

Then there exists a constant ' < n such that (6.1.11) has a unique solution on the time interval [0,n' po|
satisfying
t

sup ||U(t)||p(1 =7

P<pPQ
0<t<n’(pg—p)

)<+oo.

We stress the fact that (6.1.8) defines a backward evolution, instead Theorem 8 is stated for a forward
evolution as it will be more convenient for later use. Notice that the spaces L% in (6.1.5) are increasing,
this explains the different order of the parameters 5’ < 8 in (6.1.9) and p’ > p in (6.1.12).

Note that this procedure provides a solution on [0, T for some T' < T (a careful look at the constant in
the loss estimate (6.1.9) would show that in fact T = T* but we shall not pursue this matter here). [

By (6.0.3), (6.1.7) and Proposition 6.1.1, for any ¢ and ¢ € L% ,, there holds

Bo/2
S
(6.1.13) Vs <t<T, / du Covu((u*(t,u)@[}), (Z,{*(s,u)ga)> < 400.
0
6.1.2. Covariance of the limit stochastic process. — In the following, a weak solution of the fluc-

tuating Boltzmann equation (6.0.1) is defined as a probability measure on the space D([O7 77, D’(ID)))
whose marginals have Gaussian law with covariance ¢ satisfying, for any ¢, in D(D),

0C(s,t, 0,0) = C(s,t, 0, LT),
6tc(t7 ta Sov 1/]) = C(t5 t7 QD, K:Qp) + C(ta t7 E:S‘% ¢) + COVt (¢7 SD) 9

(6.1.14) s<t<T*
€(0,0,0.9) = / dzp(2)i(2) f(2)

)

The following result characterises fully the covariance on a restricted time interval.

Lemma 6.1.2. — The covariance C defined in (6.1.6) is the unique solution in the sense of distribu-
tions of the dynamical equations (6.1.14) on [0,T] with T as in Proposition 6.1.1.
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Proof. — The fact that (6.1.6) is the Duhamel formulation of (6.1.14) is an easy computation: for ¢ > s,
the time derivative gives

C(s,t,0,0) = E (Co(U(t,0) L) CoU(5,0)p)) + /0 du Cov,, ((U*(t,u) L), U (s,u)p))
(6.1.15) =C(s,t, 0, LI1)).
For s = t, the time derivative is
(6.1.16) DC(t,t, 0,10) = C(t,t,p, Lih) + C(t,t, Lip, 1) + Covy (1), ) .

At time t = s = 0, the covariance (6.1.6) is given by C(0,0, ¢, 1) = /dzga(z)d)(z)fo(z), so that (6.1.14)
holds.

To prove the uniqueness for (6.1.14), we consider 6C = C; — C, the difference between two solutions
with initial data under the general form

5C(0.0,¢.9) = [ dep(2)i() 8°(2).
Then §C satisfies the linear evolution

0y0C(s,t,0,9) = 0C(s, 1,0, Li1))
OSC(t,t, ,9) = 0C(t,t, 0, L) + 6C(t, 8, LT, ) .

Uniqueness follows by writing the equation in integral form as in (6.1.6) and choosing Jf° = 0. O
In the next section, we are going to identify the limiting measure of the fluctuation field as a Gaussian

measure with covariance given by (6.1.6): this will be a consequence of the fact that the covariance
will be shown to satisfy (6.1.14) and of the uniqueness property provided in Lemma 6.1.2.

6.2. Convergence of the characteristic function

We are going to prove the convergence of time marginals of the process (. Let 61, ..., 8, be a collection
of times in [0, T*]. Given a collection of smooth bounded test functions {¢; } j<¢, we consider the discrete

sampling H ([0,7%)) Z gpj . Let us define

(6.2.1) (¢ H) = \ﬁ lz 0, (z us/ F5(9;,2) ¢ (2) dz] .

i=1

Proposition 6.2.1. — The characteristic function E. (exp( <<C5 >>)) converges to the characteris-
tic function of a Gaussian process, the covariance of which solves the dynamical equations (6.1.14).

By Lemma 6.1.2 the covariance is given by (6.1.6) on [0, T]. The covariance of the density field out of
equilibrium was first computed in [42]. A discussion on the result of [42] is postponed to Section 6.5
at the end of this chapter.
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Proof. — Step 1. Convergence to a Gaussian process.

The characteristic function can be rewritten in terms of the empirical measure

14
(622)  E. (exp (i< 1)) = B (exp (i Vi, 1)) ) exp | i Vi Y / FE(6;,2) 0, (2) dz

Thanks to Proposition 2.1.3, we get

> iH n ¢
log E. (exp (i<<<67H>>)) = L Z %fﬁ,[o,t] ((em — 1)® ) _ i\/;TEZ/Ff(Gj,z)gpj(z) dz .
n=1"" j=1

As H is bounded, the series converges uniformly for any . large enough. At leading order, only the
terms n = 1 and n = 2 will be relevant in the limit since by Theorem 9

ffz,[o,t] ((e\/iis — 1)®n) ‘ < (Cw\/lTLbo)nn'

Expanding the exponential with respect to p., we notice that the term of order /. cancels so

1 1 3
log . (exp (i(¢%, H))) = _§f18,[0,t] (H?) - §f§,[o’t] (H®*)+0 (I\/ﬂi‘) :

As the cumulants f7 (H?), f5 0,41 (H®?) converge (see Theorem 5), the characteristic function has
a limit

lim E. (exp (i{¢°,H))) = exp —% > C0:,05, 00 05) |

e —00
: i,j<t

where the limiting covariance reads for any test functions ¢ and %

(6.2.3) Cls,t,0,%) = fujon (V(2(s)e(2(1)) + fojo. (V(2(s)), 0((1)))

denoting abusively by f5 0,4 (¢, ) the bilinear symmetric form obtained by polarization

fajo.0 (0, 0) == %(fQ,[O,t] ((ZZJ + 80)®2) — fa,0.4 (¢®2) — f2,0.4] (<P®2)) .

Step 2. Identification of the limiting covariance (6.2.3). Let us prove that the limiting covariance
solves (6.1.14) for all test functions ¢ and 1. At time ¢ = s = 0, the covariance is

C(0.0,p.0) = [ dzp()p(:) 1)z
Let us recall the dynamical equations (5.5.8), (5.5.9) satisfied by the first two limiting cumulants

Oufi +v1 -V 1 = CY2(f1, f1), Oifo+ Vo -Vx,fo =Ly f2+ RY2(f1, f1).

For t = s, taking the time derivative in (6.2.3) gives

AC(t 1, 0,15) = <8tf1(t),w<p(z1)> + <8tf2(t),w(zl)<p(zg)> — A+ s,
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with the decomposition

= (001 o) )+ (0 Vo)) ) + (0,0(01) 12 Tuale) )
b [ duter, s,z it 20) alts 21,2 (B(31) + 005) = 0(e) — 6Gaw) )
+ [ dadu(en, 20,0 it 20)alts 21,2200 () (908) + 955) = 0(e2) = (22))
+ <f1 W Lie z1)> + <f1(t>,so Lz‘w<z1)>

~ (A0 Tapioler) )+ (o) 00 Vo)) ) + (50, 0(2) w2 Do)
+(£10.0 Lip+oLiw) + (A(0.6 Lip+oLiv ),

b= [ duten ) At () [(9060) — velen)) + (09D - vla)eta) )]

- <f1<t),¢ Lz‘so(zl)> - <f1(t)7<p L:¢(21)>-

To show that C(t, ¢, ¢, ) satisfies (6.1.16), it remains now to identify A; with the linearized part and Ag
with the covariance term. Note that the derivatives of f; and fy are both contributing to A; and As.
Furthermore the last term involving L} in Ay has been added to A; and removed from A, in order to
identify the covariance. From (6.1.2), one gets that

Ay =C(t,t,0, LI0) + C(t, 8, LT p, ) .
Using again (6.1.2), we deduce that

Ay = /dﬂ(zl,zmw) fi(t, 21) fa(t, 22) [1/’(21)(90(21) + (z5)) — (Ve(z1) + ¥ (21)@(22))
— o) (W) + B(2h) — v(z1) = (22) ) = w(21) (9(20) + 2(28) — 9(21) — 9(22))]
= %/dﬂ(zhz%w) fi(t, 21) f1(t, 22)

(9(2h) +w(eh) — (=) = 0(22)) (6(21) + (25) — @(21) = 9(z2) ) = Covi(t, ).
We have therefore recovered that C(t,t, ¢, 1)) satisfies (6.1.14).

In the same way, one can check that for ¢ > s, Equation (6.1.14) holds for C(s,t, ¢, ). O

6.3. Tightness and proof of Theorem 2

In this section we prove a tightness property for the law of the process ¢;. It turns out that this is
made possible by considering test functions in a space with more regularity than L%O. In order to
construct a convenient function space let us consider a Fourier-Hermite basis of D: let {&;, ()}, ez« be
the Fourier basis of T* and {e;, (v)},,ene be the Hermite basis of L?(R?) constituted of the eigenmodes
of the harmonic oscillator —A,, + |v|%. This provides a basis {h;(z) = é;, (z)ej, (v)} . of Lipschitz

7=(j1,42)
functions on D, exponentially decaying in v, such that for all j = (j1, jo2)

(6.3.1) |[B5lloc <ci IVAjlloo = [Vohjlloo + I Vahillo < e(T+li]), - Vahjllo <e(1+ 512,

3
2
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with |j| := |j1] + |j2| and for some constant ¢ (see [20]). Then we define for any real number k € R
the Sobolev-type space Hy (D) by the norm

(6.3.2) ol = 3+ 1) (/dw )

J=(1,32)

Following [4] (Theorem 13.2 page 139), the tightness of the law of the process in D([0,T*], H_(D))
(for some large positive k) is a consequence of the following proposition.

Proposition 6.3.1. — There is k > 0 large enough such that

(6.3.3) v'> 0, lim lim P swp 6 -G, 2 ) =0,
efe[ T
(6.3.4) Jim lim P ( sup IFIl_y, = 4) = 0.

The tightness property above combined with the identification of the time marginals in Proposition
6.2.1 implies the convergence, on [0,T*], to a weak solution of the fluctuating Boltzmann equation
(6.0.1) (in the sense given in Section 6.1.2). This completes the proof of Theorem 2.

The proof of Proposition 6.3.1 relies on the following modified version of the Garsia, Rodemich, Rumsey
inequality [46] which will be used to control the modulus of continuity (its derivation is postponed to
Section 6.4).

Proposition 6.3.2. — Choose two functions W(u) = u* and p(u) = u?/* with v belonging to ]2,3[.
Let ¢ : [0, T*] — R be a given function and define for o > 0

(6.3.5) / / dsdt\lf<|“0rt |)|>1t sl>a-

The modulus of continuity of ¢ is controlled by

(6.3.6) sup | — <p5’ <2 sup |p:— 905‘ + 8\/533/46%_% .
0<s,t<T* 0<s,t<T*
ti—sj<s lt—s|<2a

In the standard Garsia, Rodemich, Rumsey inequality, (6.3.5) is assumed to hold with « = 0 leading
to a stronger conclusion as ¢ is then proved to be Hélder continuous. The cut-off @ > 0 allows us to
consider functions ¢ which may be discontinuous.

Proof of Proposition 6.3.1. — At time 0, all the moments of (§ are bounded, so (6.3.4) can be deduced
from the control of the initial fluctuations and the bound (6.3.3) on the modulus of continuity. Thus
it is enough to prove (6.3.3), i.e. to show that

1
3. ! lim lim P —_— ° >
630 W0, i Pl w3 gl ) - GO0 20 ) 0.
s,te[0,T*

where {h;(2)};=(j,j») is the family of test functions introduced above.

We are going to apply Proposition 6.3.2 to the functions ¢t — (f(h;). In order to do so, the short time
fluctuations have first to be controlled. This will be achieved thanks to the following lemma.
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7/3

Lemma 6.3.3. — The time scale cut-off will be denoted by a. = ue ''°. For the basis of functions

introduced in (6.3.1), there is k > 0 large enough so that

1
6.3.8 V6" >0 lim P o . S5 o
(6.38) >0t P D L 65 (hy) = G2 ()
s,t€[0,T*

Then, to control the fluctuations on time scales of order §, it will be enough to rely on averaged
estimates of the following type.

Lemma 6.3.4. — For any function h, there exists a constant C depending on ||h||s such that for
any € >0 and s,t € [0,T*]

(6.3.9) E. (G500 = ¢E)") < CUIThlI~ +1) (It = 52+ i‘t ).

We postpone the proofs of the two previous statements and conclude first the proof of (6.3.7).

Notice that Lemma 6.3.4 implies that the random variable associated with any function h; satisfy-
ing (6.3.1)

TG () = G|
(6.3.10) B, (hj) ;:/0 /0 ds dt >t J|t—s|v S [T

has finite expectation

T [ T*
1

631 EBan) <0 [ [ dsar (e sP b i o g, )

0 0 5
Setting now v = 7/3, we get an upper bound uniform with respect to ¢ for a. = [L5_7/3

a2~
(6312 B (B, (1)) < OO+ 13D (14 %2 ) <41,
€

From Proposition 6.3.2, a large modulus of continuity of ¢ — (7 (h;) induces a deviation of the random
variable B,,_(h;). This implies that on average

P s 3 e ) — G 2 )

|s—t|<5
s,t€[0,T*]
(6.3.13)
1 \/ai 5
<P(Y T ‘() - )P = &) B i
B @“*'JP) ::Z%%ﬁ'gt(]) G2 55) + (Z =P 2 F5iT)

The first term in (6.3.13) tends to 0 by Lemma 6.3.3 and the second one can be estimated by the
Markov inequality and by the upper bound (6.3.12)

VBT § 52 1 Oy
(Z (1+[5]2) 285” 1) =G 52 ;(1+‘j‘2)kE5<Bas(h i) < 5/25 )

for some constants Cq,Cs and k large enough. As v = 7/3, the limit (6.3.7) holds. Proposition 6.3.1
is proved. O
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6.3.1. Averaged time continuity. — We prove now Lemma 6.3.4. Denoting

H(z([0,1])) = h(2(1)) = h(=(s)),

the moments can be recovered by taking derivatives of the exponential moments
€ € 4 84 s €
(6.3.14) E. ((Gi(h) = ¢5(m)") = (4EE (exp (IM(¢ ,H>>))> .
o =0

We recall from Proposition 2.1.3 that

iNH

log E. (exp (IA(¢%, H))) = pe Z %ffh[o,t] ((em — 1)®”) — VI iANFE(H) = O(\?).
n=1 "

Thus expanding the exponential moment at the 4th order leads to

iNH

. (oxp (M H))) =1+ 3 fi oy (9 = 1)) = Vi ()

)‘4 1 5 2 1 5 ®2 2 4
+5 (30 (H?) + 512,04 ((H)®?) ) +o(A).
The fourth moment can be recovered by taking the 4th derivative with respect to A

2
E (¢ ()~ 5)") =3 (F oy (H2) + F5j0 (H°2))

(6.3.15) |
oY Y CefipgHT . H)

n=1r1++r,=4

denoting abusively by f2 [0,4] the n-linear form obtained by polarization. A refinement of Theorem 4
stated in (8.2.1) combined with (6.3.15) leads to

(6.3.16) E ((Cf(h) - c:(h))4) <C(|IVh|los +1) |t — s (It — s+ ;) :

where C' depends only on ||h||c. This concludes the proof of Lemma 6.3.4.

6.3.2. Control of small time fluctuations. — We are now going to prove Lemma 6.3.3 by
localizing the estimates into short time intervals. For this divide [0,7] into overlapping intervals
I; = [iae, (i + 2)a] of size 2a.. Define also the set of trajectories such that at least two distinct

collisions occur in the particle system during the time interval I;
(6.3.17) A; = {At least two collisions occur in the Newtonian dynamics {z;(t)},<n during Ii}.

We are going to show that the probability of A = U;.A; vanishes in the limit

(6.3.18) lim P, (A) = 0.

e—0

Assuming the validity of (6.3.18) for the moment, let us first conclude the proof of Lemma 6.3.3 by
restricting to the event A°. By construction for any trajectory in A€, there is at most one collision
during each time interval I;. Then, except for at most 2 particles, the particles move in straight lines
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as their velocities remain unchanged and it is enough to track the variations of the test functions with
respect to the positions. Thus, for any ¢,s in I; and a smooth function h;, we get

N

Ve (G (hy) = € (hy)) = ) (hy(22(1) = D (2i(s))) — us/dZ(Ff(t,Z) = Fi(s,2))h;(2)

Nt
:Z/du"?(u)'th(Zi(u))—Me/dZ(Ff(f7Z) Ff(s,2))hi(2) + O(llhllc)
(=1""%

where the error occurs from the fact that at most two particles may have collided in the time inter-
val [s,t] C I;. Using the Duhamel formula, the particle density (at fixed ) can be also estimated by
the free transport up to small corrections which may occur from the collision operator Cf , F5

pe [ 2(F(t2) = Fi (s, 2)hy(a) = e [ du [ e 2) o Vs + neaOlhylc)

Recall that p.c. — 0 when p. tends to infinity. Setting h;(z) := v - Vh;(z), the time difference can
be rewritten for any trajectory in A° as a time integral

0319)  GO) = i) = —= [ (i) = e [ PR () + <=0 )

t e 1 ‘
_ / du Gi(hy) + =0y ).

Thanks to (6.3.19), we get

1
U= (AN e, o, [ ) — ) 2
j s—t|<2a¢

s,t€[0,T*]

1
<P AN g 2 s (G ) = GO 28

j + IJIQ) ig% s, tel;

1 ¢ _ 5!
S]P)s Acﬂ ZW sup sup |/ du C,i(hj)|2 Z 5 s

j i<Zt sitel;

where the error term in (6.3.19) was controlled by choosing & large enough and e small enough so

that \/% < 8§'/2. At this stage, the constraint A° can be dropped and by the Bienaymé-Tchebichev

inequality there holds

1 t T

i< Tx stel;
Sac

—ZZ&HM <S“p|/d“<“ )

=1 3

Using the Cauchy-Schwarz inequality and then the fact that ¢, s belong to I; = [iae, (i + 1)a.], we get

t
<sup | / du (R ) E (sup t—s [ du |<z<hj>2)
s, tel; s,tel; s

(i+1)ae 9
<o [ duB(G(0)°) < catt 1)

e

(6.3.21)
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In the last inequality, an argument similar argument to (6.3.16) leads to the control of the second
moment of 5 (h;) by [|h;]|2 < c(1+[j])% as h; = v- Vih; (see (6.3.1)).

Combining (6.3.20) and (6.3.21), we deduce that for k large enough

%

< ca?(1+ |j|)3 C 0
i=1 g

Thus to complete the proof of Lemma 6.3.3, it remains only to show (6.3.18), i.e. that the probability
concentrates on A. To the estimate the probability of the set 4; introduced in (6.3.17), we distinguish
two cases :

— A particle has at least two collisions during I;. This event will be denoted by A} if the cor-
responding particle has label 1, and can be separated into two subcases: either particle 1
encounters two different particles during I;, or it encounters the same one due to space period-
icity.

— Two collisions occur involving different particles. This event will be denoted by Ai 2 if the
corresponding particles are 1 and 2.

The occurence of two collisions in a time interval of length a. has a probability which can be estimated
by using Proposition 3.3.1 with n = 1, 2, which allows to reduce to an estimate on pseudo-trajectories
thanks to the Duhamel formula: noticing that the space-periodic situation leads to an exponentially
small contribution, since it forces the velocity of the colliding particles to be of order 1/a., we find
(6.3.23) P. (A:) < pePe (AD) + 2P, (,4312) < c(us +u2)a? < Caops/3,

where we used that a. = p. /s, Summing over the L- o time intervals, we deduce that P. (A) <

CT*M;1/3. Thus the probability of A vanishes as € tends to 0. This completes the proof of (6.3.18)
and thus of Lemma 6.3.3.

6.4. The modified Garsia, Rodemich, Rumsey inequality

Proposition 6.3.2 is a slight adaptation of [46]. For simplicity we suppose that 7* = 1 and set

(6.4.1) //dsdt\l/("pt )|>1t5>a.

Step 1:
We are first going to show that there exists w,w’ € [0, 2a] such that
1 1 002
4B d(ut)
6.4.2 Cw — | <8 [ U <) g <8 231/4/ < c¢BY*,
042 Jorw a8 [ 0t (2 ) ) <svasyt [ 20 <o
Define

(6.4.3) Ba(t) = /Olds v (M) L_yjoe with B, = /01 dt B, (t).

There is ¢ty € (0,1) such that B, (t9) < B,. Suppose that tg > 2«, then we are going to prove that
there is w € [0, 2a] such that

(6.4.4) |ow — 1| < 4/(: vt (41?2“) dp(u).
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If tg < 1 — 2, we can show the reverse inequality

1w — Pry| < 4/

87

1 vl <4f;> dp(u).

Combining both inequalities, will be enough to complete (6.4.2).

Let us assume that to > 2«, we are going to build a sequence {t,, un }n
to>up >t >ug > ...

such that t,_; > 2a and u,, is defined by

1

1 :
(6.4.5) p(un) = =p(tp—1), ie. wu,= th,l.

2
The sequence will be stopped as soon as t,, < 2a.

Initially ¢y > 2« and w; is defined by (6.4.5). Suppose that the sequence has been built up to ¢,_1.
By construction

1
tho1 — Uy = (1 — 24/7> thn—1 >« since t,_1 > 2a.

o lot,_, — sos) /“" (Isot o <ps|>
ds W ( lnot 7ol ) ds W (2=t 75 ) g oL < Baltn_1).
/o (p(ltn—l —s|) 0 P([tn_y —s[) ) “lnrel>e (tn-1)

Furthermore

Thus

/ dtB,(t) < By,
0
thus there is t,, € [0, u,] such that

2B,

Un

Ba(tn) <

- 2Ba tn_ 4Ba 4Ba
and \I,(|90tn-1 <Ptn|>S ( 1)< <

p(|tn71 _tn|) Unp - Unp—1 Un - ’U/% '

We deduce that

_1 (4B, _. (4B,
Oty — Pe,| S ! < u2 )p(|tn1 —ta]) S W ! ( u2 )p(tn1)~

n n

Suppose that ¢, > 2a then using that

Up >ty = p(un) > p(tn) = 2p(uni1),

we get
ptn-1) = 2p(un) = 4(p(un) - p(un)/Q) < 4(27('“71) *p(un-&-l))
and also
606) e~ el <40 (250) Goun) - plo) <4 [ 07 () dpt,

We then iterate the procedure to define ¢,,41.

If ¢, < 2, we set w = t,, and we stop the procedure at step n with the inequality

un (4B,
(6.4.7) [9t_s — Puwl = [Pta_y — Pt | < 4/0 U ( 2 >dp(U),

where we used that

p(tnfl) = 2p(un) < 4(p(u7l) - p(O))
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Summing the previous inequalities of the form (6.4.6), we deduce (6.4.4) from

- w (4B,
(6.4.8) |01, — ul < ;Isﬂti_l — o] < 4/0 v 1< " )dp(U)-

This completes the proof of (6.4.2).

Step 2: proof of (6.3.6).
We are going to proceed by a change of variables. Given x < y such that y — x > 4a, we set

Py—z(u) = p((y — 2)u) and ¢, = (2 + (y — 2)t)

//d“”w(py x<|t|s|>> {le=el> )

W}t ‘ Ba
ds'dt’ U lap_siisay < — .
\y—x|2// i (t'—sw ter=si>e} =102

Applying (6.4.2) to the function 1, there exists w,w’ € [0, 2a] such that

1 43(1{;) 1 AB
|¢1,% - wyfwx’ < 8/ vt % dpy—o(u) < 8/ vt <|a> dpy—a(u).
y-e 0 0 Y

x|?u?

Changing again variables, we get
~ 1 [t (4B, 1/4 Y1
ouwr = orel <80- 27 [0t (S ) ) < vEBY (- 07,
0 u

By bounding ‘(py — Oy
less than 2a, we conclude to (6.3.6). The proposition is proved. O

— wy‘ by the supremum of the local fluctuations in a time interval

6.5. Spohn’s formula for the covariance

For the sake of completeness, we are going to show that the covariance C of the Ornstein-Uhlenbeck
process computed in (6.1.6) coincides with the formula obtained by Spohn in [42] and recalled below
n (6.5.1). Formula (6.5.1) is striking as the recollision operator R!? emphasises the contribution to
the covariance of the recollisions in the microscopic dynamics.

Proposition 6.5.1. — Recall that U(t, s) stands for the semi-group associated with the time depen-
dent operator L, for T between times s < t. Given two times t > s, there holds

(65.1) Cls.t.p.0) = / U (1, $)6(2) 9(2) £ (s, 2)

+ [ dr [ dedvdw B2 (1), £(0) (mr0,0) @4 (7)0) (2,0) @ (5.7)9) (,0),
0

where the recollision operator RY? is defined as in (5.5.7)

(652 R2(g.9)(e1.22) = [ (9(:)9(:8) — 9(a1)g(z2) )i o).

Proof. — The covariance at time t = s = 0 is indeed given by

E (Co(9)Go(¥)) = / dzp(2) % (z) = / dzp(2)(2) (0, 2) .
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We will simply derive (6.5.1) when s = ¢ and the case s < ¢ can be easily deduced. The covariance Cov;
introduced in (6.0.3) can be rewritten in terms of the operator X;

(65.3) Siber) = = [ e Ga,0) [Flt20) 0 22) + S840 18, 5)] Aw

with the notation dy., as in (5.5.6) and A as in (6.0.5). Indeed, one can check that for any functions
p, 1, the covariance can be recovered as follows

[emiean =5 [ autar,zaw) £t )5t 52) + 0450 5)] Buloe) + 0(:2))
= 5 [ dnter ) (20102 (A0)P) = Covilor).

The covariance C of the Ornstein-Uhlenbeck process computed in (6.1.6) reads
(6.5.4)

Cltt, 0, 1) = / dar U (£, 0)(21) FOU (£, 0)o(21) + /0 du / dzr (1) [U(t 0) S U (0] (1)
The following identity is the key to identify (6.5.4) and (6.5.1)
(6.5.5)  Xpp(z1) = — (ftﬁt* + Etft)@(zl) + 0 f(t,21) p(21) + /d22 RY? (f(t), f(t)) (21, 22)p(22).

Let us postpone for a while the proof of this identity and complete first the proof of (6.5.1).

Replacing the expression (6.5.5) of ¥, in the second line of (6.5.4) and recalling that U(¢,t)p = ¢, we
get that

/ du/dzl o(z1) [Ut,w) Sy, U (t,w)Y] (21)
0
= [ du [ @z o) Utt0) (= (Cubut £uL2) + 0 (0) U (100 1)
0

t
+/ du /dzleQU*(t,u)go(zl) RY2(f(u), f(u)) (21, 22) U*(t, u))(22) .
0
Noticing that the time derivative is given by
oy [U(t, ) fu Ut u)} = U(t,u) ( — (Lufu+ full) + 0y f(u)) U*(t ),

we conclude that

/0 du / dz1 (1) (UG ) S0 U u)e] (1) = / a1 (1p(21) Futb (1) — @) UL, 0)JO U (1, 0)5 (1))

t
—|—/ du/d21d22 U (t,u)p(z1) RV (f(w), f(u)) (21, 22) U (t, ) (22).
0
Finally the covariance (6.5.4) reads
R t
Clttop ) = [ dep() i) + [ du [ dendeal (uole0) B2(F(00. F(0) (21,20) U (1 ) ).
0
This completes the proof of Proposition 6.5.1.

It remains then to establish the identity (6.5.5). Let us write the decomposition ¥; = ¥ + ¥, with

E?_w(zl) = _/dﬂz1 (ZQ»W)f(ta Zi)f(tvz;)Awa Et_w(zl) = _/dILLZI (Zg,w)f(t721)f(t, Zz)A1/J
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Recall that L3 was computed in (6.1.2). We get

F@)Lip(z1) = f(t) v1-Vp(z1) + /duzl(zmw)f(taZl)f(t722)A<P = f(t) vi-Vp(z1) — Xy p(21) -
and

L Ope1) = —or - VU0 + [ ey (2.00) (£(0 200 28) () + (1)
— [t 2) f(t, ) (9(22) + 0(21)))
— o VIOl + [ e (o) (£(8 )11 5)A
+ [F 21 (1 ) = F(t2) £t 22)] (9(21) + 2(2)) )
— —or VI (e) = EF () + [ dia RY (7(0), 1) (1, 20) (1) + 9(22)

where we used the notation (6.5.2). As a consequence, we get that

FOLip(z1) + Lef(B)p(21) = —p o1 - V[(t21) = Bep(z1) + /d22Rl’2 (f(0), £(1)) (21, 22) (0(21) + p(22)) -

As f solves the Boltzmann equation, we have

8tf(t, 2’1) = —v7 - Vf(t, Zl) + /dzle’Q (f(t), f(t))(zl, Zg) .

This leads to further simplifications as

FOLTo(21) + Lo f(B)p(22) = @ O f (t21) = Tap(21) + /dza RY2(f(1), f(D) (21, 22)0(22),
thus (6.5.5) holds. O



CHAPTER 7

LARGE DEVIATIONS

This chapter is devoted to the study of large deviations, and to the proof of Theorem 3. We are going
to evaluate the probability of an atypical event, namely that the empirical measure remains close to
a probability density ¢ (which is different from the solution to the Boltzmann equation f) during the
time interval [0, T*].

The strategy we will use to evaluate this probability is rather indirect as we cannot describe the
bias we have to impose on the initial data to observe such a trajectory ¢ : changes in the collision
process (both on the rate and on the cross section) depend indeed in a very intricate way on the
microscopic realization of the initial data. We will therefore proceed in a completely different way,
using a kind of duality argument. The idea is to compute (with exponential accuracy) the average of
functionals H(2([0,])) of the trajectories for a large class of test functionals H, and then to deduce
the weight of a trajectory ¢ using a minimizing argument.

The duality on D (resp. [0,7] x D) will be denoted, as in (2.1.1)-(6.2.1) by (-,-) (resp. {-,-))

(0, 0) /dw (o) ::/OTdt/de(t,z) Wit 7).

Using notation (1.4.3), (5.3.2) and (5.3.3), define the set of test functions

(7.0.1) B = {geC([0,7"] x D,R) / (Dig,exp(g(T™))) € Bay,p0,7+ }
and set for any g in B and ¢t < T™
(7.0.2) Z(t,g) == J(t, Dg,exp(g(1))) -

For a restricted class of functions ¢, we prove in Section 7.1 that the large deviation functional on the
time interval [0,¢] is given by the variational principle

(7.0.3) F(t,p) = S‘ég{ — (. Dg) + (@1, 9:) — I(t,g)} :

This functional can be identified with the functional F(¢) predicted by [38] and [9] (see Section 7.2).

7.1. Large deviation asymptotics

We first start by proving upper and lower large deviation bounds in a topology weaker than the
Skorohod topology. We are going to consider the weak topology on D([0,T*], M (D)) generated by
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open sets of the form below, for any v € D([0,T*], M(D)) and for test functions ¢ in B and § > 0:

(7.1.1) Og,(v) == {,/ e D([0,T*), M(D)), | ((+/, Dg)— W, g-)) — ({», Dg>>f<uT*,gT*>)’ < 5/2}.

7.1.1. Upper bound. — We are going to prove the large deviation upper bound (1.4.5) for any
compact set F in the weak topology
1
(7.1.2) limsup — logP. (7° € F) < — inf F(T™,¢).
e —>00 He p€EF

To prove (7.1.2), we consider a compact set F of D([0,7*], M(D)). We are first going to show that for
any density ¢ in F and ¢ > 0, there exists g € B and an open set Os 4(¢) of ¢ such that

1
(7.1.3) limsup — log P. (7° € Og4()) < —Fo,7+1(¢) +6.

pe—o0 e
Then by compactness, for any § > 0, a finite covering of F C U;<xOs g, (i) can be extracted so that

1
limsup —logP. (7° € F) < — inf F(T*, ;) +6 < — inf F(T*,¢)+4.
i<K ¢EF

He—>00 He

Letting § — 0, we recover the upper bound (7.1.2).

We turn now to the derivation of (7.1.3). For any density ¢ in F, we know from (7.0.3) that there
exists g € B such that

F(T*,¢) < —(¢,Dg) + (er+, gr+) —Z(T*,9) +6/2.

This leads to the upper bound
€ 5 € 15
P, (7° € Os,4(p)) < exp (%5 + pe{e, Dg) — us<s0T*,gT*>) E. (eXp ( — {7, Dg) + /15<7TT*79T*>))

5 *
< exp (%5 + 1, Dg) — pe(ore, gre) + peZ(T ,g)) 7
with
I°(t,g) = J*(t, Dg, exp(g(t))) = Afy (e?Jo P9)

Passing to the limit thanks to the upper bounds provided by Theorem 4, this completes (7.1.3)

1
lim sup — log IP. (776 IS Og,g(gp)) <I(T*,9) + <<cp,Dg>> — (1o, gy +0/2 < —=F(T*, ) + 4.

e —>00 He

7.1.2. Lower bound. — We are going to prove the large deviation lower bound (1.4.6) for any open
set O in the weak topology

| c : .
1. - > _
(7.1.4) lig&f " logP. (7° € O) > <pelgfwz]-"(T ),

where the restricted set R of trajectories is the set of densities ¢ such that the supremum in (7.0.3) is
reached for some g € B

(7.1.5) R := {go € C'([0,7*] x D), 3g € B such that F(T*,¢) = (¢r+, gr+) — (¢, Dg) — I(T*,g)}.
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Let us fix ¢ € ONR and denote by g the associated test function as in (7.1.5). There exists a collection
of test functions ¢(*, ..., ¢ in B such that the following open neighborhood of ¢

05 g0y () = {V € D([0, T*], M(D)), Vi < ¢,

‘((V, DgY — (wre, g5 — ({¢, Dg™) — <¢T*,9(Ti3>)} < 5}

is included in O for any § > 0 small enough. We impose also that g is one of the test func-
tions ¢, ..., ¢®). To complete the lower bound

(7.1.6)

1
liminf — logP. (7° € O) > —F(T™, ¢),

He—r00 e

it is enough to show that

(7.1.7) lim inf lim inf L log Pe (7° € O; (43 (9)) = —F(T*, ).

6—=0  pe—00 [l

We start by tilting the measure
Pe (05,4903 (¢))
> exp ( — Ope + {0, Dg) — pe(ore, gT*>) E. (eXp ( — pe{m®, Dg) + U5<7T§F*agT*>> 105,{5,@}(%0))

> exp <_5/er + ,USI[EO,T*](Q) + /1'€<<907 Dg>> — He <<pT*ugT*>) Ee,g (1052{9(1)}@7)) ,

where we defined the tilted measure for any function ¥ on the particle trajectories as

Ec g (¥(7%)) := exp (—uelﬁ),m(g)) E. (exp ( — (7, Dg) + Ns<ﬂ'§’*agT*>) W(ﬂ) :
If we can show that the trajectory ¢ is typical under the tilted measure

(718) Vo > 0, lim ]Pg’g (71'8 S 067{g(i)}((,0)) =1,

e —>00

this will complete the proof of (7.1.7).

Let § be one of the functions ¢(V,..., ¢ used to define the weak neighborhood 06,{9(1')}(@).
Choose u € C in a neigborhood of 0 so that the function below is analytic

uw€Cr I(T* ug+g) = liin Z5(T*,ug + g) .
He—>00

As a consequence the derivative and the limit as g, — oo commute, so that taking the derivative
at u =0, we get

(552 000) + (ZE )4 ) = tim 5oy ( - (%.D5) + (75 6))

6gT* He—>00

Note that in the above equation, the functional derivative is taken over both coordinates of the func-
tional Z(T™*,g) = J(T*, Dg, g;). As the supremum in (7.0.3) is reached at g, we deduce from (7.1.5)
that

(7.1.9) _<<aggg*) (9), D§>> + <81(T*> (g),éT*> = (¢r+,gr+) — {9, D7) .

Ogr+

This allows us to characterize the mean under the tilted measure

(7.1.10) #ELHOO Ee.g (73w, gr+) — (7%, Dg)) = (o=, gr+) — (¢, D7) .
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Taking twice the derivative, we obtain

im_ B ([0} = (57, 03)) = By (55230} {7, 03] ) < 0.

e —>00

Combined with (7.1.10), this implies that the empirical measure concentrates to ¢ in a weak sense

Jlim E.,, ([(%,gm — (=%, Dg)) = ({er+ .97+ — <<¢,Da>>)}2) 0.

In particular, this holds for any test functions gV, ...,¢¥) defining the neighborhood Os,4003 ()
in (7.1.6). This completes (7.1.8).

7.1.3. Uniform continuity in time. — In this paragraph we strenghten the Large Deviations
Principle derived in the previous section, and show that is holds in the Skorohod topoloyy. It is
well known (see Corollary 4.2.6 of [13]) that large deviation estimates can be derived in a strong
topology from a coarser topology by proving a tightness property in this strong topology. The following
proposition shows that the sample paths concentrate on equicontinuous trajectories in [0, 7*], which
is a kind of tightness property.

Let (h;);>0 denote the basis of Fourier-Hermite functions (as in (6.3.1)). We define a distance on the
set of probability measures M (D) by

(7.1.11) d(p,v) =Y 277

[z i) nz) — av(e)

Proposition 7.1.1. — The modulus of continuity is controlled by
! O : 1 € e !
(7.1.12) Vo' > 0, lim lim — log P, sup d(mg,mE) >0 | = —o0.
§—0e—0 ,UE ‘t—s‘gé
t,s€[0,T*]

Before proving Proposition 7.1.1, let us first show that it implies a large deviation estimate in the
Skorohod space of trajectories D([0,T*], M(D)) (for a definition see Section 12 in [4]). First of all
notice that the upper bound holds as the closed sets for the Skorohod topology are also closed for the
weak topology. We consider now an open set O for the strong topology and ¢ a trajectory in O N'R,
recalling R is defined in (7.1.5). We would like to apply the same proof as in Section 7.1.2 and to
reduce the estimates to sample paths in a weak open set of the form (7.1.6). We proceed in several
steps. First note that there exists 6 > 0 such that

{1/, sup d(vt, 1) < 25} cO.
t<T*

Since ¢ belongs to R, the density ¢ is smooth in time. Choosing a time step v > 0 small enough, we
can restrict to computing the distance at discrete times

)
v, sup d(Viy,piy) <0 m{m sup d(ut7us)<2}c(’).

i€EN —s
ineT [t—sl<v

Since ¢ is regular in time and we consider only 7™* /~ times, the set above can be approximated by a
set of the form Os(p) as in (7.1.6). As a consequence we have shown that there is an open set Os(p)
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such that

P. (7 € O) > P, (ﬂ'e € Og(gﬁ)ﬂ{ sup d(mj,75) < 5})

[t—s|<y

>P. (7 € Os(p)) — P sup d(mg,ms) >4 .
[t—s|<vy
By Proposition 7.1.1 the last term can be made arbitrarily small for v small. Thus the proof of the
lower bound reduces now to the one of weak open sets as in Section 7.1.2.

Proof of Proposition 7.1.1. — As the test functions used for defining the distance d(7§, 7<) in (7.1.11)
are bounded, it is enough to consider a finite number of test functions. Indeed, for any ¢’ there is
K = K(4") such that

/!

d(p,v) >48 = Z 277 /dz hj(z)(dp(z) — du(z))‘ > %

lil<K

By the union bound, we can then reduce (7.1.12) to controlling a single test function h

1

(7.1.13) Vo' >0, lim lim — logP. [ sup [(nf,h) — (75, h)| > | = —oc0
d—0e—0 e |t78|§5

where t, s are restricted to [0,7*]. Next, we localize the constraint on the time interval [0,7*] to

smaller time intervals

T* /5
(7.1.14) P. [ sup ’(Wf, h)y — (7%, h>| > | < P, sup |<7rt€, hy — (mg, h>| >8] .
[t—s|<d i—2 t,s€[(1—2)9,i0]

By assumption (1.1.5), the initial density f© is bounded, up to a multiplicative constant Cy, by the
Maxwellian Mg (uniformly distributed in z). By modifying the weights W§° in (1.1.6), we deduce that
the probability of any event A under P, can be bounded from above in terms of the probability P,
with initial density Mj (its expectation is denoted by E.)

Ze Ze 1= 1 ~ 1

P.(A) < EEE(COA[ 1a) < ?EE(C(?N)2 E.(14)? <exp(Cue) P.(A)2,
for some constant C' and Z¢ stands for the partition function of this new density. Using the fact that
the probability P, is time invariant, we can reduce the estimate of the events in (7.1.14) to a single

time interval. Thus (7.1.13) will follow if one can show that

1 s
(7.1.15) Ve >0, lim lim —logP. [ sup |(mf,h) — (75, h)| >0 | = —oc.
6—=0e—0 pie t,5€[0,26]

By the Markov inequality and using the notation Ls = log|logd|, we get
(7.1.16)

P, ( sup | (w5, h) — (75, h)| > 5’) < e*‘S/L““E]Es(exp( sup ] Ls ‘ ﬁf:h(zf(t)) - h(zf(s))‘))
i=1

t,s€[0,26] t,s€[0,25
N

< o9 Ls HEfE€<eXp (Zl t7ssgl[1£25] Ls |h(Zf(t)) — h(zf(s)) |)> .
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The last inequality is very crude, but it is enough for the large deviation asymptotics and it allows us
to reduce to a sum of functions depending only on the trajectory of each particle via

B(z([O,%D) = sup  Ls|h(2(t)) — h(2(s))].

t,s€|0,

Thanks to Proposition 2.1.3, the last expectation in (7.1.16) can be rewritten in terms of the cumulants

1 - > q
(7.1.17) EIOgEa (eXp<Zh (10, 26]) )) ZZ:E

where fﬁ stands for the dynamical cumulant under the new distribution.

[0 26]( eXP(i@) - 1)®n)

)

For n > 2, the statement 1 of Theorem 9 page 95 can be applied
Fito2sy ((exp(®) = 1)) | < ml(C(20 +2))" " [10g oM,

with Ls = log|logd|. The term n =1 is controlled thanks to the statement 3 of Theorem 9

|5 1025 (ex0(h) = 1) < 8 (IVhllow Ly + 1) X1~ < 5 (Ju- VohllacLs + 1) |1og )11~

Thus (7.1.17) converges to 0 as € — 0, then § tends to 0. Furthermore Ls diverges to co as § vanishes,
one deduces from (7.1.16) that (7.1.15) holds for any ¢’ > 0. This completes the proof of (7.1.13) and
therefore of Proposition 7.1.1. O

7.2. Identification of the large deviation functionals F = F

In this section, we are going to identify, for some time 7' > 0, the functional F(7") obtained from the
mechanical particle system in (7.0.3) with the large deviation functional (1.4.1) derived from stochastic
collision processes

R R T
(7.2.1) F(T, ) =F(0,¢0) + 51]1)p {/0 ds/]Ddzp(s7 z2)Dp(s, z) — ”H((p(s),p(s))}

= F(0,%0) + sup {((p, Dy) — /0 ds%(w(S),p(S))} 7

where the supremum is taken over measurable functions p with at most a quadratic growth in v
(which is the natural extension of Equation (1.14) in [38] to the case of unbounded velocities), and
the Hamiltonian is given by

(7.2.2) Hp,p) = %/d/l<2'17zQ,W)(P(Zl>90<Z2)<eXp (AP) - 1) )

with dp as in (6.0.4). Recall that F(0,-) stands for the large deviation functional on the initial data

(7.2.3) F(0, ¢0) /dz <<p0 log (f0> — o +f°) .

Note that at equilibrium, a derivation of large deviations by using cluster expansion can be found in
[40] for a larger range of densities.

Given T €]0,T*], define R as in (7.1.5) on the time interval [0,7], and denote by R the set of
densities ¢ such that the supremum in (7.2.1) is reached for some function p € B. We have the
following identification.
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Proposition 7.2.1. — There exists T €]0,T*] such that for any positive function ¢ in RN 7@, there
holds F(T,¢) = F(T,p).

We briefly explain the strategy of the proof. The main step is to identify the functional Z(¢) defined
in (7.0.2) for any ¢ in [0, T] with the Legendre transform Z of the large deviation functional F(t) defined
in (7.2.1). Indeed, for any (real) test function g € B, we expect that Z(t, g) coincides with the solution
of the following variational problem :

Sl;p {(gt,s@t> —(Dg,¢) - ]?(t’@)}

(7.2.4) = sup inf {<gt, ¢1) — (Dg, ) — {p, Dp) +/O ds H(p(s),p(s)) — F (0, sao)} :

= sup igf{@t —pe,e) + (Do, 00) — F(0,0) + (Dp — Dg, ¢) +/0 dS”H(w(S),p(S))} :

where the supremum is taken over positive trajectories ¢ € D([0,T*], M(T? x R%)), and F(t) was
replaced by its variational expression (7.2.1) in the second equation.

Using the variational principle (7.2.4), we are going to construct a functional 7 (t,g) and show that it
coincides with Z(t, g). This identification will rely on the fact that both Z(¢, g) and f(t, g) satisfy the
Hamilton-Jacobi equation as derived in Theorem 7. The difficulty is that the uniqueness result stated
in Proposition 5.4.2 holds in the setting of functionals defined on complex valued functions g. The
main issue in Section 7.2.1 is therefore to provide a definition of 7 corresponding to the variational
problem (7.2.4), and which can be extended to complex valued functions.

In Section 7.2.2, we then deduce from this first step that the functionals F(T,¢) and F (T, ¢) coincide
for positive p € RNR.

7.2.1. A variational characterization of the functional Z. — Our starting point here is the
variational principle (7.2.4) which we rewrite formally in terms of the functions ¥ = ¢ exp(—ps)
and ns = exp(ps) for s € [0,t]. Setting v = exp(g:), and Dsg = ¢, the last expression in (7.2.4)
becomes

(7.2.5) Sup inf {<logv —log e, Yere) + (log 0, Yoro) — F(0,%b0m0) — (&, 4m) + (Dn,v)

+ % /Ot ds/du(zl, zz,w)%(zﬁiﬁs(zz)(ﬂs(zi)ﬂs(é) — ns(zl)ns(z2)>} .

The Euler-Lagrange equations associated with this variational problem are given for any s € [0,t] by

Dsp = =505 + /d,um (ZQ’W) 775(22)(’(/%(21)1/}3(25) - ws(zl)ws(ZQ)) with g = f07
(7.2.6)

Dy = nsts - / iz (22,0) s (22) (ms ()ms(28) = ma(er)me(z2)) with e =,
recalling notation (5.5.5).

We stress the fact that the evolution of 7 is constrained by a final time condition.
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Plugging these solutions in (7.2.5), we expect that the variational principle (7.2.5) is formally equivalent
to

(7.2.7) T (t,6,7) =(f°, (o — 1)) = (&, ¥m) + { D, v)
—i—%/o ds/dM(Z1,zg,w)ws(m)ws(@)(Us(zi)ns(zé) _ns(zl)n5(22)>’

where we used that logy = log7; and the explicit form (7.2.3) of F(0) to simplify the term at the
initial time.

Since v = exp(g:) and Dsg = ¢, we could have simply defined f(t,g) = j(t,¢7 v) as our goal is
to identify Z(t,g) and Z(t,g) defined in (7.0.2). However, this identification will rely on the unique-
ness of the Hamilton-Jacobi derived in Proposition 5.4.2 and this requires to consider the general
functional j(t, ¢,7) with complex functions (¢,~) € Ba g,

Remark 7.2.2. — Note that the computations leading to the definition off are formal, and involve
quantities which make sense only if ¥ and n are positive functions (for instance logmn; ). However the
final formula (7.2.7) is well defined for any complex functions (¢,7y) € By g,i-

For any 8 € R, define the norm
B
(7.28) [Tl = sup (exp (—4|v|2 T(a)l).

and denote by L3 the corresponding functional space. The next lemma provides conditions on (6,7)
to control the solutions of (7.2.6) and J (¢, ¢, 7).

Lemma 7.2.3. — There exists a time T €]0,T*] such that for any (¢,7) € Bay,g,,1, there is a
unique solution to the system of equations (7.2.6) on [0,T] with ¢ € LZOBBO/Q and n € Lg%o/4' For

any t € [0,T], the functional j(t, ®,7) depends analytically on v and there holds
07
Iy
Furthermore estimates (5.4.2) and (5.4.3) hold for J.

Proof. — We start by rewriting (7.2.6) in a mild form, denoting S; the transport operator in D

w(s) = SSfO + / Ss—aFl(%»%M/)a)dU,
(7.2.10) 0

77(3) =Sy */ Ss—an(%,??a,%)da,
with
Fiom ) = ~00+ [ duey () ) (8(a)0(:5) — (1))

Falom ) =16~ [ dic, (20, 0e2) (n()n(5) = n(1)n(z2))

Note that, since this is a coupled system and 7 satisfies a backward equation, this is not exactly the
standard formulation to apply a Cauchy-Kowalewski argument. Nevertheless, this is still the right form
to apply a fixed point argument provided that we find suitable functional spaces to encode the loss
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continuity estimates on F; and Fy. Using the fact that (¢,v) € Ba g, 1, we indeed have in particular
that

[6(z,0)| < C(1+0]?) and e L.
Recall moreover that f© belongs to L>4,, so let us define
C =2 (g + 1£-28,) -

Now there are constants C; and C5 such that for any 31 > 8] > 580/4 > 0 and 35 < 85 < 383,/2 there
holds

Cip
(7.2.11) 1Fu @ )lg; < g lla, (1 + s lsaura)
C
(7.2.12) IFa0m ), < iﬁ;;Q Illga (1 + 191 —ss0 2 Il 52 ) -

By Theorem 8 in Chapter 6, we infer from (7.2.11) that as long as supcpo 77 [1(t) 55,72 < C, there

is C; such that

t

sup [ (t) ]| 2800 (1 — m) <C.

t<Cy(1=p)
In the same way, provided that sup,cio 7 [V (t)]|—35,/2 < C, (7.2.12) provides using the backward
equation on 7, that
S _
su T—s Nl =—)<C.
E<P ”77( )HBO(Q P)( 02(1 — ,0)) =
s<C(1-p)
Therefore, choosing T' < % min(Cy, Cy), and applying a fixed point argument, we find that there exists
a unique solution (¥, 7n) to (7.2.10), satisfying
sup [1n(t)llsge/a < C sup [[(t)]|-35,/2 < C.
te[0,T] te[0,T7]

B

For convenience we can assume that T < T™*.

We turn now to the proof of (7.2.9). Since the solution 1,7 to the Euler-Lagrange equations is
obtained as a fixed point of a contracting (polynomial) map depending linearly on v (see (7.2.10)), it is
straightforward to check that 1,7 depends analytically on v (for instance using the iterated Duhamel
series expansion). Using the symmetry

[ dnten )tz (nGme(5) — neleme(z2)
= /du(zhZz,w)ns(ﬁ)ns(Zz)(%(21)%(25) —1/Js(21)1/}s(22))

one gets
(7.2.13)

(G (t:6:9).69) = (. 6m0) = {080+ 3u) + (Don. ) + (D 5v)

+3 / ds [ dnter,20,) (56,10 (22) + (200020 (e a1 (35) = e o))

1

T3

[ s [ anter, 22 (sneomtea) + msen ) (e (o) et
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where 61, 6n stand for the variations of the solutions of (7.2.6) when ~ changes. Recall that 1y = f°
and &7y = 07, so that

(7.2.14) (Dén, ) = —(61, DY) + (67, 12) — (£, 610)-
Thus (7.2.13) simplifies
+ %/0 ds/du(zl, 20,W) (5¢s(21)1/1s(22) + 1/13(2'1)51/13(22)) (ns(z'l)ns(zg) — 773(21)773(22)>

1 t
by [ s [ auer,zaw) (9n e (aa) + maCen)ns2)) (G100 () = wa1) )
0
= <5’Y7 d)t>a
where the last equality follows from the Euler-Lagrange equations (7.2.6). Lemma 7.2.3 is proved. O

Proposition 7.2.4. — Let T be as in Proposition 5.4.2 and Lemma 7.2.3, then the functional T
introduced in (7.2.7) satisfies the Hamilton-Jacobi equation (5.3.5) in the time interval [0, T)
(7.2.15)

0T (0,07 = 5 [ Gt 0.90(0) 5 (1. 6.70)e2) (3lah)25) = o)) (o, ).

for all (¢,77) € Bay,po,r with y € CO([0,T] x D; C) defined by Dyyy — ¢pye = 0 for t < T as in (5.3.4).
By uniqueness of the Hamilton-Jacobi equation (Proposition 5.4.2), this implies that J(t,¢,v) =
T, ¢,v) for allt < T and (¢, Vi) € Bag,po,t-

Proof of Proposition 7.2.4. — We split the proof in two parts.

Step 1 : Derivation of the Hamilton-Jacobi equation (7.2.15).

Taking the time derivative of (7.2.7), we get two types of terms, those coming from the explicit
dependence in ¢ (appearing in the bounds of the integrals), and those coming from the variations of
the solutions of (7.2.6) when the time interval changes from [0, ¢] to [0, ¢+ dt]. The same computations
as in (7.2.13)-(7.2.14) show that the second contribution is (dn;, 1), so that

(7.2.16) atf(u &,7y) =01, Ve) — (Do, Yene) + (D, )
g [ duer,za, )b ea)unCen) (m G (a5) — e )
Formula (7.2.16) simplifies thanks to the Euler-Lagrange equations (7.2.6)
~ 1
0T (t,0,7) = (01, ¥e) — 5 /dﬂ(zl, 22,W)¢t(21)1/)t(22)(nt(zi)m(zé) - 77t(21)77t(22))~

By construction, the variation of the solutions at time ¢ is
one = Oy — O = Dyy — Dy,
as the boundary condition implies that 1, = . Since 0,y = ¢y, we find

one = Dyy — Dynp = /dvzdw Oy=ay (V1 —v2) 'w)+1/}t(z2)(77t(21)77t(2§> - m(h)m(@))

As consequence, we recover the Hamilton-Jacobi equation (7.2.15).

Step 2 : Identifying the functionals j(t) and J(t).
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At time 0, one can check that both functionals are equal. Indeed one has both 1y = f° and o = 7,
from which we deduce that

F0,67) = (. (v — 1)) = / dz°(2) (1(z) — 1)

This coincides with 7 (0, ¢, ) which can be obtained from a non-interacting gas of particles under the
grand canonical measure.

By Lemma 7.2.3, the functional J (t,d,7v) depends analytically on . Both functionals satisfy the
same Hamilton-Jacobi equation which has a unique solution (in the class of analytic functionals) by
Proposition 5.4.2. This completes the claim that J (¢, ¢,v) = J(t, ¢,7) for t <T. O

7.2.2. Identification of the large deviation functional. — We now turn to the proof of Propo-
sition 7.2.1 and fix a positive density ¢ in R N'R.

By analogy with the definition (7.0.2) of Z(t), we set for any g € B
(7.2.17) Z(t,g) = J (t, Dg,exp(g(t)))-

We start with a preliminary result.

Lemma 7.2.5. — Let T be as in Lemma 7.2.3, then for any g in B and t < T,
— the functions ¥, n in (7.2.6) associated with (¢,~) = (Dg,exp(g(t))) are both positive functions;
— there holds

dZ(t,g)

oz
(t, ) = ono , 9y D(yn).

990

(7.2.18)

Proof. — The first property is proved by rewriting (7.2.6) in the form

Dgtp + 1 <¢s + K1(9, 77)) = /dvzdw Ouy=as (01— v2) - w) s (22)9s (21) s (23)

with o = f°,
Dsn + 778( - ¢s + K2(¢777)> = —/d’l}gdw 6:1?11932 ((7)1 - U2) : W)+1/Js(z2)775(23)775(2/2)
withn, = .

The first equation is a transport equation with a (nonlinear) damping term ¢, + K1 (¢, n) and a source
term which is nonnegative (as long as 1,7 are positive). It therefore preserves the positivity. The
second equation is a backward transport equation with a damping term —¢; + Ko(v,n) and a source
term which is non positive (as long as 1, n are positive). It also preserves the positivity. The solution
(1, m) obtained by iteration (using the fixed point argument) is therefore positive.

Integrating by parts (7.2.7) for ¢ = Dg, we get
(7.2.19) Z(t.9) =(g, D(¥m)) — (9o, bum) + (90, Yomo) + (f°, (o — 1)) + { D, &)

; / ds / i, 2,000 (21 (22) (e () () = m (o) (22)).

To identify the functional derivatives, we use the fact that 1, n are the solutions of the Euler-Lagrange

equation (7.2.6) for the variational problem (7.2.5). This means that the shifts in ¢ or  due to a small
variation of g will not affect Z(¢, g) at leading order. Thus (7.2.18) follows. O

_|_
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We turn now to the identification of the large deviation functionals F and F. Recall from Proposi-
tion 7.2.4 that Z(T") and Z(T") coincide on B, thus the functional F(7T') introduced in (7.0.3) can be
rewritten as

F(T,¢) = sup {<¢T,UT> — (., Du) — I(T, U)} = sup {<soo,Uo> + (D, u) — I(T, U)} :

First, we are going to derive an equation satisfied by ¢. As ¢ belongs to R, the supremum is reached
for some function g € B

(7.2.20) F(T,¢) = {0, 90) + (D, g) —Z(T, ),

which satisfies the condition

~

OL(T.g) )
7.2.21 = I Dy and —/—2F 0
( ) g P 990 ¥o
By (7.2.18), we also have that
OL(T,g) OL(T, g)

g = D(yn) and g = oo,

from which we deduce that ¢ = ¢n with 1, n defined by (7.2.6). In particular, we deduce from (7.2.6)

(12:22) Dap = D) = [ diy (22,0 (1) () G100 (35) = o) (e (5))

In the next step, we relate n to the Lagrange parameter associated with F. As  belongs to 7A2, the
supremum in the variational problem F (T, ¢) is reached for a function p so that

T
(722 F(T.0) = F0.0) + (. D) = [ dsti(ils).0(5).
and the corresponding Euler-Lagrange equation reads
(7.2.24) Dy = /dv*dv (v—0s)- Z/)Jr((p/(p; exp(—Ap) — pps exp(Ap))  with g = f° exp(po).

Since ¢ > 0, the Hamiltonian Ap — H(p,p) introduced in (7.2.2) is strictly convex, any drifts p and p
compatible with the evolution (7.2.24), satisfy A(p — p) = 0. Recall from Lemma 7.2.3 that 7 is a
positive function. We then deduce from (7.2.22) that A(ps — logns) = 0 at all times s € [0, 7.

Finally, thanks to the identity A(p — logn) = 0, we are going to conclude that F = F. Using the
following integration by parts in (7.2.19)

(Dn.y) = —(logn, D(m)) + (log e, mtpe) — (log 1o, 10%0),
and then replacing 7Y by ¢ and logn by p, one gets

Z(t,9) =(g — logn, D) + (logn: — g, 1) + (g0, p0) + (%, (0 — 1)) — (log 70, o)

+ % /Ot ds/dﬂ(zhZg,w)7/)s(21)1/)s(22)(nS(zll)WS(zé) - 773(21)775('22))

T
=(go,po) + (g —logn, Do) + /0 dsH (s, ps) — F(0, p0),

as logn; = ¢;. In the last equality, .7?(07 o) is recovered by (7.2.3) and the identity o = 70 f°. The
symmetries of the equation (7.2.24) imply

(logn —p, D) = (A(logn —p), Dp) = 0.
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This leads to

2T.0) = (o) +{o 0. D7) + [ dsM(enns) ~ F0.60),
Applying (7.2.23), we conclude that
I(T.g) = {go, o) + (9. Do) — F(T, ),
and combined with (7.2.20), we get F(T, @) = F(T, ).

This completes the proof of Proposition 7.2.1.
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PART III

UNIFORM A PRIORI BOUNDS AND
CONVERGENCE OF THE CUMULANTS






CHAPTER 8

CLUSTERING CONSTRAINTS AND CUMULANT ESTIMATES

In this chapter we consider the cumulants f7 (H®™), whose definition (Eq. (4.4.1)) we recall:

n )4 J4
600 Fpgd™) = [z SN Y [ (TL e mm5) 80 )¢, £y
/=1 )\ePfL r=1 pEPé’ =1
We prove the upper bound stated in Theorem 4 page 35. We shall actually prove a more general

statement, see Theorem 9 page 95.

The key idea behind this result is that the clustering structure of f7 [ (H®™) imposes strong geometric

0t
constraints on the integration parameters (Z, Tp,, Vin, Q) (Where vxle recall that m is the size of the
collision tree), which imply that the integral defining fi,[o,t} (H®™) involves actually only a small
measure set of parameters, of size O(1/u?~1). More precisely, what we prove is that:
— there are n — 1 “independent” geometric constraints (clustering conditions) and each of them
provides a small factor O(1/pu.);
— the integration measure (which is unbounded because of possibly large velocities in the collision

cross-sections) does not induce any divergence.

Section 8.1 is devoted to characterizing the small measure set. Actually we only provide necessary
conditions for the parameters (Z*, Ty, Vin, Q) to belong to such set (which is enough to get an upper
bound). This characterization can be expressed as a succession of geometric conditions on the initial
(at time t) relative positions of particles.

Section 8.2 then explains how to control the integral defining f7 (H®™). Recall that, by (4.4.6) and
by conservation of the energy,

H(WE)| = [Ha (Z3(10,)))] < eort BITOF WO
Since the initial data satisfy a Gaussian bound

‘ 2

(fO)BHm (ge0) < Crtme=F VI OF =LV O

the growth of |H(WS)] is easily controlled, so the main difficulty is to control the cross-sections
(8.0.2) c(ws) == IT s (00 = var (1)) ~wk)+
k=1

present in the measure du (\I/i) In order for this term not to create any divergence for large m, we need
a symmetry argument as in the classical proof of Lanford, but intertwined here with the estimates on
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the size of the small measure set. A similar procedure will be used in Section 8.1 to cure high energy
singularities arising from the geometric constraints themselves.

8.1. Dynamical constraints

Let A — p be a nested partition of {1*,...,n*}. We fix the velocities V,* at time ¢, as well as the
collision parameters (m, a, Ty, Vin, Q) of the pseudo-trajectories. We recall that V,,, = (vi,...,vm)
where v; is the velocity of particle 7 at the moment of its creation.

We denote by

n m

V2= (V) Vi =D () + ) of

i=1 i=1
(twice) the total energy of the whole pseudo-trajectory W¢ appearing in (8.0.1), and by K = n+m its
total number of particles. We also indicate by VZ (resp. V3 for any A C {1*,...,n*}) and K; (resp.
K ) the corresponding energy and number of particles of the collision tree with root at z; (resp. Z3%),
that is:

(811) j created in ‘I’?z‘}

Ki=1+# (particles created in q’i})

and

Vi= > V7,
(812) i tree in A

K, Z K; .

i tree in A

Note that V2 =3""  VZ? and K = Y. | K;.

In what follows, it will be important to remember the notations and definitions introduced in Chapter 4,
as well as the rules of construction of pseudo-trajectories explained in Section 3.2. In particular we
recall that, because of these rules, V2/2 is the energy at time zero of the configuration W0, while V2 /2
is not, in general, the energy of \I'??} (because of external recollisions which can perturb the velocities
of the particles inside the tree), unless \Il?i} does not recollide with the other \Ilf{j}, Jj#i.

— Clustering recollisions. We first study the constraints associated with clustering recollisions in the
pseudo-trajectory of the generic forest ¥§ . Up to a renaming of the integration variables, we can
assume that

A =41,...,0}.
We call 25, =z, the root of the forest.
By definition of Ay, and by Definition 4.4.2 of clustering recollisions, there exist ¢; — 1 clustering

recollisions occurring at times Tyec,1 > Trec,2 = *** = Trec,ty—1- Moreover, the corresponding chain of
recolliding trees {j1,41},---,{je 1,7, 1) is @ minimally connected graph T' € 7y, , equipped with an
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ordering of the edges. We shall denote by T a minimally connected graph equipped with an ordering
of edges, and by Tfl the set of all such graphs on A;. Hence we have

Ay = ) Ay e
T=eTd
almost surely, where X\, 7~ is the indicator function that the clustering recollisions for the forest A,
are given by T=. We also recall that, by definition, A, is equal to zero whenever two particles find
themselves at mutual distance strictly smaller than e.

It will be convenient to represent the set of graphs 7;‘? in terms of sequences of merged subforests.
The subforests are obtained following the dynamics of the pseudo-trajectory W5 backward in time,
and putting together the groups of trees that recollide. An example is provided by Figure 3.

S R A

Cs
Cq

T Ay =1{6} - @
4 Ny={3} - o

) =1 .

) =A{ °
3 = {2} )‘zg) ={1} = o«

=1

) =A{

) =A{

67 7} )\/(4) = {5} — Cy
5,670 Ny ={3,4} — o
3.4,5,6,7) Ng={L2} — o

FIGURE 3. An example of pseudo-trajectory W5, (¢1 = 7) satisfying the constraint Ay, <,
together with its minimally connected graph T, ordered graph T, and sequence of merged
subforests (A(k),)\zk))k. The roots of the trees z; = (z7,v;) and the clustering recollision
times appear in the picture on the top.

More precisely, we define the map
7;: > T = ()\(k),)\/(k)>k

by the following iteration :
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— start from Ay = {1,..., 01 };
— take the first edge {j1,71} of T, and set ()\(1),)\’(1)) = ({41}, {J1}); these two elements are
merged into a single cluster ¢1; set Ly :=¢; U (A1 \ {J1, 41 });
— at step k > 1, take ()\(k), )\’(k)) of Ly_1 in such a way that jr € Ay, J;, € )\’(k) where {ji, ji.} is
the k-th edge of T, and merge them into a single cluster cy; set Ly := cxU (Lk,l \ { A, /\’(k)}).
We can assume without loss of generality that max )\’(k) < max A(r).
The last step is given by ()\(gl_l), )‘261—1))’ which merges the two remaining clusters.

However this map is not a bijection, because the merged subforests do not specify which vertices of
Jk € Ax) and jj, € )‘zk) are connected by the edge. A bijection is therefore given by

(8.1.3) TSoT — ()\(k),x(k),jk € AysJk € X(k))k .

We define the root of the subforest Ay by

*
max A(g)

z}i(k) =z
and same definition for the root of )\’(k). We can then define
Ak ¥ _ _
Tk =T~ Thy o k=1,....00—1

as the relative position between the two recolliding subforests at time ¢. It is easy to see that, for any
given root position =}, = xy, € T?, the map of translations

(8.1.4) X; = (2], 2) ) — Xey1 = (@1, .., ey 1)
is one-to-one on T?“1=1 and such that

dX} _y =dXe - -
Thus (8.1.4) is a legitimate change of variables in (8.0.1).

Our purpose is to prove iteratively that, for k = ¢; — 1,...,1, the variable & associated with the k-th

clustering recollision has to be in a small set, the measure of which is uniformly small of size O(1/p.).

We define \Ilf\(k) (respectively W5, ) the pseudo-trajectory with starting particles Az (X(k)).
()

s> the collision trees in A; \ ()\(k) U /\’(k)) do not affect the subforests A, /\’(k)

in the time interval (7yeck,t). The clustering structure prescribed by 7'~ implies that \IlsE : and \I!f\(k>,
k

Since Treck > (Trec,s)

regarded as independent trajectories, reach mutual distance ¢ at some time Tyec k € (0, Trec,k—1)-

Given (&), fixed by the previous recollisions, we are going to vary Zj so that an external recollision
between the subforests occurs. This corresponds to moving rigidly i,(k) and \Ili(k> by acting on their

relative distance 2. In fact, the recollision condition depends only on this distance.

(with |Zs] > ),

Given a sequence of merged subforests ()\(k), )\2 k)> and a set of variables (&),
k

the k—th clustering recollision condition is defined by

Ty € By == U qu/ s

g in the subforest )‘(k)
¢’ in the subforest /\2}9)

with

(8.1.5) By = {aﬁ"k e T¢ ‘ |Zg/ (Trec,k) — Tq(Trec,k)| = € for some Tyeex € (O,Trec,k_l)} .
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Here z4(7), x4 (7) are the particle trajectories in the flows US e U (and 7 is of course restricted to
()

their existence times). In other words there exists a time Tyec k € (0, Trec,k—1) and a vector wyee x € Sé-1
such that

(816) xq’(Trec,k) - -Tq(Trec,k) = € Wrec,k -

The particle trajectories x4(7), 24 (7) are piecewise affine (because there are almost surely a finite
number of collisions and recollisions within the trees U5 iﬁk) ). Moreover, (24(7) =2y (7)) — (xjuc) _

x3, ) does not depend on &y, := x3}, — acj(k), because all positions in the collision tree are translated
() () ;

rigidly. This means that Z; has to be in a tube of radius € around the parametric curve (a:j\(k> —x’;\,( ))—
k

(xq(T7) — x4 (7)). This tube is a union of cylinders, with two spherical caps at both ends (see Figure

4). Note however that we have to remove from this tube the sphere corresponding to the exclusion at

the creation time (or at time ¢ if ¢ and ¢’ exist up to time t).

FIGURE 4. The tube By, leading to a recollision between particles ¢ and ¢’. The tube has
section ug t.

Therefore
By = U Bqq (675)
J

for a suitable finite decomposition of (0, Tyeck—1) (depending on all the history). We therefore end up
with the estimate (see Figure 4)

C - 57;
1Bur| < - Sl — 0l 87|
15 N
J

for some pure constant C' > 0.

We sum now over all ¢,q’ to obtain an estimate of the set By. To exploit the conservation of energy,
we exchange the sums over 07; and over ¢, ¢’. We get

C . S
|Bk‘ S ; Z |5Tj| Z |IU(§ Ti) _ ,U((I/TJ)| .
€ q,q
Applying the Cauchy-Schwarz inequality, the sum over ¢, ¢’ is bounded by

3 (v C K K+ 3 (00 * TRy K <V JEnw K 4Vy JEn K
Yq Ay BNy Yg' Ay A = Y Aoy PG TV A Ay T8 A
ql

q

where we use the notations for energy and mass of subforests introduced at the beginning of this
section. In the above inequality, we have used the independence of \Ili(k) and V5, on [Trec. ks t], and
*
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bounded their energies in d7; with V, , - and VAE@ respectively (see Eq.s (8.1.1)-(8.1.2)). Therefore we
infer that
Bl < — ¢ % K V3 K
| k‘ e Trec,k—1 ( Ak + A(k)) ( /\zk) + )\Ek))
8.1.7 ¢ 2 2
( ) = ;Treakfl Z (V]k +K]k) (V]IQ + Kjllc) .
¢ TREX(K)
A
In this way we have obtained an estimate which depends only on the energy and the number of particles

enclosed in the trees ¥§ , W5, .
Ak)? )‘(k)

Coming back to Equation (8.0.1) we observe that, if ), = 1, then there exist merged subforests such
that &y € By for k = ¢1—1,..., 1. Hence, iterating the procedure leading to (8.1.7) for k = ¢; —1 1
leads to an upper bound on the cost of the clustering recollisions in Ay:

(8.1.8)

/dxgl_lz&M 1g-(¥5,) < Y /dx1131/dx2 /dxgl 115,

A(k) Y

A

(k)
l1—1

4 1 Trec,£1—2
( ) B / dTrecl / " dTreC7g1_1 Z Z H VQ +K (Vi +K];c)

]ke)\ k k=1
(o) SN

e\t 1 !
-(%) atm XX I Bem) (B )
e (6= 1) k€N k=1 *
ot 45

Using the bijection (8.1.3) and compensating the 1/(¢; — 1)! with the ordering of the edges in T, we
rewrite this result as

) o\t
/dX5171AA1 1g€ (‘I’il) S () Z H (ij + Kj) (V?/ + K7/> 5
He/o rem, yayemm
where E(T) is the set of edges of T. Equivalently,
. o\t d; (T
(8.1.9) /dXeIAZ&Al 1g- (¥5,) < () > I (vi+ k) .
He TETn, jEM

where d;(T) is the degree of the vertex j in the graph T

— Clustering overlaps. We are now going to estimate the constraints associated with clustering overlaps
in the pseudo-trajectory of the generic jungle W¢ . The argument is similar, but not identical, to the
one just seen for clustering recollisions. Below we shall indicate the differences, without repeating the
identical parts.

Up to a renaming of the summation variables, we can assume that

P1 :{A17‘-‘7)‘7‘1}‘

We recall that each forest A; has a root 23 , which did not play any role in the previous estimate of
clustering recollisions. We call 2z} := z;‘\” the root of the jungle.
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By definition of ¢,,, by Definition 4.4.1 of the clustering overlaps, there exist r; — 1 clustering over-

laps, and the corresponding chain of overlapping forests ()‘J'l’)‘ji)’ o (Njo o1y Ay ) is a minimally
-

connected graph 1" € 7,,. Then, thanks to the tree inequality stated in Proposition 2.3.3,

(8.1.10) EAESY IIT 1~

TG'T,)I {)‘_7?)“7" YEE(T)

Note that, as mentioned in Section 4.4, we have more flexibility when dealing with overlaps than with

recollisions, as (\Ili are completely independent trajectories, whatever the ordering of the

J ) 1<j<r;
overlap times. We therefore have more freedom in choosing the integration variables.

To define the change of variables, we assign an ordering of the edges F(T) in the following way.
Consider T' € 7,, as a rooted graph, with root A,,. We start from the vertices of 7" which have the
maximal depth, say k (the depth is defined as the number of edges connecting the vertex to the root).
These vertices have degree 1, hence each one of the vertices identifies exactly one edge. We label
these edges in such a way that they keep the same mutual order of the vertices, starting from the
biggest one. We rename the ordered edges as e,,_1,€,,—2,.... Next we prune the edges, obtaining a
smaller minimally connected tree graph, on which we can repeat the labelling operation. We iterate
this procedure k times, producing a complete ordering of edges e,, _1,...,e;.

/

Let us write e, = {A[k]’AEk]} where )\[k] has depth larger than A[z). We can then define

.’f}'k = .’I}';/
k

*
g~ T k=1,...,r1—1

as the relative position between the two overlapping forests at time ¢. As in the case of clustering

recollisions, for any given root position x o

= x’gn € T?, the map of translations

(8.1.11) (25, i, ) > K= @)

is one-to-one on T4" =1 and it has unit Jacobian determinant. Thus (8.1.11) is a legitimate change
of variables in (8.0.1).

Given a graph T € 7,, and the corresponding sequence ()\[k],)\ikok, the k—th clustering overlap
condition is defined by
T € Bk = U qu/ R

q in the forest Ay
¢’ in the forest )‘fk]

with

Byy = {xk e T¢ ] Ir € [0,4] such that |ag(r) — zq (r)] = s}

where we used (4.4.3), and z4(7), x4 () are the particle trajectories in the flows S if - This set
x

has small measure
. C
(8.1.12) [Bi| < " (t+e) (V?\[k] + K/\[k]> (Vim + Kxfk])
€

for some constant C' > 0. Notice that the correction of O(e) comes from the extremal spherical caps
of the tubes in Figure 4 (since 1/\[k1~o>\fk] = 1 inside those regions).

Remark 8.1.1. — Note that overlaps can be classified in two types
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— those arising at time t or involving a particle q at its creation time ty : in this case, the distance
between the overlapping particles at Ty, satisfies only the inequality

|2q(Tov) — T/ (Tov)| < €.

This corresponds to one spherical end of the tube in Figure 4;
— and the regular ones, for which the two overlapping particles are exactly at distance € at Toy.
We then have the same parametrization as for recollisions

(8.1.13) Zq(Tov) — Ty (Tov) = EWoy -

This corresponds to the tube in Figure 4 minus the spherical end.

The final result is thus:

. . e\ .
(8.1.14) /dx)\l eday, e | < (M) (t+e) " Z H (V?\j +K/\j)
€

TeTo, A€

dx; (T)

— Initial clustering. Finally, we are going to estimate the non-overlap constraints in the initial data,
which are encoded in (4.3.1).

Recall that ff? T}(‘I/Z?, ceey ‘I/ZO) is a measure of the correlations between all the different clusters of
particles \Ilf)?, ey \I/f)? at time zero, and its definition has been adapted to reconstruct the dynamical
cumulants. An estimate of this correlation is obtained by integrating over the root coordinates of the

jungles z7 ..., a7 . asstated in the following proposition.

pr—

We recall that K, := m,, + |p;| denotes the number of particles in the configuration \PZ;O at time 0,

,
andthatK::ZKi:m—i—n.

=1

Proposition 8.1.2. — Under Assumption (1.1.5), there exists C > 0 such that, for e small enough,

0 0 0 * * K ﬂO 2 d(r—1
/‘]Td(r—l) i o (o O ) day, .. da <(r-2)!IC exp(— ?V )5 (r=1)

pP1’? Pr—1

Jor all U0 € D, at time 0. We have used the convention 0! = (—1)! = 1.

Recall that f{E? .r} 1s extended to DX\ D5, by setting F50 = 0 in (4.3.1) wherever it is not defined.

The following proof is an application of known cluster expansion techniques, see e.g. [33] and references
therein.

Proof. — Set Zy = (V0

P17
€0 and also omit to specify the exclusion constraints inside each U, in the

..,\IIZE) with \I/Z? € Dk, at time 0. To make notation lighter we shall

omit the superscripts
sequel. We define ®,, the indicator function of the mutual exclusion between the elements of the
set {W ..., W5 Z1,..., %} (where W ... WS
of p single particles):

_form 7 clusters and z1,. .., z, are the configurations

Prip = H Loyt s
h#h!
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b2

with (1, ..., mrip) = (U5, ., W5 [ 21,00, 2p) and “ny o np” meaning that the minimum distance

between elements of 7, and 7y is larger than . So we start from

(8.1.15) F{2(Zk) = (fO)M 25 / (P)°P(Zy) ®pp (¥, W5, Zy) A2
Dp

p>0

We want to expand ®,, in order to compensate the factor Z° whose definition we recall

(8.1.16) /D (fO)22(Zp) ®p(Zp) A2y,

p>0

and to identify the elements in the decomposition

i) =30 3 T

s= 1067757, 1

This will enable us to compute, and estimate, f{E? 7,}( S ¥ ). To do so, we naturally de-
velop @, into s clusters (each of them corresponding to one connected graph containing at least one
element of {W? ..., U }), plus a background &y of mutually excluding particles (necessary to recon-
struct Z.). Such a partition can be reconstructed isolating first the background component, and then

splitting {¥¢ WS }in s parts, to which we adjoin the remaining single particles (see Figure 5).

FIRERER)

o O jungle clusters ¥,

» background particles z;

FIGURE 5. Initial configurations are decomposed in s clusters containing at least one jun-
gle W7 ..., ¥, , plus a background of mutually excluding particles (for which we do not
expand the exclusion condition).

This amounts to introducing truncated functions ¢ via the following formula:

B117) @y (U5, 05, Z)) = > @50 (Z5) D D > Z ng(\pgi,Z&ji)

goC{1,...,p} s=1o€ePg . 01,505 1ye0Js t=1
Ui_gdi={1,.. 7p}
6NGL=0,k#h

where the sum » . . runs over the permutations of {1,...,s}. Note that the 5; may be empty (in
particular all &; are empty it |6o| = p). By (2.3.1), we see that

(\I/ZI, e Z Z H (_177h’\’77h/) )

GeCryyp (h,W)EE(G)
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where the sum runs over the set of connected graphs with r 4+ p vertices; more generally,

‘P(\I}ii ) Zﬁji) = Z H (71"7h’\’77h/) :

G€Clo;|+1a;,1 (hW)EE(G)

Using the symmetry in the exchange of particle labels, we get, denoting 3; := |5;],

p\(r—=5 p—S1— =81 L P!
51 59 5 50! 51!...5,!

choices for the repartition of the background particles, so that

S

S v 2002,-3 S5 S [ e [Tz,
p>0 s=1o0€ePs p>0 5¢,...,5:>0 i=1

>25i=p

Therefore, plugging (8.1.17) into (8.1.15) first and then using (8.1.16), we obtain

0\®K r S0 o _ _
oz = P2 s s (“. / <f°>®8°<250><1>80<ZSO>dZSO)

s=1c€Ps p>0 59,...,5:20

> 5i=p
1% [0 (Za)elvs,. 2:)d2
i=1

®KZKZZHZ%/f°®SI oV 25 )7,

s= lae’Psz 1s

hence finally

HE 5\ 15
(8.1.18) FE WS W ) = ()R (Zk) D= /fo P (Zy) (VS ..V Z,)dZ,.

p>0

Applying again Proposition 2.3.3 implies that ¢ is bounded by

(8.1.19) (w05 Z) < Y ] 1nh~nh/

TETryp (h,h)EE(T

where 7,4 is the set of minimally connected graphs with r+p vertices labelled by ¥ oo U 21, 2
By Lemma 2.4.1, the number of minimally connected graphs with specified vertex degrees di, ..., d,4p
is given by
r+p
(r+p— 2/ [[ @ - 1.
i=1

On the other hand, the product of indicator functions in (8.1.19) is a sequence of r + p — 1 con-
straints, confining the space coordinates to balls of size € centered at the positions of the clusters

we .U

pire-s Y5 21, .., Zp. Such clusters have cardinality K,,,..., K, > 1 with the constraint

YK, =K.
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We deduce that for some C’ > 0
0 * *
/]I‘d(r—l) |f{51 ____ }(\I/ZI,...,\I/ZT)W%I...da:pv_l

_ 9 r Kdi
< OK dlr=1) = 27 T (r +Pl ) (C'et )P Z E; ;
p>0 b diyeesdpyp>1 [[27 (di —1)!
< C/Kgd(r—ne—%ow Z (r —l—p'— 2)! (Clgdue)p 2K +p
p>0 P
< CIKEd(T_l)C_ﬁTOV22T_2(T o 2)| Z(le‘:dﬂs)p 62K+p )

p=>0

In the second inequality we used that

HZ d—l <HK€”1<H€2K”1—62

i= 1d>1

Since C’e?y, is arbitrarily small with &, this proves Proposition 8.1.2 with C' = 4C"e?. O

8.2. Decay estimate for the cumulants

In this section we shall prove the bound provided in Theorem 4 stated page 35 for f; 1, (H®™), and
actually the following, slightly more general statement.
Theorem 9. — Consider the system of hard spheres under the initial measure (1.1.6), with f° satis-

fying (1.1.5). Let H, : D([0,00[) — R be a continuous factorized function:

n

Hy (Za([0,00]) = [T H? (=:([0, o0])

i=1
and define the scaled cumulant f7 t]( n) by polarization of the n linear form (4.4.1). Then there

exists a positive constant C and a time T* = T*(Cy, Bo) such that the following uniform a priori bounds
hold:

1. If H,, is bounded, then on [0,T*]

|5 o (Ha)l < nlC™ (t+ )" TTIHY |
i=1

2. If H,, has a controlled growth
| Hn(Z0(0.4]))] < exp (aon + Bo sup Vals)?).
4 s€[0,t]
then on [0,T*]
| fr o, (Hr)| < (Ce™)™ (t + g)"In!.
3. Fiz 6 > 0. If H,, measures in addition the time regularity in the time interval [t — 0,t], i.e. if
for some i€ {1,...,n}

|Hn(Z,([0,1]))| < CLipmin (ltsu|p<(s |z:(t) — zi(9)], 1) exp (aon + % sl[lopt] \Vn(s)ﬁ) ,
—s|< se|0,
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then on [0,T*]
(8.2.1) [ f5 0. (Hn)| < CLipd(Ce®)™(t +¢)" 'nl.
In the previous section, we considered a nested partition A — p — o (with |o] = 1) of the
set {1*,...,n*}. We fixed the velocities V,* as well as the collision parameters of the pseudo-

trajectories (m, a, Ty, Vin, Qm). We then exhibited n—1 “independent” conditions on the positions X
for the pseudo-trajectories to be compatible with the partitions A, p. Now we shall conclude the proof
of Theorem 9, by integrating successively on all the available parameters. The order of integration is
pictured in Figure 6.

* * * * * ok * * * %
Ty Lo T3 Ty L5 L Ty xg T T1g Ty Ty Ti3 Ty

A6
P3

FIGURE 6. In this contribution to the cumulant of order n = 14, we integrate over the
positions of the roots in the following order: (i) first we integrate over the initial clus-
tering #,, = xio — 14 and £,, = x7 — xi4; (ii) secondly over the clustering overlaps
Tx, = 5 — x1g and &x, = x5 — 5 ,Tr, = x5 — x7; (iii) finally over the clustering recol-
lisions : i(;l) = x5 — x5, i‘yl) =x] — x5, 5:9” = x5 — x}, igAS) =5 — x7, JAJ(1A4) =
x5 — T§, :Eg%') = Ti3 — T4, 3%96) = x7y — Tis, 3596) = 271 — x75. Notice that the

variable x7, remains free.

For the proof of the first two statements in Theorem 9, we start by controlling the weight, simply using
the bounds

n
(8.2.2) HE) < TTIHD oo or  [H(WE)] < erontE77
i=1

Then we use that nothing depends on the root coordinates of the jungles z7 ,...,z;  inside the
integrand in (8.0.1), except the initial datum fff o} Therefore by Fubini and according to Proposi-

tion 8.1.2,

0 0 0 * * K BO 2 d(r—1
(8.2.3) /Td(ul)|f{517‘__7r}(\llf L)t L dat < (r—2)C exp(—?V)g( )

p1? Pr—1
for some C > 0, uniformly with respect to all other parameters.

Next, the clustering condition on the jungles gives an extra smallness when integrating over the roots
of the forests (see (8.1.14))

r ri—1 C L—r P T 5 dx, (T)
24 ] / 0, de;j<(> ¢ 1Y T (v +:,)™"
i=1 j=1

,UE =1 Te7—/’i )\jepi
uniformly with respect to all other parameters, for some possibly larger constant C'.
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The clustering condition on the forests gives finally an extra smallness when integrating over the
remaining variables &, according to (8.1.9). Notice however that the latter inequality cannot be
directly applied to (4.4.1), due to the presence of the cross section factors (8.0.2) in the measure
(3.3.5).

It is then useful to combine the estimate with the sum over trees ajy,. The argument is depicted
in Figure 7. We will present the arguments for A;, assuming without loss of generality that A\; =
{1,...,41}. We will denote by @ the restriction of the tree a to A1 with fixed total numbers of particles
Ky, -+ Ky, and by aj, C, the tree variables and the cross section factors associated with the s
creations occurring in the time interval (Tyec k, Treck—1) for 1 <k < 45,

’fh’ 281:5

|C~L2| =82 =1 pumber of creations per slice
’dg’ = §3 = 1

FIGURE 7. Integration over time slices.

As in the first line of (8.1.8), we have that
(8.2.5)

Z /dle—l ZA/\1 1g- (\1’5\1“0( f\1)|

< > e (%1)|/dsmglz|(32(fo§1)|/d@.../d@l,ﬂ&rl > 1Ce, (5,)]-

(AN ) agy

We can therefore apply iteratively the inequality (8.1.7) and the classical Cauchy-Schwarz argument
used in Lanford’s proof. Denote by

k
Sk = Z S;
i=1

the number of particles added before time Tyec k, so that

Szl =Mmx,
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(denoting abusively Tyece, = 0). We get:

Sk s—1 01
> lewn)l = ]I (Z [os = vult)] + D lvs — v:;<ts>|>

s=Sk_1+1 \u=1
Sk s—1 01
(8.2.6) < H ((gl + 5 —1)|vs| + Z |vu(ts)] + Z |UZ(tS)>
s=Sk_1+1 u=1 u=1
Sk

(0 +mx,) (1 + vs]) + [V, ?)

A
=

and

> /dXZ—l Ay, 1g=(Ty,)[C(Ty,)]

C l1—1 B ‘ mxq
< () 407 S T (V2+E) T T (6 +ma) @+ o) + [Va?)
He TET, jEM s=1

for some positive C'.

Recall that
exp —ﬂ|‘/|2 [V|? < Cm.
16m -

Combining (8.2) with the bound (8.2.2) on H, (8.2.3) and (8.2.4) leads therefore to

¢
/ |3 T 2 €(5) Lor (W5)H(US )0y Fi8 oy (30, 50| dX;
a =1
n—r
< (r—2)1C* exp (agn — %VQ) gdlr=1) <f) (t+e)" "
(527 - 2 a, (1)) [ 2 ()
(s 10 ee) ) IS 10w
i=1TET,, A\;€p: i=1TET, jEN
x (mA+n)"™ T+ vs),
s=1

valid uniformly with respect to all other parameters. Here and below, we indicate by C' a large enough
constant, possibly depending on Cy, By (but on nothing else) and changing from line to line.

The following step then consists in integrating (8.2.7) with respect to the remaining parameters
(Trn, Qm, Vin) and V¥ (with m fixed for the time being). Recalling the condition that t1 > t5 > -+ > t,,,
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we get

L
/ |37 TT A €(W5) Lo (W5 ) H(E )00 75y (W30, W30) AT dSndVin| 2

_ c\"" _ (o™
_ K _d(r—1) n—r m
< (r—=2)IC"%¢ (Me) (t+¢) o (m+mn)

X ZZ ZZ /exp(aon—V2>ﬁ1+|vs|dVdV
TheTp, TreTp, 7:1673\1 flETAg =1
x; (i)

e ~
x sup | exp ( H H (VA +K>\) A H H (V?+Kj)dj(Ti)

i=1 \j€p; i=1 jEN;

/exp (fg|w|2> lwldw < C',

D
exp (—fgWP) (VP +K)” <ck (g)

Using the facts that

for positive K, D, we arrive at

4
/ S0 TT A C(W5) 1g: (W) (WS )y S0y (Wil W30) AT, d Vi |02,
a i=1

O o n—r
(828) < (T - 2)' (M> (t -+ 8) gd(""*l)(ct)menag

ﬁ > I (dy, (1)) ™ @ ﬁ S I (dj(T))dj(T)

i=1 T€T,, X\j€p: =1 TeT,, J€N
For each forest (jungle) we ended up with a factor » ;s Hi;l (di(T))di'(T)
of the forest (jungle). Applying again Lemma 2.4.1, this number is bounded above by

k d‘.ii k
(k—2)! Z Hm_(k—z)“ oo I d

dy,,dy =1

where k is the cardinality

1<d;<k-1 1<d;<k—1
S, di=2(k—1) S di=2(k—1)
<(k—-2)re*t2 Y"1
dy,di
1<d;<k—1
>, di=2(k—1)
The last sum is also bounded by C*. Taking the sum over the number of created particles m, we arrive
at
/ ‘/ p(d¥5, ) Ay, C(T5,) 1g- (\Pii)H(‘I’iz)} X @p [y (W50, U0) dZ)

(8.2.9)

n—rcr 1 r ¢
< (r = 2)(Ceo) (““)H_I)H ) TT -2 S ey

He i=1 j=1
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valid uniformly with respect to all partitions A < p, and for ¢ small enough. Finally, summing (8.2.9)
over the partitions A — p we find (recalling the convention 0! = (—1)! = 1)
n

ZZiZ(r—Q)!iHI ; Jl;[le—2

=1 XePf r=1pePy

! o - ‘
:Z 2 Z Z Mllé..&! T 2 ,Hl(”_Q'ng -2
i p

(=1 Z], €g>1 r=1 T1,
A= Z 7‘176

2n
1
<n!|1 —_—
=N +Zr(r—1)
r>2

This concludes the proof of the first two estimates in Theorem 9. The third statement (8.2.1) is

obtained in a very similar way. If the pseudo-particle ¢ has no collision or recollision during [t — ¢, ]
then

s [ai(®) = 1(5)] < 3l (0)] < 1V (0]

This is enough to gain a factor § from the assumption on H,,.

If a collision occurs during [t — 4, t], then by localizing the time integral of this collision in Duhamel
formula, one gets the additional factor ¢ (with a factor m corresponding to the symmetry breaking in
the time integration dT,,).

Finally, it may happen that a recollision occurs during [t — d,¢]. This imposes an additional constraint
on the parents of the recolliding particles and the recollision time has to be integrated now in [t — ¢, t].
Thus an additional factor J is also obtained (together with a factor n corresponding to the symmetry
breaking in the time integration dO"}). This completes the proof of (8.2.1). O

Remark 8.2.1. — Note that the sum over m in (8.2.9) is converging uniformly in €, which means
that the contribution of pseudo-trajectories involving a large number m of created particles can be
made as small as needed. In particular, to study the convergence as € — 0, it will be enough to look at
pseudo-trajectories with a controlled number m < mg of added particles.



CHAPTER 9

MINIMAL TREES AND CONVERGENCE OF THE CUMULANTS

The goal of this chapter is to prove Theorem 5 p. 39, which can be restated as follows.

Theorem 10. — Let H,, : (D(]0,+0[))"” — R be a continuous factorized function H,(Z,([0,t])) =
[T, H9(2([0,t])) such that

(9.0.1) ’H ([0, t]))‘ <exp (aon + @ sup |Vn(s)|2> ,
4 s€[0,t]
with By defined in (1.1.5).

Then the scaled cumulant f 0 t](Hn) converges for any t < T* to the limiting cumulant introduced
n (5.1.4)

fn [0 t] Z Z Z /d,usmg,T a\¥n m)H(\Ijn,m)fO®(n+m)(\1/9L7m) .

TGTN m aeAn m

After some preparation in Section 9.1, we present in Section 9.2 the leading order asymptotics
of fﬁ,[o, 1 (H®™) by eliminating all pseudo-trajectories involving non clustering recollisions and over-
laps. Section 9.3 is devoted to the conclusion of the proof, by estimating the discrepancy between the
remaining pseudo-trajectories ¥5 and their limits ¥,,.

9.1. Truncated cumulants

An inspection of the arguments in the previous chapter shows that initial clusterings are negligible
compared to dynamical clusterings. Indeed Estimate (8.2.9) shows that the leading order term in the
cumulant decomposition (4.4.1) corresponds to choosing r = 1: this term is indeed of order

Cnl(t+e)" !
while the error is smaller by one order of e. We are therefore reduced to studying

pe” 12 Z/ Hd“ (¥5,) ‘I’AJZ&M) e F(25)).

=1 XePt
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We shall furthermore consider only trees of controlled size: we define, for any integer my,

(9.1.1) fE fgot (H®n L /”Ls 12 Z /dZ*/H d,u,m0 \IIA Z&)\ ’H(\I/)\ )}@{1 L0} f{l}(\I/f)?),

=1 \eP’

where the measure on the pseudo-trajectories is defined as in (3.3.5) by

mq
Ay (U5,) = S Y AT, Vi, 16-(95) [ (sk (v — vay (1)) .wk)+>.
m;<mg aEAf . k=1
Then by Remark 8.2.1, we have
(9.1.2) lim | fe o  (HE™) = f2 0] (H®™)| = 0 uniformly in «.

mo—r0oQ0
Next let us define

Fo o (HE™) = 12 3 /dZ*/H dp (W5, ) Ay, H (5, )}‘P{l Loy FEy (5))

=1 \ePL

where A A; 18 the characteristic function supported on the forests \; having exactly |\;| — 1 recollisions,
and @y . ¢ is supported on jungles having exactly £ — 1 regular overlaps, so that

— all recollisions and overlaps are clustering;

— all overlaps are regular in the sense of Remark 8.1.1.
Since f 104 (H®™) is defined simply as the restriction of f¢ [0.4]
a bpeaal choice of initial data), the same estimates as in the previous chapter show that

|ffl,[o,t](H®n)| < CMal(t+e) "

(H®™) to some pseudo-trajectories (with

Furthermore, defining its truncated counterpart

=1 \ePf
there holds

(9.1.3) lim |f 0. (HE™) = fome (H®™)| = 0 uniformly in €.

mo—r 00 [O t

The limits (9.1.2) and (9.1.3) imply that it is enough to prove that the truncated decomposi-
tions f¢% (H®") and o o (H®") are close: we shall indeed see in the next paragraph that non
clustering recollisions or overlaps as well as non regular overlaps induce some extra smallness.

Note finally that the estimates provided in Theorem 9 show that the series f° 10.4] (H®™)/n! converges
uniformly in € for ¢t < T*, so a termwise (in n) convergence as ¢ — 0 is sufficient for our purposes. We
therefore shall make no attempt at optimality in the dependence of the constants in n in this chapter.

9.2. Removing non clustering recollisions/overlaps and non regular overlaps

Let us now estimate |f [Tgot (H®") — f= fg"t] (H®™)|. We first show how to express non clustering recolli-

sions as additional constraints on the set of integration parameters (Z, Ty, Vin, Q). The constraints
may be either “independent” of the constraints described in the previous chapter, or can reinforce one
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of them in an explicit way: in particular, we shall see that the size of the sets By of parameters, intro-
duced in Section 8.1, becomes smaller by a factor O(Eé) in the presence of a non clustering recollision
(and similarly for clustering overlaps). This argument is actually very similar to the argument used to
control (internal) recollisions in Lanford’s proof (which focuses primarily on the expansion of the first
cumulant).

In the coming section we discuss one elementary step, which is the estimate of a given non clustering
event, by treating separately different geometrical cases — we shall actually only deal with non clustering
recollisions, the case of overlaps being simpler. Then in Section 9.2.2 we apply the argument to provide
a global estimate.

9.2.1. Additional constraint due to non clustering recollisions and overlaps. — We consider
a partition A of {1*,...,n*} in £ forests A1,..., A\;. We fix the velocities V¥, as well as the collision
parameters (T, Vin, Qm), with m < mgf. As in Section 8.1 we denote by V2 := (V,*)2 + V.2 (twice)
the total energy and by K = n + m the total number of particles, and by V? and K; the energy and

number of particles of the collision tree W, with root at z;.

Let us consider a pseudo-trajectory (compatible with A) involving a non clustering recollision. We
denote by t.c. the time of occurrence of the first non clustering recollision (going backwards in time)
and we denote by ¢,¢' € {1*,...,n*} U {1,...,m} the labels of the two particles involved in that
recollision. By definition, they belong to the same forest, say A1, and we denote by \II? i and \II? iy
their respective trees (note that it may happen that i = 7’).

The recollision between g and ¢’ imposes strong constraints on the history of these particles, especially
on the first deflection of the couple ¢, ¢’, moving up the forest (thus forward in time) towards the root.
These constraints can be expressed by different equations depending on the recollision scenario.

Self-recollision. Let us assume that moving up the tree starting at the recollision time, the first
deflection of ¢ and ¢’ is between g and ¢’ themselves at time #: this means that the recollision occurs
due to periodicity in space.

S]]

time £ time £ = 73,

time tyec time tec

FIGURE 8. The first deflection of ¢ and ¢’ can be either the creation of one of them (say gq),
or a clustering recollision.

This has a very small cost, as described in the following proposition (with the notation of Section 8.1).
Proposition 9.2.1. — Let q and q' be the labels of the two particles recolliding due to space period-

icity, and denote by t the first time of deflection of q and ¢, moving up their respective trees from the
recollision time. The following holds:
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— If q is created next to ¢’ at time t with collision parameters @ and v, and if v, is the velocity
of q at time t+, then denoting by \I/?i} their collision tree there holds

- C_ o
> > —~ P d+1 d+1
/ 1Se1f—recollision with creation of ¢ at time £ | (U - Uq) : W|dtd(.dd’l] S ,LL Vi + (1 + t) + .
€

— Ift corresponds to the k-th clustering recollision in s, between the trees \If?jk} and \I/?j;c}, then

. C d+1
/ ]-Self—recollision with a clustering recollision at time & dl’k S E ((ij + VJ;C)(I + t)) .

€

Note that in the second case, the condition is expressed in terms of the root &; with the notation
of Section 8.1: it is not independent of the condition (8.1.5) defining By, but it reinforces it as the
estimate provides a factor 1/u? instead of 1/p..

Geometry of the first recollision. Without loss of generality, we may assume that the first deflection
moving up the tree from time ¢, involves q. We denote by ¢ the time of that first deflection and
by ¢ # q,q the particle involved in the collision with ¢ (see Figure 9). To simplify we denote by 7,
the post-collisional velocity of particle ¢ if ¢ is created at time ¢ and the post-collisional velocity of
particle ¢ if ¢ is created at time ¢ . Similarly we denote by 7, the velocity of particle ¢’ at time ¢.

q

time ¢ time ¢ = 7

time ¢,ec time ¢,ec

FIGURE 9. The first deflection of ¢ can be either a collision, or a clustering recollision.

The result is the following.

Proposition 9.2.2. — Let q and q' be the labels of the two particles involved in the first non clustering
recollision. Assume that the first deflection moving up their trees from time tiec tnvolves q and a
particle ¢ # ¢, at some time t. Then with the above notation

— 1Ift is the creation time of q (or ¢), denoting by & and v the corresponding collision parameters,
by \I/?i} their collision tree and by \I/f{i,} the collision tree of q’, there holds

__ e 2d+2 P gl/2
/ 1Recollision with a creation at time £ ‘(U_Uq (ﬂ) W|dtdeU S C(V1+V1’) 2 (:l—‘V_t)d—"_é min (15 M) .
q Y
— Ift corresponds to the k-th clustering recollision in the tree s, between \I/?jk} and \I/?j’;}, and

if W?i,} is the collision tree of q', then

3
2

C . 81/2
/ ]-Recollision with a clustering recollision at time ¢ dxk S ; (ij + V]}’C + Vi') (1 + t) 2 min la ﬁ .
5 q — Vg’
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Note that as in the periodic situation, the condition in the second case is expressed in terms of the

1/2

root &, and reinforces the condition (8.1.5) defining B,y by a factor ¢'/#, up to a singularity in

velocities that has to be eliminated.

The geometric analysis of these scenarios and the proof of Propositions 9.2.1 and 9.2.2 are postponed
to Section 9.4. The estimates in the first case were actually already proved in [5], while the second
one (the case of a clustering recollision) requires a slight adaptation.

Elimination of the singularity. It finally remains to eliminate the singularity 1/|5, —7,|, using the next
deflection moving up the tree. Note that this singularity arises only if the first non clustering recollision
is not a self-recollision, which ensures that the recolliding particles have at least two deflections before
the non clustering recollision. The result is the following.

Proposition 9.2.8. — Let q and ¢’ be the labels of two particles with velocities vy and vy, and denote
by t the time of the first deflection of q or ¢' moving up their trees.
— If the deflection at t corresponds to a collision in a tree \Il?i} with parameters w,v, then

cl/2

. — = ~ | AT 377~ d+1_.1
/ 1Recollisi0n with a creation at time ¢ 111 <1a > ‘(U - Uq) : w’dtdvdw S CtVl * €8

lvg — vy
— if t corresponds to the k-th clustering recollision in the tree Vs, between \Il‘?jk} and \I/?j’,c}, then

1/2 Ces(V,, + V)t
/min <1,| c )dik< Vo, ]’“) .
q

— -

The proposition is also proved in Section 9.4 of this chapter.

9.2.2. Removing pathological cumulant pseudo-trajectories. — We apply now the geometri-
cal estimates of the previous section to show the following result.

Proposition 9.2.4. — With the previous notation, for any finite mg, there holds

i iy (07°7) £ = .
Proof. — We first consider the case of pathological pseudo-trajectories involving a non regular clus-
tering overlap. By definition (see Remark 8.1.1), this means that the corresponding 7., has to be equal
either to t or to the creation time of one of the overlapping particles. In other words, instead of being a
union of tubes of volume O((t+¢)/pu.), the set By describing the k-th clustering overlap (see (8.1.12))
reduces to a union of balls of volume O(g?), so that

|l§k| < CEdK)\[k] K)‘Ek] .

The non clustering condition is therefore reinforced and we gain additional smallness.

Let us now consider the case of pathological pseudo-trajectories involving some non clustering recolli-
sion/overlap. We can assume without loss of generality that the first non clustering recollision (recall
that we leave the case of regular overlaps to the reader) occurs in the forest \y = {1,...,¢1}. The
compatibility condition on the jungles gives smallness when integrating over the roots of the jungles
(see (8.2.4)). The compatibility condition on the forests Az, ..., A¢ is obtained by integrating (8.2.5)
as in Section 8.2. We now have to combine the recollision condition with the compatibility conditions
on A1 to obtain the desired estimate. As in the previous chapter, we denote by & the restriction of
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the tree a to A1, and by ag, Cx the tree variables and the cross section factors associated with the sy
creations occurring in the time interval (Tyec k, Trec,k—1)-

We start from (8.2.5), adding the recollision condition: we get

Z / dz;hl e dzj\l,el—l ZA)\1 ]'g (\I/il) |C(¢’§\1)| ]-\I/ilhas a non clustering recollision
a
<> len (35, /dﬁsllgl > e (5,)] /d:fcg .
5.1 &2

X /dfle—l 1z, ., Z Ce, (‘I’f\l)| 1\If§1has a non clustering recollision -
agy
As shown in the previous section, the set of parameters leading to the additional recollision can be
described in terms of a first deflection at a time . We then have to improve the iteration scheme
of Section 8.2, on the time interval [Tyec,k, Trec,k+1] containing the time ¢. There are two different
situations depending on whether the time ¢ corresponds to a creation, or to a clustering recollision.

If ¢ corresponds to a creation of a particle, say ¢, the condition on the recollision can be expressed in
terms of the collision parameters (¢,v,w) = (¢, ve,w.). We therefore have to
— use (8.2.6) to control the collision cross sections |Cj (\Ilil)’ for integration variables indexed
by se{c+1,...,5;}
— use the integral with respect to ¢,@, v to gain a factor

C(1+ Vn+m)2d+3/2(l + t)d+1/2 min (1, _ e/ )
[0g — vg|
by Proposition 9.2.2. Note that the geometric condition for the recollision between ¢ and ¢’
does not depend on the parameters which have been integrated already at this stage, and to
simplify from now on all velocities are bounded by V,,,;
— use (8.2.6) to control the collision cross sections |C; (¥, )| for s € {S;—1 +1,...,c—1};
— use the integral with respect to £; to gain smallness due to the clustering recollision.
Note that, since ¢ is dealt with separately, we shall lose a power of ¢ as well as a factor m < fmg in the
time integral. We shall also lose another factor K? corresponding to all possible choices of recollision
pairs (g,¢'): at this stage we shall not be too precise in the control of the constants in terms of n,
and mg, contrary to the previous chapter.

Ift= Trec,k COrresponds to a clustering recollision, we use the same iteration as in Section 8.2:
— use (8.2.6) to control the collision cross sections |Ck (\Ilil) !;
— use the integral with respect to Zj to gain some smallness due to the clustering recollision,
multiplied by the additional smallness due to the non clustering recollision.
As in the first case, we shall lose a factor K2 corresponding to all possible choices of recollision pairs.

After this first stage, we still need to integrate the singularity with respect to velocity variables, which
requires introducing the next deflection (moving up the root).

We therefore perform the same steps as above, but integrate the singularity

. 1/2
i (1, |Uq - Uq’)

by using Proposition 9.2.3.
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Remark 9.2.5. — Note that it may happen that the two deflection times used in the process are in
the same time interval [Trec ks Trec,k+1], Which does not bring any additional difficulty. We just set apart
the two corresponding integrals in the collision parameters if both correspond to the creation of new
particles.

Integrating with respect to the remaining variables in (T, Q.. Vi) and following the strategy described
above leads to the following bound

/ (H A)\ 19 (\Ij)\ )H(‘Ij)\i)> 1\1131 has a non clustering recollision @{1,,@}]04?10} ddededeZ:,
Lo v (LT a
< Lles (bmg)*C" (,u) cHma+)°.
Finally summing over m < ¢mg and over all possible partitions, we find
V2 () — fiy (HEM] < O (6 + )il
where C' depends on Cy, ag, B9 and mg. This concludes the proof of Proposition 9.2.4. O

In the following, we shall denote by B¢ the set of integration parameters leading to a non clustering
recollision/overlap or to a non regular overlap.

9.3. Proof of Theorem 10 : convergence of the cumulants

In order to conclude the proof of Theorem 10, we now have to compare f° ’78015] (H®™) and f, j0.4(H®")
defined in (5.1.4) as

fn [Ot H®" = Z Z Z /dﬂmngTa nm) (\Pn,m) (f0)®(n+m) (Wg,m)

TeT;F ™ acAf,,

The comparison will be achieved by coupling the pseudo-trajectories and this requires discarding the
pathological trajectories leading to non clustering recollisions/overlaps and non regular overlaps. Thus
we define the modified limiting cumulants by restricting the integration parameters to the set G, which
avoids internal overlaps in collision trees of the same forest at the creation times, and by removing the
set B¢ introduced at the end of the previous section

[0 t] H®’ﬂ : Z Z Z /dusmgTa )H(\Ijn,M)lgi\Ba (f0)®(n+m) (\Ilg,m)a

TeTE ™ aGAn m

where du;'frfg 1. Stands for the singular measure with at most mq collisions in each forest. We stress
the fact that f 0 t](H®”) depends on € only through the sets B¢ and G°. We are going to check that
(9.3.1) i T o, (") = oy (HE™)| = 0.

The analysis of the two previous sections may be performed for the limiting cumulants so that restrict-
ing the number of collisions to be less than mg in each forest and the integration parameters outside
the set B® leads to a small error. The control of internal overlaps, associated with G¢, relies on the
same geometric arguments as discussed in Section 9.2.1: indeed, in order for an overlap to arise when
adding particle k at time ¢, one should already have a particle which is at distance less than 2¢ from
particle ag, which is a generalized recollision situation (replacing € by 2¢). This completes (9.3.1).
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In order to compare fm (H®™) and fE e (H®™), we first compare the initial measures, namely f{1}

[0,8] [0,¢]
with (f0)®(+m)  This is actually an easy matter as returning to (8.1.18) we see that the leading order

term in the decomposition of f{E?} is F?

n+m> Which is well known to tensorize asymptotically as u. goes

to infinity (for fixed n 4+ m), as stated by the following proposition.
Proposition 9.8.1 ([17]). — If f° satisfies (1.1.5), there exists C > 0 such that
vm, ‘ (F% - (f0)®m> 1'D;"/(Zm)’ < OMe e B Vnl®

At this stage, we are left with a final discrepancy between fm[% A(H®™) and fE Egot] (H®™) which is due
to the initial data and H being evaluated at different conﬁguratlons (namely ¥,, and ¥Z). We then

need to introduce a suitable coupling.

In Chapter 5, we used the change of variables (5.1.1) to reparametrize the limiting pseudo-trajectories
in terms of =%, V.* and n — 1 recollision parameters (times and angles). In the same way, for fixed ¢, we
can use the parametrization of clustering recollisions (4.4.5) and of regular clustering overlaps (8.1.13)
to reparametrize the non pathological pseudo-trajectories in terms of z},V,* and n — 1 recollision
parameters (times and angles). As in (5.1.3), we define the singular measure for each tree a € A7,
and each minimally connected graph T € 7,

Aiging 1,0 = AT dQmdVindrydVy d@dubtdwdubtnsz Vi — Va, (ti) -w¢)+

(9.3.2)
> H Z Clust qu ?IUSt) Vg (T:lust)) . CL)ZIUSt)+1g€\BE

e€E(T) {qe,q. }~e

denoting by {qe, ¢’} ~ e the fact that {q., ¢’} is a representative of the edge e, and by ¢t and Q¢lust
the n — 1 clustering times 7<%t and angles w"* for e € E(T).

We can therefore couple the pseudo-trajectories ¥, and ¥¢ by their (identical) collision and clustering
parameters. The error between the two configurations ¥¢ and ¥,, is due to the fact that collisions,
recollisions and overlaps become pointwise in the limit but generate a shift of size O(e) for fixed e. We
then have

S (1) = U, (1) < C(n+m)e forall e|0,¢.
Such discrepancies concern only the positions, as the velocities remain equal in both flows.
It follows that

®(n+ ®(n+ -38 2

()5 () = (£ ()] < Crmpee ¥ V!

having used the Lipschitz continuity (1.1.5) of fY. Using the same reasoning for H (assumed to be

continuous), we find finally that for all n,mg
hm |fs fg"t](H‘g") f [0, t](H®n)| =0.

This result, along with Proposition 9.2.4, Estimates (9.1.2), (9.1.3) and (9.3.1) proves Theorem 10. [

9.4. Analysis of the geometric conditions

In this section we prove Propositions 9.2.1 to 9.2.3. Without loss of generality, we will assume that
the velocities V; are all larger than 1.
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Self-recollision: proof of Proposition 9.2.1. Denote by ¢, ¢’ the recolliding particles. By definition
of a self-recollision, their first deflection (going forward in time) involves both particles ¢ and ¢'. Tt
can be either a creation (say of ¢ without loss of generality, in the tree \I/?Z.} of ¢'), or a clustering
recollision between two trees (say Uy, and \I/?J}Q} in W5 ) (see Figure 8).

o If the first deflection corresponds to the creation of g, we denote by (¢, @, v) the parameters encoding
this creation. We also denote by 7, the velocity of ¢’ just after that deflection in the forward dynamics,
and by \Ilj':[i} the collision tree of ¢’ (and ¢). Denoting by v, and vy the velocities of ¢ and ¢’ after

adjunction of ¢ (in the backward dynamics) there holds
(9.4.1) €0 4 (Vg — Vg ) (tree — ) = EWree + ¢ with ¢ € Z%\ {0}

which implies that vy — vy has to belong to the intersection K¢ of a cone of opening € with a ball of
radius 2V;.

Note that the number of (’s for which the sets are not empty is at most O(V?td).

— If the creation of ¢ is without scattering, then v, — vy = ¥ — 9, has to belong to the union of
the K¢’s, and

/ 1Self—recollision with creation at time ¢ without scattering‘ (17 - ’Dq) . a)‘dfdwd@
< Ve stép/ Li—s,ex.| (V= 1) - w|dtdodo < Ce¥ ' VE(V;)4H
— 1If the creation of ¢ is with scattering, then v, — vy = o — 9, — 2(0 — ¥,) - @@ has to belong to
the union of the K¢’s. Equivalently © — 94 lies in the union of the S;K¢’s (obtained from K¢
by symmetry with respect to @), and there holds
/ ]-Selffrecollision with creation at time t with scattering‘ (7-_) - /l_]q) : OT)!dt_d(Dd’D
< Ccvitd sup / Lo—s,esokc | (0 —0q) - @|dtdwdy < Ce®'V(Vit)4tt.

o If the first deflection corresponds to the k-th clustering recollision between \I/?jk} and \I’?J}Q} in the

forest W for instance, in addition to the condition 2 € Byy which encodes the clustering recollision
(see Section 8.1), we obtain the condition
(9 4 2) EWrec,k T (Uq - Uq/)(trec - Trec,k) = EWrec + C with C € VA

o and vy — vy = Vg — Uy — 2(Vg — V') * Wrec,k Wrec,k
denoting by 74,7, the velocities before the clustering recollision in the backwards dynamics, and
by wrec,; the impact parameter at the clustering recollision. We deduce from the first relation that v, —
vy has to be in a small cone K. of opening e, which implies by the second relation that wrec ; has to
be in a small cone S¢ of opening e.

Using the change of variables (5.1.1), it follows that

N d—1 _ _
/ 1Selffrecollision with clustering at time ¢ dxk é 05 tsup/ ]-wrec‘kGSZ (('Uq - 'Uq/) : Wrec,k)dwrec,k
¢

d+1
< O (t(vjk + Vj;c))
This concludes the proof of Proposition 9.2.1. O

Non clustering recollision: proof of Proposition 9.2.2
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Denote by q,q the recolliding particles. Without loss of generality, we can assume that the first
deflection (when going up the tree) involves only particle g, at some time . It can be either a creation
(with or without scattering), or a clustering recollision.

o If the first deflection of ¢ corresponds to a creation, we denote by (¢,@,?) the parameters encoding
this creation, and by (Z4,74) the position and velocity of the particle ¢ before the creation in the
backward dynamics. As explained before the statement of Proposition 9.2.2, we use that notation even
if ¢ is created at time ¢ and c is its parent. Note that locally in time (up to the next deflection) 7, is
constant, and Z, is an affine function. In the same way, denoting by (Z,, U¢) the position and velocity
of the particle ¢/, we have that 7, is locally constant while Z, is affine.

There are actually three subcases :
(a) particle ¢ is created without scattering : v, = ¥ ;
(b) particle g is created with scattering : v, =0+ (0 —7,) - W@ ;
(c) another particle is created next to ¢, and ¢ is scattered : vy = T4 + (0 — 7y) - W @.

The equation for the recollision states

Tg(t) + e — Ty (t) + (vg — Uy ) (trec — ) = Ewrec + ¢ in cases (a)-(b),
(9.4.3) _ _ _ .
Zg(t) — Zg () + (vg — Vg ) (trec — ) = Ewrec + ¢ in case ().

Let us set
me‘/ = Vt + Vi/ .
We fix from now on the parameter ¢ € Z¢ N By, .+ encoding the periodicity, and the estimates will be

multiplied by V¢,,¢¢ at the very end. Define

53 = L () — e — T (F) + ¢) = b1 + é(aq, — 5,)(F — to) in cases (a)-(b) |

ox :=

M=o =

(Tqr(t) = g (t) +¢) = 61 + %(@q/ — 0g)(t — to) in case (c),
Trec ‘= (trec - E)/E and 7 := (E— to)/&‘7

where 0z is orthogonal to oy — ¥, (this constraint defines the parameter ty). Then (9.4.3) can be
rewritten

1
(9.4.4) Vg — Ty = — (w +0x) +7(0g — T)q)).
Trec

We know that v, — ¥y belongs to a ball of radius V; ;. In the case when |7(0y —,)| > 2, the triangular
inequality gives

1 1
|7'(17q’ - 77q)| < —

5 . = |vg — V| < Vi
TreC rec

Wree + 021 + 7(Ty — Ug)

and we deduce that

1 2V, i
< 5

Tree  |T|[Ug — gl
hence vy — Uy belongs to a cylinder of main axis dx; + 7(9y — 04) and of width 2V, ;//|7||7, —
Ug|- In any case, (9.4.4) forces v, — Uy to belong to a cylinder R of main axis dz; + 7(0y — y)
and of width CV; ; min (

than CV¢,, min (

1). In any dimension d > 2, the volume of this cylinder is less

1
[T[|og=0g/ |

1
[T[15g =T |
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Case (a). Since vy = 7, Equation (9.4.4) forces o — 9y to belong to the cylinder R. Recall that 7 is a
rescaled time, with
_ t,._ C
‘(Uq - Uq’)T| < g|“q - Uq" + |5x\|| < ;(Vi’i’t +1).
Then
B C(Viyi/t%»l)/e 1 du
/ 15_{1 JER ’('E - ﬂq) . &J|dtd@d17 S CV?‘;l/ min (7 1) e
|B|<V, 4 ¢ ’ —C(V,; yt+1)/e |ul |Ug — Vgt
e(|log(Vy,it + 1) + |loge)

< Ovdtt .
- bt |77q - 1_’q’|

Cases (b) and (c). By definition, v, belongs to the sphere of diameter [v,7,]. The intersection I of this
sphere and of the cylinder vy + R is a union of spherical caps, and we can estimate the solid angles of
these caps.

FIGURE 10. Intersection of a cylinder and a sphere. The solid angle of the spherical caps is
less than Cymin(1, (n/R)"/?).

A basic geometrical argument shows that @ has therefore to be in a union of solid angles of measure

. v
less t_han C'min ((W
and ¢, we obtain

_ 1 1/2 ~
/ Lo,e1 |(0—0,) - @|dtdwdo < V; min ((,7) ,1)dtd1‘;
[|<V, 4 |9|<V, |7-qu

_@q"

C(Vi,i’t+1)/5 1 d
< C’V;“{,l / min ( 72 1)5 — ui
’ —C(V,; yt+1)/e |ul [0 — Vg

i,/

)1/2, 1). Integrating first with respect to @, then with respect to v

1
4y e/t

i

<CV - .
|Ug — Vg

We obtain finally that
1
_ 3 3
(0 — 1) - @|dbdwdo < CVI42 (14 )dts .
7 [0g — /|

/ 1Recollision of type (a)(b)(c)

o If the first deflection of ¢ corresponds to a clustering recollision. With the notation of Section 8.1
we assume the clustering recollision is the k-th recollision in W5 between the trees W5 and e,
.




112 CHAPTER 9. MINIMAL TREES AND CONVERGENCE OF THE CUMULANTS

involving particles ¢ € \Il?jk} and ¢ € \I/?j,} (with ¢ # ¢') at time ¢ = Tyec - Then in addition to the
k
condition
Zr € Bge

which encodes the clustering recollision (see Section 8.1), we obtain the condition

(i'q(Trec,k) - xq’(Trec,k)) + (Uq - ’Eq’)(trec - Trec,k:) = EWrec + Ca

9.4.5
( ) and vy = Ug — (T — Ue) * Wrec,k Wrec,k

denoting by (Z4,7,4) and (Z, U.) the positions and velocities of ¢ and ¢ before the clustering recollision.
Note that, as previously, v, and v, are locally constant. Defining as above

1
= g(fq(”e@’f) = Tg(Trec,k) +€) = 021 + (Vg — V) (Trec,k — to0)/€

and the rescaled times

Trec = (trec - Trec,k)/e and 7 =: (Trec,k - to)/E,
we end up with the equation (9.4.4), which forces v, — Uy to belong to a cylinder R of main axis dz —
7(vg — V¢) and of width CVj, ;i min ( ), where

1
ECERI
Vg = Vi + Vi + Vi
and W, is the collision tree of ¢’. Then v, has to be in the intersection of the sphere of diameter [7, U]

and of the cylinder v, + R. This implies that wyec,r has to belong to a union of spherical caps
V. il . .
S, of solid angle less than C min ((W)l/ 2, 1). Using the (local) change of variables

Tk > (Trec,k» EWrec,k ), 1t follows that

. C L
/ LRecolision of type (d)d'rk' < lwrec,k €S|(Uq - Uc) : Wrec,k|dwrec,kd7-rec,k
£

fe

C 3 1/2
<2vE oo (14pE
fe TR TRt |Uq — ’Uq’|
This concludes the proof of Proposition 9.2.2. O

Integration of the singularity in relative velocities: proof of Proposition 9.2.3

We start with the obvious estimate
c1/2

(9.4.6) min (1, ) <et b1, <o

lvg — vg'|
Thus we only need to control the set of parameters leading to small relative velocities.
Without loss of generality, we shall assume that the first deflection (when going up the tree) involves

particle g. It can be either a creation (with or without scattering), or a clustering recollision, say
between ¢ € U5, , and c € ¥§,,.
{jk'} {Jk}

o If the first deflection of g corresponds to a creation, we denote by (¢,@, v) the parameters encoding
this creation, and by (Z4,74) and (T4, Uy ) the positions and velocities of the pseudo-particles ¢ and ¢’
before the creation.

There are actually four subcases :
(a) particle ¢’ is created next to particle ¢ in the tree Uiy lvg —vg | =0 — Tq| ;
(b) particle ¢’ is not deflected and particle ¢ is created without scattering next to g in the tree \Il? i
lvg —vg| = |0 = Vg | 5
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(c) particle ¢’ is not deflected and particle g is created with scattering next to ¢ in the tree \I/?l.}:
vq:ﬁ—(@—@q) 0@ ;
(d) particle ¢’ is not deflected, another particle is created next to ¢ in the tree U§ e and q is
scattered so v, =TV, + (0 —7y) - W@ .
In cases (a) and (b), we obtain that @ has to be in a small ball of radius /4. Then,

/ ]~Small relative velocity of type (a)(b) ’ (’D - 17(]) : (D|dt_da)d6 g CVit&—d/Zl .

In cases (c) and (d), we obtain that v, has to be in the intersection of a small ball of radius £!/4 and
of the sphere of diameter [7,7,]. This condition imposes that @ has to be in a spherical cap of solid
angle less than % /|5 — 74|'/? (see Figure 10). We find that

1

1
/ 1Sma11 relative velocity of type (c)(d)| v — qu W|dtd(.dd’U < CV 2 €8 .

Combining these two estimates with (9.4.6), we get

c1/2
/mln )](17 —7,) - @|didods < OVEtLes |

*Uq|

e If the first deflection of ¢ corresponds to the k-th clustering recollision in \Ilil between ¢ € \Ilijk}
and ¢ € \II?J';Q} at time ¢ = Tyec k, in addition to the condition &) € By, which encodes the clustering
recollision (see Section 8.1), we obtain a condition on the velocity.

There are actually two subcases :

(e) ¢' = cand Jvg — vy | = [Ug — Vg ;

(f) ¢ is not deflected, and vy = Uy — (T4 — Te) * Wrec,k Wrec,k -
In case (e), there holds

. C o
/ ]-Small relative velocity of type (e)d‘rk S ; 1‘17(1—17(1/ |§51/4 | (Uq - Uq’) ! w‘deTrec,k S
€

He

In case (f), we obtain that v, has to be in the intersection of a small ball of radius e'/* and of the
sphere of diameter [0, 0.]. This condition imposes that wyecr has to be in a spherical cap of solid
angle less than &% /|, — 0,|"/2 (see Figure 10). We find

1
. C [ 2 Ctv: =
/]-Small relative velocity of type (f)dxk‘ S —€38 / "Uq - ’UC} / dTrcc,k S % :
He He

Combining these two estimates with (9.4.6), we get

Ry oV, ted
mln )di‘k < —=xk .
— g1/ i

This concludes the proof of Proposmon 9.2.3. O
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NOTATION INDEX

Ay m tree with n roots and m branching points,
p-24

Aim tree with n roots and m branching points,
and edge signs, p.25

B .+ space of test functions, p.41

B space of test functions, p.69

C,, set of connected graphs with n vertices, p.19
Cy set of connected graphs with V' as vertices, p.19

C (\I/fL) product of cross-sections associated to ¥$,,
p-85

CZLE 41 collision operator in the BBGKY hierar-

n

chy, p.23

C%"+1 limiting collision operator between i and
n+ 1, p.50

OD5E (i, §) boundary of the domain for the dynam-
ics of N hard spheres of diameter €, p.2

D% domain for the dynamics of N hard spheres of
diameter €, p.1

D([0,T*], M) Skorokhod space, p.7

D,.(]0,t]) space of right-continuous with left limits
functions on D", p.26

DY, N-particle phase space, p.1

A\ indicator function that trees in A are con-
nected by a chain of external recollisions (thus
forming a forest), p.30

du(z1, z9,w) singular collision measure, p.5

dpiz, -, (w) singular collision measure with fixed
particle configuration, p.49

dpiz, (2n41,w) singular collision measure with par-
ticle ¢ fixed, p.50

dp(¥E) measure on the pseudotrajectories, p.28
dlising, T,q limit singular measure, p.38

d:“sing,f limit singular measure, p.39

E(G) set of edges of the graph G, p.19

E.(X) expectation of an event X with respect to
the measure (1.1.6), p.2

¢; fluctuation field at time ¢, p.5

(¢ limit fluctuation field at time ¢, p.5
F limiting functional, p.8

F large deviation functional, p.7

FE(t) rescaled n-particle correlation function at
time ¢ (grand canonical setting), p.3
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F20 rescaled n-particle initial correlation function
(grand canonical setting), p.3

FY 10,1 (Hy) averages over trajectories, p.26

f2Y initial cumulants, p.32

fa04 (H®") cumulant of order n, p.33

fn,j0,4 (H®™) limiting cumulant of order n, p.39
fn(t) limiting cumulant density, p.48

G¢,(a, Z7) set of collision parameters such that the
pseudo-trajectory exists up to time 0, p.25

G° compressed notation for the set of admissible
collision parameters, p.28

H(%([0,t])) test functions on the trajectories, p.30

H (W) product of test functions associated to the
pseudotrajectory U7, p.28

Z(t,h) limiting cumulant generating series, p.69
f(t, h) solution of the variational problem, p.76
J(t, ¢,v) limiting exponential moment, p.41

L; linearized Boltzmann collision term, p. 53

L; linearized Boltzmann operator with transport,
p-5

{Ai ~r A;} there exists an external recollision be-
tween trees A; and Aj, p.30

{Ai ~o A;} there exists an overlap between trees
As and Aj, p.31

Af cumulant generating functional (logarithm),
p-16

AE

0,4] dynamical exponential moment, p.36

Ao,y limiting dynamical exponential moment,

p-39

L% weighted L? space, p.55

NOTATION INDEX

5 weighted L* space, p.76
M set of probability measures on D, p.7
Pg set of partitions of {1,---,n} in s parts, p.15
Py set of partitions of a set V' in s parts, p.18

P.(X) probability of an event X with respect to
the measure (1.1.6), p.2

m; empirical measure at time ¢, p.4

r.ntm(t) elementary operators in Duhamel series

expansion, p.24
R%J limiting recollision operator, p.49

S¢ group associated with free transport with spec-

ular reflection in D%, p.24
S; group associated with free transport in D, p.55

Ty set of minimally connected graphs with V as
vertices, p.19

T~ set of minimally connected graphs with V' as
vertices, equipped with an ordering of edges, p.87

T, set of minimally connected graphs with n ver-
tices, p.19

(T, Qm, Vi) collision parameters, p.24
relust clustering times, p.39

U(t,s) semi-group associated with L. between
times s and ¢, p.54

W probability density of the system of N hard
spheres, p.2

Z¢ partition function, p.2

Z;f’j scattered configuration of n particles after
collision of ¢ and j, p.2

Z%([0,t]) sample pseudotrajectory of n particles 1
to n, p.26.



NOTATION INDEX

Znm(T) = (Z3(7), Zm (7)) coordinates of the par-
ticles in a pseudotrajectory with n roots and m
added particles, p.25

Z: (1) coordinates of the particles in a physical
trajectory with n particles, p.2

Z: ([0,t]) sample path of n particles, p.25.
¢, cumulants associated with ®,, p.31

®,,; function of the arguments labeled by w;, p.16
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®,, product of the @, over all parts of a parti-
tion w, p.31

Ny ()\1, ey )\g) indicator function that trees
A1, - .-, A¢ keep mutual distance larger than e, p.30

W? generic pseudotrajectory, p.28

U7 ., generic pseudotrajectory with m added par-
ticles, p.37

U, limiting pseudotrajectory, p.39

welust scattering vectors at clustering times, p.39



