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A B S T R A C T

In the present paper, we report on the investigation of thermal annealing (TA) effect on structural and optical
properties of crystalline silicon nanowires produced by metal-assisted chemical etching approach. In particular,
the impact of TA on nanowire length, relative volume and size distribution of voids is described in terms of
Lifshitz-Slyozov-Wagner theory considering the TA induced Oswald ripening in the SiNW arrays. It was also
found that TA leads to a decrease of the SiNWs total reflection in the wide UV–VIS-IR spectral range. The
reported effects can be used for tuning of crystalline SiNWs arrays in view of their further applications in
photonics related fields.

Introduction

Silicon nanowires (SiNWs) have attracted considerable interest due
to their potential applications in different fields including micro- and
nanoelectronics [1,2], photovoltaics [3–5], thermoelectrical devices
[6,7] and nanomedicine [8–10]. Several methods based on “bottom-up”
and “top-down” technologies [11,12] have been successfully developed
to prepare SiNWs with desired lengths and cross-sectional sizes. Metal-
assisted chemical etching (MACE) [13,14] is a “top-down” approach
which has become the most used one in the last decade due to its
gaining better fabrication and relatively low cost. MACE technology is
based on the selective chemical dissolution of crystalline silicon (c-Si)
in hydrofluoric acid (HF) solutions that is assisted by the noble metal
nanoparticles, e.g. silver, gold, copper etc., as a catalyst. The mor-
phology of resulting SiNWs arrays can be controlled via altering the
MACE conditions.

One of the widely discussed characteristics, related to the SiNWs
properties is their unique optical properties in comparison to the bulk c-
Si [15]. Crystalline SiNWs array demonstrates strong broadband optical
absorption in the full visible spectral range due an effect to the “light
trapping” leading to a strong suppression of the optical reflection in the

spectral region of the band gap absorption in c-Si [16]. It is well-known,
from previously published works, that MACE-prepared SiNW arrays by
their optical properties can be referred to so-called “black” and “white”
SiNWs [16,17]. Notably, the “black” SiNW arrays act as an excellent
absorber in the visible and UV spectral range [18,19], while the “white”
samples exhibit a high level of the diffuse optical reflection in the near
IR spectral region [17]. These optical properties of SiNWs are proposed
to be used in a stealth sheet technology [20].

Thermal annealing (TA) is the well-known treatment, which is
widely used in different technological processing of c-Si. However,
there is currently a lack of detailed studies of TA induced changes in
SiNWs and some basic problems such as restructuring and sintering
mechanisms remain unclear. Despite various efforts to understand the
nature of “black” and “white” silicon surfaces prepared by MACE
[21,22]. Exploring possible mechanisms of TA-induced modifications of
the structural and optical properties of SiNWs will help to explain the
fundamental aspects of various phenomena in 1D nanostructures and it
can be useful for applications of SiNWs in photovoltaics [23], sensors
[24] and thermoelectric power converters [25].

In the present paper, an extended analysis of the structural prop-
erties of crystalline SiNW arrays, which are modified by short-term
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thermal annealing, has been performed. In particular, the role of the
initial length of SiNWs on the thermally induced reorganization of the
whole nanowires arrays is described in detail. The obtained results are
explained in terms of the Oswald ripening phenomena and Lifshitz-
Slyozov-Wagner (LSW) theory [26–28].

Materials and methods

SiNWs were fabricated by wet-chemical etching of lowly boron
doped single crystalline Si (c-Si) wafers with a (100) crystalline or-
ientation and a specific resistance of 1–10 Ω cm. Initially, the c-Si
substrates were rinsed in 2% HF solution for 5 min to remove native
oxide. Silver (Ag) nanoparticles were used as catalysts in the MACE
process. The first step of MACE was related to the deposition of Ag
nanoparticles on the wafer surfaces by immersing them in a mixture of
aqueous solutions of 0.02 M AgNO3 and 5 M HF (1:1, v/v) for 30 s.
Further etching of the c-Si wafers with deposited Ag nanoparticles was
performed in the following solution [HF (5 M): H2O2 (30%)] = 10:1. To
obtain SiNWs layers of different thicknesses, the duration of the MACE
process was varied from 15 to 60 min. After etching, the Ag

nanoparticles were removed with nitric acid (HNO3, 65%), after which
the samples were washed with deionized water and air-dried. All steps
of the etching process were performed at room temperature conditions.
The thermal annealing (TA) of SiNWs was performed at 900 °C tem-
perature for 10 min in air.

The structural properties and morphology of as-prepared and TA-
treated SiNWs were investigated by using a Carl Zeiss Ultra 55 field
emission scanning electron microscope (FE-SEM). To obtain the pore
size distribution, a quantitative analysis of the achieved SEM images
was performed using the ImageJ software. Recently it was shown that
determination of porosity of Si nanostructures by image processing of
top-view SEM micrographs corresponded well to the results of porosity
measurements by gravimetric and nitrogen absorption methods [29].
Furthermore, the porosity of SiNW arrays estimated from the value of
effective refractive index was shown to agree with the SEM image
analysis [30].

The structural properties of SiNWs were studied by using means of
the Raman spectroscopy. The Raman spectra were recorded with a
Solver Spectrum (NT-MDT) Raman spectrometer under laser excitation
at a wavelength of 473 nm with intensity of 0.2 mW/cm2. The

Fig. 1. Cross sectional and corresponding planar (insets) SEM images of SiNWs obtained for 15, 30 and 60 min of MACE process before (a), (b), (c) and after (d), (e),
(f) thermal annealing, respectively. Dashed lines indicate surface level.
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acquisition time of each Raman spectrum was 10 s and the diameter of
the laser spot was about 2 µm. The measurements were carried out in
air at room temperature.

Optical properties of as-prepared and TA treated samples were in-
vestigated by means of the total reflection spectra measurements in a
UV–vis/NIR spectrometer (Jasco V-670) equipped with an ISN-923
60 mm integrating sphere accessory. The total reflection was measured
in the spectral range from 300 to 2000 nm.

Results and discussion

SEM structural characterization

Thermally induced evolution of SiNWs length
Generally, the thermal treatment of porous materials or powders

below the melting point is accompanied by structural and/or morpho-
logical changes [31]. In the case of porous silicon, for example, the
corresponding thermally induced morphological changes can be ob-
served at temperatures below 350 °C [31], which is significantly lower
than the melting point of bulk Si (1412 °C) [32,33]. The driving force
for this thermally induced reorganization is related to minimizing the
surface energy of porous Si associated with its highly developed inner
surface [31,34–36]. Similarly to the porous silicon, SiNWs array can
also show a similar tendency of the structural rearrangement due to the
annealing process below the melting point (sintering) of c-Si. It is
known from the classical sintering theory developed for porous mate-
rials [28] that the thermal activation is necessary to stimulate atoms by
forcing them to take more favourable energy positions, thereby redu-
cing the surface-to-volume ratio.

Indeed, SiNWs array can be considered as a kind of porous Si in
which vertically aligned voids between Si wires play the role of pores.
Cross-sectional SEM images of as-prepared SiNWs and their corre-
sponding planar views, obtained during 15, 30 and 60 min of MACE
(see Fig. 1a, b and c respectively) and after TA at 900 °C during 10 min
(see Fig. 1d, e and f respectively) are shown in Fig. 1. It is seen that as-
prepared SiNW arrays possess a highly connected network of voids. As a
result of the TA treatment, a significant reduction in the length of
SiNWs appears. The average value of SiNWs layer thickness obtained by
etching at 60 min is 26.3 μm, and after heat treatment, it decreases to
21.3 μm. Such a significant reduction in nanowires length (10–20%)
was also observed for the samples obtained with a shorter etching times
(see Fig. S1 in SM).

Thermally induced evolution of SiNWs morphology
Raman spectroscopy is well-known as an excellent non-destructive

optical tool for studying the structural properties of nanomaterials,
which have been used in present work to evaluate thermally induced
structural changes in SiNWs arrays. Fig. 2 shows the normalized Raman
spectra of as-prepared and TA treated SiNWs of different lengths. For
comparison, the Raman spectrum of c-Si wafer is also given in Fig. 2
and it is centred at 520.5 cm−1 and characterized by the full width at
half maximum (FWHM) of about 4 cm−1. The spectral position and
FWHM of Raman peaks of the short (5.3 μm) as-prepared and annealed
SiNWs are slightly different from that of c-Si. The observed small shift
of the Raman peak maximum to the lower frequency region and its
broadening can be explained by the presence of nanosized Si structures
with characteristic crystallites sizes ≥ 10 nm [37,38].

The Raman spectrum of as-prepared long SiNWs (26.3 μm) shows
more downshifted Raman peak centred at 518 cm−1, while Raman
spectra of the annealed long SiNWs centred at 520 cm−1 that corre-
sponds to the Raman peak of c-Si. Such more significant spectral red-
shift can evidence formation of nanostructured porous Si with char-
acteristic crystallite sizes about 10 nm on the top of SiNW arrays
[38,39]. The TA induced spectral shift of the Raman peak to higher
energies indicates on explicit sintering of long nanowires with forma-
tion of bulk-like crystalline agglomerates as well as smoothing of rough

porous SiNW sidewall structure in which quantum confinement effects
may occur [40]. It is notable to mention that te Raman spectra of SiNWs
arrays before and after TA exclude the presence of the amorphous phase
(a-Si), which is usually manifested by a band at 480 cm−1 [34–37].

An analysis of the chemical composition of SiNWs performed by
energy dispersive X-ray analysis (EDX) during the SEM studies showed
that the TA treatment didn’t result in any noticeable changes in the
ratio between silicon (Si) and oxygen (O). Thus, the Raman scattering
spectra described above, as well as the results of EDX measurements
(see Table S1 in SM), allow us to state that there are no considerable
changes in the crystallinity and chemical composition of SiNWs after
the TA treatment.

Thermally induced evolution of the relative volume of voids
Firstly, we analyze the relative volume of voids (RVV) defined as the

ratio between volume of empty space between nanowires and volume
occupied by the whole SiNW array. The following experimental ob-
servation are taking into account: (i) reduction of the nanowires length
after TA (as described above) and (ii) TA induced evolution of the SiNW
morphology (see Fig. 1). The RVV value is estimated by means of the
digital analysis of planar-view SEM images by using ImageJ software.
Fig. 3 shows the dependence of RVV of as-prepared and TA treated
SiNW arrays on MACE time, i.e. on the length of SiNWs. As can be seen,
a huge decrease in the RVV values (> 2 times) is observed for the TA
treated SiNWs in comparison with that for as-prepared ones. The most
impressive structural difference is observed for the longest (26.3 μm)
SiNWs: the corresponding RVV value decreases from 78% for as-pre-
pared SiNWs to 29% for the TA treated samples.

Size distribution of voids
Typical size distributions of voids in as-prepared and TA treated

SiNWs with initial length of 26.3 μm are shown in Fig. 4 and the cor-
responding results for the samples with other lengths are given in SM as
Figs. S2 and S3. The obtaned data reveal an effect of the TA induced
evolution of void sizes. Indeed, the majority of voids in as-prepared
samples has dimension ranging from 20 to 60 nm. The following
structural changes are observed in the TA treated SiNWs: (i) the surface
density of voids (ratio of their number over the occupied area in μm2) is
significantly increased by almost one order of magnitude, (ii) the
smallest sizes of voids shifted down to 10–20 nm, (iii) large voids with
sizes > 110 nm appeared. The appearance of the large voids can be
explained by the thermally activated aggregation of the smallest ones.
As for the voids with dimensions less than 40 nm, the huge increase in

Fig. 2. Normalized Raman spectra of SiNWs with length of 5.3 μm (thin lines)
and 26.3 μm (bold lines) before (blue lines) and after TA (red lines) as well for
the corresponding c-Si substrate (black line).
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their number is caused by thermally induced cracking of SiNWs com-
plexes.

Theoretical analysis of thermally induced structural evolution
The above described TA induced evolution of the morphology of the

SiNWs arrays is a typical manifestation of the well-known Ostwald ri-
pening phenomenon [41,42] which can be quantitatively described by
the Lifshitz-Slyozov-Wagner (LSW) theory [26–28]. We suppose that
SiNW arrays posess a hollow crystalline structure supersaturated with
vacancies. In general, the LSW theory distinguishes two stages of the
formation of grains of a new phase due to diffusion effects in a super-
saturated solid solution. In the first, concentration fluctuations produce
nuclei of new phase, which grow directly from the supersaturated
medium. The second stage may be considered to begin when the formed
grains thus they have reached an appreciable size and the degree of
supersaturation of the matrix has become very slight. In such circum-
stances, the growth of large grains of the new phase by the in-
corporation of small ones [26]. This is one of the well-established
theories describing how vacancies evolve during annealing to achieve a
final equilibrium state. The concept of the critical radius (rc) is in-
troduced in the LSW theory. If the variable radius of the void (r) is
larger than rc, the volume of voids increases. On the contrary, if r < rc
the number of voids increases and their distribution over the radius (r)
decreases. This mechanism explains how large voids “devour” small
ones. Based on the LSW theory, it is possible to estimate the value of rc
characterizing thermally induced evolution of voids in SiNW arrays.

According to the LSW theory the avarage radius of growing voids
can be described by the following expression [26]:

〈 〉 − 〈 〉 =
∞r r

γc v D
R T

t
8

9 g

3
c
3

2

(1)

where 〈r〉 is the average radius of all the voids, γ is the surface energy,
c∞ is the solubility, v is the molar volume, D is the diffusion coefficient
of the vacancies in c-Si, Rg is the ideal gas constant, T is the temperature
and t is the TA treatment time.

In our case, at the fixed temperature and TA duration, Eq. (1) to-
gether with the theory parameters from Ref. [43,44] allow us to esti-
mate rc ≈ 60 nm, i.e. the critical diameter of the void is about 120 nm,
that is in agreement with size distribution of the voids shown in Fig. 4.
as well as with the features related to the Oswald ripening phenomenon
described above.

All the structural features of SiNWs arrays before and after an-
nealing are schematically summarized in Fig. 5. In particular, the
thermal annealing induces the dramatic decrease of SiNW length ac-
companied with a significant change in the number of small
(10–40 nm) and large (> 110 nm) as well as a huge decrease of the RVV
value described above.

Optical properties

Fig. 6 shows the total reflection spectra of as-prepared and TA
treated SiNWs. As can be seen, the total reflection of as-prepared SiNWs
(solid lines in Fig. 6) strongly depends on the nanowires length. In

Fig. 3. Relative volume of voids versus etching time for SiNWs arrays before
(black squares) and after (red squares) TA treatment.

Fig. 4. Typical size distributions of voids in as-prepared and TA treated SiNWs
with initial length of 26.3 μm.

Fig. 5. Schematic view of structural changes in SiNWs array after TA treatment.
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particular, the reflectivity increases with the length of nanowires.
SiNWs arrays with lengths of 5.3 μm and 11.5 μm show the reflectance
below 5% in the UV–VIS spectral region, which can be explained by
partial localization of light due to its strong elastic scattering accom-
panied by absorption in Si nanocrystals [45]. For the 26.3 μm long
SiNWs, we observe: (i) an increase in reflectance in the range of
500–1200 nm due to Mie scattering in Si nanostructures with dimen-
sions comparable to light wavelength [46] and (ii) a high total re-
flectance in the spectral region above 1100 nm due to light scattering
[17].

The total reflection spectra of the annealed SiNWs arrays (dashed
lines in Fig. 6) demonstrates a significant decrease of the reflectance
level in the whole (UV–VIS-IR) spectral range. Moreover, the thermally
induced changes in the morphology of SiNWs lead to a 2-fold reduction
in the total reflection coefficient in the IR region for nanowires longer
than 11.3 μm.

Conclusions

The structural evolution occurring in crystalline SiNWs during the
high temperature annealing was carefully investigated. The SEM data
show that the thermal annealing of SiNWs at 900 °C results in the fol-
lowing structural modifications: (i) shortening of the mean length of
SiNWs, (ii) decrease in the relative volume of voids, and (iii) significant
changes in the pore size distribution.

These structural changes are explained by the Oswald ripening in
SiNW arrays. The observed modification of SiNWs morphology corre-
lates with significant changes in the optical properties of SiNW arrays
measured in the range from 300 nm to 2000 nm. The obtained results
can be useful for tailoring the structure and optical properties of SiNWs
for various applications.
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