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Ensemble learning is one of the most employed methods in machine learning. Its main ground is the construction of stronger mechanisms based on the combination of elementary ones. In this paper, we employ AdaBoost, which is one of the most well-known ensemble methods, to generate an ensemble indicator-based density estimator for multi-objective optimization. It combines the search properties of five density estimators, based on the hypervolume, R2, IGD + , ✏ + , and p quality indicators. Through the multi-objective evolutionary search process, the proposed ensemble mechanism adapts itself using a learning process that takes the preferences of the underlying quality indicators into account. The proposed method gives rise to the ensemble indicatorbased multi-objective evolutionary algorithm (EIB-MOEA) that shows a robust performance on di↵erent multi-objective optimization problems in comparison against existing indicator-based multi-objective evolutionary algorithms.

Introduction

In many scientific and industrial fields arise the so-called multi-objective optimization problems (MOPs), that involve the simultaneous optimization of two or more conflicting objective functions. Mathematically, a MOP is defined as follows: min

x2⌦ {F (x) = (f 1 (x), . . . , f m (x))} , (1) 
where x is the vector of decision variables, ⌦ ✓ R n is the decision space and F (x) is the vector of m 2 objective functions such that f i : R n ! R for i 2 {1, 2, . . . , m}. Unlike single-objective optimization problems which have a single global optimal solution, the solution of a MOP is a set of solutions that represents the best possible trade-o↵s among the objective functions. Given x, y 2 ⌦ and F : R n ! R m , we say that x dominates y, denoted as F (x) F (y), if and only if 8i 2 {1, . . . , m}, f i (x)  f i (y) and there exists at least an index j 2 {1, . . . , m} such that f j (x) < f j (y). The particular set that yields the optimum values, according to the Pareto dominance relation, is the Pareto set; its image is known as the Pareto front.

Multi-objective evolutionary algorithms (MOEAs) constitute a popular choice to tackle complex MOPs [START_REF] Li | Many-Objective Evolutionary Algorithms: A Survey[END_REF]. MOEAs are stochastic black-box optimizers based on the principles of Darwin's natural selection. MOEAs are population-based metaheuristics that can generate a Pareto front approximation (or approximation set) in a single execution. Ideally, an MOEA should produce solutions as close as possible to the Pareto front, covering it all and with good diversity. There exist four main design methodologies for MOEAs [START_REF] Li | Many-Objective Evolutionary Algorithms: A Survey[END_REF]: (1) MOEAs using the Pareto dominance relation or any of its relaxed forms, (2) decompositionbased MOEAs, (3) reference set-based MOEAs, and (4) indicator-based MOEAs (IB-MOEAs). In the last fifteen years, IB-MOEAs have attracted considerable attention due to their ability to solve MOPs having more than three objective functions (i.e., the so-called many-objective optimization problems) [START_REF] Guillermo | Indicator-based Multi-Objective Evolutionary Algorithms: A Comprehensive Survey[END_REF]. The underlying idea of IB-MOEAs is the use of a quality indicator (QI) [START_REF] Li | Quality evaluation of solution sets in multiobjective optimisation: A survey[END_REF], which is a set function that evaluates the quality of an approximation set based on specific preferences, in order to guide the evolutionary search process by focusing on the selection mechanisms. Currently, there exist several QIs, such as the hypervolume indicator (HV) [START_REF] Zitzler | Multiobjective Optimization Using Evolutionary Algorithms-A Comparative Study[END_REF], R2 [START_REF] Brockho↵ | On the Properties of the R2 Indicator[END_REF], the inverted generational distance plus (IGD + ) [START_REF] Ishibuchi | Modified Distance Calculation in Generational Distance and Inverted Generational Distance[END_REF], the additive epsilon indicator (✏ + ) [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: An Analysis and Review[END_REF], and the averaged Hausdor↵ distance ( p ) [START_REF] Schütze | Using the Averaged Hausdor↵ Distance as a Performance Measure in Evolutionary Multiobjective Optimization[END_REF], being these ones the most popular within the currently available IB-MOEAs [START_REF] Guillermo | Indicator-based Multi-Objective Evolutionary Algorithms: A Comprehensive Survey[END_REF].

An IB-MOEA produces a Pareto front approximation exhibiting the preferences of its underlying QI [START_REF] Guillermo | Convergence and Diversity Analysis of Indicator-Based Multi-Objective Evolutionary Algorithms[END_REF]. As such, di↵erent IB-MOEAs yield di↵erent results in terms of the distribution of solutions in the approximation set, due to the underlying properties of the QI they employ. Moreover, there are MOPs where a specific IB-MOEA performs well, but there are others on which it does not. As a consequence, it is not clear which QI to consider beforehand, and an open question is whether a set of existing indicator-based selection mechanisms can create a single operator that reaches a consensus that outperforms the existing ones. In 2011, Phan and Suzuki were the first to investigate this question by boosting a set of indicator-based mating selection operators [START_REF] Dugh | Boosting indicator-based selection operators for evolutionary multiobjective optimization algorithms[END_REF]. The boosted indicator-based mating selection operator uses 15 quality indicators from which it ensembles the best suited ones using the AdaBoost algorithm [START_REF] Freund | A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[END_REF] with an o✏ine training. The proposed mechanism was embedded into the non-dominated sorting genetic algorithm II (NSGA-II) [START_REF] Deb | A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[END_REF], giving rise to the boosted indicator-based evolutionary algorithm (BIBEA). According to the reported results, BIBEA was able to outperform NSGA-II, exhibiting robustness against MOPs with di↵erent characteristics. Later on, Phan et al. [START_REF] Dũng | Leveraging Indicator-Based Ensemble Selection in Evolutionary Multiobjective Optimization Algorithms[END_REF] proposed BIBEA-P which allows BIBEA to use an additional ensemble indicator-based mechanism for environmental selection. Moreover, BIBEA-P uses Pdi-Boosting instead of AdaBoost. Similarly to BIBEA, the ensemble operators of BIBEA-P needs to be trained using a given MOP in an o✏ine fashion. The experimental results showed that BIBEA-P is better than BIBEA, NSGA-II, and SMS-EMOA (which is a HV-based MOEA) [START_REF] Beume | SMS-EMOA: Multiobjective selection based on dominated hypervolume[END_REF] when using MOPs with di↵erent Pareto front shapes.

In this paper, we propose an ensemble indicator-based density estimator using the HV, R2, IGD + , ✏ + , and p indicators. Unlike BIBEA and BIBEA-P, our mechanisms adapts the combination of the indicator-based density estimators (IB-DEs) in an online fashion. This approach allows our proposed ensemble indicator-based MOEA (EIB-MOEA) to tackle problems with di↵erent Pareto front geometries from the test suites DTLZ, DTLZ 1 , WFG, and WFG 1 . Furthermore, the proposed approach obtains competitive results against other IB-MOEAs.

The remainder of this paper is organized as follows. Section 2 provides the mathematical definitions of the QIs that we consider in our analysis. Section 3 describes the algorithmic design of EIB-MOEA. Section 4 shows our experimental results and Section 5 provides our final conclusions and some possible paths for future work.

Background

In this section, we describe a selection of five QIs, corresponding to those which are most frequently used in the specialized literature. They will be considered as constituent QIs in our proposed ensemble indicator-based density estimator. In the following, A denotes an approximation set.

Definition 1 (Hypervolume indicator [START_REF] Zitzler | Multiobjective Optimization Using Evolutionary Algorithms-A Comparative Study[END_REF]) Given an anti-optimal reference point r 2 R m , the hypervolume is defined as follows:

HV (A, r) = L [ a2A {b | a b r} ! , (2) 
where L(•) denotes the Lebesgue measure in R m .

Definition 2 (Unary R2 indicator [START_REF] Brockho↵ | On the Properties of the R2 Indicator[END_REF]) The unary R2 indicator is defined as follows:

R2(A, W ) = 1 |W | X w2W max a2A {u w (a)}, ( 3 
)
where W is a set of weight vectors and u w : R m ! R is a scalarizing function defined by w 2 W that assigns a real value to each m-dimensional vector.

Definition 3 (IGD + indicator [START_REF] Ishibuchi | Modified Distance Calculation in Generational Distance and Inverted Generational Distance[END_REF]) The IGD + , for minimization, is defined as follows:

IGD + (A, Z) = 1 |Z| X z2Z min a2A d + (a, z), (4) 
where

d + (a, z) = q P m k=1 (max{a k z k , 0}) 2 .
Definition 4 (Unary ✏ + indicator [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: An Analysis and Review[END_REF]) The unary ✏ + -indicator gives the minimum distance by which a Pareto front approximation needs to or can be translated in each dimension in objective space such that a reference set is weakly dominated. Mathematically, it is defined as follows:

✏ + (A, Z) = max z2Z min a2A max 1im {z i a i }.
(

) 5 
Definition 5 ( p indicator [START_REF] Schütze | Using the Averaged Hausdor↵ Distance as a Performance Measure in Evolutionary Multiobjective Optimization[END_REF]) For a given p > 0, the p is defined as follows:

p (A, Z) = max {GD p (A, Z), IGD p (A, Z)}. (6) 
p is defined on the basis of two indicators: GD p and IGD p which are slight modifications of the indicators Generational Distance (GD) and Inverted Generational Distance (IGD) [START_REF] Li | Quality evaluation of solution sets in multiobjective optimisation: A survey[END_REF], respectively. These are defined in the following. Definition 6 (GD p indicator [START_REF] Schütze | Using the Averaged Hausdor↵ Distance as a Performance Measure in Evolutionary Multiobjective Optimization[END_REF])

GD p (A, Z) = 1 |A| X a2A d(a, Z) p ! 1/p , (7) 
where d(a, Z) = min z2Z p P m i=1 (a i z i ) 2 . Definition 7 (IGD p indicator [START_REF] Schütze | Using the Averaged Hausdor↵ Distance as a Performance Measure in Evolutionary Multiobjective Optimization[END_REF])

IGD p (A, Z) = GD p (Z, A) = 1 |Z| X z2Z d(z, A) p ! 1/p , (8) 
We also define the individual contribution of points from an approximation set below.

Definition 8 (Indicator contribution) Let I be any indicator in the set {HV, R2, IGD + , ✏ + , p }. The individual contribution C of a solution a 2 A to the indicator value is given as follows:

C I (a, A) = |I(A) I(A \ {a})|. (9) 
Interestingly, the QIs presented above have di↵erent properties, and express di↵erent preferences in terms of set approximation quality [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: An Analysis and Review[END_REF]. Moreover, they do not always agree with each other [START_REF] Liefooghe | A Correlation Analysis of Set Quality Indicator Values in Multiobjective Optimization[END_REF], so that good-quality approximation sets for a given QI typically contain di↵erent solutions than for other QIs. This motivates the ensemble indicator-based approach introduced below.

The Proposed EIB-MOEA Approach

In this section, we first give the general description of EIB-MOEA, then we detail the learning model and the adaptive strategy considered to update the relative importance given to each QI at di↵erent iterations.

Algorithm 1 EIB-MOEA's general framework

Require: Set of indicators {I1, . . . , I k }; time window size Tw Ensure: Pareto front approximation 1: Randomly initialize population A 2: wi = 1/k, i 2 {1, . . . , k} 3: Initialize performance matrix P 2 R k⇥Tw 4: Initialize learning matrix 2 {0, 1} k⇥Tw 5: g = 0 6: while stopping criterion is not fulfilled do 7:

Create an o↵spring solution q based on A 8:

Q = A [ {q} 9: {R1, . . . , R `} = N ondominatedSorting(Q) 10: if |R `| > 1 then
11:

z min i = min a2A fi(a), i 2 {1, . . . , m}
12:

z max i = max a2A fi(a), i 2 {1, . . . , m}

13:

Normalize {R1, . . . , R `} using z min and z max 14:

for j = 1 to k do 15:

C I j (r, R `) = |Ij (R `) Ij (R `\ {F (r)})|, 8r 2 R 16:
Sort C I j in ascending order

17:

8z 2 R `, compute rank I j (F (r)), using the sorted C I j

18:

end for 19:

aworst = arg min r2R `nH (z = F (r)) = P k j=1 wj rank I j (z)
o 20:

Learning(Q, R `, {I1, . . . , I k }, g, aworst, P, )
21:

g = g + 1

22:

else

23:

Let aworst be the sole solution in R 24: end if

25:

A = Q \ {aworst} 26: if g = Tw then

27:

UpdateWeights(w, P, , Tw, k) 28:

g = 0

29:

end if 30: end while 31: return A

General Description

The proposed EIB-MOEA is a steady-state MOEA based on SMS-EMOA [START_REF] Beume | SMS-EMOA: Multiobjective selection based on dominated hypervolume[END_REF]. Its general framework is outlined in Algorithm 1. EIB-MOEA requires a set of k indicators {I 1 , . . . I k } and a time window frame T w as input parameters. In Line 2, all the components of the weight vector w are set to 1/k. This weight vector is employed in the ensemble indicator-based density estimator (EIB-DE), and contains the relative importance given to each indicator at the current iteration. Lines 6 to 30 describe the main loop of EIB-MOEA. At each iteration, a single o↵spring solution q is created using variation operators. This newly created solution is added to the population A to create the temporary population Q. The non-dominated sorting algorithm [START_REF] Deb | A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[END_REF] processes Q to create a set of layers {R 1 , . . . , R `}. If R `contains more than one solution, the ensemble indicator-based density estimator is executed. First, the population is normalized in Line 13. Then, for each indicator I j , j 2 {1, . . . , k}, the individual indicator contributions of all solutions in R `are computed and stored in the vector C Ij . By sorting this vector in ascending order, for each r 2 R `we obtain rank Ij (F (r)) 2 {1, 2, . . . , |R l |} that returns the ranking of the solution in the sorted C Ij , where rank 1 corresponds to the worst-contributing solution to I j . In

Algorithm 2 Learning

Require: Population A; worst set R; set of indicators {I1, . . . , I k }; index t; selected solution aworst; performance matrix P ; learning matrix Ensure: Updated 1: for j = 1 to k do 2:

a j worst = arg min r2R |Ij (R) Ij (R \ {F (r)})|
3:

A j = A \ {a j worst }
4: Line 19, the worst-contributing solution, using EIB-DE, is obtained. The learning process (see Algorithm 2), which is a fundamental part to update the weight vector w, is performed in Line 20, and then, the counter g is incremented by one. In Line 25, a worst is eliminated from Q to shape the population for the next generation. In case g is equal to T w , w is updated following Algorithm 3 and g is set to zero. Finally, once the stopping condition is satisfied, A is returned as the Pareto front approximation.

Pjt = Ij (A j ) 5: if Pjt > P j,

Learning Process

The learning process, described in Algorithm 2, is based on analyzing the behavior of the population using all indicators. For each indicator I j , j 2 {1, . . . , k}, we obtain its worst-contributing solution a j worst , where R represents the last layer of solutions with respect to non-dominated sorting. In Line 3, we simulate the elimination of a j worst from the population A to generate the set A j that is assessed by I j . This indicator value is stored in the performance matrix at position (j, t), i.e., P jt = I j (A j ). It is worth noting that each row of P , represented as P j , works as a circular array of size T w . If P jt is greater than the previous sample in P j (which implies an increase in quality) and a j worst is the same as the worst-contributing solution to EIB-DE, the selection is marked as successful and a zero value is stored in the learning matrix in the same position (j, t). Otherwise, we set jt = 1.

Updating the Relative Importance of QIs

After executing EIB-DE and the learning algorithm a total of T w times, the weight vector has to be updated. Algorithm 3 sketches the update process which is based on the AdaBoost algorithm [START_REF] Freund | A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[END_REF], whose aim is to minimize the exponential loss. For each indicator I j , j 2 {1, . . . , k}, the selection error e j is calculated using the j th row of the learning matrix , taking into account that e j should be in the open interval (0, 1) to avoid numerical problems in the calculation of the factor ↵ j . Using the indicator values in P j , a linear model is constructed to 

3:

Validate that ej 2 (0, 1)

4:

↵j = 1 2 ln
⇣ 1 e j e j ⌘

5:

Build linear performance model based on Pj

6:

Get the angle ✓j of the linear model 7:

wj =
( wj e ↵ j , ✓ > 0 wj e ↵ j , otherwise

8:

Validate that wj > 0 9: end for 10: wj =

w j P k i=1 w i
, j 2 {1, . . . , k} 11: return w obtain its angle ✓. In Line 7, we set the weight w j = w j e ↵j if the ✓ is strictly positive, which implies an increasing quality of the population due to the use of the density estimator based on I j . Otherwise, we set w j = w j e ↵j . To avoid having the EIB-DE composed of a single indicator, we do not allow the existence of zero weights. At last, all weights are normalized in Line 10 and the updated weight vector is returned.

Experimental Analysis

In this section, we analyze the performance of the proposed approach 3 . First, we compare EIB-MOEA with its average ranking version, i.e, an EIB-MOEA where the weights for the ensemble are the same for all indicators (denoted as avgEIB-MOEA) to show that the adaptive mechanism produces better quality results. Then, we perform an exhaustive analysis where we compare EIB-MOEA with SMS-EMOA, R2-EMOA, IGD + -MaOEA, ✏ + -MaOEA, and p -MaOEA, which are all steady-state MOEAs using density estimators based on the HV, R2, IGD + , ✏ + , and p indicators, respectively. In all test instances, each MOEA is independently executed 30 times.

Parameters Settings

In order to determine the performance of EIB-MOEA and of the IB-MOEAs, we employ the benchmark functions DTLZ1, DTLZ2, DTLZ5, DTLZ7, WFG1, WFG2, WFG3, and WFG4, together with and their corresponding minus versions proposed in [START_REF] Ishibuchi | Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes[END_REF] for two and three objective functions. We adopted these problems because they all have di↵erent search di culties and Pareto front shapes. The number n of decision variables was set as follows. For DTLZ instances and their minus versions, n = m + K 1, where m is the number of objective functions and K = 5 for DTLZ1, K = 10 for both DTLZ2 and DTLZ5, and K = 20 for DTLZ7. Regarding the WFG and WFG 1 test problems, n was set to 24 and 26, for two-and three-objective instances and in both cases the number of position-related parameters was set to 2. For a fair comparison, all the MOEAs employ the same population size µ = 120, and the same variation operators: simulated binary crossover (SBX) and polynomial-based mutation (PBM) [START_REF] Deb | A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[END_REF] for all test instances. The crossover probability is set to 0.9, the mutation probability is 1/n (where n is the number of decision variables), and both the crossover and mutation distribution indexes are set to 20. We considered 50,000 function evaluations as the stopping criterion for all MOPs. We employ the achievement scalarizing function for the R2-based density estimator. In every generation, we employ the set of non-dominated solutions as the reference set required by IGD + , ✏ + , and p . Regarding EIB-MOEA and avgEIB-MOEA, we set T w = µ.

Experimental Results

For the performance assessment of EIB-MOEA, avgEIB-MOEA and the other IB-MOEAs, we use eight quality indicators: HV, HV relative deviation (HVRD), R2, IGD + , ✏ + , p , and, for diversity, we employ Riesz s-energy [START_REF] Hardin | Discretizing Manifolds via Minimum Energy Points[END_REF] and the Solow-Polasky Diversity indicator [START_REF] Michael | On Quality Indicators for Black-Box Level Set Approximation[END_REF]. The indicator values for two-and threeobjective instances of the DTLZ and DTLZ 1 test problems are shown in Figures 1 and 2, respectively. The boxplots for the WFG and WFG 1 instances with two and three objective functions correspond to Figures 3 and4, respectively. Figure 5 shows the statistical ranks obtained by each algorithm over all benchmark functions with respect to each considered indicator. For a given benchmark function, the rank corresponds to the number of algorithms that significantly outperform the algorithm under consideration with respect to a Mann-Whitney non-parametric statistical test with a p-value of 0.05 and a Bonferroni correction (a lower value is better). The complete numerical results related to Figure 5 are available at http://computacion.cs.cinvestav.mx/ ~jfalcon/Ensemble/ EIB-MOEA.html due to space limitations.

Regarding the comparison of EIB-MOEA with avgEIB-MOEA, Figure 5 shows that the former gets better statistical ranks for HV, R2, IGD + , ✏ + , Riesz s-energy, and SPD. From these indicators, the increase in quality is more evident for the hypervolume indicator. This means that the ensemble of multiple indicator-based density estimators allows EIB-MOEA to produce approximation sets closer to the Pareto front. As a consequence, EIB-MOEA is able to obtain good results regarding the other convergence indicators, namely R2, IGD + , ✏ + , and, to a lower extent, for p . However, producing better convergent approximation sets is not strictly related to producing higher diversity, as shown by the Riesz s-energy and SPD values, where EIB-MOEA is hardly better than avgEIB-MOEA. Overall, these results support that the adaptive mechanism allows EIB-MOEA to perform better in comparison with the average ranking version. On the other hand, for the comparison of EIB-MOEA against stateof-the-art steady-state IB-MOEAs, Figure 5 shows that our proposed approach maintains a robust performance over all the considered QIs. Figures 1 to 4 illustrate that EIB-MOEA and SMS-EMOA obtained the best HV values. Overall, SMS-EMOA performs better on the original benchmark problems, but the quality of its approximate Pareto fronts is just slightly better than those produced by EIB-MOEA. In contrast, for the DTLZ 1 and WFG 1 test suites, EIB-MOEA significantly outperforms SMS-EMOA. This evidence is supported by Figure 5, where we can see that there is a tie between EIB-MOEA and SMS-EMOA in terms of the HV statistical rank. However, we claim that EIB-MOEA has a robust performance since it is significantly better regarding the DTLZ 1 and WFG 1 test suites, whereas SMS-EMOA is just slightly better on the original benchmark problems. Additionally, for IGD + and ✏ + which are QIs whose preferences are highly correlated to those of HV, Figure 5 shows a similar behavior as in the case of HV. This is also supported by the detailed boxplots reported for the di↵erent test problems. Regarding the R2 indicator, R2-EMOA presents the best results for MOPs whose Pareto front maps to the simplex shape; e.g., DTLZ1, DTLZ2, and WFG4. This behavior is expected since R2-EMOA uses a set of convex weight vectors [START_REF] Ishibuchi | Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes[END_REF]. However, for the DTLZ 1 and WFG 1 test suites, R2-EMOA does not perform well and EIB-MOEA presents the best overall results. This indicates that the ensemble mechanism of EIB-MOEA allows to circumvent the weaknesses of the individual indicator-based density estimators, in this case the one based on R2. Finally, in terms of diversity, Figures 1234show that EIB-MOEA generates well-diversified approximation sets when dealing with MOPs whose Pareto front is irregular; i.e., di↵erent from the simplex shape. This is the case, for example, of WFG1, WFG1 

Conclusions and Future Work

In this paper, we explored the e↵ectiveness of an ensemble indicator-based density estimator, using the AdaBoost algorithm. The proposed mechanism adapts the ensemble in an online fashion depending on the performance of the underlying density estimators based on the indicators HV, R2, IGD + , ✏ + , and p . The adaptive ensemble mechanism was embedded into a steady-state MOEA, giving rise to the EIB-MOEA. First, we showed that EIB-MOEA outperforms an average ranking EIB-MOEA that sets all the weights to the same value for the ensemble. Then, we compared EIB-MOEA with respect to SMS-EMOA, R2-EMOA, IGD + -MaOEA, ✏ + -MaOEA, and p -MaOEA. The experimental results showed that EIB-MOEA is able to maintain a robust performance with respect to multiple quality indicators. As part of our future work, we aim at studying the performance of a generational EIB-MOEA and at improving the learning mechanism for the ensemble. We would also like to assess the performance of our proposed EIB-MOEA in many-objective optimization problems. 
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Algorithm 3

 3 UpdateWeightsRequire: Weight vector w; performance matrix P ; learning matrix ; time window size Tw; number of indicators k Ensure: Updated w 1: for j = 1 to k do 2:
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 1 Fig. 1: Indicator values for two-objective DTLZ benchmark functions.
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 2 Fig. 2: Indicator values for three-objective DTLZ benchmark functions.
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 3 Fig. 3: Indicator values for two-objective WFG benchmark functions.

Fig. 4 :

 4 Fig. 4: Indicator values for three-objective WFG benchmark functions.

Fig. 5 :

 5 Fig. 5: Statistical ranks obtained by each algorithm over all benchmark functions with respect to each considered indicator.

  1 , DTLZ11 , and DTLZ 1 . Nevertheless, EIB-MOEA is able to produce competitive results with respect to Riesz s-energy and SPD, while SMS-EMOA is the best-ranked algorithm for the former indicator and p -MaOEA is the best for the latter. As such, although EIB-MOEA is able to obtain very good HV values, there is still room for improvement in terms of diversity, e.g. by adding diversity-related indicators into the ensemble controlled by EIB-MOEA.
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	deltap	0.7 1.0	1.0 0.3	0.30 0.03 0.10	0.013 0.014 0.010 0.011 0.012	0.025 0.015 0.020	0.012 0.014 0.016	0.03 0.05	0.03 0.05 0.10
		0.6	0.1		0.009			0.01	
		WFG1	WFG1_MINUS	WFG2	WFG2_MINUS	WFG3	WFG3_MINUS	WFG4	WFG4_MINUS

The source code of EIB-MOEA is available at http://computacion.cs.cinvestav. mx/ ~jfalcon/Ensemble/EIB-MOEA.html.
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