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Exchange stiffness constants of 22 ferromagnetic compounds have been deduced from their spon-
taneous magnetization, Ms, by using an improved technique. The improvement consists in utilizing
the entire Ms(T ) curve, up to the Curie point, rather than just its low-temperature part, with
T � TC . For 17 of the 22 ferromagnets literature data have been used, while 5 compounds have
been studied anew, on single crystals grown for the purpose.

Exchange stiffness is the prefactor of the gradient term
in the energy density of an inhomogeneously magnetized
ferromagnet,

E = A
(
|∇mx|2 + |∇my|2 + |∇mz|2

)
, (1)

where m is the unit vector in the direction of magneti-
zation. A is a necessary ingredient of any micromagnetic
calculation, the applications ranging from the coercivity
of bulk materials to nanoscopic devices such as the race-
track memory.1

A way to determine A was proposed by Landau and
put in writing by Lifshitz.2 In this method one first
finds the spin-wave stiffness D (i.e., the prefactor in the
magnon dispersion relation, ~ωq = Dq2) by fitting a mea-
sured temperature dependence of spontaneous magneti-
zation to Bloch’s law,3

Ms(T ) = M0

[
1− 0.0586

gµB
M0

(
kT

D

)3/2
]
. (2)

Here M0 is (volume) saturation magnetization. Know-
ing D, one then finds A from a simple proportionality
relation that exists between both quantities:2

A =
M0

2gµB
D (3)

The advantageous, model-independent character of
this relation was pointed out by Herring and Kittel.4

Later, in the light of the density functional theory (DFT),
it was realized that the decisive advantage of Eq. (3) is
that A, D, and the proportionality factor — equal to
one-half of the mean spin density — are all ground-state
properties. (Our consideration is limited to materials
where orbital contribution to M0 can be neglected and,
therefore, g = 2.)

One difficulty of the Landau-Lifshitz technique is that
the Bloch law (2) is only valid at low temperature
(strictly speaking, infinitesimally low) and it is from the
infinitesimally small difference between Ms and M0 that
D has to be extracted.

Other methods have their own difficulties and as a re-
sult our knowledge of A and D remains inaccurate. Thus,
the determination of A from the Curie temperature, TC ,
is based essentially on the localized (Heisenberg) model

with nearest-neighbor exchange. Another technique, in-
elastic neutron scattering on magnons, purports to pro-
vide a direct access to D. Yet, the simple quadratic form,
~ωq = Dq2, is not valid but for q small, and that part
of the spectrum is never observed. Extrapolation from
higher wavenumbers/energies leads to ambiguity, cf. the
results for Ni in Table II. A detailed review of the various
techniques and values of A was given by Döring over half-
a-century ago (Ref. 5, Sections 21-28). The situation has
ameliorated little since then.

In this Letter we present an improved method of de-
termining A, where the first stage consists in fitting the
entireMs(T ) curve, with 0 < T < TC , to an approximate
expression,6

Ms(T ) = M0

[
1− s

(
T

TC

)3/2

− (1− s)
(
T

TC

)p]β
,

(4)
where p = 5/2, β = 1/3, and s is an adjustable parame-
ter. In the low-temperature limit Eq. (4) turns into the
Bloch law, Ms ≈M0[1− sβ(T/TC)3/2], whence

D = 0.1509

(
gµB
sβM0

)2/3

kTC . (5)

Thus, A is found from the best-fit value of s by using
successively Eqs. (5) and (3). The advantage is that
now all Ms(T ) data are used, not just those at T � TC .
The choice of the upper limit of the temperature interval
presents no longer a problem and is no more a source of
ambiguity.

For a demonstration of the new method we collected
data on 17 ferromagnets available in the literature. These
are presented in the upper part of Table I. For each com-
pound a reference is given to the paper where the fitting
to Eq. (4) was performed and where further references
may be found. Two ferromagnets were reported to have
non-standard values of the parameter p: Fe (p = 4) and
MnB (p = 10); this fact does not affect in any way the
determination of D or A. As against that, for the three
compounds where non-standard values of the critical ex-
ponent β had been employed in the fit,14 β = 0.369 for
EuS and EuO and β = 0.31 for CrBr3, the same values
had to be set in Eq. (5) in order to compute D. In all
other cases standard parameter values were used, p = 5/2
and β = 1/3.
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TABLE I. Quantities relevant to the determination of exchange stiffness A.

compound M0 (MA/m) TC (K) s D (meVÅ2) A (pJ/m) reference

MnB 0.99 567 0.7 140 5.9 7
Fe2B 1.29 1005 0.9 170 9.6 8
Co2B 0.55 417 0.5 190 4.4 8
La2Co7 0.56 479 0.75 160 3.9 9
Y2Fe14B 1.20 568 0.7 120 6.3 10
Y2Fe14Si3 0.95 483 0.8 110 4.5 11
Lu2Co17 1.06 1210 0.35 440 20 12
Gd 2.12 289 1.3 28 2.5 13
EuS 1.22 16.6 0.8 3.0 0.16 14
EuO 1.91 69.6 0.8 9.3 0.77 14
CrBr3 0.27 32.6 1.0 16 0.18 14
Fe 1.75 1044 0.35 270 21 6
Co 1.45 1385 0.11 890 56 6
Ni 0.51 631 0.15 660 15 6
YCo5 0.93 930 0.7 240 9.4 6
Y2Fe17 1.24 312 0.6 72 3.9 6
GdZn 1.45 270 1.9 26 1.6 6

LaCo13 1.06 1285 0.2 680 31 this work
YFe11Ti 1.09 534 0.68 120 5.8 —”—
YFe2 0.53 553 0.3 360 8.2 —”—
Mn5Ge3 1.00 293 0.43 100 4.2 —”—
MnAlGe 0.35 505 0.56 280 4.3 —”—

As another demostration of the method, single crys-
tals of 5 further ferromagnets of topical interest have
been produced and investigated in this work. These
are LaCo13, YFe11Ti, YFe2, Mn5Ge3, and MnAlGe.
The starting metals were all 99.99% pure, except Y
and La (both 99.95%) and Ge (99.999%). For YFe11Ti
the elements were mixed in the stoichiometric propor-
tion, whereas for Mn5Ge3 and MnAlGe a 5% at. sur-
plus of Mn was put in, to compensate for evaporation
during the melting. Finally, the starting compositions
for LaCo13 and YFe2 were distinctly off-stoichiometric,
La0.189Co0.811 and Y0.45Fe0.55, as required for the reac-
tive flux technique. In all cases the initial mixture of
metals was melted in an induction furnace under a slight
excess pressure (1.5 bars) of argon. The resulting ingots,
weighing between 20 and 30 g, were put into zirconia cru-
cibles, these were placed into quartz tubes and sealed off
under a pressure of about 0.3 bar of argon.

The quartz ampoules were subsequently placed into a
resistive tube furnace for remelting. For the line com-
pounds, YFe11Ti, Mn5Ge3, and MnAlGe, the procedure
consisted in heating the ingots up to slightly above the
melting temperature, waiting for 5 minutes, and cooling
down slowly, at a rate of 0.5◦C/min, to room tempera-
ture. The La-Co ingot was heated up to 1310◦C, kept at
that temperature for 5 min, then cooled down to 1130◦C
at a rate of 5◦C/min, kept at that temperature for two
weeks, and finally quenched in water. The ingot for the
production of YFe2 was heated up to 1200◦C, kept there
for 5 min, cooled down to 1125◦C at a rate of 5◦C/min,
then more slowly (at 2◦C/h) down to 900◦C, kept there
for two weeks, then quenched in water.

The final ingots were broken up and large single-

crystalline grains were extracted. The strained sur-
face layer of the grains was etched off electrolytically
in phosphoric acid. The final compositions were deter-
mined from energy-dispersive x-ray analysis and found
to correspond to the desired stoichiometries. The single-
crystallinity of the grains was checked by back-scattering
Laue x-ray diffraction.

The crystals of cubic symmetry (LaCo13 and YFe2)
were roughly spherical in shape and up to 3 mm in di-
ameter; magnetic measurements were performed on un-
oriented, free to rotate crystals. In the case of tetragonal
(YFe11Ti and MnAlGe) or hexagonal (Mn5Ge3) symme-
try, the crystals were needle-shaped, up to 3 mm long and
1 mm thick, the long dimension being parallel to the high-
symmetry axis [001] as verified by x-ray diffraction. For
magnetic measurements these crystals were glued onto
sample holders so that the field would be applied along
[001], which is the easy magnetization direction in all
three compounds.

Magnetization curves were measured using a commer-
cial magnetometer (Quantum Design PPMS-14) in static
magnetic fields of up to 5 T at temperatures ranging from
5 K to just above the Curie points (up to 1000 K in the
case of LaCo13). Extra measurements on LaCo13 were
carried out between room temperature and 1273 K us-
ing a high-temperature magnetometer (Lake Shore VSM
Model 740) in a field of up to 2 T.

Spontaneous magnetization was determined by linear
extrapolation to zero internal field, as shown with dashed
lines on the upper curve in Fig. 1a. This technique works
well at low temperatures but becomes ambiguous near
the Curie point. Thus, the curves taken at T = 291 K
and 295 K look similar in Fig. 1a. Yet, the first temper-
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FIG. 1. Representative magnetization curves of Mn5Ge3 (a)
and the corresponding Belov-Arrott plots (b).

ature lies below the Curie point, while the other one is
above TC . The difficulty was overcome by using near
TC a standard procedure due to Belov & Goryaga15

(sometimes attributed to Arrott16) and based on Lan-
dau’s theory of second-order phase transitions,17 adapted
for ferromagnets by Ginzburg.18 The technique consists
in presenting the magnetization curves as H/M versus
M2, as shown for Mn5Ge3 in Fig. 1b. The data points
situated well above the (dashed) demagnetization line,
H/M ≡ Nρ ≈ 2 × 103 kg/m3, were fitted to quadratic
polynomials and the abscissas of the crossing-points of
the fits with the demagnetization line were interpreted
as values of M2

s . This is indicated with an arrow for the
curve at T = 291 K. The 295 K curve is clearly distinct;
here M2

s < 0, so Ms is not a real quantity. The Belov-
Arrott plots were used to determine Ms at T > 260 K
for Mn5Ge3, T > 450 K for MnAlGe, T > 480 K for
YFe11Ti, T > 500 K for YFe2, and T > 1220 K for
LaCo13. The results are shown as open circles in Fig. 2.

The data points were fitted to Eq. (4) with p = 5/2
and β = 1/3; the fits are shown in Fig. 2 as contin-
uous lines. The best-fit values of the parameters M0,

FIG. 2. Temperature dependence of spontaneous magnetiza-
tion. Open circles indicate values deduced from experiment
and continuous lines are fits to Eq. (4).

TC , and s are collected in the lower part of Table I; x-
ray densities were used to convert M0 into amperes per
meter. The obtained TC values are in reasonable agree-
ment with the literature: TC = 1290 K for LaCo13,19

296 K for Mn5Ge3,20 503 K for MnAlGe,21 538 K for
YFe11Ti,22 and 560 K for YFe2.23 (We find that the lat-
ter value should be reduced to 556 K, as follows from a
careful analysis of the data presented in Fig. 3 of Ref.
23; this agrees yet better with the result of this work for
YFe2, TC = 553 K.) We do not aim at giving here an
exhaustive survey of published TC data. Just for LaCo13
we would like to point out that the only other reported
value, TC = 1318 K,24 is definitely too high.

Finally, the values of D and A found from Eqs. (3) and
(5) are presented in the 5th and 6th columns of Table I.
A few remarks are due at this point.
(i) Both D and A are referred to T = 0; they are not
to be compared with room-temperature data. However,
as ground-state properties, they should be amenable to
DFT calculations.
(ii) For a non-cubic ferromagnet the value of A (or D)
given in Table I should be understood as the geometric
mean of the principal values of the corresponding tensor,
A = (A1A2A3)1/3. For a domain wall of particular orien-
tation one of the tensor components is relevant, not the
geometric mean.
(iii) Values of A deduced from the properties of domain
walls (such as thickness or energy density) are affected by
the poor knowledge of anisotropy constants, all of them
usually neglected but the leading one. Such data cannot
be regarded as accurate, even if they were obtained from
low-temperature measurements.

We are therefore left with two main sources of informa-
tion: inelastic neutron scattering and density functional
calculations. The comparison (see Table II) is essentially
limited to iron and nickel, for which low-temperature
neutron scattering data are available.
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TABLE II. Spin-wave stiffness of iron and nickel, D (meVÅ2),
obtained by various techniques.

source Fe Ni

neutron scattering 307a 400b, 593c

DFT calculation 220d, 247e, 250f 700d, 739e, 756f

this work 270 660

aRef. 25.
bRef. 26.
cRef. 27.
dRef. 28.
eRef. 29.
fRef. 30.

The situation for iron appears benign, but one learns
little from the comparison. Perhaps, that the first calcu-
lated value,28 D = 220 meVÅ2, is somewhat too low.

The numbers for nickel are more telling. So one learns
to mistrust the values of D deduced from neutron spec-
tra. The reason is that D, defined as the curvature of
the dispersion curve at q = 0, is not directly accessible
to neutron spectroscopy. Instead, data are collected at
nonzero q and fitted to an expression with two or three
adjustable parameters, one of them being D. The pro-
cedure is apparently numerically unstable, as disparate
values of D were obtained in Refs. 27 and 26. (The sit-
uation is worse for the factor of q4 — neither its sign
nor order of magnitude could be found out.) It is not in-
conceivable that the observed part of the spectrum could
be also reproduced by using the spin-wave stiffness ob-
tained in this work, D = 660 meVÅ2, and a suitably
chosen coefficient of the quartic term. It is not clear at
this point if our result should be regarded as an under-
or an over-estimation.

For cobalt, there are no low-temperature neutron data;

the often-cited value,31 D = 510 meVÅ2, was deduced
from a spectrum taken at room temperature. It is in-
structive, though, to compare our result for Co with the
one obtained by Pathenet,32 D = 580 meVÅ2, by fitting
his own Ms(T ) data to Bloch’s law. Our value is signif-
icantly higher, D = 890 meVÅ2, but the corresponding
s was obtained in Ref. 6 by fitting to Eq. (4) a com-
bined data set, whose low-temperature part (T < 300
K) had been taken from Ref. 32. It is rather peculiar
that two so different D’s should be deduced from prac-
tically the same experimental data. (All the more so
as the values obtained for iron are very close: our 274
meVÅ2, rounded off to 270 meVÅ2 in Table I, versus
Pauthenet’s 276 meVÅ2, rounded off to 280 meVÅ2 in
Ref. 32.) It should be noted, though, that the data
set used in Ref. 6 was an extended one; it covered the
entire interval from T = 4.2 K to the Curie point; all
those data were fitted successfully to Eq. (4) with the
standard exponents, p = 5/2 and β = 1/3. On the con-
trary, in Ref. 32 the fitting interval was narrowed down
to 100 K < T < 287 K, excluding deliberately the data
collected between 4.2 K and 100 K. The exclusion of the
low-temperature data points is in contradiction with the
asymptotic, low-temperature character of the Bloch law
and it may have compromised the result. In any case,
Pauthenet himself regarded the obtained factor of T 3/2

for Co as rather approximate; so one reads in Ref. 32:
a3/2 ∼ 1.5 × 10−6 (K−3/2). The thence derived stiffness

value, D = 580 meVÅ2, should be therefore viewed as a
less accurate one.

To conclude, we propose a new way of deducing the
spin-wave stiffness D and the exchange stiffness A of a
ferromagnet from its spontaneous magnetization. The
main advantage of the new technique is that the entire
Ms(T ) dependence is used (with 0 < T < TC) rather
than just its low-temperature part.
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