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Abstract. The Kappa biochemistry and the MØD organo-chemistry
frameworks are amongst the most intensely developed applications of
rewriting theoretical methods in the life sciences to date. A typical fea-
ture of these types of rewriting theories is the necessity to implement
certain structural constraints on the objects to be rewritten (a protein
is empirically found to have a certain signature of sites, a carbon atom
can form at most four bonds, . . . ). In this paper, we contribute to the
theoretical foundations of these types of rewriting theory a number of
conceptual and technical developments that permit to implement a uni-
versal theory of continuous-time Markov chains (CTMCs) for stochastic
rewriting systems. Our core mathematical concepts are a novel rule al-
gebra construction for the relevant setting of rewriting rules with condi-
tions, both in Double- and in Sesqui-Pushout semantics, augmented by a
suitable stochastic mechanics formalism extension that permits to derive
dynamical evolution equations for pattern-counting statistics.

Keywords: Double-Pushout rewriting · Sesqui-pushout rewriting · rule
algebra · stochastic mechanics · biochemistry · organic chemistry.

1 Motivation

One of the key applications that rewriting theory may be considered for in the
life sciences is the theory of continuous-time Markov chains (CTMCs) model-
ing complex systems. In fact, since Delbrück’s seminal work on autocatalytic
reaction systems in the 1940s [19], the mathematical theory of chemical reac-
tion systems has effectively been formulated as a rewriting theory in disguise,
namely via the rule algebra of discrete graph rewriting [10]. In the present
paper, we provide the necessary technical constructions in order to consider

? This is an extended version (containing additional technical appendices) of a paper
with the same tittle accepted for ICGT 2020.
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the CTMCs and analysis methods of relevance for more general types of com-
positional rewriting theories with conditions, with key examples provided in
the form of biochemical graph rewriting in the sense of the Kappa framework
(https://kappalanguage.org) [11], and (organo-) chemical graph rewriting in the
sense of the MØD framework (https://cheminf.imada.sdu.dk/mod/) [1]. The
present paper aims to serve two main purposes: the first consists in providing an
extension of the existing category-theoretical rule-algebra frameworks [9,10,4]
by the rewriting theoretical design feature of incorporating rules with condi-
tions as well as constraints on objects (Section 3). Based upon these technical
developments, we then investigate to which extent it is possible to utilize the
rule-algebraic stochastic mechanics frameworks of the relevant types (Section 4)
in order to compute evolution equations for the moments of pattern-count ob-
servables within the Kappa and MØD frameworks (Section 5 and 6).

2 Compositional rewriting theories with conditions

The well-established Double-Pushout (DPO) [20] and Sesqui-Pushout (SqPO) [12]
frameworks for rewriting systems over categories with suitable adhesivity prop-
erties [30,24,26,22] provide a principled and very general foundation for rewriting
theories. In practice, many applications require the rewriting of objects that are
not part of an adhesive category themselves, but which may be obtained from
a suitable “ambient” category via the notion of conditions on objects. Together
with a corresponding notion of constraints on rewriting rules, this yields a versa-
tile extension of rewriting theory. In the DPO setting, this modification had been
well-known [27,20,22,21], while it has been only very recently introduced for the
SqPO setting [8]. For the rule algebra constructions presented in the main part
of this contribution, we require in addition a certain compositionality property
of our rewriting theories (established for the DPO case in [9,10], for the SqPO
case in [4], and for both settings augmented with conditions in [8]).

2.1 Category-theoretical prerequisites

We collect in Appendix A.1 some of the salient concepts on M-adhesive cate-
gories and the relevant notational conventions. Throughout this paper, we will
make the following assumptions:

Assumption 1. C ≡ (C,M) is a finitary M-adhesive category with M-initial
object, M-effective unions and epi-M-factorization. In the setting of Sesqui-
Pushout (SqPO) rewriting, we assume in addition that all final pullback com-
plements (FPCs) along composable pairs of M-morphisms exist, and that M-
morphisms are stable under FPCs.

Both of the main application examples presented within this paper rely upon
typed variants of undirected multigraphs.

Definition 1. Let P(1,2) : Set → Set be the restricted powerset functor (map-
ping a set S to the set of its subsets P ⊂ S with 1 ≤ |P | ≤ 2). The category

https://kappalanguage.org
https://cheminf.imada.sdu.dk/mod/
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uGraph [10] of finite undirected multigraphs is defined as the finitary restric-
tion of the comma category (IDSet,P(1,2)). Thus an undirected multigraph is
specified as G = (EG, VG, iG), where EG and VG are (finite) sets of edges and
vertices, respectively, and where iG : EG → P(1,2)(VG) is the edge-incidence map.

Theorem 1. uGraph satisfies Assumption 1, both for the DPO- and for the
extended SqPO-variant.

Proof. As demonstrated in [10], uGraph is indeed a finitary M-adhesive cate-
gory withM-initial object andM-effective unions, forM the class of component-
wise monic uGraph-morphisms. It thus remains to prove the existence of an
epi-M-factorization as well as the properties related to FPCs. To this end, uti-
lizing the fact that the category Set upon which the comma category uGraph
is based possesses an epi-mono-factorization, we may construct the following
diagram from a uGraph-morphism ϕ = (ϕE ,P(1,2)(ϕV )) (for component mor-
phisms ϕE : E → E′ and ϕV : V → V ′):

E P(1,2)(V ) V

E E P P(1,2)(V ) V

E′ P(1,2)(V ′) V ′

φE

eE

i

p
eP

P(1,2)(eV )

φV

P(1,2)

eV

∃
∼=

mE

mP

pE

pV

PB
P(1,2)(mV ) mV

P(1,2)

i′
P(1,2)

(1)

The diagram is constructed as follows:

1. Perform the epi-mono-factorizations ϕE = mE ◦ eE and ϕV = mV ◦ eV ,
and apply the functor P(1,2) in order to obtain the morphisms P(1,2)(eV )
and P(1,2)(mV ); since the functor P(1,2) preserves monomorphisms [33],
P(1,2)(mV ) ∈ mono(Set).

2. Construct the pullback

(E′← P →P(1,2)(V )) := PB(E′ → P(1,2)(V ′)← P(1,2)(V )) ,

Since monomorphisms are stable under pullback in Set, having proved that
P(1,2)(mV ) ∈ mono(Set) implies (pE : P → E′) ∈ mono(Set).

3. By the universal property of pullbacks, there exists a morphism (p : E → P ).
Let p = mP ◦ eP be the epi-mono-factorization of this morphism.

4. By stability of monomorphisms under composition in Set, we find that pE ◦
mP ∈ mono(Set), and consequently ϕE = (pE◦mP )◦eP yields an alternative
epi-mono-factorization of ϕE . Then by uniqueness of epi-mono-factorizations

up to isomorphism, there must exist an isomorphism (E→ E) ∈ iso(Set).
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We have thus demonstrated that both (eE ,P(1,2)(eV )) and (mE ,P(1,2)(mV )) are
morphisms in uGraph. Since morphisms in comma categories are mono-, epi-
or iso-morphisms if they are so componentwise [20], we conclude that

(eE ,P(1,2)(eV )) ∈ epi(uGraph) , (mE ,P(1,2)(mV )) ∈ mono(uGraph) ,

which finally entails that we have explicitly constructed an epi-mono-factorization
of the uGraph-morphism (ϕE ,P(1,2)(ϕV )).

In order to demonstrate that FPCs along pairs of composableM-morphisms
ϕA, ϕB ∈ M in uGraph exist (for M the class of component-wise monomo-
mophic uGraph morphisms), we provide the following explicit construction:

A B

C D

φA

φC FPC φB

φD

VC = VD \ (VB \ VA)

EC = {e ∈ ED \ (EB \ EA) | uD(e) ∈ P(1,2)(VC)}
uC = uD|EC
ϕC = (EA ↪→ EC ,P(1,2)(VA ↪→ VC))

ϕD = (EC ↪→ ED,P(1,2)(VC ↪→ VD))

(2)

2.2 Conditions

Referring to Appendix A.2 for further details and technical definitions, we will
utilize as a notational convention the standard shorthand notations

∃(X ↪→ Y ) := ∃(X ↪→ Y, trueY ) , ∀(X ↪→ Y, cY ) := ¬∃(X ↪→ Y,¬cY ) . (3)

For example, the constraints

c
(1)
∅ = ∃(∅ ↪→ ) , c

(2)
∅ = 6 ∃(∅ ↪→ ) , c

(3)
∅ = ∀(∅ ↪→ ,∃( ↪→ ))

express for a given object Z ∈ obj(C) that Z contains at least two vertices (if

Z � c
(1)
∅ ), that Z does not contain parallel pairs of directed edges (if Z � c

(2)
∅ ),

and that for every directed edge in Z there also exists a directed edge between

the same endpoints with opposite direction (if Z � c
(3)
∅ ), respectively.

2.3 Compositional rewriting with conditions

Throughout this section, we assume that we are given a type T ∈ {DPO,SqPO}
of rewriting semantics and an M-adhesive category C satisfying the respective
variant of Assumption 1. In categorical rewriting theories, the universal con-
structions utilized such as pushouts, pullbacks, pushout complements and final
pullback complements are unique only up to universal isomorphisms. This moti-
vates specifying a suitable notion of equivalence classes of rules with conditions:

Definition 2 (Rules with conditions). Let Lin(C) denote the class of (lin-
ear) rules with conditions, defined as

Lin(C) := {(O o←− K i−→ I; cI) | o, i ∈M, cI ∈ cond(C)} . (4)
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O1 K1 I1

O2 K2 I2

ω∼= κ∼= ι∼= (5)

We define two rules with conditions Rj =
(rj , cIj ) (j = 1, 2) equivalent, denoted
R2 ∼ R1, iff cI1 ≡ cI2 and if there exist
isomorphisms ω, κ, ι ∈ iso(C) such that the
diagram on the right commutes. We denote
by Lin(C)∼ the set of equivalence classes under ∼ of rules with conditions.

Definition 3 (Direct derivations). Let r = (O ←↩ K ↪→ I) ∈ Lin(C) and
cI ∈ cond(C) be concrete representatives of some equivalence class R ∈ Lin(C)∼,
and let X,Y ∈ obj(C) be objects. Then a type T direct derivation is defined as
a commutative diagram such as below right, where all morphism are in M (and
with the left representation a shorthand notation)

O I

Y X

m∗ m

r

T :=

O K I

Y K X

m∗ k(B) (A) m . (6)

with the following pieces of information required relative to the type:

1. T = DPO: given (m : I ↪→ X) ∈ M, m is a DPO-admissible match of R
into X, denoted m ∈ MDPO

R (X), if m � cI and (A) is constructable as a
pushout complement, in which case (B) is constructed as a pushout.

2. T = SqPO: given (m : I ↪→ X) ∈ M, m is a SqPO-admissible match of R
into X, denoted m ∈ MSqPO

R (X), if m � cI , in which case (A) is constructed
as a final pullback complement and (B) as a pushout.

3. T = DPO†: given just the “plain rule” r and (m∗ : O ↪→ Y ) ∈ M, m∗ is
a DPO†-admissible match of r into X, denoted m ∈ MDPO†

r (Y ), if (B) is
constructable as a pushout complement, in which case (B) is constructed as
a pushout.

For types T ∈ {DPO,SqPO}, we will sometimes employ the notation Rm(X)
for the object Y .

Note that at this point, we have not yet resolved a conceptual issue that arises
from the non-uniqueness of a direct derivation given a rule and an admissible
match. Concretely, the pushout complement, pushout and FPC constructions are
only unique up to isomorphisms. This issue will ultimately be resolved as part
of the rule algebraic theory. We next consider a certain composition operation
on rules with conditions that is quintessential to our main constructions:

Definition 4 (Rule compositions). Let R1, R2 ∈ Lin(C)∼ be two equiva-
lence classes of rules with conditions, and let rj ∈ Lin(C) and cIj be con-
crete representatives of Rj (for j = 1, 2). For T ∈ {DPO,SqPO}, an M-span
µ = (I2 ←↩ M21 ↪→ O1) (i.e. with (M21 ↪→ O1), (M21 ↪→ I2) ∈ M) is a T-
admissible match of R2 into R1 if the diagram below is constructable (with N21
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constructed by taking pushout)

O2 I2 M21 O1 I1

O21 N21 I21

r2

T PO DPO†

r1

(7)

and if cI21 6≡̇ false. Here, the condition cI21 is computed as

cI21 := Shift(I1 ↪→ I21, cI1) ∧ Trans(N21 ↼ I21,Shift(I2 ↪→ N21, cI2)) . (8)

In this case, we define the type T composition of R2 with R1 along µ, denoted
R2

µ/TR1, as
R2

µ/TR1 := [(O21 ↼ I21; cI21)]∼ , (9)

where (O21 ↼ I21) := (O21 ↼ N21) ◦ (N21 ↼ I21) (with ◦ the span composition
operation).

We recall in Appendix A.3 two important technical results on the notions
of direct derivations and rule compositions that have been derived in [8] (where
however the DPO-type concurrency theorem is of course classical, cf. e.g. [20]).

3 Rule algebras for compositional rewriting with
conditions

The associativity property of rule compositions in both DPO- and SqPO-type se-
mantics for rewriting with conditions as proved in [8] may be fruitfully exploited
within rule algebra theory. One possibility to encode the non-determinism in
sequential applications of rules to objects is given by lifting each possible con-
figuration X ∈ obj(C)∼= (i.e. isomorphism class of objects) to a basis vector |X〉
of a vector space Ĉ; then a rule r is lifted to a linear operator acting on Ĉ,
with the idea that this operator acting upon a basis vector |X〉 should evaluate
to the “sum over all possibilities to act with r on X”. We will extend here the
general rule algebra framework [6,9,4] to the present setting of rewriting rules
with conditions.

We will first lift the notion of rule composition into the setting of a compo-
sition operation on a certain abstract vector space over rules, thus realizing the
heuristic concept of “summing over all possibilities to compose rules”.

Definition 5. Let T ∈ {DPO,SqPO} be the rewriting type, and let C be a
category satisfying the relevant variant of Assumption 1. Let RC be an R-vector

space, defined via a bijection δ : Lin(C)∼
∼=−→ basis(RC) from the set of equiv-

alence classes of linear rules with conditions to the set of basis vectors of RC.
Let ?T denote the type T rule algebra product, a binary operation defined via its
action on basis elements δ(R1), δ(R1) ∈ RC (for R1, R2 ∈ Lin(C)∼) as

δ(R2) ?T δ(R1) :=
∑

µ∈MT
R2

(R1)

δ (R2
µ/TR1) . (10)
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We refer to RT
C := (RC, ?T) as the T-type rule algebra over C.

Theorem 2. For type T ∈ {DPO,SqPO} over a category C satisfying Assump-

tion 1, the rule algebra RT
C is an associative unital algebra, with unit element

δ(R∅), where R∅ := (∅←↩ ∅ ↪→ ∅; true).

Proof. Associativity follows from Theorem 7, while unitality, i.e. that

∀R ∈ Lin(C)∼ : δ(R∅) ?T δ(R) = δ(R) ?T δ(R∅) = δ(R)

follows directly from an explicit computation of the relevant rule compositions.

As alluded to in the introduction, the prototypical example of rule algebras
are those of DPO- or (in this case equivalently) SqPO-type over discrete graphs,
giving rise as a special case to the famous Heisenberg-Weyl algebra of key impor-
tance in mathematical chemistry, combinatorics and quantum physics (see [10]
for further details). We will now illustrate the rule algebra concept in an example
involving a more general base category.

Example 1. For the category uGraph and DPO-type rewriting semantics, con-
sider as an example the following two rules with conditions:

RC :=

(
←↩ ↪→ ;¬∃

(
↪→

))
, RV := ( ←↩ ∅ ↪→ ; true) . (11)

The first rule is a typical example of a rule with application conditions, i.e.
here stating that the rule may only link two vertices if they were previously not
already linked to each other. The second rule, owing to DPO semantics, can in
effect only be applied to vertices without any incident edges. The utility of the
rule-algebraic composition operation then consists in reasoning about sequential
compositions of these rules, for example (letting ∗ := ?DPO):

δ(RC) ∗ δ(RV ) = δ(RC ]RV ) + 2δ(R′C) , R′C :=

(
←↩ ↪→ ; true

)
δ(RV ) ∗ δ(RC) = δ(RC ]RV ) .

(12)

To provide some intuition: the first computation encodes the causal information
that the two rules may either be composed along a trivial overlap, or rule RC
may overlap on one of the vertices in the output of RV ; in the latter case, any
vertex to which first RV and then RC applies must not have had any incident
edges, i.e. in particular no edge violating the constraint of RC , which is why
the composite rule R′C does not feature any non-trivial constraint. In the other
order of composition, the two vertices in the output of RC are linked by an edge,
so RV cannot be applied to any of these two vertices (leaving just the trivial
overlap contribution).

Just as the rule algebra construction encodes the compositional associativity
property of rule compositions, the following representation construction encodes
in a certain sense the properties described by the concurrency theorem:
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Definition 6. Let C be an M-adhesive category satisfying Assumption 1. Let
Ĉ be defined as the R-vector space whose set of basis vectors is isomorphic to the
set3 of iso-classes of objects of C via a bijection |.〉 : obj(C)∼= → basis(Ĉ). Then
the T-type canonical representation of the T-type rule algebra over C, denoted

ρTC, is defined as the morphism ρTC : RT
C → EndR(Ĉ) specified via

∀R ∈ Lin(C)∼, X ∈ obj(C)∼= : ρTC (δ(R)) |X〉 :=
∑

m∈MT
R(X)

|Rm(X)〉 . (13)

Theorem 3. ρTC as defined above is an algebra homomorphism (and thus in
particular a well defined representation).

Proof. The proof is entirely analogous to the one for the case without application
conditions [9,4] (cf. Appendix B.1).

4 Stochastic mechanics formalism

Referring to [6,10,7] for further details and derivations, suffice it here to highlight
the key role played by the algebraic concept of commutators in stochastic me-
chanics. Let us first provide the constructions of continuous-time Markov chains
(CTMCs) and observables in stochastic rewriting systems.

Definition 7. Let 〈| : Ĉ→ R (referred to as dual projection vector) be defined

via its action on basis vectors of Ĉ as 〈 |X〉 := 1R.

Theorem 4. Let C be a category satisfying the relevant variant of Assump-

tion 1, and let RT
C be the T-type rule algebra of linear rules with conditions

over C. Let ρ ≡ ρTC denote the T-type canonical representation of RT
C. Then the

following results hold:

1. The basis elements of the space obs(C)T of T-type observables, i.e. the di-
agonal linear operators that arise as (linear combinations of) T-type canon-
ical representations of rewriting rules with conditions, have the following
structure (ÔcP

P,q in the DPO case, ÔcP
P in the SqPO case):

ÔcP
P,q := ρ(δ(P

q←− Q q−→ P ; cP )) (P ∈ obj(C)∼=, q ∈M, cP ∈ cond(C)∼)

ÔcP
P := ρ(δ(P

∼=←− P ∼=−→ P ; cP )) (P ∈ obj(C)∼=, cP ∈ cond(C)∼) .
(14)

2. DPO-type jump closure property: for every linear rule with condition
R ≡ (O ←↩ K ↪→ I, cI) ∈ Lin(C), we find that

〈| ρ(δ(R)) = 〈| Ô(δ(R)) , (15)

3 We assume here that the isomorphism classes of objects of C form a set (i.e. not a
proper class).
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where Ô : RDPO

C → EndR(Ĉ) is the homomorphism defined via its action on
basis elements δ(R) for R = (O ←↩ K ↪→ I; cI) ∈ Lin(C)∼ as

Ô(δ(R)) := ρ(δ(I ←↩ K ↪→ I; cI)) ∈ obs(C) . (16)

3. SqPO-type jump closure property: for every linear rule with condition
R ≡ (O ←↩ K ↪→ I, cI) ∈ Lin(C), we find that

〈| ρ(δ(R)) = 〈| Ô(δ(R)) , (17)

where4 Ô : RSqPO

C → EndR(Ĉ) is the homomorphism defined via

Ô(δ(R)) := ρ(δ(I
∼=←− I ∼=−→ I; cI)) ∈ obs(C) . (18)

4. CTMCs via stochastic rewriting systems: Let Prob(C) be the space of

(sub-)probability distributions over Ĉ (i.e. |Ψ〉 =
∑
X∈obj(C)∼=

ψX |X〉). Let

T be a collection of N pairs of positive real-valued parameters κj (referred
to as base rates) and linear rules Rj with application conditions,

T := {(κj , Rj)}1≤j≤N (κj ∈ R≥0 , Rj ≡ (rj , cIj ) ∈ Lin(C)) . (19)

Then given an initial state |Ψ0〉 ∈ Prob(C), the T-type stochastic rewriting
system based upon the transitions T gives rise to the CTMC (H, |Ψ(0)〉) with
time-dependent state |Ψ(t)〉 ∈ Prob(C) (for t ≥ 0) and evolution equation

∀t ≥ 0 : d
dt |Ψ(t)〉 = H |Ψ(t)〉 , |Ψ(0)〉 = |Ψ0〉 . (20)

Here, the infinitesimal generator H of the CTMC is given by

H = Ĥ − Ô(Ĥ) , Ĥ =

N∑
j=1

κj ρ(δ(Rj)) . (21)

Proof. See Appendix B.2.

Remark 1. The operation Ô featuring in the DPO- and SqPO-type jump-closure
properties has a very intuitive interpretation: given a linear rule with condition
R ≡ (r, cI) ∈ Lin(C), the linear operator Ô(δ(R)) is an observable that evaluates

on a basis vector |X〉 ∈ Ĉ as Ô(δ(R)) |X〉 = (# of ways to apply R to X) · |X〉.

As for the concrete computational techniques offered by the stochastic me-
chanics formalism, one of the key advantages of this rule-algebraic framework
is the possibility to reason about expectation values (and higher moments) of
pattern-count observables in a principled and universal manner. The precise for-
mulation is given by the following generalization of results from [7] to the setting
of DPO- and SqPO-type rewriting for rules with conditions:

4 Since in applications we will always fix the type of rewriting to either DPO or SqPO,
we will use the same symbol for the jump-closure operator in both cases.
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Theorem 5. Given a CTMC (|Ψ0〉 ,H) with time-dependent state |Ψ(t)〉 (for t ≥
0), a set of observables O1, . . . On ∈ obs(C) and n formal variables λ1, . . . , λn,
define the exponential moment-generating function (EMGF) M(t;λ) as

M(t;λ) := 〈| eλ·O |Ψ(t)〉 , λ ·O :=

n∑
j=1

λjOj . (22)

Then M(t;λ) satisfies the following formal evolution equation (for t ≥ 0):

d
dtM(t;λ) =

∑
q≥1

1
q! 〈|

(
ad◦qλ·O(Ĥ)

)
eλ·O |Ψ(t)〉 , M(0;λ) = 〈| eλ·O |Ψ0〉 . (23)

Proof. In full analogy to the case of rules without conditions [7], the proof follows

from the BCH formula eλABe−λA = eadλA(B) (for A,B ∈ EndR(Ĉ)). Here,
ad◦0A (B) := B, adA(B) := AB − BA (also referred to as the commutator [A,B]

of A and B), and ad
◦(q+1)
A (B) := adA(ad◦qA (B)) for q ≥ 1. Finally, the q = 0

term in the above expression evaluates identically to 0 due to 〈|H = 0.

Combining this theorem with the notion of T-type jump-closure, one can in
favorable cases express the EMGF evolution equation as a PDE on formal power
series in λ1, . . . , λn and with t-dependent real-valued coefficients. Referring the
interested readers to [7] for further details on this technique, let us provide here
a simple non-trivial example of such a calculation.

Example 2. Let us consider a stochastic rewriting system over the category C =
uGraph of finite undirected multigraphs, with objects further constrained by
the structure constraint cS∅ := ¬∃(∅ ↪→ ) ∈ cond(uGraph) that prohibits
multiedges. Let us consider for type T = SqPO the four rules with conditions
RE± (edge-creation/-deletion) and RV± (vertex creation/deletion), defined as

RE+
:= 1

2δ

(
←↩ ↪→ ;¬∃

(
↪→

))
, RV+

:= δ( ←↩ ∅ ↪→ ∅; true)

RE− := 1
2δ

(
←↩ ↪→ ; true

)
, RV− := δ(∅←↩ ∅ ↪→ ; true) .

Here, the prefactors 1
2 for RE± are chosen purely for convenience. Note that

RE+ is the only rule requiring a non-trivial application condition, since linking
two vertices with an edge might create a multiedge (precisely when the two
vertices were already linked). Introducing base rates ν±, ε± ∈ R>0 and letting
X̂ := ρ(RX), we may assemble the infinitesimal generator H of a CTMC as

H = Ĥ + Ô(Ĥ) , Ĥ := ν+V̂+ + ν−V̂− + ε+Ê+ + ε−Ê− . (24)

One might now ask whether there is any interesting dynamical structure e.g. in
the evolution of the moments of the observables that count the number of times
each of the transitions of this system is applicable,

O•|• := Ô(δ(RC)) , O•−• := Ô(δ(RD)) , O• := Ô(δ(RV D)) . (25)
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The algebraic data necessary in order to formulate EMGF evolution equations
are all commutators of the observables with the contributions X̂ := ρ(δ(RX))
to the “off-diagonal part” Ĥ of the infinitesimal generatorH. We will present here
for brevity just those commutators necessary in order to compute the evolution
equations for the averages of the three observables:

[O•, V̂±] = ±V̂± , [O•, Ê±] = 0

[O•|•, V̂+] = Â , [O•|•, V̂−] = −B̂ , [O•|•, Ê±] = ∓Ê±
[O•−•, V̂+] = 0 , [O•−•, V̂−] = −Ĉ , [O•−•, Ê±] = ±Ê±

(26)

As typical in these types of commutator computations, we find a number of
contributions (here Â, B̂ and Ĉ) that were not either observables or based upon
rules of the SRS:

Â := ρ

(
δ

(
←↩ ↪→ ; true

))
, B̂ := ρ

(
δ

(
←↩ ↪→ ;¬∃

(
↪→

)))
Ĉ := ρ

(
δ

(
←↩ ↪→ ; true

))
, Ô(Â) = O• , Ô(B̂) = 2O•|• , Ô(Ĉ) = 2O•−•

Picking for simplicity as an initial state |Ψ(0)〉 = |∅〉 just the empty graph, and
invoking the SqPO-type jump-closure property (cf. Theorem 4) repeatedly in

order to evaluate 〈[OP , Ĥ]〉(t) = 〈Ô([OP , Ĥ])〉(t), the moment EGF evolution
equation (23) specializes to the following “Ehrenfest-like” [7] ODE system:

d
dt 〈O•〉(t) = 〈[O•, H]〉(t) = ν+ − ν−〈O•〉(t)
d
dt 〈O•|•〉(t) = 〈[O•|•, H]〉(t) = ν+〈O•〉(t)− (2ν− + ε+)〈O•|•〉(t) + ε−〈O•−•〉(t)
d
dt 〈O•−•〉(t) = 〈[〈O•−•〉(t), H]〉(t) = ε+〈O•|•〉(t)− (2ν− + ε−)〈O•−•〉(t)
〈O•〉(0) = 〈O•|•〉(t) = 〈O•−•〉(t) = 0 .

This ODE system may be solved exactly (see Appendix C). We depict in Figure 1
two exemplary evolutions of the three average pattern counts for different choices
of parameters. Since due to SqPO-semantics the vertex deletion and creation
transitions are entirely independent of the edge creation and deletion transitions,
the vertex counts stabilize on a Poisson distribution of parameter ν+/ν− (where
we only present the average vertex count value here). As for the non-linked
vertex pair and edge patter counts, the precise average values are sensitive to
the parameter choices (i.e. whether or not vertices tend to be linked by an edge
or not may be freely tuned in this model via adjusting the parameters).

While the example presented was chosen mainly to illustrate the compu-
tational techniques, it highlights the typical feature of the emergence of con-
tributions in the relevant (nested) commutator calculations that may not have
been included in the non-diagonal part Ĥ of the infinitesimal generator of the
CTMC. We refer the interested readers to [7] for an extended discussion of this
phenomenon, and for computation strategies for higher-order moment evolution
equations.
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(a) Vertices tend to be linked.
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��

(b) Vertices tend to be unlinked.

Fig. 1. Time-evolutions of pattern count observables for different parameter choices.

5 Application scenario 1: biochemistry with Kappa

The Kappa platform [18,17] for rule-based modeling of biochemical reaction
systems is based upon the notion of so-called site-graphs that abstract proteins
and other complex macro-molecules into agents (with sites representing inter-
action capacities of the molecules). This open source platform offers a variety of
high-performance simulation algorithms (for CTMCs based upon Kappa rewrit-
ing rules) as well as several variants of static analysis tools to analyze and verify
biochemical models [11]. In view of the present paper, it is interesting to note that
since the start of the Kappa development, the simulation-based algorithms have
been augmented by differential semantics modules aimed at deriving ODE sys-
tems for the evolution of pattern-count observable average values [13,14,16,29].
In this section, we will experiment with a (re-)encoding of Kappa in terms of
typed undirected graphs with certain structural constraints that permits to ex-
press such moment statistics ODEs via our general rule-algebraic stochastic me-
chanics formalism. We will then provide an illustrative exemplary computation
of ODEs in order to point out certain intrinsic intricacies (notably non-closure
properties) typical of such calculations. One of the key theoretical features of
Kappa is its foundation upon the notion of rigidity [15]. In practice, the con-
struction involves an ambient category A (which possesses suitable adhesivity
properties), a pattern category P (obtained from A via certain negative con-
straints) and finally a state category S (obtained from P via additional positive
constraints). We will now present one possible realization of Kappa based upon
the M-adhesive category of typed undirected multigraphs:

Definition 8. For a Kappa model K, let A = uGraph/TK be the category of
finite undirected multigraphs typed over TK , where TK distinguishes agent vertex
types, site vertex types and three forms of edge types: agent-site, site-site and
loops on sites. For each agent type vertex X ∈ {A,B, . . .}, the type graph contains
the site type vertices x1 : X, . . . , xnX : X (incident to the X-type vertex via an
edge, and where nX < ∞). TK also contains link type edges between sites that
encode which sites can be linked, and loops on site type vertices that represent

https://kappalanguage.org


Rewriting Theory for the Life Sciences 13

dynamic attributes, such as the phosphorylation state of a site. Indicating the
three different edge types by wavy lines (agent-site), solid lines (site-site) and
dotted lines (property loops), the agent vertices with filled circles X and the site
vertices by open circles x , and using the placeholder • for a vertex and a dashed
line for an edge of any type, we may introduce the negative constraints defining
the pattern category PK as cNK := ∧N∈NK¬∃(∅ ↪→ N), with the set NK of
“forbidden subgraphs” defined as

NK := { } ∪
⋃
x

{
x

}
∪
⋃
X,x

{
Xx x , xX X

}
. (27)

Finally, the state category SK is obtained from PK via imposing a positive con-
straint cPK that ensures that each agent X is linked to exactly one of each of
its site vertices x : X, and if a site x : X can carry a property or alternative
variants thereof, it also carries a loop that signifies one of these properties (see
the example below for further details). Moreover, a given site x : X must be
linked to an agent X (i.e. cannot occur in isolation).

Example 3. Consider a simple Kappa model with a type graph as below left
that introduces two agent types K (for “kinase”) and P (for “protein”), where
K has a site k : K, and where P has sites pt, pl, pb : P. Moreover, the sites pt
and pb can carry properties u (“unphosphorylated”) and p (“phosphorylated”),
depicted as dotted loops in the type graph. Sites k : K and pl : P can bind (as
indicated by the solid line in the type graph).

kK

pt

pl P

pb

u p

u p

∅
k+−−⇀↽−−
k−

K

K P
l+−−⇀↽−−
l−

K P

K P

u t+−−⇀↽−−
t−

K P

p

K P
u

b+−−⇀↽−−
b−

K P
p

K
robsK↼−−−− K

P

p

p

robsP↼−−−− P

p

p

As a prototypical example of a Kappa stochastic rewriting system, consider a
system based upon the rewriting rules k±, l±, t± and b±. Here, for the rule
l+, we have indicated that it must be equipped with an application condition
that ensures that the site of the K-type agent and the left site of the P-type
agent must be free before binding. As common practice also in the standard
Kappa theory, we otherwise leave in the graphical depictions those application
conditions necessary to ensure consistent matches implicit as much as possible.
Consider then for a concrete computational example the time-evolution of the
average count of the pattern described in the identity rule robsP . As typical in
Kappa rule specifications robsP as well as several of the other rules depicted
only explicitly involve patterns, but not necessarily states, since e.g. in robsP
the left site of the P-type agent is not mentioned. In complete analogy to the
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computation presented in Example 2, let us first compute the commutators of
the observable OK = ρ(δ(robsK ; cobsK )) with the operators X̂ := ρ(δ(rX ; cX)):

[OK, K̂±] = ±K̂± , [OK, L̂±] = [OK, T̂±] = [OK, B̂±] = 0 (28)

However, letting O
(x,y)
P , O

(x,y)
link and O

(x,y)
free denote the observables for the patterns

ω
(x,y)
P := P

x

y
, ω

(x,y)
link := K P

x

y
, ω

(x,y)
free := K P

x

y

one may easily demonstrate that even a comparatively simple observable such as

O
(p,p)
P already leads to an infinite cascade of contributions to the ODEs for the av-

erages of pattern counts. As typical in these sorts of computations, the discovery
of a new pattern observable via applying SqPO-type jump-closure (Theorem 4)

to the commutator contributions to d
dt 〈O

(p,p)
P 〉(t) leads to the discovery of new

pattern observables yet again, such as in

[OP, T̂+] = T̂
(p)
+ , Ô(T̂

(p)
+ ) = O

(u,p)
link , [O

(u,p)
link , L̂+] = L̂(u,p) , Ô(L̂(u,p)) = O

(u,p)
free .

In particular the last observable O
(u,p)
free is found to lead to an infinite tower of

other observables (i.e. “ODE non-closure”), starting from

[O
(u,p)
free , L̂+] = −L̂(u,p) −

 K

K

P

u

p ↼
K

K

P

u

p

−
 K

P

P

u

p

↼

K

P

P

u

p

 .

This exemplary and preliminary analysis reveals that while the rule-algebraic
CTMC implementation is in principle applicable to the formulation and analysis
Kappa systems, further algorithmic and theoretical developments will be neces-
sary (including possibly ideas of fragments and refinements as in [13,14,29]) in
order to obtain a computationally useful alternative rewriting-theoretic imple-
mentation of Kappa.

6 Application scenario 2: organic chemistry with MØD

The MØD platform [1] for organo-chemical reaction systems is a prominent ex-
ample of a DPO-type rewriting theory of high relevance to the life sciences. From
a theoretical perspective, MØD has been designed [3] as a rewriting system over
so-called chemical graphs, a certain typed and undirected variant of the category
PLG of partially labelled directed graphs. While the latter category had been
introduced in [28] as a key example of anM-N -adhesive category, with the mo-
tivation of permitting label-changes in rewriting rules, it was also demonstrated
in loc cit. that PLG is not M-adhesive. Since moreover no concrete construction
of a tentative variant uPLG of PLG for undirected graphs, let alone results on
the possible adhesivity properties of such a category are known in the literature,

https://cheminf.imada.sdu.dk/mod/
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we propose here an alternative and equivalent encoding of chemical graphs. We
mirror the constructions of [1,3] in that chemical graphs will be a certain typed
variant of undirected graphs, with vertex types representing atom types, edge
types ranging over the types {−,=,#, :} representing single, double,triple and
aromatic bonds, respectively, and with the graphs being required to not contain
multiedges. Inspired by the Kappa constructions in the previous section, we opt
to represent properties (such as e.g. charges on atoms) as typed loop edges on ver-
tices representing atoms, whence the change of a property (which was the main
motivation in [3] for utilizing a variant of PLG) may be encoded in a rewrit-
ing rule simply via deletion/creation of property-encoding loops. Unfortunately,
while the heuristics presented thus far would suggest that chemical graphs in the
alternative categorical setting should be just simple typed undirected graphs, the
full specification of chemical graphs would also have to include additional, em-
pirical information from the chemistry literature. Concretely, atoms such as e.g.
carbon only support a limited variety of bond types and configurations of in-
cident bonds (referred to as valencies), with additional complications such as
poly-valencies possible for some types of atoms as illustrated by the following
example.

Example 4. The Meisenheimer-2-3-rearrangement reaction [31] (cf. also [2]) con-
stitutes an example5 of a reaction where polyvalence is encountered:0.0.1 r_{0}

CC

C

N

O

L

CC

C

N

O

K

CC

C

N+

O�

R
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N
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(29)

Upon matching this rule into a chemically valid mixture, the N atom on the
input of the rule will have valence 5, while on the output it will have valence 3.
This type of information is evidently in no way contained in the chemical graphs
alone, and must therefore be encoded in terms of suitable additional typing on
the graphs and application conditions.

While thus at present no encoding of chemical graphs into a categorical
framework with suitable adhesivity properties is available, we posit that it would
be highly fruitful in light of the stochastic mechanics framework presented in this
paper to develop such an encoding (joint work in progress with J.L. Andersen,
W. Fontana and D. Merkle).

7 Conclusion and outlook

Rewriting theories of DPO- and SqPO-type for rules with conditions over M-
adhesive categories are poised to provide a rich theoretical and algorithmic
framework for modeling stochastic dynamical systems in the life sciences. The
main result of the present paper consists in the introduction of a rule algebra

5 This example reaction was typeset directly via MØD (cf. Appendix D).
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framework that extends the pre-existing constructions [9,4,6] precisely via incor-
porating the notion of conditions. The sophisticated Kappa [11] and MØD [1]
bio-/organo-chemistry platforms and related developments have posed one of
the main motivations for this work. For both of these platforms, we present a
first analysis and stepping stones towards bridging category-theoretical rewrit-
ing theories and stochastic mechanics computations. Especially for the organo-
chemistry setting, our work motivates the development of a full encoding of (at
least a reasonable fragment of) organic chemistry in terms of chemical graphs
and rewriting rules thereof, which to date is still unavailable. This encoding will
be beneficial also in the development of tracelet-based techniques [5], and is
current work in progress.

An intriguing perspective for future developments in categorical rewriting
theory consists in developing a robust and versatile methodology for the analy-
sis of ODE systems of pattern-counting observables in stochastic rewriting sys-
tems. While the results of this paper permit to formulate dynamical evolution
equations for arbitrary higher moments of such observables, in general cases (as
illustrated in Section 5) the non-closure of the resulting ODE systems remains
a fundamental technical challenge. In the Kappa literature, sophisticated con-
ceptual and algorithmic approaches to tackle this problem have been developed
such as refinements [13,15], model reduction techniques [14] and stochastic frag-
ments [25] (see also [7] for an extended discussion). We envision that a detailed
understanding of these approaches from within the setting of categorical rewrit-
ing and of rule algebra theory could provide a very fruitful enrichment of the
methodology of rewriting theory.
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A Background material on adhesive categories and
rewriting with conditions

As a reference for notational conventions and in order to recall some of the
standard definitions necessary in the main text, we collect here some of the
materials contained in our recent paper [8] for the readers’ convenience.

A.1 M-adhesive categories

Definition 9. An M-adhesive category [23] (C,M) is a category C together
with a class of monomorphisms M that satisfies the following properties:

1. C has pushouts and pullbacks along6M-morphisms.
2. The classM contains all isomorphisms and is stable under pushout, pullback

and composition.
3. Pushouts along M-morphisms are M-van Kampen squares.

The latter property entails that in a commuta-
tive diagram such as the one on the right where
the bottom square is a pushout along an M-
morphism, where the back and right faces pull-
backs and where all vertical morphisms are in
M, the bottom square is M-van Kampen if the
following property holds: the top square is a
pushout if and only if the front and left squares
are pullbacks.

C ′ A′

D′ B′

C A

D B

n′
c

f ′

a

m′

d

g′

n

f

m

g

b

Throughout the following definitions, let (C,M) be an M-adhesive category.

Definition 10. (C,M) is said to be finitary [26] if every object has only finitely
many M-subobjects up to isomorphism.

Definition 11. (C,M) possesses an M-initial object ∅ [26] if for all objects
X ∈ obj(C) there exists a unique M-morphism ιX : ∅ ↪→ X.

Definition 12. (C,M) possesses an epi-M-factorization [27] if every mor-
phism f ∈ mor(C) factorizes as f = m ◦ e with m ∈ M and with e ∈ epi(C) an
epimorphism, and such that this factorization is unique up to isomorphism.

Definition 13. (C,M) has M-effective unions if for every cospan (B ↪→ D ←↩
C) of M-morphisms that is the pushout of a span (B ←↩ A ↪→ C), the following
property holds: for every cospan (B ↪→ E ←↩ C) whose pullback is given by
(B ←↩ A ↪→ C), the morphism D → E that exists by universal property of the
pushout is in M.

6 Here, “along” entails that at least one of the two morphisms involved in the relevant
(co-)span is in M.
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We next recall the notion of final pullback complements that is an important
technical ingredient of the theory of SqPO-rewriting.

Definition 14. Let (b, a) be a composable pair of morphisms in a category C.
Then a pair of morphisms (c, d) is called a final pullback complement (FPC) [12]
if (a, d) is the pullback of (b, c), and if for every (a ◦ p, q) that is the pullback
of (b, r), there exists a morphism s such that r = c ◦ s that is unique up to
isomorphism.

B A P

C D Q

b

a

d

a◦p

p

q

c ∃s

r

Definition 15. The class of monomorphisms M of (C,M) is said to be stable
under FPCs [8] if for every pair (b, a) of composable M-morphisms the FPC
(c, d) (if it exists) is a pair of M-morphisms.

A.2 Conditions

Definition 16. Conditions[27,22] in anM-adhesive category (C,M) satisfying
Assumption 1 are recursively defined for every object X ∈ obj(C) as follows:

1. trueX is a condition.
2. Given (f : X ↪→ Y ) ∈M and a condition cY , ∃(f, cY ) is a condition.
3. If cX is a condition, so is ¬cX .

4. If c
(1)
X , c

(2)
X are conditions, so is c

(1)
X ∧ c

(2)
X .

The satisfaction of a condition cX by a M-morphism (h : X ↪→ Z) ∈ M,
denoted h � cX , is recursively defined (with notations as above) as follows:

1. h � trueX .
2. h � ∃(f, cY ) iff there exists anM-morphism

(g : Y ↪→ Z) ∈ M such that h = g ◦ f and
g � Y .

3. h � ¬cX iff h 6 �cX .

4. h � (c
(1)
X ∧ c

(2)
X ) iff h � c

(1)
X and h � c

(2)
X .

X

∃(f, cY )

Y

cY

Z

f

h g

Two conditions cX and c′X are equivalent, denoted cX ≡ c′X , iff for every
M-morphism (h : X ↪→ Z) ∈M, h � cX if and only if h � c′X .

Finally, a condition c∅ over the M-initial object ∅ is called a constraint,
and we define for every object Z ∈ obj(C)

Z � c∅ :⇔ (∅ ↪→ Z) � c∅ . (30)
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Theorem 6 ([27]; cf. also [8]). In anM-adhesive category satisfying Assump-
tion 1, there exists a shift operation, denoted Shift, such that for all conditions
cX and for all M-morphisms (f : X ↪→ Y ) ∈ M, (g : Y ↪→ Z) ∈ M and
(h : X ↪→ Z) ∈M with h = g ◦ f , the following property holds:

h � cX ⇔ g � Shift(f, cX) (31)

We refer the interested readers to [8] for further details on the concrete imple-
mentation of the shift construction.

A.3 Associativity and concurrency theorems

In the statements of the following two theorems, we always imply choosing con-
crete representatives of the relevant equivalence classes of rules with conditions
in order to list the sets of admissible matches.

Theorem 7 (Associativity of rule compositions [9,4,8]). Let C be a cat-
egory satisfying Assumption 1. let R1, R2, R3 ∈ Lin(C) be linear rules with con-

ditions, and let T ∈ {DPO,SqPO}. Then there exists a bijection ϕ : A
∼=−→ B of

sets of pairs of T-admissible matches A and B, defined as

A := {(µ21, µ3(21)) | µ21 ∈ MT
R2

(R1) , µ3(21) ∈ MT
R3

(R21)}
B := {(µ32, µ(32)1) | µ32 ∈ MT

R3
(R2) , µ(32)1 ∈ MT

R32
(R1)} , (32)

where R21 = R2
µ21/TR1 and R32 = R3

µ32/TR2, such that for each corresponding
pair (µ21, µ3(21)) ∈ A and ϕ(µ21, µ3(21)) = (µ′32, µ

′
(32)1) ∈ B,

R3
µ3(21)/T (R2

µ21/TR1) ∼=
(
R3

µ′32/TR2

)
µ′(32)1/TR1 . (33)

In this particular sense, the composition operations ../T. are associative.

Theorem 8 (Concurrency theorem [9,4,8]). Let C be a category satisfying
Assumption 1, and let T ∈ {DPO,SqPO}. Then there exists a bijection ϕ :

A
∼=−→ B on pairs of T-admissible matches between the sets A and B,

A = {(m2,m1) | m1 ∈ MT
R1

(X0) , ;m2 ∈ MT
R2

(X1)}
∼= B = {(µ21,m21) | µ21 ∈ MT

R2
(R1) , m21 ∈ MT

R21
(X0)} , (34)

where X1 = R1m1
(X0) and R21 = R2

µ21/TR1 such that for each corresponding
pair (m2,m1) ∈ A and (µ21,m21) ∈ B, it holds that

R21m21
(X0) ∼= R2m2

(R1m1
(X0)) . (35)
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B Proofs

B.1 Proof of Theorem 3

The statement of the theorem is equivalent to the following two properties:

(i) ρTC (δ(R∅)) = IdEndR(Ĉ)

(ii) ∀R1, R2 ∈ Lin(C)∼ : ρTC (δ(R2)) ρTC (δ(R1)) = ρTC (δ(R2) ?T δ(R1)) .

By linearity, it suffices to verify these properties on an arbitrary basis vector
|X〉 ∈ Ĉ. For (i), it suffices to verify that

ρTC (δ(R∅)) |X〉 =
∑

m∈MT
R∅

(X)

|R∅m(X)〉 = |X〉 .

Property (ii) is a consequence of Theorem 8 (the Concurrency Theorem):

ρTC (δ(R2)) ρTC (δ(R1)) |X〉 =
∑

m1∈MT
R1

(X)

∑
m2∈MT

R2
(R1m1

(X))

∣∣R2m2
(R1m1

(X))
〉

=
∑

µ∈MT
R2

(R1)

∑
m21∈MT

R2µ1
(X)

∣∣R2µ1m21
(X)

〉
.

B.2 Proof of Theorem 4

Ad 1.: It suffices to verify that direct derivations along a rule R of the rele-
vant form occurring in the two types of observables from any object X satisfy
Rm(X) ∼= X. But this follows directly from the respective definitions of direct
derivations.

Ad 2. & 3.: It again suffices to verify these properties on basis elements |X〉 of

Ĉ, and for generic R ∈ Lin(C)∼. By definition,

〈| ρTC (δ(R)) |X〉 =
∑

m∈MT
R(X)

〈 |Rm(X)〉︸ ︷︷ ︸
=1R

= |MT
R(X)| . (36)

In both cases of semantics, a candidate match of R into X must satisfy the appli-
cation condition. In the DPO case, in addition the relevant pushout complement
must exist. Combining these facts allows to verify the formulae for Ô(.).

Ad 4.: The proof is straightforward generalization of the corresponding state-
ment for the case of rewriting rules without conditions [10,4]. Following standard
continuous-time Markov chain (CTMC) theory [32], one may verify that the lin-

ear operator H has a strictly negative coefficient diagonal contribution Ô(H), a
non-negative coefficient off-diagonal contribution H, thus H satisfies 〈|H = 0.
Since in addition a given X ∈ obj(C)∼= may be rewritten via direct derivations
along the rules of the transition set only in finitely many ways, in summary H
fulfills all requirements to qualify as a conservative and stable Q-matrix (i.e. an
infinitesimal generator) of a CTMC (cf. [4] for further details).
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C Details on the symbolic solution to the observable
average counts in Example 2

The ODE system of Example 2 may be solved in closed form as follows:

〈O•〉(t) = ν+
ν−

(
1− e−tν−

)
〈O•|•〉(t) =

ν2
+e
−αt

2αβλν2
−

(
αβε−e

λt + 2ε+ν
2
− − 2ακλeβt + βλωeαt

)
〈O•−•〉(t) =

ε+ν
2
+e
−αt

2αβλν2
−

(
αβ eλt − 2αλeβt + βλ eαt − 2ν2−

)
α = ε− + ε+ + 2ν− , β = ε− + ε+ + ν−
κ = ε− + ν− , λ = ε− + ε+ , ω = ε− + 2ν− .

(37)

In particular, one may provide asymptotic formulae for t→∞:

〈O•〉(t) t→∞−−−→ ν+
ν−

〈O•|•〉(t) t→∞−−−→ ν2
+(ε−+2ν−)

2ν2
−(ε−+ε++2ν−)

〈O•−•〉(t) t→∞−−−→ ε+ν
2
+

2ν2
−(ε−+ε++2ν−)

.

(38)

D Technical details of typesetting the MØD example

For the interested readers, the following code may be used in either a standalone
instance or via the live playground of MØD [1] in order to reproduce the graphics
for the Meisenheimer-2-3-rearrangement example of a organo-chemical reaction
given in the main text. Note that since MØD employs the traditional “left-to-
right” convention for rules, the input and output patterns are given as “right”
and “left”, respectively.

# Meisenheimer -2-3 rearrangement:

meisenheimer = ruleGMLString(""" rule [

left [

edge [ source 1 target 2 label "-" ]

edge [ source 2 target 3 label "=" ]

edge [ source 1 target 5 label "-" ]

node [ id 4 label "N" ]

node [ id 5 label "O" ]

]

context [

node [ id 1 label "C" ]

node [ id 2 label "C" ]

node [ id 3 label "C" ]

edge [ source 4 target 5 label "-" ]

]

right [

edge [ source 1 target 2 label "=" ]

https://cheminf.imada.sdu.dk/mod/
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edge [ source 2 target 3 label "-" ]

edge [ source 3 target 4 label "-" ]

node [ id 4 label "N+" ]

node [ id 5 label "O-" ]

]

]""")

# Printing of the rule:

meisenheimer.print ()
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