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Abstract: Due to the widespread of cloud computing, there is an increasing interest in distributed systems as well as in data
privacy and security. However, unlike the multi-core processors and NUMA architectures, the Distributed Shared
Memory (DSM) systems do not benefit from the numerous works on security and privacy. We argue here that their
potential deployment onto distributed heterogeneous systems requires new approaches to securely manage access
to shared data. In this paper we propose to rely on the Attribute-Based Encryption (ABE) techniques to tackle the
problem of data security within the Software DSM. Moreover, this approach allowing to directly store encrypted data
within the DSM and to manage the access control to these data is made transparent for the user. The implementation
over an in-house S-DSM using libbswabe, an ABE library, shows that, as expected, the overhead is significant, but
that it can also be adapted to the application requirements as a trade-off between security and performance.

1 Introduction

The recent massive adoption of cloud and edge com-
puting increased the interest in the conception of highly-
performing and in the same time safe distributed systems.
In distributed architectures, distributed shared memory
systems (DSM) are used to build an abstraction layer over
remote memories. These systems allow to write programs
that rely on the convenient shared memory programming
model in which processes can concurrently access a
shared space. The management of communications, the
data localization and transfer are made transparent for
the developer. Software-Distributed Shared Memory
(S-DSM) systems are usually designed for HPC (High
Performance Computing) machines such as supercom-
puters and clusters. HPC systems are deployed within a
protected, off-line environment, the physical access being
restricted to a very small list of platform administrators
and the remote access being opened to a documented list
of users. In these machines, applications and services are
deployed under the supervision of a job scheduler and
resource broker that isolates the processes from the other
users as in a sandbox or virtual machine. This is the rea-
son why most S-DSM -if not all- do not address security
issues, because the context of deployment is considered
safe and benevolent: the only concern is performance.

With the prevalent development of high-performance
embedded computing (HPeC), some systems (Ghane

et al., 2020) propose to deploy S-DSM over distributed
heterogeneous architectures. These novel platforms are
intended to be integrated into consumer electronic devices
such as autonomous vehicles and other smart devices.

In this context, security and privacy is now of major
importance as the direct environment is not safe anymore
and the management of applications is not under the
supervision of a trusted third-party. Furthermore, other
running applications might be written by unknown
developers. Therefore, S-DSM systems have to provide
security and privacy mechanisms to ensure that data are
only shared among authorized participants. Without any
mechanism of data protection, any application with its
associated users having access to this shared memory can
read and modify sensitive data.

In this paper, we propose an approach for a secure
and transparent API for accessing the S-DSM allowing
the developers to implement secure-by-design distributed
applications. It relies on Attribute-Based Encryption and
it allows not only to ensure data privacy but also to control
the access of the multiple users to the S-DSM system.

Attribute-Based Encryption (ABE) is an emerging
cryptographic paradigm, allowing a fine grained access
control to the encrypted data. Unlike the traditional public
key cryptosystems where the access to the encrypted data
is either all or nothing (i.e,. given the secret key, one can
decrypt and read the entire message) and the key man-
agement is complicated, ABE offers a versatile way to



decrypt the data according to a specified complex policy
for access control. Given the characteristics of distributed
shared memory systems, more specifically, multiple users
with different access rights to various sensitive data and
different applications, it seems that ABE is an appropriate
security solution for this particular application context.
A first approach is to encrypt data before writing into the
S-DSM. This approach is portable and platform-agnostic.
However, it is not transparent for the developer and it re-
quires to modify the application to manage the encryption
at the user level. In this paper we propose to integrate an
ABE system within the S-DSM API so that the technical
aspects of the security policy are hidden to the developer.
We implement this approach into an in-house S-DSM and
evaluate the overhead of such an overloading of the API.

2 Related work

While being extensively studied for multi-core and
multi-processor with physically shared memory and
dedicated hardware-based encryption, data protection
for software-DSM is quite rare in the literature. In
this paper (Rogers et al., 2006) from 2006, the authors
provide an analysis of the requirements to protect the
DSM against hardware and coherence protocol attacks.
They propose an extended version of the MESI protocol
with a mix of data encryption and message authentication
using AES and Galois/Counter Mode. Results based
on simulation show that the overhead is around 6-8%
using the SPLASH-2 benchmark. However, this requires
to modify the existing DSM in order to deploy the new
coherence protocol, which is not feasible for hardware-
DSM and difficult to implement within software-DSM
systems that do not allow multiple coherence protocols.
More recently, a similar work (Khan and Henchiri, 2014)
has been conducted using signcryption techniques but
there is no report on the implementation of the solution.

ABE has been studied from 2006 (Goyal et al., 2006)
with examples of applications based on audit log and
targeted media broadcasting. It has thereafter been used
in several contexts. In the SOUP system (Koll et al.,
2014), a peer-to-peer social network is proposed in which
only eligible users can access data based on ABE. This is
probably the closest work to our contribution, as an ABE
scheme is used over a data-sharing distributed service.
However, to our knowledge there is no work that imple-
ments ABE over a S-DSM system. From a theoretical
point of view, there has been significant progress for
ABE constructions in terms of security guarantees and
assumptions, efficiency or expressing policies ((Sahai
and Waters, 2005),(Bethencourt et al., 2007), (Boyen,
2013), (Gorbunov et al., 2013), etc.). In function of the
way the access policy is linked to the ciphertexts, there

are two main categories of ABE schemes: the Key-Policy
ABE ((Goyal et al., 2006)), in which the attributes
are encrypted data and the private keys are generated
according to the access policy and Ciphertext-Policy
ABE ((Bethencourt et al., 2007)), in which the attributes
are private keys and the access policies are associated
with the ciphertexts. Other criteria which distinguish the
different existing ABE schemes are the policy structure
they support (e.g. Boolean formula (Goyal et al., 2006),
circuits (Gorbunov et al., 2013), etc.), the underlying
security assumptions they rely on (e.g. Learning with
Error-LWE problem, bilinear Diffie-Hellman, etc.) or the
additional challenges they address (e.g. revocation (Sahai
et al., 2012), multiple authorities (Chase, 2007), etc.).
However, intrinsically, all ABE schemes have a security
guarantee which is the collusion resistance: a coalition of
users learns nothing about the plaintext message if none
of them are authorized to decrypt the ciphertext.

The analysis from Section 4 goes in more details
about the existing ABE schemes but let us now give
more details about the particular DSM system we want
to secure with ABE.

3 Distributed Shared Memory (DSM)

Distributed computing architectures such as com-
puting grids, clusters and micro-servers escalate the
problem of shared data management due to the lack of a
centralize physical memory. Distributed shared memory
systems (DSM) are used to federate physically distributed
memories among the system into a global logical memory.
With DSM the developer can allocate and access shared
data from any thread/process deployed on any node, as
in a regular Posix-like programming environment.

3.1 High-level
description of the Software-DSM

In this work we consider a Software-DSM (S-DSM) as
presented in (Cudennec, 2018). This S-DSM is organized
as a super-peer system, made of a peer-to-peer network of
servers and a set of clients that run the user code. Shared
data are stored into atomic pieces called chunks. The API
provides primitives to allocate and access chunks, as well
as to use common distributed synchronization objects
(rendez-vous, barriers, signals..). Each access to a chunk
is processed according to a specific coherence model. In
this work we use a regular lazy consistency model imple-
mented by a 4-state MESI, home-based protocol (Culler
et al., 1998). This S-DSM is implemented in C and relies
on the MPI message passing framework to manage com-
munications, distributed bootstrapping and peer overlay.



A classical user interface to interact with the S-DSM
includes the following primitives:

• Chunk t MALLOC(int size): allocates memory in
the S-DSM, the function returns a chunk with a field
data of size size.

• void READ(Chunk t chunk), void
WRITE(Chunk t chunk) and void READ-
WRITE(Chunk t chunk): asks the system to access
the given chunk (synchronous access primitives).

• void RELEASE(Chunk t chunk): notifies the
system that the chunk is no longer accessed.
(asynchronous release primitive)

In the user code, a call to an access primitive opens
a scope in which the chunk is guaranteed to be coherent
regarding the chosen coherence model. This scope is
closed with a call to the release primitive. Within this
scope, the chunk allows to access data in clear text. In
case of a write access, the modifications are committed
to the S-DSM and made available for other participants.

3.2 Privacy-preserving
problem of S-DSM and threat analysis

As shown in the previous section, there are many threats
and vulnerabilities with the current S-DSM design. The
main issue is that communications can be intercepted
and replayed with or without modification of the original
message (the man-in-the-middle attack). There are three
main consequences in this scenario: A) the message
containing plaintext data can be discovered and modified,
B) an attacker can play the role of a regular client and
access shared data and C) messages can be generated to
disrupt the coherence protocol, get privileges on shared
data or cause a faulty state. In this work we address
consequences A and B. The proposed solution does not
require to modify the coherence protocol as in (Rogers
et al., 2006) and it is made transparent for both the
application and the S-DSM.

As for many - if not all- S-DSM systems in the lit-
erature, the security policy and access rights management
are not addressed at all. In this S-DSM, all participants,
as defined by a MPI process, can evenly invoke S-DSM
primitives to allocate and access shared data, initiate and
participate to group synchronization events. Memory
chunks are identified by an UID, an unsigned long in
this implementation. With the UID it is possible to
allocate, read and write the corresponding chunk without
restriction, which is the starting point of this contribution.

There are various actors which can use this mem-
ory but globally they can be classified into clients and
servers. The clients correspond to the applications using
the memory and they can communicate only with the
servers which act as proxies for the other nodes of the

network. There is no existing mechanism for an access
policy or to protect sensitive data. As such, any applica-
tion having the UID, i.e. the chunk identifier, can access
and modify its content. This is problematic in the cases of
compromised applications since it constitutes a threat for
the data confidentiality and integrity of other applications
using the same S-DSM instance. Moreover, in the context
of heterogeneous and distant systems, this threat is quite
real since it is difficult to have a perfect control for all
nodes hosting the applications and to control their security.

4 ABE schemes for a secure DSM

4.1 Analysis
and comparison of ABE schemes

A first step of our approach to protect the S-DSM
described in the previous section was to realize a
comparative analysis of the current ABE schemes and
identify the most fitted for our application context. Table
1 resumes some of the main existing ABE systems and
their underlying security assumptions (DBDH -Decision
Bilinear Diffie-Hellman, BDHE - Bilinear Diffie-
Hellman Exponent, LWE- Learning With Errors, DLWE
- Decisional LWE), their type (either key policy or cipher-
text -Ctxt), the way the access policy is expressed (in form
of a tree, circuit or LSSS - Linear Secret Sharing Scheme
matrix) as well as other particular characteristics (e.g.
HABE - Homomorphic ABE allowing the possibility to
process directly on ABE encrypted data, etc.)

As shown also in the table, almost all constructions
from the beginning are exploiting Boolean formulas and
are relying on the hardness of Discrete Log problem
defined on bilinear maps. As such, they are vulnerable to
quantum cryptanalysis. More recently, there are proposals
of ABE schemes (e.g.(Gorbunov et al., 2013)) supporting
polynomial-size circuits and relying on the quantum
resistant Learning with Error problem. However, even if
the last schemes give more flexibility in terms of access
management, their underlying policy is complicated and
thus the size of the ciphertexts and the time required for
encryption and especially decryption is particularly high.

Moreover, for a first evaluation and validation of
our proposal, we searched for existing ABE libraries.
To the best of our knowledge, there are only a few
available: (Dai et al., 2017), libbswabe ABE library1

and OpenABE2. While the first is based on ABE scheme
from (Boneh et al., 2014) and thus quantum-resistant, the
execution times and the implementation constraints make
it difficult to use for a fast prototyping. As such, the

1http://acsc.cs.utexas.edu/cpabe
2https://github.com/zeutro/openabe

http://acsc.cs.utexas.edu/cpabe
https://github.com/zeutro/openabe


Hypothesis Ref Type Access policy Other

DBDH

(Sahai and Waters, 2005) Key Threshold Structure
(Goyal et al., 2006) Key Tree-based Structure
(Bethencourt et al., 2007) Ctxt Tree-based Structure
(Cheung and Newport, 2007) Ctxt AND gates Negation
(Goyal et al., 2008) Ctxt Access tree
(Ibraimi et al., 2009) Ctxt Secret sharing schemes Operator of
(Liang et al., 2009) Ctxt Tree-based Structure One-time signature
(Emura et al., 2010) Ctxt AND gates

BDHE (Waters, 2011) Ctxt LSS matrix

LWE
(Boneh et al., 2014) Key Circuit Key homomorphic
(Gorbunov et al., 2013) Key Circuit TOR framework
(Boyen, 2013) Key LSS matrix Based on Regev

DLWE (Brakerski and Vaikuntanathan, 2016) Key Circuit Based on (Boneh
et al., 2014)

Table 1: Comparison of ABE schemes

preliminary study we present here is using libbswabe
library, based on the well established and efficient
Ciphertext-Policy ABE scheme of Bethancourt et al.
(Bethencourt et al., 2007). Let us now present more in
details this ABE scheme.

4.2 Ciphertext-Policy ABE chosen scheme

This scheme (Bethencourt et al., 2007) is the first work
on Ciphertext-Policy ABE in which the private keys
of the users are described by an arbitrary number of
attributes (in the form of strings) and the ciphertexts are
associated with the access policy.

Access structure. Mathematically, the access
structure is a monotonic access tree T , in which the
non-leaf nodes are threshold gates (AND, XOR) and the
leafs are attributes.

Let G0 a bilinear map of prime order p with g a
generator of G0 and e :G0×G0→G1 a bilinear map. κ

is the security parameter defining the size of the groups,
∆i,S is the Lagrange coefficient for i ∈ Zp and a set
S of elements in Zp : ∆i,S(x) = Π j∈S, j6=i

x− j
i− j . Finally,

H :{0,1}∗→G0 is a hash function to map the attributes
described as strings into random group elements.

Setup(κ). It outputs the public parameters
PK = (G0, g, h = gβ, e(g, g)α) and a master key
MK=(β,gα) with α,β two random exponents from Zp.

KeyGen(MK,S). Takes as input a set of attributes S
and outputs a key that identifies with that set:

SK=(D=g(α+r)/β,∀ j∈S :D j=gr·H( j)r j ,D′j=gr j),

with random r∈Zp and r j∈Zp for each attribute j∈S.
Encrypt(PK,M,T ).
Let Y be the set of leaf nodes in T . The ciphertext

for message M is:

CT =(T ,C̃=Me(g,g)αs,C=

hs,∀y∈Y :Cy=gqy(0),C′y=H(att(y))qy(0)),

with qx a polynomial for each node x∈T and att(x), the
attribute associated with the leaf node x.

Decrypt(CT , SK). This recursive algorithm takes as
input a ciphertext CT which contains the access policy,
the private key SK and the public parameters PK.

For more details on the latter algorithm, as well as on
the delegation capacity, we refer the reader to the original
paper (Bethencourt et al., 2007).

5 Generic
API for a secure access to the DSM

In our prototype for a generic secure API for the
S-DSM, the primitives of the ABE scheme are almost
transparent for those writing applications on top of it. For
encryption we use libbswabe library that implements
the ABE ciphertext policy scheme of (Bethencourt et al.,
2007). More precisely, we used a hybrid encryption of
ABE with AES in CBC mode with a symmetric key of
128 bits. As such, the encryption consists in the ABE
encryption of the AES key and the encryption of the data
symmetrically with AES.

The access to the current S-DSM follows the entry
consistency scheme. First, a call to a malloc function
that takes the size of the data as parameter and returns
a memory chunk. Second, a call to an access primitive,
either read, write or readwrite, giving a chunk as
parameter. This opens a scope in which it is possible to
access a specific data field in the chunk. The release
primitive is used to close the scope. Within a scope, the
data field is guaranteed to be allocated and the data, in
plain text, is consistent in regard of the chosen coherence
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Figure 1: Access time in the S-DSM with ABE.

protocol. We overload these primitives to transparently
manage ABE on each call. The malloc primitive
requires to take into account the size overhead induced by
the encrypted data. While the user still provides the data
size for plain text, the overloaded primitive calculates
the corresponding encrypted size to be allocated in the
S-DSM. The access primitives are quite straightforward
as it only needs to call the ABE encryption primitive
before sending data to S-DSM servers and the decryption
primitive before returning data to the user.

Preliminary experiments have been conducted on
a simple producer-consumer application. A 256x256
image is written and read into/from the S-DSM between
two processes. The size of a line is 256 bytes (1 byte per
pixel) and the image is stored line by line into memory
(a chunk per line). When setting the maximum size of
chunks to a smaller value, several chained chunks are
used to store the complete line. All processes have been
co-located onto the same node to get rid of the network
communication overhead and uncertainty.

The time to read and write the image in the S-DSM
is less that 0.2ms without ABE. Figure 1a shows the time
when using ABE (around 55ms) with different chunk
sizes for 512 bits of security. While being a significant
overhead compared to not using ABE, these values have

to be placed in perspective with the communication
timings when deploying onto distributed computing
architectures, and most likely Ethernet and USB-based
networks used by embedded devices. Furthermore,
distributed runtimes are prone to hide such access costs
behind pipeline parallelism.

Figure 1b presents the access time using different
values for the security parameter q. As expected, the
computing time needed to encrypt and decrypt data
directly depends on this security parameter. Therefore,
there is a trade-off to find between performance and
security, and this trade-off depends on the application
context. For example, live broadcasting of video might
require to maintain a minimal framerate and stay below
a given latency. The secure S-DSM can increase the
security parameter up to a given point it does not
break the performance requirements. Conversely, in a
distributed database, the secure S-DSM can decrease the
security parameter to accelerate queries down to a given
value it does not violate the security policy.

6 Conclusion

Software-Distributed Shared Memory adoption in
distributed heterogeneous platforms and embedded
systems requires strong guarantees on data protection. In
this position paper, we propose to use the Attribute-Based
Encryption paradigm to manage fine grained access con-
trol to the shared data. This ABE scheme is implemented
as a transparent layer standing between the application
and the S-DSM programming interface. Our preliminary
results on a simple reading-writing image application
demonstrate the feasibility of the approach with an
expected overhead (a factor scale of approximately 100)
induced by the ABE cryptosystem. Several perspectives
follow. The first one consists in improving the current
API by using more versatile ABE schemes (e.g. with
multi-level access control, allowing revocation, etc.) as
well as optimizing the code to obtain better performances.
Secondly, we intent to investigate the possibility to use
cryptography accelerators in an opportunistic way on
the heterogeneous platform. Finally, another research
perspective is the exploration of an automatic tuning
of the security parameter in our API for the S-DSM to
fulfil the security and performance requirements, while
reducing the energy consumption. As such, in function of
the application context one could choose to target a lower
security level but higher performances (e.g. a real-time
video broadcast application) or, on the contrary, to guar-
antee a higher security while accepting a degradation in
the overall computation (e.g. a data storage application).
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