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We report on the far-infrared magnetospectroscopy of HgTe quantum wells with inverted band
ordering at different electron concentrations. We particularly focus on optical transitions from zero-
mode Landau levels, which split from the edges of electron-like and hole-like bands. We observe a
pronounced dependence of the transition energies on the electron concentration varied by persistent
photoconductivity effect. This is striking evidence that in addition to the already well-documented
crystalline and interface asymmetries, electron-electron interactions also have a significant impact
on the usual behavior of the optical transitions from zero mode Landau levels.

HgTe/CdTe quantum wells (QWs) were the first two-
dimensional (2D) systems in which it has been shown
that the band ordering depended strongly on the QW
width d [1]. If d is smaller than a critical value dc, the
first electron-like (E1) subband in the QW lies above the
first hole-like (H1) subband, and the QW has a trivial
band ordering [2]. In wide QWs, when d > dc, E1 falls
below H 1 and the band ordering becomes inverted, giv-
ing rise to the 2D topological insulator state [2, 3]. At
critical QW width, d = dc, HgTe QWs host a gapless
state with massless Dirac fermions [4–7]. The band or-
dering in HgTe QWs can also be changed by hydrostatic
pressure [8], temperature [9, 10] or strain [11, 12].

The most efficient way to discriminate trivial and in-
verted band ordering in HgTe QWs is to probe the evo-
lution of a particular pair of Landau levels (LLs) under
applied magnetic field [3]. These so-called zero-mode LLs
split from the edges of E1 and H1 subbands and have
pure electron-like and hole-like character, respectively.
The energy of the electron-like zero-mode LL increases
systematically with magnetic field, while the energy of
that of the H 1 subband decreases as the magnetic field
increases. In inverted HgTe QWs, the zero-mode LLs
therefore cross at a critical magnetic field Bc (Fig. 1),
above which the inverted band ordering transforms into
the trivial one [3].

The presence of bulk inversion asymmetry (BIA) [13,
14] in the unit cell of zinc blende materials, as well
as the interface inversion asymmetry (IIA) at the
HgTe/CdHgTe heterojunction [15] induce the anticross-
ing of zero-mode LLs in the vicinity of Bc. It appears
that the value of this anticrossing gap ∆ depends con-
siderably on the experimental technique used to mea-
sure it. Particularly, the measurements of magnetotrans-
port [4, 5, 16, 17] and photoconductivity [18, 19] per-

formed with gated Hall bars show that the anticross-
ing gap is negligibly small. On the contrary, the far-
infrared magnetospectroscopy reveals a fine structure
of the optical transitions from zero-mode LLs [20–23].
The analysis of this fine structure in the vicinity of Bc
within the Dirac-like model, including BIA and IIA, gives
∆ ∼ 5 meV for the joint effects. These contested experi-
mental values of the anticrossing gap obtained in magne-
totransport and magnetospectroscopy triggered a vivid
discussion about the real strength of BIA and IIA in
HgTe QWs [5, 23–25].

The key difference between magnetotransport and far-
infrared magnetospectroscopy is that the latter induces
inter-LL excitations, which may be considered as neutral
collective modes [26, 27] or magnetic excitons [27] com-
posed of a bound state of a hole in a filled LL and an elec-
tron in an otherwise empty level. The long-wavelength
limit of certain magnetic excitons [26, 27], such as mag-
netoplasmons, contributes into magnetooptical conduc-
tivity, defining the resonant energy and intensity of the
magnetoabsorption lines [28, 29].

In 2D systems with parabolic band dispersion, all
inter-LL transitions contributing into magnetoabsorption
have the same cyclotron resonance (CR) energy, which is
known to be unsensitive to electron-electron (e-e) inter-
action [28, 30]. Non-parabolic 2D systems have multi-
ple LL transitions with different energies corresponding
to multiple magnetoplamonic modes [28, 29]. In such
systems, the e-e interaction mixes collective modes hav-
ing close energies, already at zero wave-vector, making
magnetooptical conductivity sensitive to many-particle
effects [31, 32]. So far, many-particle effects in mag-
netospectroscopy were observed in InAs QWs [31–36]
and graphene [37–40]. As HgTe QWs also have strongly
non-parabolic band structure [2, 3], many-particle effects
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FIG. 1. Band structure (a) and Landau levels (b) of rect-
angular 8-nm-wide HgTe/Cd0.7Hg0.3Te QWs at T = 2 K.
(a) The blue and red curves represent band dispersion of E1
and H1 subbands, calculated within the 8-band k·p Hamil-
tonian [8]. The dotted curves show the dispersion within the
BHZ model [2]. (b) The numbers over the curves show the LL
indices within the 8-band k·p Hamiltonian [8]. The arrows
represent LL transitions observed in the vicinity of Bc [7, 20–
22]. The dotted colored curves show the corresponding LLs
calculated within the BHZ model by using parameters pro-
vided in the Supplemental Materials [43].

should also contribute to their magnetooptical conduc-
tivity.

Here, we study the evolution of optical transitions from
the zero-mode LLs in inverted HgTe QWs at different
electron concentrations varied by the persistent photo-
conductivity effect [41, 42]. By fitting the difference in
the transition energies with an analytical expression in-
cluding BIA and IIA, we extract the energy gap at the
Γ point of the Brillouin zone, the anticrossing gap ∆
and the critical magnetic field Bc from our experimen-
tal data. An unexpected strong dependence of the en-
ergy gap on the electron concentration clearly evidences
that e-e interaction affects the LL transitions beyond the
single-particle picture.

Let us first consider the typical band structure and
LLs of inverted HgTe QW in the absence of BIA and
IIA (see Fig. 1). The calculations were performed using
the 8-band k·p Hamiltonian [8]. We also neglect the
structure inversion asymmetry (SIA) assuming that the
QW profile is symmetrical. To calculate the LLs, we
apply the axial approximation by omitting the warping
terms in the Hamiltonian [8]. In this case, the electron-
wave function for a given LL index N > 0 generally has
eight components, describing the contribution of the Γ6,
Γ7, and Γ8 bands into the LL. We note that a specific
LL with N = −2 contains only a contribution of the
heavy-hole band with a momentum projection ±3/2 [8,
20, 21]. Details of the LL notation within the 8-band k·p
Hamiltonian are provided in Ref. [8].

The absence of BIA and IIA implies that the two zero-
mode LLs, which can be recognized in the LLs with
N = −2 and N = 0 in Fig. 1, simply cross each other
at a critical magnetic field Bc [8, 20, 21]. In this case,
optically active inter-LL transitions follow conventional

∆N = ±1 selection rules imposed by angular momen-
tum conservation law [20]. Transitions from the zero-
mode LLs, which follow these selection rules are marked
in Fig. 1 as α and β transitions, in accordance with the
notation of Schultz et al. [44]. On the contrary, the α′ and
β′ transitions from the zero-mode LLs both correspond
to ”spin-flip” transitions [3, 6], which are forbidden in
the single-particle picture if BIA and IIA are ignored.

The inter-LL transitions can be also analytically
described within the Dirac-like model proposed by
Bernevig, Hughes and Zhang (BHZ) [2, 3]. This BHZ
model is directly derived from the 8-band k·p Hamilto-
nian by applying a perturbation approach for the QW
states in the vicinity of Γ point [2]. By using parameters
provided in the Supplemental Materials [43], one can see
that the BHZ model well describes the electronic states
at small values of k (see Fig. 1(a)). The colored dotted
curves in Fig. 1(b) show the energy of LLs involved in
α, α′, β and β′ transitions calculated within the BHZ
model.

It is seen that only the energies of the zero-mode LLs
are in good agreement with realistic numerical calcula-
tions. The difference in the energies calculated within
both models does not exceed 10% for the zero-mode LL
from the E1 subband, while the final levels of α, α′, β
and β′ transitions show a significant deviation. However,
by combining the energies of α with α′ transition and
β with β′ transition, we exclude the ”wrong” LLs from
consideration and apply the BHZ model to the energy
difference:

∆E =
~ωα′ − ~ωα

2
=

~ωβ′ − ~ωβ
2

=
ε
(+)
0 − ε(−)0

2
, (1)

where ε
(+)
0 and ε

(−)
0 are the energies of the zero-mode

LLs from the E1 and H1 subband, respectively. In the

presence of SIA, BIA and IIA, the energies ε
(±)
0 can be

calculated analytically within the BHZ model [43]:

∆E =

√
M2

(
1− B

Bc

)2

+
∆2

4
, (2)

where ∆ is the anticrossing gap at B = Bc caused by
both BIA and IIA, while Bc and M are the critical field
and the mass parameter, respectively, both introduced
in the absence of BIA and IIA [43]. The parameter M
defines the gap between the E1 and H1 subbands at the
Γ point of the Brillouin zone (see Fig. 1): it is positive
for trivial band ordering and negative for inverted band
structure. Thus, by fitting experimental values of the
energy differences for both pairs of the transitions, one
can directly extract the values of ∆, Bc and M from
magnetoabsorption. We note that, in contrast to the
band structure shown in Fig. 1, Eq. (2) is also valid for
asymmetrical QWs [43].

In this work, we have studied three different samples,
each containing a 8-nm-wide HgTe QW embedded be-
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FIG. 2. (a)-(c) Color maps showing α and α′ inter-LL transi-
tions in the 8 nm HgTe/Cd0.77Hg0.27Te QW (sample 101109)
as a function of magnetic field, measured at different electron
concentration nS : (a) 4.5 · 1011 cm−2, (b) 5.3 · 1011 cm−2,
(c) 5.7 · 1011 cm−2. The symbols represent position of the
magnetoabsorption lines, whose energies are used in the eval-
uation of ∆E. (d)-(f) Square of the energy difference for α and
α′ transitions at the same concentrations as in the respective
top panels. The solid curves are the fitting to Eq. (2). The
arrows indicate magnetic fields corresponding to the integer
filling factor ν.

tween CdxHg1−xTe barriers: x = 0.62 for sample 091223,
x = 0.41 for sample 101221 and x = 0.77 for sample
101109. The samples were grown by molecular beam epi-
taxy (MBE) on a semi-insulating (013) GaAs substrate
with a relaxed CdTe buffer [45]. The barriers were se-
lectively doped with indium, resulting in a 2D electron
concentration nS of a few 1011 cm−2 at low tempera-
tures. The magnetoabsorption spectra were measured
in the Faraday configuration at 2 K by using a Fourier
transform spectrometer coupled to a 16-T superconduct-
ing coil [46]. All spectra were normalized by the sam-
ple transmission at zero magnetic field. In the measure-
ments, the electron concentration was varied through the
persistent photoconductivity effect [41, 42] by changing
the time of illumination with a blue light emitting diode
(LED). We note that illumination of HgTe QWs with
blue LED results in increasing of nS [47], in contrast
to the case of InAs/GaSb QWs [42]. The concentration
values were determined via magnetotransport measure-
ments in the van der Pauw geometry.

The magnetoabsorption spectra for the samples 101109
and 091223 are shown in Figs 2 and 3, respectively. The
spectra of the sample 101221 are provided in the Supple-
mental Materials [43]. As we are interested in the fine
structure of the α and β transitions in the vicinity of
Bc, we only supply the high-energy parts of the spectra,
above the reststrahlen band of the GaAs substrate (typ-
ically in the 30–40 meV range) [20, 21]. The low-energy
parts feature several CR-like transitions from higher LLs
in the conduction band and look qualitatively the same,
as in previous works [7, 20–22].

FIG. 3. (a)-(c) Color maps of the α, α′, β and β′ inter-
LL transitions as a function of magnetic field in the 8 nm
HgTe/Cd0.62Hg0.38Te QW (sample 091223) at different elec-
tron concentration nS : (a) 2.4 ·1011 cm−2, (b) 3.3 ·1011 cm−2,
(c) 3.6 ·1011 cm−2. The symbols correspond to the position of
the magnetoabsorption lines, whose energies are used in the
evaluation of ∆E. (d)-(f) Square of the energy differences for
both pairs of the transitions at the same concentrations as in
the respective top panels. The solid curves are the fitting to
Eq. (2). The red and blue colors correspond to the α-α′ and
β-β′ anticrossing, respectively. The arrows indicate magnetic
fields corresponding to the integer filling factor ν.

The most intense line for the sample 101109 (see Fig. 2)
is identified as the α transition accompanied by the
weaker line of the α′ transition. As seen from Fig. 1,
the α and α′ transitions are both present in the spec-
tra if the filling factor of LLs ν in the conduction band
is less than three. Indeed, ν < 3 for the nS values of
4.5 ·1011 cm−2, 5.3 ·1011 cm−2, 5.7 ·1011 cm−2 is fulfilled
for magnetic fields higher then 6.2 T, 7.3 T and 7.9 T,
respectively. The absence of the β and β′ transitions in
the spectra of the sample 101109 is attributed to ν > 2
in the given magnetic field range.

As seen from Fig. 3(a), nS = 2.4 · 1011 cm−2 allows
for observation of all four α, α′, β and β′ transitions
in the sample 091223 since ν < 2 represents the fields
higher than 5.0 T. Increasing of nS up to 3.3 · 1011 cm−2

yields to the vanishing of the β and β′ transitions in the
field range of 4.5 T< B < 6.8 T since it corresponds to
2 < ν < 3. We note that the α′ and β′ transitions are
observed just in the vicinity of Bc, while above the field
range shown in Fig. 3, only the α and β transitions are
present.

In order to analyze our magnetoabsorption data within
the single-particle picture, we have fitted the difference
in energies ∆E between α and α′, and between β and β′

transitions by Eq. (2). As seen from Figs 2 and 3, the
energy difference is formally well described by the BHZ
model including the SIA, BIA and IIA effects. Figure 4
summarizes the values of ∆, Bc and M as a function of
nS for both pairs of the transitions. The error bar for
the extracted values does not exceed 10%.
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FIG. 4. Evolution of single-particle parameters with electron
concentration extracted from magnetoabsorption of different
samples: (a) 2|M | vs nS , (b) Bc vs nS , (c) ∆ vs nS .

In the following, we address some interesting features,
which cannot be explained within the single-particle pic-
ture. First, the values of ∆, Bc and M extracted from
~ωα′ − ~ωα and ~ωβ′ − ~ωβ differ significantly from each
other. The difference between ~ωα′−~ωα and ~ωβ′−~ωβ
is clearly seen in Fig. 3(d). Note that in the single-
particle picture, the energy differences ~ωα′ − ~ωα and
~ωβ′ − ~ωβ should be the same. This is a general prop-
erty of the single-particle approach, which is still valid in
the BHZ model [22].

Second, Fig. 4(a) demonstrates a pronounced depen-
dence of the energy gap 2M on the electron concentra-
tion. The changing range for 2M exceeds significantly
the error bar and the deviation within 10%, expected
for zero-mode LLs in the BHZ model (see Fig. 1). On
the other hand, ∆ and Bc are either independent of nS
or have a weak concentration dependence within the er-
ror bar. Although, the changing of nS affects the band
structure via the changes of the QW profile, such effect is
small in our samples. Particularly, the self-consistent cal-
culations involving the Poisson equation and the 8-band
k·p Hamiltonian predict less than 5% changing of 2M
for pure asymmetrical QWs in the range of nS shown
in Fig. 4. Thus, the strong concentration dependence
of 2|M | together with the different values of ∆ and Bc
extracted from ~ωα′ − ~ωα and ~ωβ′ − ~ωβ cannot be
interpreted within the single-particle picture.

Let us now discuss qualitatively possible mechanism
beyond the single particle picture, which may result in
the fine structure of α and β transitions shown in Figs 2
and 3. As mentioned before, any inter-LL transition ob-
served in magnetoabsorption can be considered as neu-
tral magnetic exciton, which long-wavelength limit con-
tributes to the magnetooptical conductivity [26–29]. In

this sense, two LL transitions with close energies, such
as α and α′, correspond to two magnetic excitons with
zero wave-vectors. In the absence of e-e interaction, their
energies are defined by the single-particle LLs and only
the α exciton contributes in magnetoabsorption.

The many-particle interaction [26–29] gives rise to (1)
an electron-hole interaction inside a given exciton, (its
bound energy); (2) interaction between excited exciton
and other non-excited electrons below the Fermi level;
and (3) the exciton-exciton interaction caused by the in-
teraction between the electrons and holes of the α and
α′ excitons. The first two interactions just change the
energies of the α and α′ excitons from its single-particle
values. On the contrary, the interaction (3) induces hy-
bridization between two magnetic excitons, which leads
to non-zero α′ contribution into magnetoabsorption and
anticrossing between α and α′ magneto-optical transi-
tions.

This hybridization between the excitons is very effi-
cient if the energies of α and α′ transitions differ in less
than the characteristic length of Coulomb interaction Ec
in our samples. The latter can be roughly evaluated as
Ec ∼ e2/(aBε), where e is an elementary charge, aB is
the magnetic length given by a2B = ~c/eH and ε = 21
is the static permittivity of HgTe. In the field range of
B = 4− 9 T, Ec changes from 5 to 8 meV, that is com-
parable with the experimental values of ~ωα′ − ~ωα and
~ωβ′ −~ωβ in the vicinity of Bc. Therefore, it is relevant
to account many-particle effects in the consideration of
the fine structure of α and β transitions. Thus, the strong
dependence of the band-gap energy in Fig. 4 is due to the
inapplicability in the vicinity of Bc of the single particle
model described by Eq. (2).

Moreover, since the many-particle hybridization is sen-
sitive to the electron concentration nS and LL filling fac-
tor ν, it may indeed result in different fine structures
for the α and β transitions. Additionally, the proposed
mechanism does not require the anticrossing of zero-mode
LLs that is consistent with experimental evidences of the
small values of BIA and IIA obtained by magnetotrans-
port [4, 5, 16, 17] and photoconductivity [18, 19].

Finally, we note that the previous magnetospec-
troscopy studies of HgTe QWs [6, 7, 20, 21] have shown a
good agreement between experimental values and single-
electron calculations for all observed transitions in trivial
QWs [6, 7, 21] and in inverted QWs in the field range far
from Bc [7, 20, 21]. In these cases, the difference between
the transition energies is greater than Ec ∼ e2/(aBε).
The latter means that unlike in graphene, in which the LL
transitions are affected by many-particle interaction in
the whole range of magnetic fields [37–40], unhybridized
optical transitions in HgTe QWs can be treated far from
the critical field Bc within the single-electron picture.

In conclusion, we have studied inverted HgTe/CdHgTe
QWs by far infrared magneto-spectroscopy, by varying
the carrier density with a persistent photoconductivity
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effect. The single-electron analysis of several optical
transitions from the zero-mode LLs near their crossing,
highlights the contribution of many-particles phenom-
ena, via an unexpectedly strong dependence of the band
gap energy as a function of the electron concentration.
This indicates that LL transitions from zero-mode LLs
probed by far-infrared magnetospectroscopy should be
considered in terms of magnetic excitons, as collective
modes [26–29, 31–33], hybridized by many-particle inter-
action.
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res, M. Zaknoune, E. Tournié, and F. Teppe, Phys. Rev.
B 99, 121405 (2019).

[43] See Supplemental Materials, which also contain Refs. [48-
50], for a brief discussion of the joint effect of SIA, BIA
and IIA on Landau levels within the Dirac-like BHZ
model. Analysis of magnetoabsorption spectra of the
sample 101221 and details of the spectra for the samples
101109 and 091223 are also provided therein.

[44] M. Schultz, U. Merkt, A. Sonntag, U. Rössler, R. Win-
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SUPPLEMENTAL MATERIALS

A. Dirac-like 2D Hamiltonian

The low-energy electronic states in HgTe quantum wells (QWs) in the vicinity of the Γ point of the Brillouin zone
can be described analytically within an effective four-band Dirac-like model. This model, first proposed by Bernevig,
Hughes and Zhang [1] considers the lowest electron-like level E1 and the top hole-like level H 1 that qualitatively
explains a topological phase transition in 2D systems with spatial inversion symmetry [1]. In the basis |E1,+〉,
|H1,+〉, |E1,−〉, |H1,−〉 and keeping terms only up to quadratic powers of momentum k, the Bernevig-Hughes-
Zhang (BHZ) Hamiltonian is written as

HBHZ(k) =


C +M − (D + B)k2 Ak+ 0 0

Ak− C −M − (D− B)k2 0 0
0 0 C +M − (D + B)k2 −Ak−
0 0 −Ak+ C −M − (D− B)k2

 , (1)

where the upper 2×2 block describes spin-up electrons in the E1 and H 1 subbands, and the lower block corresponds
to the spin-down states in those subbands [1]. Here, k = (kx, ky) are the momentum components in the QW plane
and k± = kx± iky. The energy gap between the bands is 2M , B and D describes the curvature of the subbands, while
A incorporates inter-subband coupling to lowest order. The negative values of M correspond to the inverted band
structure, while M > 0 describes the trivial band ordering.

However, real HgTe QWs do not have inversion symmetry for several reasons, that leads to additional terms in the
Hamiltonian. If the QW has a structure inversion asymmetry (SIA) in the growth direction, the SIA term reads [2]

HSIA(k) =


0 0 iαk− 0
0 0 0 0

−iαk+ 0 0 0
0 0 0 0

 , (2)

which is simply the Rashba term linear in k; the heavy-hole k-cubic Rashba term is neglected. The bulk inversion
asymmetry (BIA) arising due to the presence of two different atoms in the unit cell of the layer materials indices the
following BIA terms [2, 3]:

HBIA(k) =


0 0 ∆ek+ −∆0

0 0 ∆0 ∆hk−
∆ek− ∆0 0 0
−∆0 ∆hk+ 0 0

 . (3)

Finally, the anisotropy of the QW interfaces induces an interface inversion asymmetry (IIA) leading to efficient
interface coupling between the light-hole |Γ8,±1/2〉 and heavy-hole |Γ8,±1/2〉 states [4]. When projected onto the
E1 and H 1 subbands the IIA terms are

HIIA =


0 0 0 γ
0 0 −γ 0
0 −γ 0 0
γ 0 0 0

 . (4)

The parameters C, A, B, D, M , α, ∆e, ∆h, ∆0, γ in Eqs. (1), (2), (3), (4) depend on the QW geometry, QW width
and the layer materials. Thus, the Hamiltonian for HgTe QWs naturally separates into three parts:

HD(k) = HBHZ(k) +HSIA(k) +HBIA(k) +HIIA. (5)

B. Zero-mode Landau levels in the presence of SIA, BIA and IIA

To calculate Landau levels (LLs) in the presence of an external magnetic field B oriented perpendicular to the QW
plane, one should make the Peierls substitution, ~k → ~k − e

cA, where in the Landau gauge A = B(y, 0). Then we
can replace the momentum operators in Eqs. (1), (2), (3), (4) with standard ladder operators â+ and â:

k+ →
√

2

aB
â+, k− →

√
2

aB
â, k2 → 2

a2B

(
â+â+

1

2

)
, (6)
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where aB is the magnetic length given by a2B = ~c/eB. To take into account the Zeeman splitting, we also add an
additional term to the Hamiltonian HD(k):

HZ =
µBB

2


ge 0 0 0
0 gh 0 0
0 0 −ge 0
0 0 0 −gh

 , (7)

where µB is the Bohr magneton, ge and gh are the effective (out-of-plane) g-factors of the E1 and H 1 subbands,
respectively.

Let us first consider, LLs in the absence of SIA, BIA and IIA. In this case, HBHZ(k) + HZ has a block-diagonal

form, and the eigenvalue problem can be solved analytically [5]. The upper block gives the following LL energies E
(+)
n,s

E(+)
n,s = C − 2Dn+ B

a2B
+
ge + gh

4
µBB + s

√
2nA2

a2B
+

(
M − 2Bn+ D

a2B
+
ge − gh

4
µBB

)2

, for n ≥ 1

E
(+)
0 = C +M − D + B

a2B
+
ge
2
µBB, for n = 0, (8)

where n is LL index and s = ± represents LLs in conduction and valence subband. Explicitly, the two-component
eigenfunctions for the upper block are given by

Ψ(+)
n,s =


cos θ

(+)
n,s |n〉

sin θ
(+)
n,s |n− 1〉

0
0

 , (9)

where |n〉 is the normalized harmonic oscillator function [6] and θ
(+)
n,s is defined as

tan θ(+)
n,s =

√
2~
aB

A
√
n

E
(+)
n,s − C +M + 2~2

a2B
(D− B)

(
n− 1

2

)
− ghµBB

2

.

Note that for n = 0, θ
(+)
n=0,s = 0.

For the lower block of H(k) +HZ , the LL energies E
(−)
n are written as

E(−)
n = C − 2Dn− B

a2B
− ge + gh

4
µBB + s

√
2nA2

a2B
+

(
M − 2Bn− D

a2B
− ge − gh

4
µBB

)2

, for n ≥ 1

E
(−)
0 = C −M − D− B

a2B
− gh

2
µBB, for n = 0. (10)

The two-component eigenfunctions for the upper block have the form

Ψ(−)
n,s =


0
0

− sin θ
(−)
n,s |n− 1〉

cos θ
(−)
n,s |n〉

 , (11)

where θ
(−)
n,s is defined as

tan θ(−)n,s =

√
2~
aB

A
√
n

E
(−)
n,s − C −M + 2~2

a2B
(D + B)

(
n− 1

2

)
+ geµBB

2

.
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The LLs with energies E
(+)
0 and E

(−)
0 are called the zero-mode LLs [5]. They split from the edge of E1 and H 1

subbands and tend toward conduction and valence band as a function of B, respectively. The critical magnetic field

Bc, where those two LLs cross, can be calculated from the condition E
(+)
0 = E

(−)
0 , which yields

Bc =
M

eB/(c~)− (ge + gh)µB/4
. (12)

By applying the procedure described in Ref. [7] to the 8-band k·p Hamiltonian, we have found that A =
348.1 meV·nm, B = −1051.2 meV·nm2, C = −34.6 meV, D = −868.1 meV·nm2, ge = 58.50, gh = 2.41 and
M = −14.6 meV for 8-nm-wide HgTe/Cd0.7Hg0.3Te QW grown on CdTe buffer at 2 K (see Fig. 1 in the main
text). The presence of SIA, BIA and IIA breaks a block-diagonal form of the Hamiltonian due to the non-diagonal
contribution

HSIA(k) +HBIA(k) +HIIA =


0 0 ∆e

√
2~
aB

â+ + iα
√
2~
aB

â γ −∆0

0 0 −γ + ∆0 ∆h

√
2~
aB

â

∆e

√
2~
aB

â− iα
√
2~
aB

â+ −γ + ∆0 0 0

γ −∆0 ∆h

√
2~
aB

â+ 0 0

 . (13)

However, the energies of zero-mode LLs can be calculated analytically even in this case. Indeed, with the wave
function

Ψ
(±)
0 =


a|0〉

0
0
b|0〉

 , (14)

where a and b are the constants, the problem of calculating the energy levels, (HD(k) +HZ)Ψ
(±)
0 = ε

(±)
0 Ψ

(±)
0 gives

ε
(±)
0 = C − D

a2B
+
ge − gh

4
µBB ±

√(
M − B

a2B
+
ge + gh

4
µBB

)2

+ (∆0 − γ)
2
, (15)

which is independent of α, ∆e and ∆h. By combining Eq. (15) with the expression for Bc given by Eq. (14), it is

worth to present ε
(±)
0 in the form:

ε
(±)
0 = C − D

a2B
+
ge − gh

4
µBB ±

√
M2

(
1− B

Bc

)2

+ (∆0 − γ)
2
. (16)

One can see that both BIA and IIA induces the anticrossing of zero-mode LLs with the anticrossing gap ∆ = 2 |∆0 − γ|
at B = Bc. Thus, Eq. (16) transforms into the given expression for the energy difference:

∆E =
ε
(+)
0 − ε(−)0

2
=

√
M2

(
1− B

Bc

)2

+
∆2

4
. (17)

We note that Eq. (17) has been derived by taking into account the SIA effect, therefore, it holds for the asymmetrical
QW as well.

C. Changing of the QW profile with electron concentration

The ”optical gating”, also known as persistent photoconductivity effect [8–10], is caused by the charge transfer
between the QW and the cap layer, in which the illumination induces either an ionization of the deep donors, or
inter-band excitations [10]. However, electric field of spatially separated donors in the cap layer and 2D electrons
in HgTe QW distorts the QW profile. Therefore, by varying the electron concentration nS , one also changes the
”built-in” electric field and thus asymmetry of the QW. The latter affects the band structure parameters, such as the
band-gap at the Γ point of the Brillouin zone 2M and critical magnetic field Bc.
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FIG. S1. Band structure (a) and Landau levels (b) of 8-nm-wide HgTe/Cd0.7Hg0.3Te QWs at T = 2 K grown on (013) CdTe
buffer. The black curves at both panels correspond to the rectangular QW profile (nS = 0), while the red curves represent
self-consistent calculations made for nS = 8 · 1011 cm−2 assuming that all the electrons come from one side of the QW. The
self-consistent QW profile for the latter case is shown in the inset at the right panel.

In order to evaluate effect of QW distortion on M and Bc, we have performed self-consistent band structure and
LLs calculations, based on the joint solution of Poisson and Schrödinger equations with the 8-band k·p Hamiltonian.
Such method allows to take into account asymmetry of the HgTe QW in the right way, which gives a good agreement
with magnetotransport results obtained for the samples with the gated Hall bars [11].

Figure S1 compares the band structure and LLs for 8-nm-wide HgTe/Cd0.7Hg0.3Te QWs with rectangular (nS = 0)
and asymmetrical profile (nS = 8 · 1011 cm−2), assuming that all the electrons come from one side of the QW.
The calculations were performed by neglecting the BIA and IIA effects. To calculate the LLs, we apply the axial
approximation by omitting the warping terms in the Hamiltonian. As can be seen, the change in the energy difference
between the E1 and H 1 subbands at the Γ point and the critical magnetic Bc does not exceed 10% for a change in
concentration of nS = 8 · 1011 cm−2.

We first note that in our experiment, the change in nS is less than 2 · 1011 cm−2 for all samples. Second, the
calculations shown in Fig. S1 were made for pure asymmetric QWs, while the real samples have an almost symmetrical
QW profile before illumination, as the sample barriers are symmetrically doped. Thus, the modification of the QW
profile during illumination is indeed very small in our samples, and it cannot explain the experimental evolution of
the parameters with concentration.

D. Magnetotransmission spectra for all the samples

Figure S2 provides magnetoabsorption spectra of the sample 101221 measured at different electron concentration
nS varied by illumination of blue light emitting diode (see the main text). It is seen that the α and α′ transitions are
both present in the given magnetic field range as the filling factor of LLs ν < 3 for all nS values. On the contrary,
for their observation, the β and β′ transitions both require the stronger fields corresponding to ν < 2. Although the
latter condition is fulfilled at some concentration value, significant distortion of the magnetoabsorption spectra in the
vicinity of the reststrahlen band of GaAs substrate [12, 13] makes clear observation of the β′ transition impossible in
the sample 101221.

Details of magnetotransmission spectra for all three samples under study are provided in Figs. S3–S5. In order to
illustrate the range of magnetic fields suitable for observation of α, α′, β and β′ transitions in our samples, Fig. S6
shows the change of Fermi energy with magnetic fields at the experimental values of electron concentration nS . The
calculations of Landau levels were performed for the symmetrical QW profiles (i.e. without the SIA effects) by
neglecting the BIA and IIA effects. As in the main text, we applied the axial approximation by omitting the warping
terms in the Hamiltonian [14].
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FIG. S2. False color maps showing α and α′ inter-LL transitions in the 8 nm HgTe/Cd0.41Hg0.59Te QW (sample 101221)
as a function of magnetic field, measured at different electron concentration nS : (a) 1.6 · 1011 cm−2, (b) 3.0 · 1011 cm−2,
(c) 3.3 ·1011 cm−2. The symbols represent position of the magnetoabsorption lines, whose energies are used in the evaluation of
∆E. (d)-(f) Square of the energy difference for α and α′ transitions at the same concentrations as in the respective top panels.
The solid curves are the fitting to Eq. (17). The arrows indicate magnetic fields corresponding to the integer filling factor ν.

FIG. S3. Transmission spectra of sample 101221 in the same energy range as in Fig. S2 provided above. The resonant energies
for α, α′ and β transitions are marked by the symbols.
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FIG. S4. Transmission spectra of sample 101109 in the same energy range as in Fig. 2 in the main text. The resonant energies
for α and α′ transitions are marked by the symbols.

FIG. S5. Transmission spectra of sample 091223 in the same energy range as in Fig. 3 in the main text. The resonant energies
for α, α′, β and β′ transitions are marked by the symbols.
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