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Abstract

We present an alternative form of technical change within the traditional two-input framework. The aggregate

production function is the convex hull of an increasing, finite number of Leontief production functions. At each date,

each of these local production functions mutates into two Leontief production functions: one featuring exogenously

increased labor-augmenting productivity, the other featuring exogenously increased capital-augmenting productiv-

ity. We embed this model of technical change into an otherwise standard, discrete-time Solow model. We do not

specify technical change as purely labor-augmenting; still, it comes out that this modified Solow model has a globally

stable balanced growth path. Along this path, technical change jointly determines the growth rate, capital-output

ratio, and marginal productivity of capital and the competitive factor shares.

Keywords: Directed technical change, Uzawa theorem, Balanced growth path, Solow model.

JEL codes: O33, O40, O41.

Introduction

Production is the process by which inputs are converted into output, and is usually represented mathematically by a

production function. By definition, technical change transforms the production process and consequently shows up

mathematically as an alteration of the production function.

Economists have mainly investigated and used so-called “factor-augmenting” forms of technical change. Under

the assumption of factor-augmenting technical change, the production function evolves only through the increase

of some productivity indexes. Thus, if the inputs are (X1, . . . , Xn ), the factor-augmenting assumption amounts to as-

suming that the production function at any date t can be written Ft (X1, . . . , Xn ) = F (A1t X1, . . . , An t Xn )where the terms

A j t are the productivity indexes and F is some unchanging production function, often dubbed the ‘core’ production

function.

Pioneers of economic growth theory have primarily searched for forms of technical change that generate macroe-

conomic dynamics consistent with the first five Kaldor facts.1 With this regards, the literature has reached a central

∗Université Paris-Saclay/CentraleSupelec/Laboratoire Genie Industriel (contact: mehdi.senouci@centralesupelec.fr). Corresponding author.
†CentraleSupelec, (contact: hugo.mauron@student-cs.fr).
1Kaldor (1961).
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result with the Robinson-Uzawa theorem.2 In its most general form –which is due to Jones and Scrimgeour (2008) –

the theorem states that if all input and output quantities grow at a constant rate within a neoclassical dynamic model,

then technical change necessarily appears as purely labor-augmenting along this balanced growth path. It is notewor-

thy that this result does not require technical change to be factor-augmenting. The influence of the Robinson-Uzawa

theorem on growth theory is overwhelming. Most theoreticians expect growth models to exhibit balanced growth

paths only if technical change is specified purely as labor-augmenting.

On the other hand, models featuring labor-augmenting technical change often have the prominent characteristic

that relative effective inputs are constant along any balanced growth path. In turn, this property implies that variables

such as the marginal product of capital or the factor shares are determined by the derivative of the core production

function, which is assumed to be unaffected by technical change.

On the empirical side, this feature of the workhorse neoclassical growth model has notably shown its limits when

some scholars attempted to use it to explain the recent worldwide decline of the labor share. For instance, Karabar-

bounis and Neiman (2014) argue that the decline of the labor share can be pictured as the consequence of technical

change in the investment-goods sector with gross capital-labor substitutability at the macroeconomic level, a view

widely dismissed as most empirical estimates of the elasticity of substitution fall significantly below 1.3

On the theoretical side, the assumption of the existence of a fixed core production function – only affected by tech-

nological change through variations of some productivity indexes – entails a problematic dichotomy. Why wouldn’t

technical change alter the core production function itself?

In response to these limitations, several scholars have developed alternative views of technical change; from the

Atkinson-Stiglitz informal argument of localized technical change4 to quite sophisticated theories such as the task

approach to technical change.5

This paper aims to prove that orthodox neoclassical models might yield predictions about the influence of tech-

nical change over the marginal product of capital and competitive factor shares that are not heavily dependent on

the shape of the core production function. We incorporate a new form of technical change in the Solow (1956) model

in discrete time and analyze the resulting growth path. Our specification of technical change obeys to the following

logic. We stick to the two-input (capital and labor) framework. At the initial date, there exists one, exogenously given

Leontief production function f0. At date one, f0 gives rise to two new Leontief production functions. The first one

( fλ) results from labor-augmenting technical change (LATC), the second one ( fµ) from capital-augmenting technical

change (KATC). Neither of these two production functions dominates the other, and the global production available

at date one is the convex hull of fλ and fµ. Then, at date two, each of the production functions fλ and fµ gives rise to

two Leontief production functions through the same process. We assume that the rates of LATC and KATC are inde-

pendent of the production function to which they apply. The same process goes on at all subsequent dates. Since it is

equivalent to apply LATC and then KATC, or KATC and then LATC, at each date t there exists t + 1 available Leontief

production functions – instead of 2t . The global production function at any date t is thus the convex envelope of these

t +1 local production functions.

We then investigate the properties of the Solow model fueled by our specification of technical change. It comes

out that this model possesses a globally stable growth path that reproduces all the first five Kaldor facts. Along the bal-

anced growth path, the common steady-state growth rate of the capital-labor and output-labor ratios is simply equal

to the rate of LATC experienced by the local production functions. The steady-state marginal product of capital and

competitive capital share depend on both the rates of LATC and KATC experienced by the local production functions.

In light of the prevailing interpretation of the Robinson-Uzawa theorem, we believe this result to be unexpected.

2Robinson (1938), Uzawa (1961). The result is also known as the Uzawa’s theorem, the Steady-State Growth theorem or the Balanced Growth

theorem.
3See Chirinko (2008) for a literature review on the estimation of the elasticity of substitution.
4Atkinson and Stiglitz (1969).
5Acemoglu and Zilibotti (2001), Autor and Acemoglu (2011), Acemoglu and Restrepo (2018). See also Blanchard (1997, p. 114), Zuleta (2008),

Zuleta and Young (2013) and Peretto and Seater (2013) on models where technical change manifests itself as a change in the exponents of some

Cobb-Douglas production function.
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Figure 1: The production function available at t = 0.

Indeed, the global production function does not undergo factor-augmenting technical change – only the local produc-

tion functions do – let alone pure LATC. Still, for all the parameters’ values, the modified Solow model that we present

does have a balanced growth path. This seeming contradiction is quickly resolved below.6 The appropriate prime

conclusion from our results is that technical change does not need to be specified as purely labor-augmenting to yield

a balanced growth path. Secondly, our approach suggests that non-factor augmenting forms of technical change are

promising ways to endogenize the whole production function.

This paper belongs to the theoretical literature on the determination of the global production function from a set

of local production functions (aka a ‘technology menu’). In contrast with Jones (2005) and Growiec (2008, 2018), we

assume a finite technology menu. Under this assumption, efficiency implies that two local production functions are

used jointly for most values of the capital-labor ratio. The balanced growth path that we highlight has the new feature

that two technologies are used in steady state, and these two technologies jointly determine the characteristics of the

global production function.

The rest of the paper is organized as follows. Section 1 presents our model of technical change and the shape of the

aggregate production function. Section 2 embeds this production function in a discrete-time Solow model. Section 3

concludes.

1 A new type of technical change

In this section, we present the model of technical change. There are two inputs, capital (K ) and labor (L ) and time

is discrete. For the sake of tractability, we proceed step by step by first presenting the evolution of the production

function between dates t = 0 and t = 1, then between dates t = 1 and t = 2, before deriving the production function

available at any date t ≥ 0.

1.1 Dates t = 0 and t = 1

At date t = 0, the production function (in intensive terms) is some Leontief production function f0 defined by:

∀k ≥ 0, f0(k ) = y min
�

k

k
, 1
�

where y and k are strictly positive parameters.7 Figure 1 represents f0 in the (k , y )plane. We call A0,0 the characteristic

point of the Leontief production function whose coordinates are (k , y ).

6See subsection 2.2.
7The corresponding extensive production function is F0, defined by: ∀K , L > 0, F0(K , L ) = L f0

�

K
L

�

= y min
�

K
k

, L
�
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(a) The two production functions available at date t = 1: fλ and

fµ.

(b) The global production function f1 as the convex hull of fλ
and fµ.

Figure 2: Technical change between dates t = 0 and t = 1.

At date t = 1, two production functions emerge from f0. We call them respectively fλ and fµ, with:

∀k ≥ 0,

(

fλ(k ) = (1+λ)y min
�

k
(1+λ)k

, 1
�

fµ(k ) = y min
�

(1+µ)k
k

, 1
�

where λ and µ are strictly positive constants. λ and µ respectively denote the rates of labor-augmenting technical

change and the rate of capital-augmenting technical change (‘LATC’ and ‘KATC’). This be seen in the extensive forms

of fλ and fµ, respectively defined by formulas:

Fλ(K , L ) = L fλ
�

K
L

�

= y min
�

K
k

, (1+λ)L
�

Fµ(K , L ) = L fµ
�

K
L

�

= y min
�

(1+µ) K
k

, L
�

Figure 2a represents fλ and fµ. We denote respectively by A1,1 =
�

(1+λ)k , (1+λ)y
�

and A1,0 =
�

k/(1+µ), y
�

their

characteristic points.

At date t = 1, the two production functions fλ and fµ can be used in conjunction. We assume that capital and labor

inputs K and L are allocated efficiently to production functions fλ and fµ:

– If the capital-labor ratio k = K /L is less than k 1,0 = k/(1+µ), all inputs are allocated to Fµ;

– If the capital-labor ratio k is greater than k 1,1 = (1+λ)k , all inputs are allocated to Fλ;

– In the intermediate range, i.e. if k ∈
�

k 1,0, k 1,1

�

, both production functions Fλ and Fµ are used.

In the latter case, by allocating capital and labor inputs to production functions Fλ and Fµ according to







Lλ = L
k−k 1,0

k 1,1−k 1,0

Lµ = L
k 1,1−k

k 1,1−k 1,0

,

¨

Kλ = k 1,1Lλ
Kµ = k 1,0Lµ

realized production is:

Fλ (Kλ, Lλ)+ LµF
�

Kµ, Lµ
�

= Lλ fλ

�

Kλ
Lλ

�

+ Lµ fµ

�

Kµ
Lµ

�

= L

�

k −k 1,0

k 1,1−k 1,0

(1+λ)y +
k 1,1−k

k 1,1−k 1,0

y

�

For any k ∈
�

k 1,0, k 1,1

�

, the quantity
k−k 1,0

k 1,1−k 1,0
(1+λ)y + k 1,1−k

k 1,1−k 1,0
y thus stands on the

�

A1,0A1,1

�

line segment.

The graph of the global production function at date t = 1 is then the broken line
�

O A1,0A1,1

�

supplemented by the

half-line
�

A1,1

�

+∞, (1+λ)y )
��

. For the ease of notation, we’ll denote the graph of f1 by
�

O A1,0A1,1∞
�

. f1 is depicted

on figure 2b. Notice that f1 is the convex hull of fλ and fµ.
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(a) The three production functions available at date t = 2: fλλ,

fλµ and fµµ.

(b) The global production function f2 as the convex hull of fλλ,

fλµ and fµµ.

Figure 3: Technical change between dates t = 1 and t = 2.

1.2 Date t = 2

Between dates t = 1 and t = 2, functions fλ and fµ each give rise to two production functions through the same process

than the one that led to fλ and fµ from f0. More specifically, fλ gives rise to functions fλλ and fλµ defined by:

∀k ≥ 0,











fλλ(k ) = (1+λ)2 y min
�

k
(1+λ)2k

, 1
�

fλµ(k ) = (1+λ)y min
�

(1+µ)k
(1+λ)k

, 1
�

while function fµ gives rise to functions fµλ and fµµ defined by:

∀k ≥ 0,











fµλ(k ) = (1+λ)y min
�

(1+µ)k
(1+λ)k

, 1
�

fµµ(k ) = y min
�

(1+µ)2k

k
, 1
�

One can see that fλµ = fµλ. As we assume that the rates of LATC (λ) and KATC (µ) are constant, regardless of the pro-

duction function to which they apply, applying LATC and then KATC to f0 is equivalent to applying KATC and then

LATC to f0. The three production functions fµµ, fλµ and fλλ are represented on figure 3a.

The global production function f2 is the convex hull of the three production functions available fµµ, fλµ and fλλ as

depicted on figure 3b. Their characteristic points are respectively A2,0 =
�

k/(1+µ)2, y
�

, A2,1 =
�

(1+λ)k/(1+µ), (1+λ)y
�

and A2,2 =
�

(1+λ)2k , (1+λ)2 y )
�

. With the notations introduced in subsection 1.1, the graph of f2 is
�

O A2,0A2,1A2,2∞
�

.

1.3 Date t ≥ 0

The way our specification of technical change alters the global production function over time should now be clear. At

each date t ≥ 0, a family of t +1 production functions
�

ft ,i

�

i∈{0,...,t } exists, where the analytical formula for ft ,i is:

∀k ≥ 0, ft ,i (k ) = (1+λ)
i y min

�

(1+µ)t−i

(1+λ)i
k

k
, 1

�

For any t ≥ 0 and for any i ∈ {0, . . . , t }, the characteristic point of function ft ,i is At ,i of coordinates
�

k t ,i , y i

�

=
�

(1+λ)i k/(1+µ)t−i , (1+λ)i y
�

. The global production function at date t , ft , is the convex hull of the t + 1 functions
�

ft ,i

�

i∈{0,...,t }. The graph of ft is the broken line
�

O At ,0At ,1 . . . At ,t∞
�

.
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(a) (b)

(c) (d)

Figure 4: Evolution of the global production function for k = 5, y = 1, λ = 0.02 and µ = 0.04. (4a), (4b), (4c) and (4d)

respectively represent f0, f10, f100 and f1000. Red dots are the At ,i points. Curves obtained by the Python code displayed

in Appendix A.

Figure 4 represents the global production function ft for t = 0; t = 10; t = 100; t = 1, 000 for chosen parameters k ,

y , λ and µ.

An analytical formula for function ft is given by:

∀k ≥ 0, ft (k ) =











(1+µ)t y

k
×k if k ≤ k t ,0

(1+λ)i y + λ(1+µ)t−i

((1+λ)(1+µ)−1)
y

k
×
�

k −k t ,i

�

if k t ,i ≤ k ≤ k t ,i+1 for some i ∈ {0, . . . , t −1}

(1+λ)t y if k t ,t ≤ k

(1)

1.4 Marginal returns of capital and the capital share in production function ft

Marginal returns to capital are constant over each part of this broken line. For k ∈
�

0, k t ,0

�

, marginal returns to capital

are at f ′t (k ) = y 0/k t ,0 = (1+µ)t y /k . If t ≥ 1, and 0 ≤ i ≤ t − 1, for k ∈
�

k t ,i , k t ,i+1

�

marginal returns to capital are at

f ′t (k ) = (y i+1− y i )/
�

k t ,i+1−k t ,i

�

=λ(1+µ)t−i /
�

(1+λ)(1+µ)−1
�

∗ y /k . For k > k t ,t , f ′t (k ) = 0.

The competitive capital share αt (k ) = k f ′t (k )/ ft (k ) is equal to 1 for k ∈
�

0, k t ,0

�

, and to 0 for k > k t ,t . If t ≥ 1, and

0≤ i ≤ t −1, for k ∈
�

k t ,i , k t ,i+1

�

the capital share is atαt (k ) =λ(1+µ)t−i /
�

(1+λ)(1+µ)−1
�

∗y /k ∗k/ ft (k ). This quantity

is strictly increasing in k over the
�

k t ,i , k t ,i+1

�

interval. The right-hand limit of αt (k ) near k t ,i is:

lim
k→k

+
t ,i

αt (k ) =
λ(1+µ)t−i

(1+λ)(1+µ)−1

y

k

k t ,i

y i

=
λ

(1+λ)(1+µ)−1
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Figure 5: The shape of the date-t capital share function αt (·) for t ≥ 1.

while the left-hand limit of αt (k ) near k t ,i+1 is:

lim
k→k

−
t ,i+1

αt (k ) =
λ(1+µ)t−i

(1+λ)(1+µ)−1

y

k

k t ,i+1

y i+1

=
λ(1+µ)

(1+λ)(1+µ)−1

The graph of function αt (·) is represented on figure 5.

1.5 The relationship between ft and Cobb-Douglas production functions

Figure 4 suggests that ft looks like a Cobb-Douglas production function as time tends to infinity. Indeed, this intuition

is partly misleading. Indeed, it is true that for all t ≥ 0, all the points At ,0At ,1 . . . At ,t lie the graph of some identified

Cobb-Douglas production function, as the following result proves.

Proposition 1. Let α ∈ (0, 1) be defined as:

α=
ln(1+λ)

ln(1+λ) + ln(1+µ)

For all t ≥ 0, let f CD
t be the Cobb-Douglas production function defined by:

∀k ≥ 0, f CD
t (k ) = (1+λ)(1−α)t

�

k

k

�α

y

Then, for all t ≥ 0 and for all i ∈ {0, . . . , t }:
f CD

t

�

k t ,i

�

= ft

�

k t ,i

�

Proof. Let t ≥ 0 and i ∈ {0, . . . , t }. Then:

f CD
t

�

k t ,i

�

= (1+λ)(1−α)t
�

(1+λ)i
(1+µ)t−i

�α
y

= exp
�

(1−α)t ln(1+λ) +αi ln(1+λ)−α(t − i ) ln(1+µ)
�

y

= exp
�

ln(1+µ)
ln(1+λ)+ln(1+µ) t ln(1+λ) + ln(1+λ)

ln(1+λ)+ln(1+µ) i ln(1+λ)− ln(1+λ)
ln(1+λ)+ln(1+µ) (t − i ) ln(1+µ)

�

y

= exp [i ln(1+λ)] y

= (1+λ)i y

= ft

�

k t ,i

�

However, the sequence of functions ( ft )t≥0 is not equivalent in any sense to the sequence of functions
�

f CD
t

�

t≥0
.

Indeed, for all k > 0, the quantity f CD
t (k )/ ft (k ) does not tend to 1 as time tends to infinity.
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2 The Solow model under our model of technical change

We are interested in the following dynamic system for all t ∈ {0, 1, . . .}:

yt = ft (kt ) (2)

kt+1 = s yt + (1−δ)kt (3)

where s ∈ (0, 1] is the saving rate andδ ∈ (0, 1] is the depreciation rate of capital. The initial capital-labor ratio k0 > 0

is given by initial conditions. For simplicity, we assume that population is constant at L > 0.8 Clearly, the dynamic

system is well-defined and yields nonnegative sequences for the capital-labor ratio kt and the output per worker yt

for all dates t ≥ 0 for any value of the parameters
�

s ,δ,λ,µ, y , k
�

. A Python code simulating the model is available in

Appendix B.

In line with the theoretical literature on economic growth, we are mostly interested in matching the first five Kaldor

facts. Consequently, we first investigate the existence of a stable, balanced growth path in this section.

Definition 1. Let (kt )t≥0 and (yt )t≥0 denote, respectively, the sequences of capital-labor ratios and levels of output per

worker generated by the model for some initial condition k0. We say that the model economy is:

– On a Balanced Growth Path (BGP) if and only if kt and yt grow at constant rates at all dates t ≥ 0;

– On a Balanced Growth Path in Finite Time (BGPFT) if and only if kt and yt grow at constant rates at all dates

t ≥ T for some T ≥ 0;

– On an asymptotic balanced growth path (ABGP) if and only if the growth rates of kt and yt tend to constants as t

tends to infinity.

Clearly, any BGP is also a BGPFT, and any BGPFT is an ABGP.

For convenience, we introduce a variable i (t ) that labels the interval of the production function that is used at any

date t ≥ 0.

Definition 2. Let (kt )t≥0 and (yt )t≥0 denote, respectively, the sequences of capital-labor ratios and levels of output per

worker generated by the model for some initial condition k0.

– We define i (0) as equal to −1 if k0 < k and equal to 0 if k0 > k .

– For all t ≥ 1, we define i (t ) as:

i (t ) =











−1 if kt < k t ,0

i if there exists i ∈ {0, . . . , t −1} such that k t ,i < kt < k t ,i+1

t if kt > k t ,t

2.1 A necessary condition on any potential BGPFT

In this subsection, we assume that some BGPFT exists, and we derive some necessary conditions on the resulting

growth path.

As usual in the treatment of Solow models, the equation of accumulation of capital (3) implies:

kt+1

kt
= s

yt

kt
+1−δ

which entails that the constant growth rates of kt and yt must be equal on a BGPFT. Let g be this common growth

rate. Then, the output-capital ratio yt /kt is constant for at (g +δ)/s .

8The model can easily accomodate some constant population growth rate n , the result would be that n would add to δ in all formulas.
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Proposition 2. Assume that the model economy is on a BGPFT starting at some date T ≥ 0. Call g the common growth

rate of kt and yt for t ≥ T . Then:

g =λ

Proof. Let (kt , yt )t≥0 be a BGPFT, starting at some date T ≥ 0, and featuring a growth rate g . For all t ≥ T , the output-

capital ratio is then constant at (g +δ)/s . Let D be the line of equation y = ((g +δ)/s ) ∗ k in the (k , y ) plane. Notice

that for all t ≥ 0,
�

O At ,t

�

all have the same slope which is equal to y /k .

Case #1: If y /k > (g+δ)/s , then all the production functions ft cross theD line over their final flat half-line
�

At ,t∞
�

.

i (t )must be equal to t all over the BGPFT. This case is represented on figure 6. For all dates t ≥ T , yt must then be

equal to y t = (1+λ)
t y . Thus, yt grows at the rate λ. So g =λ.

Figure 6: Proof of proposition 2 if i (t ) = t along the BGPFT.

Case #2: If y /k > (g +δ)/s , then all points
�

O At ,t

�

lie at the right of lineD. Since we assumed the model economy to

be on a BGPFT, the production functions ft must cross theD line for all t ≥ T . Let X t be that point at date t . X t must

then belong to some line segment
�

At ,i ∗(t )At ,i ∗(t )+1

�

for some i ∗(t ) ∈ {0, . . . , t −1}, i ∗(t ). For all t ≥ T , i ∗(t ) is the integer

such that At ,i ∗(t ) lies at the left of D, while At ,i ∗(t )+1 lies at the right of D. Equivalently, i ∗(t ) is such that line
�

O At ,i ∗(t )

�

is steeper thanD and such that lineD is steeper than line
�

O At ,i ∗(t )+1

�

. Since the slope of line
�

O At ,i ∗(t )

�

is the same as

the slope of line
�

O At+1,i ∗(t )+1

�

, and that the slope of line
�

O At ,i ∗(t )+1

�

is the same as the slope of line
�

O At+1,i ∗(t )+2

�

, we

can conclude that for all t ≥ T , i ∗(t +1) = i ∗(t ). This situation is depicted in figure 7.

The two lines
�

At ,i ∗(t )At ,i ∗(t )+1

�

and
�

At+1,i ∗(t+1)At+1,i ∗(t+1)+1

�

then both have slope λ(1+µ)t−i ∗(t )/
�

(1+λ)(1+µ)−1
�

∗
y /k , so lines

�

At ,i ∗(t )At ,i ∗(t )+1

�

and
�

At+1,i ∗(t+1)At+1,i ∗(t+1)+1

�

are parallel.

Consequently, triangle O At+1,i ∗(t+1)At+1,i ∗(t+1)+1 is the image of triangle O At ,i ∗(t )At ,i ∗(t )+1 by the homothetic trans-

formation of center O and of factor 1+λ. Since points O , X t , X t+1 are aligned, and since X t ∈
�

At ,i ∗(t )At ,i ∗(t )+1

�

and

X t+1 ∈
�

At+1,i ∗(t+1)At+1,i ∗(t+1)+1

�

, X t+1 is the image of X t by the homothetic transformation of center O and of factor

1+λ. So kt+1 = (1+λ)kt and yt+1 = (1+λ)yt for all t ≥ T . So g =λ.

Like in the canonical Solow model, the growth rate is only related to technical change and not to s nor δ. Fur-

thermore, proposition 2 establishes that the growth rate is equal to the rate of LATC. Although KATC expands the

production possibility frontier,9 KATC cannot increase the long-run growth rate of the economy.

9It is straightforward to see that a higher µ leads to global production functions ft that is more efficient for all capital-labor ratios than the ones

9



Figure 7: Proof of proposition 2 if i (t )≤ t −1 along the BGPFT.

2.2 Existence and features of a BGPFT

We can now establish the first central property of our growth model.

Theorem 1. For any parameters
�

y , k ,λ,µ, s ,δ
�

, there exists some initial capital-labor ratio k ∗0 > 0 such that, if k0 = k ∗0 ,

the sequence of (kt , yt )t≥0 generated by the dynamic system (2) and (3) is a BGPFT.

Proof. As per proposition 2, letD be the line of equation y = ((λ+δ)/s ) ∗k in the (k , y ) plane.

Figure 8: Proof of theorem 1 if y /k > (λ+δ)/s .

Case #1: If y /k > (λ+ δ)/s , then the initial production function f0 crosses line D at some point of the final flat

half-line of f0, i.e
�

A0,0∞
�

. Let k ∗0 be the horizontal coordinate of this point. The situation is illustrated in figure 8.

corresponding to a lower µ.

10



Then, if k0 = k ∗0 , k1 = (1+λ)k ∗0 since point (k0, y0) lies on line D. Since k ∗0 > k , k1 > (1+λ)k = k 1,1. So y1 = f1(k1) =

y 1 = (1+λ)y . So point (k1, y1) lies on lineD. Along the same lines, it is immediate to see that for all t ≥ 0, point (kt , yt )

lies on lineD, so that the growth rates of kt and yt are constant and equal to λ from t = 0 onwards.

Thus, if If y /k > (λ+δ)/s , there exists some k ∗0 > 0 such that, if k0 = k ∗0 , the model economy is on a BGP.

Case #2: If y /k < (λ+δ)/s , then the initial production function f0 only crosses lineD at point O . After some time

T ≥ 1, the production function fT crosses theD line at some point of the
�

AT ,0AT ,1

�

line segment. Let T ≥ 1 be the only

integer such that point AT ,0 =
�

k/(1+µ)T , y
�

lies at the left of lineD, while point AT ,1 =
�

k ∗ (1+λ)/(1+µ)T−1, (1+λ)y
�

lies at the right of lineD.10 Since T must satisfy the inequalities (1+µ)T−1 ȳ
k̄
< λ+δ

s < (1+µ)T ȳ
k̄

, an exact formula for T

is:

T = 1+

$

ln
�

λ+δ
s

k̄
ȳ

�

ln
�

1+µ
�

%

≥ 1

where b·c is the floor function.

Figure 9: Proof of theorem 1 if y /k < (λ+δ)/s .

The situation is depicted in figure 9. Let k ∗T ∈
�

k T ,0, k T ,1

�

be the horizontal coordinate of the point of intersection

of fT and lineD. If kT = k ∗T , then the point (kT , yT ) lies on lineD, and so kT+1 = (1+λ)kT .

Besides, kT ∈
�

k T ,0, k T ,1

�

⇒ i (T ) = 0, and so:

yT = fT (kT ) = y +

�

y 1− y

k T ,1−k T ,0

�

︸ ︷︷ ︸

slope of line (AT ,0 AT ,1)

×
�

kT −k T ,0

�

= y +
λ(1+µ)T

(1+λ)(1+µ)−1

y

k

�

kT −
k

(1+µ)T

�

Remark that:

k T ,0 < k ∗T < k T ,1 =⇒ (1+λ)k T ,0 < (1+λ)k
∗
T < (1+λ)k T ,1 =⇒ k T+1,1 < kT+1 < k T+1,2

Consequently, i (T +1) = 1 and so:

yT+1 = fT+1(kT+1)

= y 1+
�

y 2−y 1

k T+1,2−k T+1,1

�

×
�

kT+1−k T+1,1

�

= (1+λ)y + λ(1+µ)T

(1+λ)(1+µ)−1
y

k
×
�

(1+λ)kT −
k (1+λ)
(1+µ)T

�

= (1+λ)yT

10Equivalently, T ≥ 1 is defined as the only integer such that AT ,0 lies at the left of lineD while AT−1,0 =
�

k/(1+µ)T−1, y
�

lies at the right of lineD.
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It is straightforward to show recursively that if kT = k ∗T , then for all t ≥ T , i (t ) = t − T , kt+1 = (1 + λ)kt and

yt+1 = (1+λ)yt .

There remains to prove that there exists some k ∗0 > 0 such that, if k0 = k ∗0 , then kT = k ∗T .

For all t ∈ {0, . . . , T − 1} let κt be the function of R+ into itself such that for all x ≥ 0, κt (x ) = s ft (x ) + (1− δ)x .

Let k0 > 0 and let (kt , yt )t=0,...,T be the time series generated by our model, i.e. by equations (2) and (3). Then kT =

(κT−1 ◦ · · · ◦κ0) (k0). Functions κ· all being strictly increasing and continuous, function (κT−1 ◦ · · · ◦κ0) is also strictly in-

creasing and continuous. So there exists some k ∗0 > 0 such that k ∗T = (κT−1 ◦ · · · ◦κ0)
�

k ∗0
�

.

Thus, if y /k < (λ+δ)/s , there exists some k ∗0 > 0 such that, if k0 = k ∗0 , the model economy is on a a BGPFT starting

at date T ≥ 1 where T = 1+
�

ln
�

λ+δ
s

k̄
ȳ

�

ln(1+µ)

�

.

Theorem 1 establishes the existence of a BGPFT for any values of the parameters. The growth rate of is λ and the

output-capital ratio is (λ+δ)/s along any BGPFT.

This result might seem to contradict the Robinson-Uzawa theorem, which states that balanced growth requires

purely labor-augmenting technical change. Indeed, our form of technical change is not purely labor-augmenting. If

we denote by Ft the extensive form of production function ft , there exists no sequence of numbers (At )t≥0 such that

for all (K , L ) ∈ (R+)2 and for all t ≥ 0, Ft (K , L ) = F0 (K , At L ) .

The reason for this apparent contradiction is actually simple. As Jones and Scrimgeour (2008) showed, balanced

growth requires technical change to be representable as labor-augmenting only at the relative inputs effectively used

along this BGP; and this is actually the case in our model:

– Case #1: If y /k > (λ+δ)/s , then the BGP highlighted in theorem 1 corresponds to a sequence of capital-labor

ratios
�

k ∗t
�

t≥0
which is such that for all t ≥ 0, ft

�

k ∗t
�

= (1 + λ)t y = (1 + λ)t f0

�

k ∗0
�

. But k ∗t = (1 + λ)
t k ∗0 ; hence

ft

�

k ∗t
�

= (1+λ)t f0

�

k ∗t /(1+λ)
t
�

. In extensive form, the last equation implies that Ft

�

K ∗t , L
�

= F0

�

K ∗t , (1+λ)t L
�

.

– Case #2: If y /k < (λ+δ)/s , then the BGPFT starting at date T ≥ 1 highlighted in theorem 1 is such that for all

t ≥ T , ft

�

k ∗t
�

= (1 + λ)t−T y + r ∗
�

k ∗t −k t ,t−T

�

where r ∗ = λ(1+µ)T

(1+λ)(1+µ)−1
y

k
. Besides, since k ∗t = (1 + λ)

t−T k ∗T , then

ft

�

k ∗t
�

= (1+λ)t−T fT

�

k ∗T
�

. In extensive form, this last equation implies that Ft

�

K ∗t , L
�

= FT

�

K ∗t , (1+λ)t−T L
�

.

So without being labor-augmenting, technical change appears as labor-augmenting along the BGP or BGPFT, and

there is no contradiction between our result and the Robinson-Uzawa theorem.

We now investigate the stability of our model. The assumption y /k < (λ + δ)/s generates BGPFT where the

marginal product of capital and the competitive capital share are non-degenerated. Consequently, we focus on the

growth paths where this assumption is valid in the rest of the paper.11

2.3 Stability of BGPFT

In this section, we prove the asymptotic balance of all growth paths. We proceed in two stages. We first show that the

model exhibits local stability, and then extend the proof to global stability.

Lemma 1. Let
�

y , k ,λ,µ, s ,δ
�

be some set of parameters. We assume that y /k < (λ+δ)/s . Let k ∗0 the value of the initial

capital-labor ratio that generates a BGPFT.

Then, there exists an interval
�

k 0, k 0

�

containing k ∗0 and such that if k0 ∈
�

k 0, k 0

�

, then the economy is on an ABGP

where kt+1/kt
∞−→ 1+λ, yt+1/yt

∞−→ 1+λ and yt /kt
∞−→ (λ+δ)/s .

Proof. Let T be the only strictly positive integer such that (1+µ)T−1 ȳ
k̄
< λ+δ

s < (1+µ)T ȳ
k̄

. Let k ∗T > 0 be the date-T

capital-labor ratio that results in a BGPFT starting at date T , defined by the equation fT

�

k ∗T
�

/k ∗T = (λ+δ)/s . Then, as

seen in the proof of theorem 1, k ∗T ∈
�

k T ,0, k T ,1

�

where k T ,0 = k/(1+µ)T and k T ,1 = k ∗ (1+λ)/(1+µ)T−1.

11All the results of subsection 2.3 remain valid if y /k > (λ+δ)/s .
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Let k0 > 0 and let (kt , yt )t≥0 be sequences of capital-labor ratios and levels of output per worker generated by the

model for initial condition k0.

We first prove that the image of the interval
�

k T ,0, k T ,1

�

by date-T capital accumulation function κT (x ) = s fT (x ) +

(1−δ)x is included in interval
�

k T+1,1, k T+1,2

�

. By the inequalities defining T , we have:

κT

�

k T ,0

�

= s y + (1−δ) k
(1+µ)T > (λ+δ) k

(1+µ)T + (1−δ)
k

(1+µ)T = 1+λ
(1+µ)T k = k T+1,1

κT

�

k T ,1

�

= s (1+λ)y + (1−δ) (1+λ)k(1+µ)T−1 < (λ+δ) (1+λ)k(1+µ)T−1 + (1−δ) (1+λ)k(1+µ)T−1 = (1+λ)2
(1+µ)T−1 k = k T+1,2

Since function κT is continuous and increasing, these two inequalities prove that κT

��

k T ,0, k T ,1

��

⊂
�

k T+1,1, k T+1,2

�

.

It is also immediate to extend this reasoning recursively to prove that if kT ∈
�

k T ,0, k T ,1

�

, then for all t ≥ T kt ∈
�

k t ,t−T , k t ,t−T+1

�

.

Let’s call r ∗ = λ(1+µ)T

(1+λ)(1+µ)−1
y

k
the slope of function ft over the interval

�

k t ,t−T , k t ,t−T+1

�

for t ≥ T . Then, for all t ≥ T

and for all k ∈
�

k t ,t−T , k t ,t−T+1

�

, ft (k ) = r
�

k −k t ,t−T

�

+ y t−T . Thus, for all t ≥ T :

yt+1 = r ∗
�

kt+1−k t+1,t−T+1

�

+ y t−T+1 = r ∗
�

kt+1−
(1+λ)t−T+1

(1+µ)T
k

�

+ y (1+λ)t−T+1 (4)

yt = r ∗
�

kt −k t ,t−T

�

+ y t−T = r ∗
�

kt −
(1+λ)t−T

(1+µ)T
k

�

+ y (1+λ)t−T (5)

When equation (5) is multiplied by (1+λ) and subtracted from equation (4) we get:

yt+1− (1+λ)yt = r ∗ (kt+1− (1+λ)kt ) (6)

Let xt ≡ yt /kt . From equation (6) and from the equation of capital accumulation (3), we have:

xt+1 =
yt+1

kt+1
=

r ∗ (kt+1− (1+λ)kt ) + (1+λ)yt

s yt + (1−δ)kt
=

r ∗
�

s yt + (1−δ)kt − (1+λ)kt

�

+ (1+λ)yt

s yt + (1−δ)kt
(7)

Dividing the numerator and the denominator of the right-hand side of (7) by kt , it comes:

xt+1 =
r ∗ (s xt −λ−δ) + (1+λ)xt

s xt +1−δ
(8)

For kt ∈
�

k t ,t−T , k t ,t−T+1

�

, yt
kt
∈
�

y t−T+1

k t ,t−T+1
, y t−T

k t ,t−T

�

. Thus, if kT ∈
�

k t ,t−T , k t ,t−T+1

�

, then for all t ≥ T , xt ∈
�

(1+µ)T−1 y /k , (1+µ)T y /k
�

.

Letψ be the function of
�

(1+µ)T−1 y /k , (1+µ)T y /k
�

into itself defined by:

ψ(x ) =
r ∗ (s x −λ−δ) + (1+λ)x

s x +1−δ

Then, for all t ≥ T , xt+1 =ψ(xt ). As expected,ψhas a unique fixed point which is x ∗ = (λ+δ)/s . ψ is also increasing

and concave. By replacing x ∗ by its value which is (λ+δ)/s , it comes:

ψ′ (x ∗) =
r ∗s +1−δ

1+λ

Since the segment of ft that crosses lineD is less steep than lineD, then r ∗ < (λ+δ)/s . Thus,ψ′ (x ∗)< 1. Consequently,

xt converges to x ∗ for any initial kT ∈
�

k T ,0, k T ,1

�

. The situation is depicted in figure 10.

We have proved that for all k0 such that kT ∈
�

k T ,0, k T ,1

�

, the output-capital ratio yt /kt converges to x ∗ = (λ+δ)/s

as t tends to infinity. From the capital accumulation equation (3), the fact that yt /kt converges to (λ+δ)/s implies

that kt+1/kt converges to 1+λ. Since yt /kt converges to some strictly positive limit and kt+1/kt converges to 1+λ,

then yt+1/yt converges to 1+λ.

So for all k0 ∈
�

(κT−1 ◦ · · · ◦κ0)
−1
�

k T ,0

�

, (κT−1 ◦ · · · ◦κ0)
−1
�

k T ,1

��

, the model economy is on an ABGP.

Using lemma 1, we are now in a position to prove the global stability of our growth model.
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Figure 10: Convergence of xt if kT ∈
�

k T ,0, k T ,1

�

.

Theorem 2. Let
�

y , k ,λ,µ, s ,δ
�

be some set of parameters. We assume that y /k < (λ+δ)/s .

Then, for all k0 > 0, the model economy is on an ABGP where kt+1/kt
∞−→ 1+λ, yt+1/yt

∞−→ 1+λand yt /kt
∞−→ (λ+δ)/s .

Proof. Let T = 1+
�

ln
�

λ+δ
s

k̄
ȳ

�

ln(1+µ)

�

≥ 1. Let k0 > 0 and let (kt , yt )t≥0 be sequences of capital-labor ratios and levels of output

per worker generated by the model for initial condition k0. We call
�

k ∗t
�

t≥T
the sequence of BGPFT capital-labor ratios.

Lemma 1 proves that it suffices to prove that for some t ≥ T , kt lies within the interval
�

k t ,t−T , k t ,t−T+1

�

to prove

that the model economy is on an ABGP.

– If kT ∈
�

k T ,0, k T ,1

�

, lemma 1 applies and so the model economy is on an ABGP.

– Suppose that kT < k T ,0. Then, for t ≥ T , as long as kt < k t ,t−T it holds that yt /kt > (1+µ)T y /k . Consequently,

as long as kt < k t ,t−T :
kt+1

kt
= s

yt

kt
+1−δ > s (1+µ)T y /k +1−δ (9)

Remark that the right-hand side of inequality (9) does not depend on t . Let call g = s (1 + µ)T y /k − δ. The

definition of T implies that (1+µ)T y /k > (λ+δ)/s , and so (9) implies that for all t ≥ T such that kt < k t ,t−T , it

holds that:
kt+1

kt
> 1+ g > 1+λ

(1+λ) is the constant growth rate of
�

k t ,t−T

�

t≥T
. By a simple the comparison of geometric sequences with differ-

ent common ratios, we conclude that there exists some date τ≥ T such that kτ < kτ,τ−T and kτ+1 > kτ+1,τ−T+1.

Besides, since kτ < kτ,τ−T < k ∗τ, it also holds that kτ+1 = κτ(kτ)<κτ
�

k ∗τ
�

= k ∗τ+1 < kτ+1,τ−T+2.

So kτ+1 ∈
�

kτ+1,τ−T+1, kτ+1,τ−T+2

�

. In virtue of lemma 1, the model economy is then on an ABGP.

– Suppose that kT > k T ,1. Then, for t ≥ T , as long as kt > k t ,t−T+1 it holds that yt /kt < (1+µ)T−1 y /k . Consequently,

as long as kt > k t ,t−T+1:
kt+1

kt
= s

yt

kt
+1−δ < s (1+µ)T−1 y /k +1−δ (10)

Remark that the right-hand side of inequality (10) does not depend on t . Let call g = s (1+µ)T−1 y /k −δ. The

definition of T implies that (1+µ)T−1 y /k < (λ+δ)/s , and so (10) implies that for all t ≥ T such that kt > k t ,t−T+1,

it holds that:
kt+1

kt
< 1+ g < 1+λ
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(1+ λ) is the constant growth rate of
�

k t ,t−T+1

�

t≥T
. By a simple the comparison of geometric sequences with

different common ratios, we conclude that there exists some date τ′ ≥ T such that kτ′ > kτ′,τ′−T+1 and kτ′+1 <

kτ′+1,τ′−T+2. Besides, since kτ′ > kτ′,τ′−T+1 > k ∗τ, it also holds that kτ′+1 = κτ′ (kτ′ )>κτ′
�

k ∗τ′
�

= k ∗τ′+1 > kτ′+1,τ′−T+1.

So kτ′+1 ∈
�

kτ′+1,τ′−T+1, kτ′+1,τ′−T+2

�

. In virtue of lemma 1, the model economy is then on an ABGP.

So our growth model admits a stable BGPFT for any values of the parameters and is thus immune to any razor-edge

issue. The proof of theorem 1 makes it clear that the marginal productivity of capital (‘MPK’) is constant along any

BGPFT. The steady-state MPK – which is actually reached in finite time – is equal to:

r ∗ =







0 if y

k
> λ+δ

s

λ(1+µ)T

(1+λ)(1+µ)−1
y

k
if y

k
< λ+δ

s and where T = 1+
�

ln
�

λ+δ
s

k̄
ȳ

�

ln(1+µ)

�

The competitive capital share α∗ ≡ r ∗k/y is also constant along any BGPFT and equal to:

α∗ =







0 if y

k
> λ+δ

s

λ(1+µ)T

(1+λ)(1+µ)−1
y

k
s
λ+δ if y /k < (λ+δ)/s and where T = 1+

�

ln
�

λ+δ
s

k̄
ȳ

�

ln(1+µ)

�

3 Conclusion

In this paper, we have set what appears to us as a minimal economic growth model where technical change deter-

mines not only the growth rate but also steady-state variables linked to the first derivatives of the production func-

tion. Leontief local production functions are not an obstacle to differentiability of the global production function,

and the equilibrium factor prices are well determined except in a finite number of capital-labor ratios at each date. It

came out that although technical change is not specified as factor-augmenting, it is purely labor-augmenting along

the balanced growth path. We believe that this property of our model to be unexpected in light of the Robinson-Uzawa

theorem. In a nutshell, the theory presented here proves that building a global production function from a finite set

of local, Leontief production functions permits controlling for the curvature of the global production function.

The assumption of factor-augmenting technical change inside some core production function of some specified

form leads to some dead ends. In contrast, our view of technical change can accommodate a wide range of medium-

to long-run scenarios. There is no need for the elasticity of substitution to be above unity to account for a rise in the

capital share; our model proves that all that is needed is to reconsider the assumption of purely factor-augmenting

technical change.

One of our model’s significant defects is that the steady-states marginal product of capital and capital share are

not monotonic functions of our technical change metrics. We believe that this property is due to the discrete-time

structure that we assumed. We leave the treatment of the continuous-time equivalent of our model for future work.
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A Python plot of the production function

import m atplo t l ib . pyplot as p l t

def p l o t _ f ( lambd , mu, y0_bar , k0_bar , n ) :

l i s t _ k _ l i m i t = [(1+ lambd ) ∗ ∗ ( i )∗ ( 1/ ( 1+mu) ) ∗ ∗ ( n− i )∗ k0_bar f o r i in range ( n ) ]

l i s t _ y _ l i m i t = [(1+ lambd ) ∗ ∗ ( i )∗ y0_bar f o r i in range ( n ) ]

p r i n t ( l i s t _ k _ l i m i t )

p r i n t ( l i s t _ y _ l i m i t )

p l t . p l o t ( [0 ]+ l i s t _ k _ l i m i t , [0 ]+ l i s t _ y _ l i m i t , ’ r ’ )

p l t . s c a t t e r ( l i s t _ k _ l i m i t , l i s t _ y _ l i m i t , c= ’ r ’ )

p l t . h l i n e s ( y= l i s t _ y _ l i m i t [ −1 ] , xmin= l i s t _ k _ l i m i t [ −1 ] , xmax = l i s t _ k _ l i m i t [−1 ] + 1 , c o l o r s= ’ r ’ )

p l t . show ( )

p l o t _ f ( lambd=0.02 , mu=0.04 , y0_bar=1 , k0_bar=5 , n=101)

B Python simulation of the Solow model

import numpy as np

import m atplot l ib . pyplot as p l t

def remove_duplicate ( l ) :

f i n a l _ l i s t = [ ]

f o r e in l :

i f e not in f i n a l _ l i s t :

f i n a l _ l i s t . append ( e )

return f i n a l _ l i s t

def f ( lambd , mu, s , delta , k0 , y0_bar , k0_bar , n , l i s t e=True ) :

y0 = np . i n t e r p ( k0 , [ k0_bar ] , [ y0_bar ] )

k1_bar_1 = (1+lambd )∗ k0_bar

k1_bar_2 = (1/(1+mu) ) ∗ k0_bar

l i s t _ k _ l i m i t = [ k1_bar_1 , k1_bar_2 ]

l i s t _ y _ l i m i t = [(1+ lambd ) ∗ ∗ ( i )∗ y0_bar f o r i in range ( n ) ]

k1 = s ∗y0+(1−d e l t a )∗ k0

y1 = np . i n t e r p ( k1 , l i s t _ k _ l i m i t , l i s t _ y _ l i m i t [ : 2 ] )

l i s t _ k _ l i m i t . c l e a r ( )

l i s t _ y =[y0 , y1 ]

l i s t _ k =[k0 , k1 ]

f o r i in range ( n−1) :

k0=k1

y0=y1

k1 = s ∗y0+(1−d e l t a )∗ k0

l i s t _ k _ l i m i t = [(1+ lambd ) ∗ ∗ ( j )∗ ( 1/ ( 1+mu) ) ∗ ∗ ( i+1− j )∗ k0_bar f o r j in range ( i +1) ]

y1 = np . i n t e r p ( k1 , l i s t _ k _ l i m i t , l i s t _ y _ l i m i t [ : i +1 ] , r i g h t = l i s t _ y _ l i m i t [ −1 ] )

l i s t _ k . append ( k1 )

l i s t _ y . append ( y1 )

l i s t _ k _ l i m i t . c l e a r ( )

i f l i s t e==True :

return l i s t _ k , l i s t _ y

e l s e :

return l i s t _ k [n−1 ] , l i s t _ y [n−1]

l i s t _ k , l i s t _ y = f ( lambd = 0 . 0 2 , mu = 0 . 0 4 , s = 0 . 2 , d e l t a = 0 . 0 5 , k0=4 , y0_bar = 1 , k0_bar = 5 , n=1001 , l i s t e=True )

l i s t _ q u o = [ l i s t _ k [ i ] / l i s t _ y [ i ] f o r i in range ( len ( l i s t _ k ) ) ]

p l t . p l o t ( l i s t _ k , l a b e l="Dynamics of k " )

p l t . p l o t ( l i s t _ y , l a b e l="Dynamics of y " )

p l t . p l o t ( l i s t _ q u o , l a b e l="Dynamics of k/y " )
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p l t . legend ( )

p l t . show ( )
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