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Introduction

Eulerian functions are most significant for analytic number theory and they are widely applied in Probability theory and in Physical sciences. They are tightly relating to Riemann zeta functions, for instance as follows The function Γ is meromorphic, with no zeroes and -N * as set of simple poles. Hence Γ -1 is entire and admits -N * as set of simple zeroes. Moreover, it satisfies 1 Γ (z) = Γ (z). From Weierstrass factorization [START_REF] Dieudonné | Calcul infinitsimal[END_REF] and Newton-Girard identity [START_REF] Lascoux | Fonctions symétriques[END_REF], we have successively

1 Γ (z + 1) = e γz n≥1 1 + z n e -z n = exp γz - k≥2 ζ(k) (-z) k k . (2) 
Using the following functional equation and Euler's complement formula, i.e.

Γ (1 + z) = zΓ (z) and Γ (z)Γ (1z) = π/sin(zπ),

and also introducing the partial beta function defined (for any a, b, z ∈ C such that ℜa > 0, ℜb > 0, 

(u + v) n -(u n + v n ) n = Γ (1 -u)Γ (1 -v) Γ (1 -u -v) , (5) 
= Γ (u + v) Γ (u)Γ (v) π sin((u + v)π) sin(uπ) sin(vπ)

= π B(u, v)

(cot(uπ) + cot(vπ)). [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF] In particular, for v = -u (|u| < 1), one gets exp -

k≥1 ζ(2k) u 2k k = 1 Γ (1 -u)Γ (1 + u) = sin(uπ) uπ . (8) 
Hence, taking the logarithms and considering Taylor expansions, one obtains [START_REF] Duchamp | A localized version of the basic triangle theorem[END_REF] which converges for (s 1 , . . . , s r ) in the open sub-domain of C r , r ≥ 1, H r := {(s 1 , . . . , s r ) ∈ C r | ∀m = 1, . . . , r, ℜ(s 1 ) + . . . + ℜ(s m ) > m}. [START_REF] Duchamp | Bialgebraic generalizations of linear independence of characters[END_REF] In the convergent cases, from a theorem by Abel, for n ∈ N, z ∈ C, |z| < 1, its values can be obtained as the following limits ζ(s 1 , . . . , s r ) = lim z→1 Li s1,...,sr (z) = lim n→+∞ H s1,...,sr (n), [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF] where the following polylogarithms are well defined Li s1,...,sr (z) := n1>...>nr >0 z n1 n s1 1 . . . n sr r , Li s1,...,sr (z) 1z = n≥0 H s1,...,sr (n)z n [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] and so are the Taylor coefficients 3 here simply called harmonic sums H s1,...,sr : N -→ Q(i.e. an arithmetic function), [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF] n -→ H s1,...,sr (n) = 

- k≥1 ζ(2k) u 2k k = log 1 + n≥1 (uiπ) 2n Γ (2n + 2) (9) 
On H r ∩ N r , the polyzetas can be represented by the following integral representation 4 over ]0, 1[ [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] (here, one set λ(z) := z(1z) -1 , t 0 = 1 and u r+1 = 1):

ζ(s 1 , . . . , s r ) = 1 0 ω 1 (t 1 )
log s1-1 (t 0 /t 1 ) Γ (s 1 ) . . .

tr-1 0 ω 1 (t r ) log sr -1 (t r-1 /t r ) Γ (s r ) (18) = r i=1 1 Γ (s i ) [0,1] r r j=1 ω 0 (u j )λ(u 1 . . . u j ) log sj -1 ( 1 u j ) ( 19 
) = r i=1 1 Γ (s i ) R r + r j=1
ω 0 (u j )u sj j λ(e -(u1...uj ) ). [START_REF] Legendre | Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures, Tome second[END_REF] As for the Riemann zeta function in [START_REF] Berstel | Rational series and their languages[END_REF], we observe that [START_REF] Legendre | Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures, Tome second[END_REF] involves again the factors (and products) of eulerian Gamma function and also their quotients (hence, eulerian Beta function). In the sequel, in continuation with [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Duchamp | About Some Drinfeld Associators[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF], we propose to study the ratios ζ(s 1 , . . . , s r )/π s1+...+sr (and others), an analogue of [START_REF] Duchamp | About Some Drinfeld Associators[END_REF], which will be achieved as consequence of regularizations, via the values of entire functions, of divergent polyzetas and infinite sums of polyzetas (see Theorem 4 and Corollaries 4, 5 in Section 2.4) for which a theorem by Abel (see [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF]) could not help any more. This achievement is justified thanks to the extensions of polylogarithms and harmonic sums (see Theorems 2 and 3 in Section 2.3) and thanks to the study of the independence of a family of eulerian functions which can be viewed as generating series of zeta values:

∀r ≥ 1, 1 Γ yr (z + 1) = k≥0 ζ(r, . . . , r ktimes )z kr = exp - k≥1 ζ(kr) (-z r ) k k (21) 
(see Propositions 1-3 and Theorem 1 in Section 2.2) via the combinatorial tools introduced in Section 2.1 (see Lemma 1-3 in Section 2.1). Finally, identities among these (convergent or divergent) generating series of zeta values are suitable to obtain relations, at arbitrary weight, among polyzetas (see Examples 5 and 6 in Section 2.4).

2 Families of eulerian functions

Combinatorial framework

Let X denotes either the alphabets X := {x 0 , x 1 } or Y := {y k } k≥1 and X * denotes the monoid freely generated by X (its unit is denoted by 1 X * ). In the sequel, we will consider, for any commutative ring A, the Hopf algebras (A X , conc, ∆ ⊔⊔ , 1 X * , ǫ) and (A Y , conc, ∆ , 1 Y * , ǫ) 5 Once equipped with a total ordering <, (X , <) a totally ordered alphabet for which, we can consider LynX ⊂ X * , its set of Lyndon words [START_REF] Lothaire | Combinatorics on Words, Encyclopedia of Mathematics and its Applications[END_REF] and {P l } l∈LynX the basis of Lie C X with which the PBW-Lyndon basis {P w } w∈X * of noncommutative polynomials (A X , conc, 1 X * ) is constructed. Its graded dual basis is denoted by {S w } w∈X * , containing the pure transcendence basis {S l } l∈LynX of the shuffle algebra (A X , ⊔⊔ , 1 X * )) [START_REF] Reutenauer | Free Lie Algebras[END_REF].

The set of noncommutative series (resp. rational series) over X with coefficients in A is denoted by A X (resp. A rat X ). Recall that A rat X is the algebraic closure of A.X 6 by the rational operations {conc, +, * } (within A X ) and for S ∈ A X such that S|1 X * = 0, the Kleene star of S is defined by [START_REF] Berstel | Rational series and their languages[END_REF] 

S * := (1 -S) -1 = 1 + S + S 2 + S 3 + . . . . (22) 
By the Kleene-Schützenberger theorem [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Duchamp | -Sweedler's duals and Schützenberger's calculus[END_REF], S ∈ A rat X if and only if there exists n ≥ 1, a linear representation (β, µ, η), where

β ∈ M 1,n (A), η ∈ M n,1 (A) and µ : X * -→ M n,n (A) (a morphism of monoids) such that [1] S = w∈X * (βµ(w)η)w. (23) 
A series S ∈ A X is called syntactically exchangeable if and only if it is constant on multi-homogeneous classes [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF], i.e.

7 (∀u, v ∈ X * )([(∀x ∈ X )(|u| x = |v| x )] ⇒ S|u = S|v ). ( 24 
)
Any series S ∈ A X is syntactically exchangeable iff it is of the form

S = α∈N (X ) ,supp(α)={x1,...,x k } s α x α(x1) 1 ⊔⊔ . . . ⊔⊔ x α(x k ) k . ( 25 
)
The set of these series, a shuffle subalgebra of A X , will be denoted A synt exc X . 5 The antipode of the first one is given by a(w) = (-1) |w| w, the antipode of the second one exists because the bialgebra is graded by weight, but is more complicated. 6 In general A.X is the module of homogeneous series S ∈ A X of degree one (i.e.

such that supp(S) ⊂ X ), we will meet these series another time as multipliers of some noncommutative differential equations, see (27). 7 Originally, M. Fliess defines them as exchangeable. The two properties are equivalent when A is a field but they split into syntactically and rationally exchangeable for a general ring.

When A is a field, the rational and exchangeable series are exactly those who admit a representation with commuting matrices (at least the minimal representation has this property, see Lemma 1 below). We will take this as a definition as, even for rings, this property implies syntactic exchangeability. Definition 1. Let S ∈ A rat X . It is called rationally exchangeable if it admits a representation (ν, µ, η) such that {µ(x)} x∈X is a set of commuting matrices. The set of these series, a shuffle subalgebra of A X , will be denoted A rat exc X .

Note that, if A is a Q-algebra, by [START_REF] Zariski | Commutative Algebra I[END_REF], the subalgebra A synt exc X ∩ A X is exactly the shuffle subalgebra generated by X . It is the subalgebra of exchangeable polynomials, we will note it A exc X .

Lemma 1 (See [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]). Let A synt exc X denote the set of (syntactically) exchangeable series. Then 1. In all cases, one has A rat exc X ⊂ A rat X ∩ A synt exc X . The equality holds when A is a field and

A rat exc X = A rat x 0 ⊔⊔ A rat x 1 = ⊔⊔ x∈X A rat x , A rat exc Y ∩ A rat fin Y = k≥0 A rat y 1 ⊔⊔ . . . ⊔⊔ A rat y k A rat exc Y ,
where A rat fin Y = ∪ F ⊂ f inite Y A rat F , the algebra of series over finite subalphabets 8 (see Appendix). 2. (Kronecker's theorem [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Zygmund | Trigonometric series[END_REF]) We have

A rat x = {P (1 -xQ) -1 } P,Q∈A[x]
(for x ∈ X ) and if A = K is an algebraically closed field of characteristic zero, we also have K rat x = span K {(ax) * ⊔⊔ K x |a ∈ K}. 3. The rational series ( x∈X α x x) * are conc-characters and any conc-character is of this form. 4. Let us suppose that A is without zero divisors and let (ϕ i ) i∈I be a family within AX which is Z-linearly independent then, the family Lyn(X )⊎{ϕ * i } i∈I is algebraically free over A within (A rat X , ⊔⊔ , 1 X * ). 5. In particular, if A is a ring without zero divisors {x * } x∈X (resp. {y * } y∈Y ) are algebraically independent over (A X , ⊔⊔ , 1

X * ) (resp. (A Y , , 1 Y * )) within (A rat X , ⊔⊔ , 1 X * ) (resp. (A rat Y , , 1 Y * )).
Proof. 1. The inclusion is obvious in view of [START_REF] Zariski | Commutative Algebra I[END_REF]. For the equality, it suffices to prove that, when A is a field, every rational and exchangeable series admits a representation with commuting matrices. This is true of any minimal representation as shows the computation of shifts (see [10,?,18]). 8 The last inclusion is strict as shows the example of the following identity [START_REF] Bui | Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization[END_REF] (ty1 + t 2 y2 + . . .

) * = lim k→+∞ (ty1 + . . . + t k y k ) * = lim k→+∞ (ty1) * ⊔⊔ . . . ⊔⊔ (t k y k ) * = ⊔⊔ k≥1 (t k y k ) * which lives in A rat exc Y but not in A rat exc Y ∩ A rat fin Y .
Now, if X is finite, as all matrices commute, we have

w∈X * µ(w)w = x∈X µ(x)x * = ⊔⊔ x∈X (µ(x)x) *
and the result comes from the fact that R is a linear combination of matrix elements. As regards the second equality, inclusion ⊃ is straightforward. We remark that the union k≥1 A rat y 1 ⊔⊔ . . . ⊔⊔ A rat y k is directed as these algebras are nested in one another. With this in view, the reverse inclusion comes from the fact that every S ∈ A rat fin Y is a series over a finite alphabet and the result follows from the first equality.

Let

A = {P (1 -xQ) -1 } P,Q∈A[x] . Since P (1 -xQ) -1 = P (xQ) * then it is obvious that A ⊂ A rat x . Next, it is easy to check that A contains A x (= A[x]
) and it is closed by +, conc as, for instance, (1

-xQ 1 )(1-xQ 2 ) = (1 -x(Q 1 + Q 2 -xQ 1 Q 2 )
). We also have to prove that A is closed for * .

For this to be applied to P (1 -xQ) -1 , we must suppose that P (0) = 0 (as, indeed, P (1 -xQ) -1 |1 x * = P (0)) and, in this case, P = xP 1 . Now

P 1 -xQ * = 1 - P 1 -xQ -1 = 1 -xQ 1 -x(Q + P 1 ) ∈ A.
3. Let S = ( x∈X α x x) * and remark that S = 1 + ( x∈X α x x)S. Then S|1 X * = 1 A and, if w = xu, we have S|xu = α x S|u , then by recurrence on the length, S|x 1 . . . x k = k i=1 α xi which shows that S is a conc-character. For the converse, we have Schützenberger's reconstruction lemma which says that, for every series S S = S|1 X * .1 A + x∈X x.x -1 S but, if S is a conc-character, S|1 X * = 1 and x -1 S = S|x S, then the previous expression reads

S = 1 A + x∈X S|x x S
this last equality being equivalent to S = ( x∈X S|x .x) * , this proves the claim. 4. As (A X , ⊔⊔ , 1 X * ) and (A Y , , 1 Y * ) are enveloping algebras, this property is an application of the fact that, on an enveloping U, the characters are linearly independant w.r.t. to the convolution algebra U * ∞ (see the general construction and proof in [START_REF] Duchamp | Bialgebraic generalizations of linear independence of characters[END_REF]). Here, this convolution algebra (U * ∞ ) contains the polynomials (is equal in case of finite X ). Now, consider a monomial

(ϕ * i1 ) ⊔⊔ α1 . . . (ϕ * in ) ⊔⊔ αn = n k=1 α i k ϕ i k *
The Z-linear independence of the monomials in (ϕ i ) i∈I implies that all these monomials are linearly independent over A X which proves algebraic independence of the family (ϕ i ) i∈I .

To end with, the fact that Lyn(X ) ⊎ {ϕ * i } i∈I is algebraically free comes from Radford theorem (A X , ⊔⊔ , 1 X * ) ≃ A[Lyn(X )] and the transitivity of polynomial algebras (see [START_REF] Bourbaki | Algebra I-III[END_REF] ch III.2 Proposition 8). 5. Comes directly as an application of the preceding point.

Remark 1. Kronecker's theorem which can be rephrased in terms of stars as A rat x = {P (xQ) * } P,Q∈A[x] holds for every ring and is therefore characteristic free, unlike the shuffle version requiring algebraic closure and denominators.

In all the sequel, let C{{(g i ) i∈I }} denote the differential C-algebra 9 generated by the family (g i ) i∈I of the C-commutative differential ring A and C 0 denote a differential subring (∂C 0 ⊂ C 0 ) of A which is an integral domain containing the field of constants. If the ring A is without zero divisors then the fields of fractions Frac(C 0 ) and Frac(A) are naturally differential fields and can be seen as the smallest ones containing C 0 and A, respectively, satisfying 10 Frac(C 0 ) ⊂ Frac(A).

Let us the following differential forms defined, for any r ≥ 1, by

ω r (z) = u yr (z)dz with u yr ∈ C 0 ⊂ A, (26) 
and the following noncommutative differential equation, with homogeneous series of degree 1 as multiplier

dS = M S; S|1 X * = 1 A , where M = x∈X u x x ∈ C 0 X , (27) 
where d is the differential operator on A X extending ∂ as follows

for all S = w∈X * S|w w ∈ A X , dS = w∈X * (∂ S|w )w. ( 28 
)
In order to prove Proposition 2, Theorems 1 and 2 below, we use the following lemma, a particular case of a general localization result to be proved in a forthcoming paper [START_REF] Duchamp | A localized version of the basic triangle theorem[END_REF] (its proof is however sketched below).

Lemma 2. Suppose that the C-commutative ring A is without zero divisors and equipped with a differential operator ∂ such that C = ker ∂.

Let S ∈ A X be a group-like solution of (27), in the following form

S = 1 X * + w∈X * X S|w w = 1 X * + w∈X * X S|S w P w = ց l∈LynX e S|S l P l .
Then 9 i.e. the C-algebra generated by gi and their derivatives [START_REF] Van Der Put | Galois Theory of Linear Differential Equations[END_REF]. 10 Indeed, let f ∈ Frac(C0). Then there is f1, f2 ∈ C0 such that f = f1/f2 and, extending ∂ over Frac(A), one has

∂ frac f = (f1∂f2 -f2∂f1)/f 2 2 ∈ Frac(C0). Since C0 ⊂ A then f1, f2 ∈ A and then f1/f2, f1∂f2 -f2∂f1)/f 2 2 ∈ Frac(A).
1. If H ∈ A X is another group-like solution of (27) then there exists C ∈ Lie A X such that S = He C (and conversely). 2. The following assertions are equivalent (a

) { S|w } w∈X * is C 0 -linearly independent, (b) { S|l } l∈LynX is C 0 -algebraically independent, (c) { S|x } x∈X is C 0 -algebraically independent, (d) { S|x } x∈X ∪{1 X * } is C 0 -linearly independent, (e) The family {u x } x∈X is such that, for f ∈ Frac(C 0 ) and (c x ) x∈X ∈ C (X ) , x∈X c x u x = ∂f =⇒ (∀x ∈ X )(c x = 0). (f ) The family (u x ) x∈X is free over C and ∂Frac(C 0 )∩span C {u x } x∈X = {0}.
Proof (Sketch). The first item has been treated in [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]. The second is a group-like version of the abstract form of Theorem 1 of [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF]. It goes as follows

• due to the fact that A is without zero divisors, we have the following embeddings C 0 ⊂ Frac(C 0 ) ⊂ Frac(A), Frac(A) is a differential field, and its derivation can still be denoted by ∂ as it induces the previous one on A, • the same holds for A X ⊂ Frac(A) X and d • therefore, equation ( 27) can be transported in Frac(A) X and M satisfies the same condition as previously. • Equivalence between 2a-2d comes from the fact that C 0 is without zero divisors and then, by denominator chasing, linear independances w.r.t C 0 and Frac(C 0 ) are equivalent. In particular, supposing condition 2d, the family { S|x } x∈X ∪{1 X * } (basic triangle) is Frac(C 0 )-linearly independent which imply, by the Theorem 1 of [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF], condition 2e, • still by Theorem 1 of [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF], 2e is equivalent to 2f, implying that { S|w } w∈X * is Frac(C 0 )-linearly independent which induces C 0 -linear independence (i.e. 2a).

From now on, C[{f i } i∈I ] denotes the algebra generated by {f i } i∈I .

As subalgebra of C X , the algebra ( Proof. Straightforward. Now, let A = H(Ω), the ring of holomorphic functions on a simply connected domain Ω ⊂ C (1 H(Ω) is its neutral element). With the notations in [START_REF] Zygmund | Trigonometric series[END_REF] and for any path z 0 z in Ω, let us consider the shuffle morphism defined by (see [START_REF] Bui | A local Theory of Domains and its (Noncommutative) Symbolic Counterpart[END_REF])

C[LynX ], ⊔⊔ , 1 X * ) ∼ = C X (resp. (C[{x * } x∈X ], ⊔⊔ , 1 X * )) is
α z z0 : C rat X -→ H(Ω), x i1 . . . x i k -→ z z0 ω i1 (z 1 ) . . . z k-1 z0 ω i k (z k ) (29) satisfying α z z0 (1 X * ) = 1 H(Ω) and α z z0 (u ⊔⊔ v) = α z z0 (u)α z z0 (v), for u, v ∈ X * [4]
. After a theorem by Ree, the following Chen series of {ω r } r≥1 and along the path z 0 z in Ω, is group-like [START_REF]Lie elements and an algebra associated with shuffles Ann[END_REF]:

C z0 z = w∈X * α z z0 (w)w = ց l∈LynX e α z z 0 (S l )P l ∈ H(Ω) X . ( 30 
)
Since ∂α z z0 (x i1 . . . [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF]. Hence, with data in [START_REF] Zygmund | Trigonometric series[END_REF], shuffle morphism in (29) and Lemma 3, we will illustrate a bijection, between (C X ⊔⊔ C[{x * } x∈X ], ⊔⊔ , 1 X * ), the subalgebra of noncommutative rational series, and a subalgebra of H(Ω) containing 2.2 Families of eulerian functions Definition 2. For any z ∈ C such that |z| < 1, we put 2. For any r ≥ 1, one has ∂ℓ r = e -ℓr ∂e ℓr . 3. For any n ≥ 0, one puts classically Ψ n := ∂ n log Γ and we will also consider the Taylor series of log Γ (1 + z) (see [START_REF] Legendre | Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures, Tome second[END_REF]). 4. Some of these functions cease (unlike Γ ) to be hypertranscendental. For example 11 y(x) = Γ -1 y2 (1 + x) is a solution of (1π 2 x 2 )y 2 + 2xy ẏ + x 2 ẏ2 = 1. Now, for any r ≥ 1, let G r (resp. G r ) denote the set (resp. group) of solutions, {ξ 0 , . . . , ξ r-1 }, of the equation z r = (-1) r-1 (resp. z r = 1). If r is odd, it is a group as G r = G r otherwise it is an orbit as G r = ξG r , where ξ is any solution of ξ r = -1 (this is equivalent to ξ ∈ G 2r and ξ / ∈ G r ). For r, q ≥ 1, we will need also a system X of representatives of G qr /G r , i.e. X ⊂ G qr such that

x i k ) = u i1 (z)α z z0 (x i2 . . . x i k ) then C z0 z is a solution of (27). Recall also that if f x (z) := α z z0 (x) then α z z0 (x n ) = α z z0 (x ⊔⊔ n /n!) = f n x (z)/n! (for x ∈ X , n ∈ N) and then F x (z) := α z z0 (x * ) = e fx(z)
ℓ 1 (z) := γz - k≥2 ζ(k) (-z) k k and for r ≥ 2, ℓ r (z) := - k≥1 ζ(kr) (-z r ) k k .
G qr = τ ∈X τ G r . ( 31 
)
It can also be assumed that 1 ∈ X as with X = {e 2ikπ/qr } 0≤k≤q-1 .

Proposition 1. 1. For r ≥ 1, χ ∈ G r and z ∈ C, |z| < 1, the functions ℓ r and e ℓr have the symmetry, ℓ r (z) = ℓ r (χz) and e ℓr(z) = e ℓr(χz) . In particular, for r even, as -1 ∈ G r , these functions are even. 

Γ -1 yr (1 + z) = e ℓr(z) = Γ -1 (1 + z)
χ∈Gr {1} e ℓ1(χz)

4. and, in general, for any odd or even r ≥ 2,

ℓ r (z) = χ∈Gr e ℓ1(χz) = n≥1 (1 + z r /n r ).
Proof. The results are known for r = 1 (i.e. for Γ -1 ). For r ≥ 2, we get 1. By Definition 2, with χ ∈ G r , we get

ℓ r (χz) = - n≥1 ζ(kr) (-χ r z r ) k k = - k≥1 ζ(kr) (-z r ) k k = ℓ r (z),
thanks to the fact that, for any χ ∈ G r , one has χ r = 1.

In particular, if r is even then ℓ r (z) = ℓ r (-z), i.e. ℓ r is even. 2. If r is odd, as G r = G r and, applying the symmetrization principle 12 , we get

- χ∈Gr ℓ 1 (χz) = - χ∈Gr ℓ 1 (χz) = r k≥1 ζ(kr) (-z) kr kr = k≥1 ζ(kr) (-z r ) k k .
The last term being due to the fact that, precisely, r is odd. If r is even, we have the orbit G r = ξG r (still with ξ r = -1) and then, by the same principle,

- χ∈Gr ℓ 1 (χξz) = r k≥1 ζ(kr) (-ξz) kr kr = k≥1 ζ(kr) (-ξz) r k k = k≥1 ζ(kr) -z r k k .

Straightforward.

12 Within the same disk of convergence as f , one has, ) is entire (resp. meromorphic), and admits a countable set of isolated zeroes (resp. poles) on the complex plane which is expressed as χ∈Gr χZ ≤-1 .

f (z) =
Proof. 1. Since (ℓ r ) r≥1 is triangular13 then (ℓ r ) r≥1 is C-linearly free. So is (e ℓre ℓr(0) ) r≥1 , being triangular, we get that (e ℓr ) r≥1 is C-linearly independent and free from 1 H(Ω) . Hence, by Lemma 1, we get the next results. 2. To prove the C-algebraic independence of {e ℓr } r≥1 and (ℓ r ) r≥1 , using the result of the first item, we consider the Chen series of {u yr dz} r≥1 , as in (30) with u yr defined as in, respectively, 1a and 1b and we apply Lemma yr (1 + z) (resp. e -ℓr(z) = Γ yr (1 + z)) is entire (resp. meromorphic) as finite product of entire (resp. meromorphic) functions and factorization in Proposition 1 yields the set of zeroes (resp. poles).

From now on, the countable set of isolated zeros (resp. poles) of the entire (resp. meromorphic) function e ℓr (resp. e -ℓr ) is denoted by O(e ℓr ). We have

O(e ℓr ) = χ∈Gr χZ ≤-1 . ( 32 
) Example 1. One has O(e ℓ1 ) = Z ≤-1 , O(e ℓ2 ) = -iZ ≤-1 ⊎iZ ≤-1 = iZ =0 , O(e ℓ3 ) = Z ≤-1 ⊎ jZ ≤-1 ⊎ j 2 Z ≤-1 , O(e ℓ4 ) = (1 + i)/ √ 2Z =0 ⊎ (1 -i)/ √ 2Z =0 .
Proposition 3. Let X denote any system of representatives of G qr /G r .

1. For any r ≥ 1 and odd q ≥ 1, One has, for |z| < 1, e ℓqr (z) = χ∈X e ℓr(χz) , or,

Γ -1 yqr (1 + z) = χ∈X Γ -1 yr (1 + χz).
2. e ℓr divides e ℓqr if and only if q is odd.

3. The full symmetry group of e ℓr for the representation

(s * f )[z] = f (sz) is G r .
Proof. 1. Let ξ be any root of z r = (-1) r-1 , one remarks that, in all cases (r be odd or even), we have G r = ξG r , G qr = ξG qr and G qr = ⊎ χ∈X χG r . Then, by Proposition 1, we have

ℓ qr (z) = χ∈Gqr ℓ 1 (χz) = ρ1∈Gqr ℓ 1 (ξρ 1 z) = χ∈X,ρ2∈Gr ℓ 1 (ξρ 2 χz) = χ∈X,ρ2∈Gr ℓ 1 (ξρ 2 (χz)) = χ∈X ℓ r (χz) = ℓ r (z) + χ∈X\{1} ℓ r (χz).
Last equality assumes that 1 ∈ X. Taking exponentials, we get e ℓqr(z) = χ∈X e ℓr(χz) = e ℓr(z) χ∈X\{1} e ℓr(χz) .

Again, first equality is general and the last assumes that 1 ∈ X. 2. The fact that e ℓr divides e ℓqr if q is odd comes from the factorization (33). Now, when q even, it suffices to remark, from (32), that the opposite of any solution of z r = -1 is a zero of 14 e ℓr and O(e ℓqr ) ∩ U = -G qr . But, in the case when q is even, one has -G r ∩ -G qr = ∅. Therefore, in this case, e ℓr cannot divide e ℓqr . 3. Let G denote the symmetry group of e ℓr and remark that the distance of O(e ℓr ) to zero is 1. Hence, as O(e ℓr (s.z)) = s -1 O(e ℓr ), we must have G ⊂ U.

Then, as O(e ℓr ) ∩ U = G r , we must have G ⊂ G r , the reverse inclusion is exactly the first point of Proposition 1.

Example 2. 1. For r = 1, q = 2, X = {1, -1}, we get Euler's complement like formula:

Γ y2 (1 + iz) = Γ y1 (1 + z)Γ y1 (1 -z) = zπ/sin(zπ).
By changing z -→ -iz, we also get

Γ y2 (1 + z) = Γ y1 (1 + iz)Γ y1 (1 -iz). 2. For r = 2, q = 3, X = {1, j, j 2 }, Γ y6 (1 + z) = Γ y2 (1 + z)Γ y2 (1 + jz)Γ y2 (1 + j 2 z).
In all the sequel, the polynomial algebra generated by the C-vector space M is denoted by C

[M ]. Moreover, for M = span C {f i } i∈I , one has C[M ] = C[{f i } i∈I ].
14 More precisely, denoting U the unit circle, one has O(e ℓr ) ∩ U = -Gr = ∅.

By Proposition 2, the algebra C[L] (resp. C[E]

) is generated freely by (ℓ r ) r≥1 (resp. (e ℓr ) r≥1 ) which are holomorphic on D <1 (resp. entire) functions. Moreover,

any f ∈ C[L] \ C.1 H(Ω) (resp. g ∈ C[E] \ C.1 H(Ω) ) is holomorphic on D <1 (resp. entire) and then f / ∈ C[E] (resp. g / ∈ C[L]
). Thus,

E ∩ L = {0} and more generally C[E] ∩ C[L] = C.1 H(Ω) . (34) 
We are in a position to consider the following differential subalgebras of (H(Ω), ∂):

L := C{{(ℓ ±1 r ) r≥1 }} and E := C{{(e ±ℓr ) r≥1 }}. ( 35 
) Since ∂ℓ -1 r = -ℓ -2 r ∂ℓ r (r ≥ 1) then L = C[{ℓ ±1 r , ∂ i ℓ r } r,i≥1 ]. Then let L + := C[{∂ i ℓ r } r,i≥1 ]. ( 36 
)
This C-differential subalgebra L + is an integral domain, generated by holomorphic functions, and Frac(L + ) is generated by meromorphic functions. Note also that, for i, l, k ≥ 1, there is 0 = q i,l,k ∈ L + s.t. (∂ i e ±ℓ k ) l = q i,l,k e ±lℓ k . Then let

E + := span C {(∂ i1 e ±ℓr 1 ) l1 . . . (∂ i k e ±ℓr k ) l k } (i1,l1,r1),...,(i k ,l k ,r k )∈(N * ) 3 ,k≥1 = span C {q i1,l1,r1 . . . q i k ,l k ,r k e l1ℓr 1 +...+l k ℓr k } (i1,l1,r1),...,(i k ,l k ,r k )∈N * ×Z * ×N * ,k≥1 ⊂ span L + {e l1ℓr 1 +...+l k ℓr k } (l1,r1),...,(l k ,r k )∈Z * ×N * ,k≥1 =: C. ( 37 
)
Note that Two cases can occur, ∂Q equals 0 or not. Suppose that ∂Q = 0 then, by integration, Q = r≥1 c yr e ℓr ∈ E and it follows then

E + ∩ E = {0} and in (37), C is a differential subring of A = H(Ω) (hence, Frac(C) is a differential subfield of Frac(A)).
E ⊃ Frac(L) ⊃ L ⊃ C[L] (resp. E ⊃ Frac(C) ⊃ C ⊃ E + ) contradicting with the fact in (34), E ∩C[L] = {0} (resp. in (37), E ∩ E + = {0}). It remains that ∂Q = 0.
Since {e ℓr } r≥1 and then {∂e ℓr } r≥1 are C-linearly free, then c yr = 0 (r ≥ 1). Hence, by Lemma 2, {α z 0 (S l )} l∈LynY and then {α z 0 (S y )} y∈Y are, respectively, 1. L-algebraically free yielding the algebraic independence of (e ℓr ) r≥1 over C [L].

It follows that C[E] and C[L] are algebraically disjoint 15 , within H(Ω). 2. C-algebraically free yielding the algebraic independence of (e ℓr ) r≥1 over E + . 3. Suppose there is an algebraic relation among (ℓ r ) r≥1 over L + . By differentiating and substituting ∂ℓ r by e -ℓr ∂e ℓr (r ≥ 1) in this relation, we obtain an algebraic relation among {e ℓr } r≥1 over C[L] and E + contradicting with the results of two first items. It follows then (ℓ r ) r≥1 is L + -algebraically free.

Corollary 1. 1. With the data in Proposition 2.1b, the restricted shuffle morphism 

α z 0 : (C exc Y ⊔⊔ C[{y * r } r≥1 ], ⊔⊔ , 1 Y * ) -→ C[L + E] is bijective and the family {α z 0 (λ)} λ∈LynY ∪{y * r } r≥1 is C-algebraically independent. 2. Let C k := span L + {e l1ℓr 1 +...+l k ℓr k } (l1,r1),...,(l k ,r k )∈Z * ×N * , for k ≥ 1. Then C = k≥1 C k .

Polylogarithms and harmonic sums indexed by rational series

In this section, ω 0 (z) := z -1 dz, ω 1 (z) := (1z) -1 dz and Ω := C \ {0, 1}.

We will use the one-to-one correspondences

(s 1 , . . . , s r ) ∈ (N * ) r ↔ y s1 . . . y sr ∈ Y * πX ⇋ πY x s1-1 0 x 1 . . . x sr -1 0 x 1 ∈ X * x 1 , (38) 
where the projector π X : (C Y , ., 1 Y * ) -→ (C X , ., 1 X * ) is defined as the concatenation morphism of polynomial algebras (from C Y to C X ) mapping y s to x s-1 0

x 1 (for s ≥ 1) and admits π Y as adjoint. For any (s 1 , . . . , s r ) ∈ (N * ) r , one has Li s1,...,sr (z) = α z 0 (x s1-1 0 x 1 . . . x s k -1 0

x 1 ) (see (29)). Thus, putting Li x0 (z) := log(z), the following morphisms are injective Li

• : (Q X , ⊔⊔ , 1 X * ) -→ (Q{Li w } w∈X * , ., 1) , (39) x s1-1 0 x 1 . . . x sr -1 0 x 1 -→ Li x s 1 -1 0 x1...x sr -1 0 x1 = Li s1,...,sr , (40) 
H • : (Q Y , , 1 Y * ) -→ (Q{H w } w∈Y * , ., 1) , (41) 
y s1 . . . y sr -→ H ys 1 ...ys r = H s1,...,sr . (42) 
In order to extend the definition of Li • in (39

) (resp. H • in (41)) over some subdomain of C rat X (resp. C rat Y ), let us call Dom(Li • ) (resp. Dom(H • )) the set of series S = n≥0 S n with S n := |w|=n S|w w (43) 
such that n≥0 Li Sn (resp. n≥0 H Sn ) converges uniformly any compact of Ω.

Under suitable conditions of convergence this extension of can be realized and one has (see [START_REF] Bui | A local Theory of Domains and its (Noncommutative) Symbolic Counterpart[END_REF][START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF])

1. Dom(Li • ) (resp. Dom(H • )) is closed by shuffle (resp. quasi-shuffle) products. 2. Li S ⊔⊔ T = Li S Li T (resp. H S T = H S H T ), for any S, T ∈ Dom(Li • ) (resp. Dom(H • )). 3. C X ⊔⊔ C rat exc X ⊂ Dom(Li • ) (resp. C Y C rat exc Y ⊂ Dom(H • )). Theorem 2 (extension of Li • ). Let C C := C[{z a , (1 -z) b } a,b∈C ]. Then 1. The algebra C C {Li w } w∈X * is closed under the differential operators θ 0 := z∂ z , θ 1 := (1 -z)∂ z and under their sections ι 0 , ι 1 (θ 0 ι 0 = θ 1 ι 1 = Id). 2. The bi-integro differential algebra (C C {Li w } w∈X * , θ 0 , θ 1 , ι 0 , ι 1 ) is closed under
the action of the group of transformations, G, generated by {z → 1z, z → 1/z}, permuting {0, 1, +∞}:

∀h ∈ C C {Li w } w∈X * , ∀g ∈ G, h(g) ∈ C C {Li w } w∈X * . 3. If R ∈ C rat exc X ⊔⊔ C X (resp. C rat exc X ) then Li R ∈ C C {Li w } w∈X * (resp. C C [log(z), log(1 -z)]). 4. The family {Li w } w∈X * (resp. {Li l } l∈LynX ) is linearly (resp. algebraically) independent over C C .
Proof. The three first items are immediate. Only the last one needs a proof: Let L be the noncommutative series of the polylogarithms {Li w } w∈X * , which is group-like, and C z0 z be the Chen series, of {ω 0 , ω 1 } along z 0 z ∈ B, C z0 z = L(z)L -1 (z 0 ) (see [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]). Now, in view of Lemma 2, as the algebra C is without zero divisors and contains the field of constants C, it suffices to prove that Li x0 , Li x1 and 1 Ω are C-linearly independent. It is an easy exercise to check that s * ( f ) := f •s coincides with the given f . This is the case, in particular of the functions log(z), log((1z) -1 ) whose liftings will be denoted log 0 , log 1 . So, we lift the functions z a and (1z) b as, respectively, e a 0 (z) := e a log 0 (z) and e b 1 := e b log 1 (z) and, of course, by construction,

Let then B = C \ {0, 1}, Ω = C \ (] -∞, 0] ∪ [1, +∞[)
e a 0 • s = (z → z a ); e b 1 • s = (z → (1 -z) b ) (44) 
We suppose a dependence relation, in H(Ω)

P 0 (z a , (1 -z) b )Li x0 + P 1 (z a , (1 -z) b )Li x1 + P 2 (z a , (1 -z) b ).1 Ω = 0 ( 45 
)
where P i ∈ C[X, Y ] are two-variable polynomials. From (44) and the fact that Ω = ∅, we get P 0 (e a 0 , e b 1 ) log 0 +P 1 (e a 0 , e b 1 ) log 1 +P 2 (e a 0 , e b 1 ).1 B = 0. Now, we consider D 0 (resp. D 1 ), the deck transformation corresponding to the path σ 0 (t) = e 2iπt /2 (resp. σ 1 (t) = (1e -2iπt )/2, one gets

log 0 •(D r 0 )(z) = log 0 (z) + 2irπ and log 1 •(D s 1 )(z) = log 1 (z) + 2isπ (46)
Now we remark that e 

1 • D 0 = e [b]
1 and, similarly e

[b] 1 • D 1 (z) = e [b]
1 (z)e 2biπ and e

[a] 0 • D 1 = e [a]
0 so that P i (e a 0 , e b 1 ) remain bounded through the actions of D r 0 , D s 1 , from (46), we get that P i = 0, i = 0..2 which proves the claim.

Example 3 ([10]

). Let us use the noncommutative multivariate exponential transforms (x 0 x 1 = x 1 x 0 ), i.e., for any syntactically exchangeable series, we have the following transform i0,i1≥0

s i0,i1 x i0 0 ⊔⊔ x i1 1 -→ i0,i1≥0 s i0,i1 i 0 !i 1 ! Li i0 x0 Li i1 x1 .
In particular, for any n ∈ N, we have x n 0 → Li n x0 /n! and x n 1 → Li n x1 /n!. We then obtain the following polylogarithms indexed by rational series 

Li x * 0 (z) = z, Li x * 1 (z) = (1 -z) -1 , Li (ax0+bx1) * (z) = z a (1 -z) -
kr =0 s 1 k 1 . . . r i=1 s i - r-1 i=1 k i k r ρ k1 ⊔⊔ . . . ⊔⊔ ρ kr ,
where, for any i = 1, . . . , r, if

k i = 0 then ρ ki = x * 1 -1 X * else 16 ρ ki = x * 1 ⊔⊔ ki j=1 S 2 (k i , j)j!(x * 1 -1 X * ) ⊔⊔ j
Remark 3. The free algebras (C exc X , ⊔⊔ , 1 X * ) and (C[x * 0 , x * 1 ], ⊔⊔ , 1 X * ) are, by Lemma 1, algebraically disjoint but their images, by α z 0 using ω 0 and ω 1 , are C[Li x0 , Li x1 ] and C[e Lix 0 , e Lix 1 ], respectively. Here, the family {Li l } l∈LynX is algebraically free over Frac(C[e Lix 0 , e Lix 1 ]) although one has, for example, the algebraic relation e Li x 0 e Li x 1 = e Li x 1 -1 H(Ω) [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF]. 

H (ty1) * (N ) = k≥0 H y k 1 (N )t k = exp - k≥1 H y k (N ) (-t) k k = N n=1 1 + t n .
Similarly, for any r ≥ 2, the transcendent function H (t r yr) * can be expressed via Newton-Girard formula, once again, and via Adam's transform by From the estimations from above of the previous proof, it follows then Corollary 2. For any r ≥ 2, one has

H (t r yr) * (N ) = k≥0 H y k r (N )t kr = exp - k≥1 H y kr (N ) (-t r ) k k = N n=1 1 - (-t r ) n r . Since H yr ∞ ≤ ζ(r) then -k≥1 H kr (-t r ) k /k is termwise dominated by f r ∞ and
1 Γ yr (1 + t) = k≥0 ζ(r, . . . , r ktimes )t kr = exp - k≥1 ζ(kr) (-t r ) k k = n≥1 1 - (-t r ) n r .
By injectivity of H • and then by identification the coefficients of t k , one gets Corollary 3. For any r ≥ 1, one has

y * r = exp k≥1 y kr (-1) k-1 k , y k r = (-1) k k! s 1 ,...,s k >0 s 1 +...+ks k =k (-y r ) s1 1 s1 . . . (-y kr ) s k k s k , k ≥ 0. Li -2,-1 = Li x * 1 -11(2x1) * +31(3x1) * -33(4x1) * +12(5x1) * , Li -1,-2 = Li x * 1 -9(2x1) * +23(3x1) * -23(4x1) * +8(5x1) * , H -1,-1 = H -y * 1 +5(2y1) * -7(3y1) * +3(4y1) * , H -2,-1 = H y * 1 -11(2y1) * +31(3y1) * -33(4y1) * +12(5y1) * , H -1,-2 = H y * 1 -9(2y1) * +23(3y1) * -23(4y1) * +8(5y1) * . Hence, ζ ⊔⊔ (-1, -1) = 0, ζ ⊔⊔ (-2, -1) = -1, ζ ⊔⊔ (-1, -2) = 0 and γ -1,-1 = -Γ -1 (2) + 5Γ -1 (3) -7Γ -1 (4) + 3Γ -1 (5) = 11/24, γ -2,-1 = Γ -1 (2) -11Γ -1 (3) + 31Γ -1 (4) -33Γ -1 (5) + 12Γ -1 (6) = -73/120, γ -1,-2 = Γ -1 (2) -9Γ -1 (3) + 23Γ -1 (4) -23Γ -1 (5) + 8Γ -1 (6) = -67/120.
From Theorems 3 and 4, one deduces C rat exc Y (see [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]). 3. As in [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF], considering a character χ • on (C Y , , 1 Y * ) and considering Dom(χ • ) ⊂ C Y as in (43), we can also check easily that [START_REF] Bui | A local Theory of Domains and its (Noncommutative) Symbolic Counterpart[END_REF]:

-C Y C rat Y ⊂ Dom(χ • ) which is closed by quasi-shuffle product, -for any S, T ∈ Dom(χ • ), one has χ S T = χ S χ T , -if S ∈ Dom(χ • ) then exp (S) ∈ Dom(χ • ) and χ exp (S) = e χS .
Example 5. [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF][START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF] By construction in Theorem 4, we get γ 

(-t 2 y2) * = Γ -1 y2 (1+it), γ (ty1) * = Γ -1 y1 (1 + t) and γ (-ty1) * = Γ -1 y1 (1 + t). Then, by Corollary 4, it follows that γ (-t 2 y2) * = γ (ty1) * γ (-ty1) * meaning that Γ -1 y2 (1 + it) = Γ -1 y1 (1 + t)Γ -1 y1 (1 -t) ⇔ e -k≥2 ζ(2k)t 2k /k = sin(tπ) tπ ⇔ k≥2 ζ(2, . . . , 2 
ktimes )t 2k = k≥1 (tiπ) 2k ( 
* = Γ -1 y4 (1 + 4 √ -1t), γ (t 2 y2) * = Γ -1 y2 (1 + t) and γ (-t t y2) * = Γ -1 y2 (1 + it). Then, by Corollary 4, it follows that γ (-t 4 y4) * = γ (t 2 y2) * γ (-t 2 y2) * meaning that Γ -1 y4 (1 + 4 √ -1t) = Γ -1 y2 (1 + t)Γ -1 y2 (1 + it) ⇔ e -k≥1 ζ(4k)t 4k /k = sin(itπ) itπ sin(tπ) tπ ⇔ k≥2 ζ(4, . . . , 4 
ktimes )t 4k = k≥1 2(-4tπ) 4k (4k + 2)! . Since γ (-t 4 y4) * = ζ((-t 4 y 4 ) * ), γ (-t 2 y2) * = ζ((-t 2 y 2 ) * ), γ (t 2 y2) * = ζ((t 2 y 2 ) * )
then, using the poly-morphism ζ and identities on rational series, we get

ζ((-t 4 y 4 ) * ) = ζ((-t 2 y 2 ) * )ζ((t 2 y 2 ) * ) = ζ((-t 2 x 0 x 1 ) * )ζ((t 2 x 0 x 1 ) * )) = ζ((-4t 4 x 2 0 x 2 1 ) * ).
Thus, by identification the coefficients of t 4k To end this section, let us note also that, in Corollary 5 the rational series x 0 [(ax 0 ) * ⊔⊔ ((1b)x 1 ) * ] and x 1 [((a -1)x 0 ) * ⊔⊔ (-bx 1 ) * ] are of the form E 1 x i1 . . . E j x ij E j+1 , where x i k ∈ X, E k ∈ C rat x 0 ⊔⊔ C rat x 1 .

(56)

which is closed by conc, ⊔⊔ and co-products [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF] and one can apply Theorems 2.3 and 2.4 in [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] to obtain the associated polylogarithms and polyzetas.

Example 6. [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF][START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF] Let us consider, for t 0 , t 1 ∈ C, |t 0 | < 1, |t 1 | < 1, R := t 0 x 0 (t 0 x 0 + t 1 x 1 ) * t 0 t 1 x 1 = t 2 0 t 1 x 0 [(t 0 x 0 ) * ⊔⊔ (t 1 x 1 ) * ]x 1 .

Then, with the differential forms ω 0 (z) = z -1 dz and ω 1 (z) = (1z) -1 dz, we get successively Li R (z) = (1ty) -1 t -t0 y t0t1

By expending (1ty) -1 and then integrating, we get on the one hand

ζ(R) = n≥1 t 0 n -t 0 t 0 t 1 n -t 2 0 t 1 = k>l>0 ζ(k)t k 0 t l 1 .
On the other hand, using the the expansion of R, we get also 

Conclusion

In this work, we illustrated a bijection 17 , between a sub shuffle algebra of noncommutative rational series C Y ⊔⊔ C[{y * } y∈Y ] ⊂ C rat Y (recalled in 2.1) and a subalgebra of holomorphic functions, H(Ω), on a simply connected domain Ω ⊂ C containing the family of extended eulerian functions {Γ -1 y (1+z)} y∈Y and the family of their logarithms, {log Γ -1 y (1 + z)} y∈Y (introduced in 2.2), involved in summations of polylogarithms and harmonics sums (studied in 2.3) and in regularizations of divergent polyzetas (achieved, for this stage, in 2.4).

These two families are algebraically independent over a differential subring of H(Ω) and generate freely two disjoint functional algebras. For any y r ∈ Y , the special functions Γ -1 yr (1 + z) and log Γ -1 yr (1 + z) are entire and holomorphic on the unit open disc, respectively. In particular, Γ -1 yr (1 + z) admits a countable set of isolated zeroes on the complex plane, i.e. χ∈Gr χZ ≤-1 , where G r is the set of solutions of the equation z r = (-1) r-1 .

These functions allow to obtain identities, at arbitrary weight, among polyzetas and an analogue situation, as the rational ratios ζ(2k)/π 2k , drawing out consequences about a structure of polyzetas. This work will be completed, in the forth comming works, by a study a family of functions obtained as image of C Y ⊔⊔ C rat exc Y , for which their elements admit a linear representation (ν, µ, η) such that the Lie algebra generated by the matrices {µ(y)} y∈Y is nilpotent. 

  s-1 e -u , for ℜ(s) > 0.[START_REF] Berstel | Rational series and their languages[END_REF] 

|z| < 1

 1 classically, B(a, b) := B(1; a, b) = Γ (a)Γ (b)/Γ (a + b), one has (for any u, v ∈ C such that |u| < 1, |v| < 1 and |u + v| < 1) the following expression exp -n≥2 ζ(n)

  generally, for any r ∈ N ≥1 and (s 1 , . . . , s r ) ∈ C r , let us consider the following several variable zeta function ζ(s 1 , . . . , s r ) := n1>...>nr>0 n -s1 1 . . . n -sr r

  freely generated by LynX (resp. {x * } x∈X ). Moreover, by Lemma 1, the family (x * ) x∈X (resp. LynX ) is algebraically free over C X (resp. C[{x * } x∈X ]). Thus, the algebra (C[{l, x * } l∈LynX ,x∈X ], ⊔⊔ , 1 X * ) is freely generated by {l, x * } l∈LynX ,x∈X and C[{x * } x∈X ] ∩ C X = C.1 X * . Hence, the algebras C X and C[{x * } x∈X ] are algebraically disjoint and it follows then Lemma 3. Let f : (C X ⊔⊔ C[{x * } x∈X ], ⊔⊔ , 1 X * ) -→ A (ring without zero divisors). Then the following assertions are equivalent 1. The shuffle morphism f is injective. 2. The families {f (l)} l∈LynX and {f (x * )} x∈X are algebraically free within, respectively, C[{f (l)} l∈LynX ] and C[{f (x * )} x∈X ] and the latter algebras are algebraically disjoint, within A.

For any k ≥ 1 ,

 1 let Γ y k (1+z) := e -ℓ k (z) and B y k (a, b) := Γ y k (a)Γ y k (b)/Γ y k (a+b).Remark 2. 1. Note that Γ y1 = Γ and B y1 (a, b) = B(a, b) = Γ (a)Γ (b)/Γ (a + b).

2 .( 1 +

 21 For |z| < 1, we have ℓ r (z) = -χ∈Gr log(Γ (1 + χz)) and e ℓr(z) = χ∈Gr e γχz n≥1 χz/n)e -χz/n 3. For any odd r ≥ 2,

n≥1 anz n and χ∈Gr f (χz) = r k≥1 a rk z rk . 4 .Proposition 2 .

 42 Due to the fact that the external product is finite, we can distribute it on each factor and get e ℓr(z) Using the elementary symmetric functions of G r , we get the expected result. Let L := span C {ℓ r } r≥1 and E := span C {e ℓr } r≥1 . One has 1. The families (ℓ r ) r≥1 and (e ℓr ) r≥1 are C-linearly free and free from 1 H(Ω) .Hence, with the notations of (29) and the differential forms {u yr dz} r≥1 , with (a) u yr = e ℓr ∂ℓ r (i.e. α z 0 (y r ) = e ℓr(z) -1 and then α z 0 (y * r ) = e e ℓr (z) -1 ), the restriction α z 0 : CY -→ E is injective. (b) u yr = ∂ℓ r (i.e. α z 0 (y r ) = ℓ r (z) and then α z 0 (y * r ) = e ℓr(z) ), the restrictions of α z 0 , span C {y r } r≥1 -→ L and span C {y * r } r≥1 -→ E are injective. 2. The families (ℓ r ) r≥1 and (e ℓr ) r≥1 are C-algebraically independent. 3. For any r ≥ 1, one has (a) The functions ℓ r and e ℓr C-algebraically independent. (b) The function ℓ r is holomorphic on the open unit disc, D <1 , (c) The function e ℓr (resp. e -ℓr

2 . 3 .

 23 (a) Since ℓ r (0) = 0 and ∂e ℓr = e ℓr ∂ℓ r then ℓ r and e ℓr are C-algebraically independent. (b) We have e ℓ1(z) = Γ -1 (1 + z) which proves the claim for r = 1. For r ≥ 2, note that 1 ≤ ζ(r) ≤ ζ(2) which implies that the radius of convergence of the exponent is 1 and means that ℓ r is holomorphic on the open unit disc. This proves the claim. (c) Now e ℓr(z) = Γ -1

Theorem 1 . 1 .

 11 The algebras C[E], C[L] are algebraically disjoint, within H(Ω). 2. The family (e ℓr ) r≥1 is algebraically independent over E + 3. The family (ℓ r ) r≥1 is algebraically independent over L + . Proof. Considering the Chen series of the differential forms {u yr dz} r≥1 , as in (30) with u yr = e ℓr ∂ℓ r (see Proposition 2.1a), let Q ∈ Frac(L) (resp. Frac(C)) and let {c y } y∈Y ∈ C (Y ) be a sequence of complex numbers, non simultaneously vanishing, such that (see item 2e of Lemma 2) ∂Q = y∈Y c y u y = r≥1 c yr e ℓr ∂ℓ r .

15

  As subalgebra of H(Ω), the algebras C[E] = C[{e ℓr } r≥1 ] and C[L] = C[{ℓr} r≥1 ] are free and since {e ℓr } r≥1 (resp. {ℓr} r≥1 ) is algebraically free over C[L] (resp. C[E]) then the algebra C[E + L] is freely generated by {e ℓr , ℓr} r≥1 and C[E] ∩ C[L] = C.1 H(Ω) .

Proof. 1 .

 1 The free algebras (C exc X , ⊔⊔ , 1 Y * ) and (C[{y r } r≥1 ], ⊔⊔ , 1 Y * ) are, by Lemma 1, algebraically disjoint and their images by α z 0 , by Proposition 2.1b, are, respectively, the free algebras C[L] and C[E] which are, by Theorem 1, algebraically disjoint. Moreover, since C exc X = C[{y} y∈Y ] and Y ⊂ LynY then, by Lemma 3, we deduce the respected results. 2. For any k ≥ 1, let Φ k := span C {e l1ℓr 1 +...+l k ℓr k } distinct r1,...,r k ∈N * ,l1,...,l k ∈Z * . Let C[Φ] be the algebra of Φ := span C {e ±ℓr } r≥1 . Since (ℓ r ) r≥1 is C-free then Φ 1 Φ 2 . . . and then C[Φ] = k≥1 Φ k . Moreover, the disjunction of C[E] and C[L] leads to C k ∼ = L + ⊗ C Φ k and then yields the expected result.

  and choose a basepoint b ∈ Ω, one has the following diagram ( Any holomorphic function f ∈ H(Ω) such that f ′ = df /dz admits an analytic continuation to B can be lifted to B by f (z) := f (b) + z b f ′ (s)ds.

  then H (t r yr) * by e ℓr (see also Theorem 4 bellow). By the following identity of rational series, it follows the last results s≥1 a s y s * s≥1 b s y s * = s≥1 (a s + b s )y s + r,s≥1 a s b r y s+r * .

Corollary 4 . 1 .

 41 With the notations of (29), Definition 2 and with the differential forms {(∂ℓ r )dz} r≥1 , for any z ∈ C, |z| < 1, one has γ r≥1 (z r yr) * = r≥1 γ (z r yr) * = r≥1 e ℓr(z) = r≥1 1 Γ yr (1 + z) = α z 0 ( ⊔⊔ r≥1 y * r ).

2 .

 2 One has, for |a s | < 1, |b s | < 1 and |a s + b s | < 1, γ ( s≥1 (as+bs)ys+ r,s≥1 asbrys+r) * = γ ( s≥1 asys) * γ ( s≥1 bsys) * . In particular, γ (asys+ar yr+asarys+r) * = γ (asys) * γ (aryr) * and γ (-a 2 s y2s) * = γ (asys) * γ (-asys) * . Remark 4. 1. The series k≥1 (t k y k ) * and ⊔⊔ k≥1 (t k y k ) * are infinite product expansions which actually live in the Hausdorff groups of their respective Hopf algebras (A Y , conc, ∆ , 1 Y * , ǫ) and (A Y , conc, ∆ ⊔⊔ , 1 Y * , ǫ), isomorphic each to other [18]. 2. The restriction α z 0 : (C[{y r , y * r } r≥1 ], ⊔⊔ , 1 Y * ) -→ C[L + E] is injective (see Corollary 1) while ker(γ • ) = {0}, over C Y

  4k = ζ(3, 1, . . . , 3, 1 ktimes )/π 4k = 2/(4k + 2)! ∈ Q.From Theorems 2-4, one also deduces Corollary 5 (comparison formula). With the notations of (4), for any z, a, b ∈ C such that |z| < 1 and ℜa > 0, ℜb > 0, one hasLi x0[(ax0) * ⊔⊔ ((1-b)x1) * ] (z) = Li x1[((a-1)x0) * ⊔⊔ (-bx1) * ] (z) = B(z; a, b).Hence, on the one handB(a, b) = ζ ⊔⊔ (x 0 [(ax 0 ) * ⊔⊔ ((1b)x 1 ) * ]) = ζ ⊔⊔ (x 1 [((a -1)x 0 ) * ⊔⊔ (-bx 1 ) * ])and on the other hand B(a, b) = γ ((a+b-1)y1) * γ ((a-1)y1) * ((b-1)y1) * = γ ((a+b-1)y1) * γ ((a+b-2)y1+(a-1)(b-1)y2) * .

( 1 0 ( 1 t 1 t 0 ( 1 -s) t0t1 1 0( 1 -( 1 -

 10101111 s) t0t1 s t0-1 s r) t0-1 r -t0 dsdr By change of variable, r = st, we obtain then Li R (z) = t 2 0 st) t0-1 t -t0 dtds, s) t0t1 (1st) t0-1 t -t0 dtds.By change of variable, y = (1s)/(1st), we obtain alsoζ(R)

ζ(R) = k>0 l>0 s 1 +k 0 t l 1 .

 11 ...+s l =k s 1 ...,s l ≥1,s1≥2 ζ(s 1 , . . . , s l )t Finally, by identification the coefficients of ζ(R)|t k 0 t l 1 , we deduce the sum formula ζ(k) = s 1 +...+s l =k s 1 ...,s l ≥1,s 1 ≥2 ζ(s 1 , . . . , s l ).

A rat y 1

 1 ⊔⊔ . . . ⊔⊔ A rat y k

b

  Moreover, for any (s 1 , . . . , s r ) ∈ N r + , there exists an unique series R ys 1 ...ys r belonging to (Z[x * 1 ], ⊔⊔ , 1 X * ) such that Li -s1,...,-sr = Li Ry s 1 ...ys r . More precisely, R ys 1 ...ys r =

	s1	(s 1 +...+sr )-(k 1 +...+k r-1 )
	. . .	
	k1=0	

  Theorem 3 (extension of H • ). For any r ≥ 1, one has ∀t ∈ C, |t| < 1, H (t r yr) * = Moreover, for |a s | < 1, |b s | < 1 and |a s + b s | < 1, one has H ( s≥1 (as+bs)ys+ r,s≥1 asbrys+r) * = H ( s≥1 asys) * H ( s≥1 bsys) * . H (asys+ar yr+asarys+r) * = H (asys) * H (ar yr) * and H (-a 2 s y2s) * = H (asys) * H (-asys) * . Proof. For t ∈ C, |t| < 1, since the function Li (tx1) * is well defined then so are the arithmetic function, expressed via Newton-Girard formula, for N ≥ 0, by

	k≥0	H y k r t kr = exp	k≥1	H y kr	(-t r ) k-1 k	.
	In particular,					

  2k)! .Since γ (-t 2 y2) * = ζ((-t 2 x 0 x 1 ) * ) then, identifying the coefficients of t 2k , we get

	ζ(2, . . . , 2 )/π 2k = 1/(2k + 1)! ∈ Q.
	ktimes
	Similarly, by construction in Theorem 4, we get γ (-t 4 y4)

i.e. its coefficients are real, we will see later the combinatorial content of them.

Note that Euler gave another explicit formula using Bernoulli numbers.

These quantities are generalizations of the harmonic numbers Hn = 1 + 2 -1 . . . + n -1 to which they boil down for r = 1, s1 = 1. They are also truncations of the zeta values ζ(s1, . . . , sr) at order n + 1.

This formula still holds on Hr (where, of course, log(a/b) must be replaced by log(a)log(b)).

y 2 (1 + x) = sin(iπx)/iπx (see Example 5 bellow).

A family (gi) i≥1 is said to be triangular if the valuation of gi, ̟(gi), equals i ≥ 1. It is easy to check that such a family is C-linearly free and that is also the case of families such that (gig(0)) i≥1 is triangular.

Extended double regularization by Newton-Girard formula

By (39)-(41), the following polymorphism is, by definition, surjective (see [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF])

mapping both x s1-1 0 x 1 . . . x sr -1 0

x 1 and y s1 . . . y sr to ζ(s 1 , . . . , s r ), where Z denotes the Q-algebra (algebraically) generated by {ζ(l)} l∈LynX-X , or equivalently, {ζ(l)} l∈LynY -{y1} . It can be extended as characters as follows (see [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF])

such that, for any l ∈ LynX, one has

It follows that,

Theorem 4 (Regularization by Newton-Girard formula). The characters ζ ⊔⊔ and γ • are extended algebraically as follows

Moreover, the morphism

, mapping y * r to Γ -1 yr , is injective and, for any r ≥ 1, one has

Proof. By Definition 2, Propositions 2.1a, 3 and Theorems 2, 3, we get the expected results (see also Proposition 1).

Example 4. [10]

Li -1,-1 = Li -x * 1 +5(2x1) * -7(3x1) * +3(4x1) * ,