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Abstract

This paper studies the formation control problem in clustered network systems composing of linear agents that are subjected to state
constraints. In each cluster, there exists an agent called a leader who can communicate with other leaders outside of its cluster at
some specific discrete instants. Moreover, the continuous-time communication structure in each cluster is represented by a fixed and
undirected graph. A robust formation control protocol is proposed to deal with the hybrid communication described above and the
constraints on states of agents. It is next shown that the hybrid robust formation control design for clustered multi-agent networks
can be indirectly solved through the robust stabilization design of an equivalent system obtained by matrix theory and algebraic
graph theory. Then, a robust controller is designed for the initial clustered network system in terms of linear matrix inequalities.
Finally, a formation design for unmanned aerial vehicles is carried out and simulated to illustrate the effectiveness of the proposed
hybrid formation control design method.

Keywords: Clustered network, state constraints, hybrid communication, formation control, linear matrix inequalities (LMIs).

1. Introduction

Multi-agent systems (MASs) and their cooperative control
problems have been extensively investigated in the past two
decades, motivated by many practical applications such as
unmanned aerial vehicles (UAVs), wireless sensor networks,
autonomous underwater vehicles (AUVs), transportation net-
works, satellite networks, etc. Formation is one of the most in-
teresting problems and intensively investigated issue in MASs,
because of both several theoretical challenges and a wide range
of potential applications [1, 2, 3, 4].

Currently, consensus-based control approaches are widely
employed in solving the formation problem of MASs. The first-
order MASs was studied in [5]. It was proved that they could
achieve formation if the directed interaction topology contains
a directed spanning tree. Extensions of consensus-based for-
mation algorithms to second-order with linear dynamics under
the fixed or the time-varying interaction graphs were also in-
vestigated in [6]. In [7], a formation control law based on local
measurement of relative-positions was proposed for first-order
MASs. In another research [8], based on consensus approaches,
necessary and sufficient conditions were derived to deal with
the time-varying formations for second-order UAV swarm sys-
tems. Another direction is to study the formation of second-
order MASs with time delays [9]. Accordingly, the sufficient
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conditions were proposed for MASs to achieve desired station-
ary and moving formations. Next, the formation tracking con-
trol problems [10], which uses neighboring relative state, and
position information for second-order MASs with time-varying
delays, were considered. Moreover, the formation tracking
problems were also investigated in [11], where the agents’ lo-
cal coordinate systems are applied such that the centroid of the
controlled formation tracks a given trajectory. Recently, some
new studies concern the influence of environments on wireless
communication [12, 13]. This leads to the degradation of the
performance of wireless communication, which causes the in-
teraction topology among agents cannot hold for a long time.

Other significant and realistic issues have been encountered
such as the constraints on the agent’s inputs, states, or rela-
tive states because of the physical limitations of agents. This
includes, for example, the formation of vehicles with limited
speeds and limited working space, smart buildings energy con-
trol with constraints on temperature and humidity in specific
ranges and so on. Recently, some studies have considered the
cooperative control of MASs under the constraints on agent’s
inputs, states, or relative states [14, 15, 16, 17, 18, 19]. In [14],
a constrained consensus algorithm and distributed optimization
problems were proposed, where agents with state constraints
are investigated and they are required to lie in individual closed
convex sets. In another work, [15] studied a consensus prob-
lem of simple integrator MASs under input constraints. Fol-
lowing this research line, a distributed consensus of second-
order MASs with nonconvex input constraints was addressed in
[16]. It is shown that the input constrained consensus achieved
if the graph has a directed spanning tree. Another direction to
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deal with input and state constraints, discarded consensus al-
gorithms are employed [17]. Moreover, in order to achieve the
global consensus in the presence of agents’ inputs, states, or
relative state constraints [18, 19], the MASs is reformulated in
form of a network of Lure systems. However, the formation
problem under state constraints in the clustered network is still
an open problem.

On the other hand, it has been noticed that interaction among
agents in the aforementioned networks is either continuous-
time or discrete-time. However, due to either energy con-
straints occurring in long-time interactions or communication
constraints, agents can only impulsively exchange information
with their neighbors or be subjected to abrupt changes at spe-
cific instants [20, 21, 22, 23]. This leads to a hybrid interaction
that combines both continuous and discrete interactions among
agents. In [20], a sufficient result has been derived for the
impulsive consensus of first-order MASs, where the graphs of
continuous-time and impulsive-time topologies contain a span-
ning tree. Following this research line, there are several types
of research [21, 22], which have dealt with the consensus prob-
lem of the second-order MASs under an impulsive control strat-
egy. Moreover, inspired by the results in [24, 25], the neces-
sary condition of consensus on graph connections among agents
may require. This is investigated in [23], where the first-order
MASs with hybrid delay consensus protocols are described in
the form of impulsive systems. In other directions on consen-
sus problem under hybrid communication, the network is par-
titioned into several groups or clusters [26, 27]. The works in
[26] proposed a quasi-periodically reset strategy and provided
some LMI conditions to guarantee the globally uniformly expo-
nential consensus for MASs, where the intra-cluster communi-
cation structures are represented by directed and strongly con-
nected graphs. The researches in [27] investigated the sufficient
conditions for event-triggered consensus. Moreover, both of
state and output consensus problem in the clustered network of
generic linear MASs are respectively investigated in [28, 29]
and [30]. However, in most of the above, constraints on the
states of agents are not considered.

As a practical example, let us analyze two groups of multi-
UAV. To support the cooperative flying, each UAV is equipped
with a wireless device to communicate with other UAVs in the
same group and on-board sensors to measure or estimate its
absolute position and speed. Formation problem naturally ap-
pears when two groups are executing the same mission, e.g.,
scanning an area or protecting civil. Because of sensors’ lim-
ited ranges and limited speeds of UAVs, the measurements of
UAVs’ positions and velocities are subject to saturation con-
straints. Moreover, due to the short-range communications of
wireless technologies, it is impossible for each UAV to leave
its group and continuously communicate with other UAVs in
other groups. Therefore, it is more practical for the collabo-
ration of these groups if each group has one leading UAV to
communicate with other groups’ leading UAVs through a cellu-
lar network at some specific discrete moments. As a result, the
information exchange in these networks is not only continuous
but also discrete.

Motivated by both theoretical and practical issues men-

tioned above, this paper investigates the state formation con-
trol problem under state constraints in clustered MASs where
agents have generic linear dynamics. Our approach covers
broader systems and scenarios than those in the existing stud-
ies [26, 27]. Next, a robust formation protocol, which deals
with the continuous-time communication inside clusters and
discrete-time information exchange between clusters, is intro-
duced. Compared with the previous results [28, 29], the proto-
col is more practical and complicated. It is then shown that the
considered robust formation control problem can be indirectly
solved by studying the robust stability of an equivalent system
by matrix theory and algebraic graph theory. In comparison
with the one in [26, 28, 29], our approach shows the impor-
tant role of communication between leaders at some specific
discrete instants, represented by the stochastic matrix. Accord-
ingly, a sufficient condition will be derived in terms of LMIs
for the robust distributed formation of clustered networks of
generic linear agents under state constraints and hybrid com-
munications.

The rest of the paper is organized as follows. Section II is
dedicated to problem formulation. In Section III, the robust
formation problem of MASs under state constraints in a hybrid
clustered network is investigated. A possible application of the
proposed control law to the UAVs formation flying is illustrated
in Section IV. Finally, conclusions are provided in Section V.

Notations and symbols. N denotes the sets of non-negative
integers. Real, and non-negative real numbers are denoted by
R, and R+, respectively. 0N denotes the zero matrices with ap-
propriate dimensions. 1N denotes the (N × 1) column vectors
whose elements are all ones. A matrix is called SIA if it is
stochastic, irreducible, and aperiodic. On the other hand, diag{}
represents diagonal or block-diagonal matrices, and sym(A) de-
notes A + AT for any real matrix A. Lastly, ◦ and ⊗ stands for
the Hadamard and Kronecker product.

2. Problem Formulation

2.1. Graph Theory
An undirected graph G consists of a pair (V,E), where the

vertex set V = {v1, · · · , vN} denotes the set of nodes and the
edge set E ⊆ V ×V represents the interactions. The adjacency
matrix is defined asA = [a(i j)], with a(i j) > 0 if (v j, vi) ∈ E, and
a(i j) = 0 otherwise. The Laplacian matrix L = [L(i j)] ∈ RN×N is
defined as L(ii) =

∑
j,i a(i j); L(i j) = −a(i j).

In the sequel, we consider that the network G is subdivided
into m undirected subnetworks Cτ,∀τ ∈ {1, · · · ,m} represented
by the graphs G1, · · · ,Gm such that G1 = (V1,E1), · · · ,Gm =

(Vm,Em), whereV = V1∪V2∪. . .∪Vm and Vτ∩Vg = � for all
τ, g = 1, · · ·m, τ , g and E = E1∪E2 · · ·∪Em. The communica-
tion graph of each subnetwork Gτ is represented by a Laplacian
matrix Lτ. Each cluster has a specific agent called the leader,
and denoted in the following by lτ ∈ Vτ,∀τ ∈ {1, · · · ,m}. The
remaining agents are called followers and are denoted by fh.
The set of leaders will be denoted by I = {l1, · · · , lm}. At par-
ticular time instant tk, k ∈ N, tk ≥ 0 of a time sequence {tk}
that satisfies t1 < t2 < · · · , limtk→∞tk = ∞, the leaders inter-
act following a predefined interaction map El ⊂ I × I. The

2



leaders communication graph Gl = (I,El) is also supposed to
be a undirected graph. Finally, without loss of generality, each
leader is considered as the first agent of its cluster [30].

Cτ = {lτ, fmτ−1+2, · · · , fmτ
}, ∀τ ∈ {1, · · · ,m}, (1)

where m0 = 0,mm = N and the cardinality of Cτ is given by
‖Cτ‖ = nτ = mτ − mτ−1,∀τ ≥ 1.

2.2. Network Dynamics
We consider a group of N linear identical agents that interact

in m clusters. The dynamics of each agent i is described by

ẋi = Axi + Bui, (2)

where xi = [xi,1, · · · , xi,n]T ∈ Rn is the state, ui ∈ Rp is the
control input; A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n.

According to (1), we concede that each agent has a vec-
tor state denoted by xlτ = [xlτ,1 , · · · , xlτ,n ]T ∈ Rn for the lead-
ers lτ and x fh = [x fh,1 , · · · , x fh,n ]T ∈ Rn for the followers
fh,∀τ , h = 1, · · · ,N. The desired state formation is denoted
by R = [r1, r2, · · · , rN] ∈ RNn, where ri ∈ Rn,∀i ∈ V is a
formation variable of agent i. Therefore, the desired state for-
mation R is meaning that agents in a network need to achieve a
reference coordinate frame corresponding to their positions and
velocities.

However, in practice, the measurement part may have
bounded nonlinearities or saturation constraints due to sensor
limitations as well as physical limitations. Moreover, different
agents inside each cluster may have different interactive capa-
bilities. Therefore, the upper and lower bounds of saturation
constraints may also be different. This leads to the heteroge-
neous asymmetric saturation levels.

Because only the leaders of these clusters can communicate
together at some reset times tk, a formation protocol for a clus-
tered network with state constraints based on local information
is given by

ui = K
N∑

j=1

a(i j)

(
φ j(z j(t)) − φi(zi(t))

)
+ Qri, t ∈ (tk, tk+1) (3)

where zi(t) = xi(t) − ri denote the state formation variables of
agent i, and K,Q ∈ Rp×n denote the protocol gain matrices,
respectively. The general continous functions φi(zi) : Rn →

Rn, i = 1, · · · ,N satisfying the following sector-bounded con-
ditions

(φi(zi(t)) − Υ1zi(t)) ◦ (φi(zi(t)) − Υ2zi(t)) ≤ 0 ∀zi(t) ∈ Rn, (4)

where

Υ1 = diag{υk,1}k=1,··· ,n ∈ Rn,

Υ2 = diag{υk,2}k=1,··· ,n ∈ Rn

are matrices composed of known sector slopes υk,1 < υk,2. An
example of φi is the saturation function si(•) defined by

si(zi(t)) ,


si : zi(t) ≤ si,
zi(t) : si < zi(t) < si,
si : zi(t) ≥ si

(5)

where si ≤ 0 ≤ si, si < si are known constants which are called
saturation levels.

The exchanged information between leader’s states at the re-
set time tk can be described by

∆zli (tk) =

m∑
j=1

al(i j)(zl j (tk) − zli (tk)), t = tk, (6)

where ∆zli (tk) = zli (t
+
k ) − zli (t

−
k ), where zli (t

+
k ) and zli (t

−
k ) repre-

sent the right and left limit of zli at tk, respectively. Without
loss of generality, we assume that zli (t

−
k ) = zli (tk). Further-

more, al(i, j) is the (i, j)th entry of the weighted adjacent ma-
trix Al = [al(i j)], and m denotes the set of leaders in graph
Gl. The Laplacian matrix Ll = [Ll(i j)] ∈ Rm×m is defined as
Ll(ii) =

∑m
j,i=1 al(i j); Ll(i j) = −al(i j).

Then the collective dynamics of system (2) under the con-
sensus protocol (3) and the interaction between leaders (6) can
be rewritten as

żi(t) = Azi(t) − BK
N∑

j=1

L(i j)w j(t) + (A + BQ)ri, t ∈ (tk, tk+1),

∆zli (tk) = −

m∑
j=1

Ll(i j)zl j (tk), t = tk, (7)

wi(t) = φi(zi(t)).

It can be seen that the evolution of the dynamic system de-
scribed by (7) is influenced by the events that happen at the re-
set moments tk. Thus, the evolution of the whole system can be
viewed as a hybrid system that evolves as follows: during inter-
val time (tk−1, tk), the interaction among nodes in each cluster
Cτ is related only to the graph Gτ. Moreover, at each instant
time tk, the leaders update their states instantaneously accord-
ing to the topology of Gl, and thus, there exit jump phenomena
in the states’ leader, while the states’ followers in a cluster are
recalculated based on the new information’s leader. The objec-
tive of the above collaboration is to achieve a specific global
objective namely state formation defined as follows.

Definition 1. The MASs (2) is said to be achieve state formation
anticipated by R if there is vector h(t) ∈ Rn such that

lim
t→∞

(xi(t) − ri − h(t)) = 0, (8)

for any given bounded initial condition.

For the sake of clarity, an example, as depicted in Fig. 1,
is given to illustrate this kind of problem. There are 6 agents
divided into two clusters, red and black, that have to realize a
hexagon formation. Each agent receives only the state informa-
tion of its neighbors in the same subnetwork (the same color). If
there is no communication between subnetworks (for example,
agents 2 and 5 or agents 3 and 6), then the 6-agent network can-
not achieve the desired formation. Therefore, in order to ensure
the task of 6 agents, at some discrete-time instants, a commu-
nication between one red and one black agent (called leader 1
and leader 2, respectively) is activated.

Next, the following assumptions are utilized.

3



Figure 1: The scheme of formation problem

Figure 2: State formation of six agents moving in the XY plane

A1. The graphs Gτ and Gl are undirected and connected.

A2. al(i j) > 0,
∑m

j,i=1 al(i j) < 1.

A3. The matrix pair (A, B) is stabilizable.

Remark 1. Assumption A1 is needed to guarantee that the
Laplacian matrix Lτ of Gτ,∀τ ∈ {1, · · · ,m} satisfies the follow-
ing proprieties Lτ1Nτ

= 0, rT
τLτ = 0 and rT

v 1Nτ
= 1, where 1Nτ

,
and rT

τ = 1
Nτ

1Nτ
are the right and left eigenvectors of Lτ associ-

ated with zero eigenvalue, respectively. Assumption A2 ensures
the matrix Pl = I − Ll is a stochastic matrix with positive di-
agonal elements (more information is shown in (9)). Moreover,
assumption A3 is for the existence of a controller.

Definition 2. [24] Let Fp a nonnegative and square matrix
whose row sums are all equal 1 (i.e., Fp1 = 1). Then, matrix
Fp is called row stochastic.

Lemma 1. [25] Let Γ be a compact set consisting of n × n
SIA matrices with the property that for any nonnegative integer
k and any B1, · · · , Bk ∈ Γ (repetitions permitted),

∏k
i=1 Bi is

SIA. Then, given any infinite sequence B1, B2, · · · (repetitions
permitted), of matrices Γ, there exits a column vector cT such
that limk→∞

∏k
i=1 Bi = 1cT .

Lemma 2. [25] If B = [bi j]n×n is a stochastic matrix with pos-
itive diagonal elements, and the graph associated with B has a
spanning tree, then B is SIA.

Hereafter, the time index t is omitted in expressions of xi, h
and other variables just for conciseness of mathematical repre-
sentations. Now, the considered problem in the current research
is stated as follows.
� Hybrid Robust Formation Control Problem: Consider a
group of N agents with their auxiliary systems defined in (7),
and suppose that assumptions A1–A3 hold. Design the hybrid
robust distributed formation control (3) such that the collective
dynamics of the clustered MAS (7) satisfies Definition 1.

3. Robust Distributed Formation Design

In this section, we propose a solution for the above hybrid ro-
bust formation control problem with fixed topologies Gτ and Gl

satisfying assumption A1. The proposed design is composed of
two steps. First, by employing results from matrix theory and
algebraic graph theory, we show that the considered problem
can be indirectly solved by the robust stability of an equivalent
system. Then, the robust stability design of the equivalent sys-
tem is derived in terms of LMIs.

3.1. Prerequisites

From the Geršgorin theorem [31], we know that λm ≤

2dmax(Gl), where λm is the largest eigenvalue of the Lalapcian
of the graph Gl, and dmax(Gl) is the maximum out-degree of the
nodes of Gl, where

degout(vli) =

m∑
i=1

al(i j)

Therefore, we can get 0 < λm < 2. Let us introduce

Pl(i j) = −Ll(i j) = al(i j) > 0,

Pl(ii) = 1 − Ll(ii) = 1 −
m∑

j,i=1

al(i j) > 0, (9)

then
∑m

j=1 Pl(i j) = 1, and Pl = I − Ll is a row stochastic matrix
with positive diagonal elements, and according to A1 and A2,
it has an eigenvalue λ1 = 1 with algebraic multiplicity equal
to one, and all the other eigenvalues satisfy 0 < |λi| < 1, i =

2, · · · ,m.
Moreover, as mentioned above the network is subdivided into

m undirected subnetworks. Then, L ∈ RN×N stands for the
Laplacian matrix associated with the graph G, which has a di-
agonal form

L =


L1 · · · 0
...

. . .
...

0 · · · Lm

 . (10)

Now, some algebraic properties ofL are presented in the fol-
lowing Proposition.
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Proposition 1. Let us consider a network of m clusters sat-
isfying assumption A1, with the Laplacian L ∈ RN×N , then
rank(L) = N − m and L has m eigenvalues at zero and all
the other N − m eigenvalues of the Laplacian L ∈ RN×N are
positive.

Proof. See in [29].

Next, it follows (9), the system (7) can be written in a form
of the overall network dynamics

ż = (IN ⊗ A)z − (L ⊗ BK)w + (IN ⊗ A)R, t ∈ (tk, tk+1)
zl(t+k ) = (Pl ⊗ In)zl(tk), t = tk (11)
w = Φ(z),

where Pl = I − Ll,A = A + BQ,Φ(z) = [φT
1 (z1), · · · , φT

N(zN)]T

and

z = [zT
l1 , z

T
f2 , · · · , z

T
fm1
, · · · , zT

lm , · · · , z
T
fmm

= zT
fN

]T ∈ RNn,

zl = [zT
l1 , · · · , z

T
lm ]T ∈ Rmn.

containing respectively the states of agents and leader’s states.
Let us introduce the extended stochastic matrix Pe as follows

Pe =MT
[

Pl 0
0 IN−m

]
M ∈ RN×N , (12)

whereM is a permutation matrix.
Then, the second equation in (11) can be expressed by

z(t+k ) = (Pe ⊗ In)z(tk), t = tk.

In the following, let U ∈ RN×N be an orthogonal matrix, and
employing Proposition 1, we obtain

U−1LU =

[
0m 0
0 Γ

]
= Λ ∈ R(N)×(N), (13)

Γ = diag{γm+1, · · · , γN} ∈ R(N−m)×(N−m).

Finally, let us also introduce the new variable

ψ = (U−1 ⊗ In)z. (14)

It follows the variable ψ in (14), we now formulate our state-
ment as the following

ψ̇ = (IN ⊗ A)ψ − (ΛU−1 ⊗ BK)w +HR, t ∈ (tk, tk+1)
ψ(t+k ) = (Pψ ⊗ In)ψ(tk), t = tk, (15)
z = (U ⊗ In)ψ,
w = Φ(z),

where Pψ = U−1PeU andH = (U−1 ⊗ A).
In the next part of this paper, thanks to results from matrix

theory and algebraic graph theory, we show that the robust for-
mation control problem of MASs in clustered network (11) is
indirectly solved by considering the robust stability of the sys-
tem (15).

3.2. Formation Analysis in Clustered Network
In order to simplify the presentation of the next results let us

partition the matrices U−1,U into

U−1 = [UT
3 UT

4 ]T ,U = [U1 U2], (16)

where UT
3 ∈ Rm×N ,UT

4 ∈ R(N−m)×N and U1 ∈ RN×m, U2 ∈

RN×(N−m).

U1 =


1N1 · · · 0
...

. . .
...

0 · · · 1Nm

 ,UT
3 =


rT

1 · · · 0
...

. . .
...

0 · · · rT
m

 , (17)

which satisfies LU1 = 0N×n,UT
3L = 0m×N . This allows to de-

compose (14) into two parts :

ψ1 = (UT
3 ⊗ In)z, ψ2 = (UT

4 ⊗ In)z, (18)

where ψ1 ∈ Rmn and ψ2 ∈ RNn−mn. Now we are able to intro-
duce the first main results of this paper.

Theorem 1. Consider the overall network dynamics system
(15) satisfying A1–A3 the hybrid robust formation control prob-
lem is solved if the following formation feasibility condition
holds

(A + BQ)(ri − r j) = 0, ∀i, j = 1, · · · ,N. (19)

and

lim
t→∞

ψ2 → 0 (20)

for any given bounded initial conditions.

Proof. If the condition (19) holds, then one has that

[L ⊗ (A + BQ)]R = 0. (21)

Pre-multiplying both sides of (21) with (U−1 ⊗ In) yields

[ΛU−1 ⊗ (A + BQ)]R = 0. (22)

Then pre-multiplying both the sides of (22) with[
0m 0
0 Γ−1

]
⊗ In

gives us [U−1⊗(A+BQ)]R = 0, which is equivalent toHR = 0.
Therefore, the system (15) leads to the following system

ψ̇ = (IN ⊗ A)ψ − (ΛU−1 ⊗ BK)w, t ∈ (tk, tk+1)
ψ(t+k ) = (Pψ ⊗ In)ψ(tk), t = tk, (23)
z = (U ⊗ In)ψ,
w = Φ(z).

In the following, we firstly show that ψ1 reaches a constant
value, which depends on the dynamics of agents, the graph of
each cluster, the interaction between leaders, and the initial con-
ditions. Second, based on the analysis of the first step, the hy-
brid robust formation control problem, satisfying Definition 1,
is solved.
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First, by employing (13), (18) and (23), the dynamics of ψ1
can be represented as:

ψ̇1 = (Im ⊗ A)ψ1, (24)

ψ1(t+k ) = (UT
3 PeU1 ⊗ In)ψ1(tk) + (UT

3 PeU2 ⊗ In)ψ2(tk).

Then, the solution of (24) with initial condition ψ1(t0) = ψ10
can be obtained by

ψ1 = e(Im⊗A)(t−tk)ψ1(t+k ) = (Im ⊗ eA(t−tk))ψ1(t+k ), (25)

and if limt→∞ ψ2 → 0, then ψ1(t+k ) can be expressed as:

ψ1(t+k ) = lim
k→∞

k∏
i=1

(UT
3 PeU1 ⊗ In)e(Im⊗A)(ti−ti−1)ψ1(t0)

= lim
k→∞

(UT
3 PeU1)k ⊗ eA(tk−t0)ψ1(t0). (26)

In the following, by using results from Lemma 1 and Lemma
2, we prove that matrix UT

3 PeU1 ∈ Rm×m is a row stochastic
matrix with positive diagonal elements.

According to (9), the extended stochastic matrix Pe in (12)
can be re-expressed as follows

Pe =



Pl11 0 · · · Pl1m 0
0 IN1−1 · · · 0 0
...

...
. . .

...
...

Plm1 0 · · · Plmm 0
0 0 · · · 0 INm−1


∈ RN×N , (27)

where

Pl =


Pl11 · · · Pl1m

...
...

...
Plm1 · · · Plmm

 =


Pl1
...

Plm

 ∈ Rm×m, (28)

and the matrix U1 ∈ RN×m and UT
3 ∈ Rm×N are given in (17).

Now, the matrix PeU1 is calculated as

PeU1 =



Pl11 · · · Pl1m

1N1−1 0(N1−1)×(N1−1)
...

...

Plm1 · · · Plmm

1Nm−1 0(Nm−1)×(Nm−1)


=


E1
...

Em

 , (29)

where ∀τ ∈ {1, · · · ,m}, and

Eτ =

[
Plτ1 · · · Plτm

1Nτ−1 0(Nτ−1)×(Nτ−1)

]
∈ RNτ×m. (30)

Then, the matrix UT
3 PeU1 is determined as follows

UT
3 PeU1 =


rT

1 · · · 0
...

. . .
...

0 · · · rT
m




E1
...

Em

 =


rT

1 E1
...

rT
mEm

 , (31)

where rT
τ = [rτ1 , · · · , rτNτ

] ∈ R1×Nτ , ∀τ ∈ {1, · · · ,m}, and

rT
τ Eτ = [rτ1 Plτ1 + rτ2 + · · · + rτNτ

, rτ1 Plτ2 , · · · , rτ1 Plτm ].

The sum of the row matrix rT
τ Eτ is calculated by

Nτ∑
k=1

rT
τ Eτ = rτ1 Plτ1 +

Nτ∑
k=2

rτk + rτ1

Nτ∑
k=2

Plτk . (32)

According to A1, A2 and (9), Plτ1 = 1 −
∑m

k=2 Plτk , then

Nτ∑
k=1

rT
τ Eτ =

Nτ∑
k=1

rτk = 1, (33)

and Plτk > 0, then

rτ1 Plτ1 + rτ2 + · · · + rτNτ
> 0,

rτ1 Plτ2 > 0, · · · , (34)
rτ1 Plτm > 0.

Subsequently, by employing (33) and (34), and according to
Definition 2, we see that the matrix UT

3 PeU1 ∈ Rm×m is a row
stochastic matrix with positive diagonal elements.

Furthermore, by employing (9), and ∀i, τ ∈ {1, · · · ,m} Eq.
(34) becomes

1 + rτ1 (Plτ1 − 1) = 1 − rτ1

m∑
i, j=1

al(i j),

rτ1 Plτ2 = rτ1 ali2 , (35)
· · ·

rτ1 Plτm = rτ1 alim .

then the (i, j)th entry of UT
3 PeU1 is rτ1 al(i j), which implies that

the graph Gl and the graph of UT
3 PeU1 have the same edge set.

Thus, the graph of the matrix UT
3 PeU1 is undirected and con-

nected. It means that the graphs of UT
3 PeU1 has at least one

spanning tree.
Based on the above analysis, we showed that the matrix

UT
3 PeU1 is a row stochastic matrix with positive diagonal el-

ements and its graph has at least one spanning tree. Then, ac-
cording to Lemma 2, the matrix UT

3 PeU1 is SIA.
Therefore, from Lemma 1, there exits a column vector cT

such that

lim
k→∞

(UT
3 PeU1)k = 1mcT . (36)

Then, by substituing (36) and (26) into (25), one has

ψ1 = 1mcT ⊗ eA(t−t0)ψ10. (37)

Second, by introducing the variables

µ1 = (U ⊗ In)
[
ψ1
0

]
, µ2 = (U ⊗ In)

[
0
ψ2

]
, (38)

one has z = µ1 + µ2. Then, according to (38) the variable µ1 is
written such as

µ1 = [U1 ⊗ In U2 ⊗ In]
[
ψ1
0

]
= (U1 ⊗ In)ψ1. (39)
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It follows that µ2 = z − µ1, where µ2 = (U2 ⊗ In)ψ2. And, by
using (37) and (39), we obtain

µ1 = U11mcT ⊗ eA(t−t0)ψ10,

= 1NcT ⊗ eA(t−t0)ψ10. (40)

If it follows limt→∞ ψ2 → 0 and recalling that (U ⊗ In) is non-
singular, then follows from (38) that limt→∞ µ2 → 0. Finally, it
follows from (40) that

lim
t→∞

µ2 = lim
t→∞

(z − µ1)

= lim
t→∞

(x − R − 1N cT ⊗ eA(t−t0)ψ10︸            ︷︷            ︸
h(t)

)→ 0,

= lim
t→∞

(xi − ri − cT ⊗ eA(t−t0)ψ10︸            ︷︷            ︸
h(t)

)→ 0, (41)

which implies that the system (11) can achieve state formation
anticipated by R, meaning the hybrid robust formation control
problem was solved. This completes the proof.

Remark 2. h(t) in (8) generally can be used to guide a group
of agents to achieve an anticipated formation specified by R
as shown in Fig.2 and it is considered as the formation posi-
tion function. Moreover, the formation function h(t) in consid-
ered clustered network is also described as (41), which depend
on agents initial states and formation vector, agent’s dynamics,
communication networks’ cluster and leaders.

Remark 3. According to Thorem 1, one sees that to ensure
the state formation R, not only the communication topology is
required to be connected and the Laplacian matrix is a sym-
metric matrix, but also the formation vector should satisfy the
constraint (19) . Therefore, Theorem 1 establishes the relation-
ship between the formability and the communication topology,
the agents’ dynamics and the formation vector.

3.3. Robust Stabilization Controller Design

Based on the above analysis in Subsection B, the objective
now is to design the matrix K ∈ Rp×n, such that the system
(15) is robustly stable, i.e., limt→∞ ψ2 → 0. The design of such
robust stabilization controller gain K is given in the following
theorem.

Theorem 2. Consider the system (15) satisfying assumptions
A1–A3 and condition (19). It is robustly stable if there exist
positive-definite and diagonal matrices P,Π,Z ∈ Rn×n and X ∈
Rp×n such that the following LMIs are feasible,[

Ξ1 γ2BX +
(Υ1−Υ2)

2 Z
∗ −Z

]
≤ 0, (42)[

Ξ2 −γN BX +
(Υ1−Υ2)

2 Z
∗ −Z

]
≤ 0, (43)[

Z P
P Π−1

]
≥ 0, (44)

where

Ξ1 = sym(AP + γ2BXΥ2) + αP, γ2 = min{Γ},

Ξ2 = sym(AP + γN BXΥ2) + αP, γN = max{Γ}.

Furthermore, K = XP−1.

Proof. Firstly, we define

V = V(ψ) = ψT (Θ ⊗ P−1)ψ, (45)

where

P = PT > 0,Θ =

[
0m 0
0 IN−m

]
.

Obviously, V is positive semi-definite. If we can prove that
between impulses tk and tk+1, the function V is decreasing

V̇ < 0, ∀t ∈ (tk, tk+1), (46)

where

V̇ =ψT [Θ ⊗ (AT P−1 + P−1A)]ψ−

− ψT [(ΘΛU−1 + UΛΘ) ⊗ P−1BK]w. (47)

and at reset time tk
V(tk) ≥ V(t+k ). (48)

Then according to the Lasalle’s invariance principle, ψ(t)
globally exponentially converges to the largest invariance set
contained in {ψ ∈ RNn|V̇(ψ) = 0} for any initial conditions.
It can be seen from (47) and definition of matrix Θ in (45)
that V̇(ψ) = 0 if and only if limt→∞ ψ2 → 0, where ψ2 =

[ψm+1, · · · , ψN]T ∈ RNn−mn.
In the following, the condition (46) is equivalent to V̇ +αV ≤

0, where α > 0. Thus, Eq. (47) becomes

V̇ + αV = ψT [Θ ⊗ (AT P−1 + P−1A + αP−1)]ψ−

− ψT [(ΘΛU−1 + UΛΘ) ⊗ P−1BK]w ≤ 0. (49)

Then, using the S-procedure and the sector-bounded condi-
tions (4), there exits a diagonal matrix Π ∈ Rn×n,Π ≥ 0, such
that

V̇ + αV −
N∑

j=1

(w j − Υ1z j)T Π(w j − Υ2z j) ≤ 0.

⇔V̇ + αV − wT (IN ⊗ Π)w − zT (IN ⊗ ΠΥ1Υ2)z+

+ wT [IN ⊗ Π(Υ1 + Υ2)]z ≤ 0. (50)

Then, with z = (U ⊗ In)ψ,UT = U−1 E.q (50) becomes

V̇ + αV − wT (IN ⊗ Π)w − ψT (IN ⊗ ΠΥ1Υ2)ψ+

+ wT [U ⊗ Π(Υ1 + Υ2)]ψ ≤ 0.

⇔

[
ψ
w

]T [
Ψ1 Ψ2
Ψ3 Ψ4

] [
ψ
w

]
≤ 0.

⇔

[
Ψ1 Ψ2
Ψ3 Ψ4

]
≤ 0. (51)
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where

Ψ1 = Θ ⊗ (AT P−1 + P−1A + αP−1) − IN ⊗ ΠΥ1Υ2,

Ψ2 = −ΘΛU−1 ⊗ P−1BK +
1
2

UT ⊗ Π(Υ1 + Υ2),

Ψ3 = −UΛΘ ⊗ KT BT P−1 +
1
2

U ⊗ Π(Υ1 + Υ2),

Ψ4 = −IN ⊗ Π.

Subsequently, taking the Schur complement to (51) results in
Ψ1 − Ψ2Ψ−1

4 Ψ3 ≤ 0, in which

− Ψ2Ψ−1
4 Ψ3 = ΘΛ2Θ ⊗ P−1BKΠ−1KT BT P−1+

+
1
4

IN ⊗ Π(Υ1 + Υ2)2 +
1
2

ΛΘ ⊗ (Υ1 + Υ2)KT BT P−1+

+
1
2

ΘΛ ⊗ P−1BK(Υ1 + Υ2).

Next, by considering Ψ1 −Ψ2Ψ−1
4 Ψ3 ≤ 0, and since Λ, and Γ

in (13) are diagonal, one obtains

(AT P−1 + P−1A + αP−1) − ΠΥ1Υ2+

+ γ2
k P−1BKΠ−1KT BT P−1 +

1
4

Π(Υ1 + Υ2)2+ (52)

+
1
2
γk(Υ1 + Υ2)KT BT P−1 +

1
2
γkP−1BK(Υ1 + Υ2) ≤ 0,

where γk, k = m + 1, · · · ,N. After, multiplying both sides (52)
with P, we get

PAT + AP + αP +
1
4

PΠ(Υ1 − Υ2)2P+

+ γ2
k BKΠ−1KT BT +

1
2
γkP(Υ1 + Υ2)KT BT + (53)

+
1
2
γkBK(Υ1 + Υ2)P ≤ 0.

Since P,Υ1,Υ2 are diagonal matrices, PΥ1 = Υ1P, PΥ2 =

Υ2P, and (53) is equivalent to

PAT + AP + αP + γkΥ2PKT BT + γkBKPΥ2+

+
1
4

PΠ(Υ1 − Υ2)2P + γ2
k BKΠ−1KT BT + (54)

+
1
2
γkP(Υ1 − Υ2)KT BT +

1
2
γkBK(Υ1 − Υ2)P ≤ 0.

It leads to

sym(AP + γkBKPΥ2) + αP+

+ [γkBKP +
1
2

(Υ1 − Υ2)ΠP2]× (55)

× (ΠP2)−1[γkBKP +
1
2

(Υ1 − Υ2)ΠP2]T ≤ 0.

Taking Z � ΠP2,Z � 0 and K = XP−1. Then, using the
Schur complement again with (55) leads to[

Ξ γkBX +
(Υ1−Υ2)

2 Z
∗ −Z

]
≤ 0, (56)

where Ξ = sym(AP + γkBXΥ2) + αP and γk, k = m + 1, · · · ,N
are eigenvalues of Laplacian matrix L.

Since γ2 = min{Γ}, γN = max{Γ} and γ2 ≤ γm+1 ≤ · · · ≤ λN ,
we can represent γp, p = m+2, · · · ,N−1 as convex combination
of γ2 and γN . Thus, we derive (42) and (43). The LMI (44) is
obtained straigthforward from Z � ΠP2,Z � 0.

On the other hand, at the reset time t = tk one has

V(ψ(t+k )) − V(ψ(tk))

= ψ(tk)T [(Pψ ⊗ In)T (Θ ⊗ P−1(Pψ ⊗ In)−

− (Θ ⊗ P−1)]ψ(tk).

Then, to guarantee the second condition (48), one needs

(Pψ ⊗ In)T (Θ ⊗ P−1)(Pψ ⊗ In) − (Θ ⊗ P−1) ≤ 0. (57)

by multiplying both sides Eq. (57) by (IN ⊗ P) > 0, we obtain

(Pψ ⊗ In)T (Θ ⊗ P)(Pψ ⊗ In) − (Θ ⊗ P) ≤ 0. (58)

by employing Pψ = U−1PeU,U−1 = UT and using (12), and
(9), it is easy to verify that PT

e ΘPe −Θ ≤ 0. Thus, the condition
(48) is always true.

Remark 4. In case of homogeneous constraints, the upper and
lower sectors and bounds for state constraints of all agents are
the same, then Υ1 and Υ2 are multiple of identity matrices, i.e.,
Υ1 = υ1In and Υ2 = υ2In. Then, the variable P ∈ Rn×n in
Theorem 2 is not required to be diagonal. Thus, the associated
LMI problem is less conservative and its feasibility would be
improved.

Remark 5. According to the LMIs (42)–(44), one sees that the
dimension of variables P ∈ Rn×n, X ∈ Rp×n are just equal to
that of the matrix A ∈ Rn×n of each agent. Thus, the complexity
of those LMI problems is low. If γ2, γN are computed by a given
Laplacian matrix L with respect to graph G, then we can solve
LMIs (42)–(44) in fully distributed fashion i.e., each agent can
compute the gain matrix K by itself and implement the consen-
sus protocol (3) using only local information (its information
and its neighbors’ information).

4. Application to Formation of UAVs

In this section, we consisder a group of N UAV’s motion in
d−dimensional Euclidean space, which is modeled as the sec-
ond order dynamics in [32], where the state variable consists of
the configuration states (position-px

i , py
i ) and their derivatives

(velocity-vxi , vyi ), the control input ui ∈ Rp denotes the accel-
eration commands. Finally, the system matrices are given such
as

A = Id ⊗

[
0 1

a1
21 a1

22

]
, B = Id ⊗

[
0
1

]
. (59)

In order to illustrate that the proposed approaches are im-
plemented in the complex network, we consider the following
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Figure 3: The communication of the network

network which has ten UAVs, and the network is divided into
three clusters in Fig. 3.

The dynamics of the agents and the Laplacian matrix of
leader network Gl are given by

A = I2 ⊗

[
0 1
0 −1

]
, B = I2 ⊗

[
0
1

]
.

Ll =

 0.9 −0.4 −0.5
−0.4 0.7 −0.3
−0.5 −0.3 0.8

⇒ Pl =

 0.1 0.4 0.5
0.4 0.3 0.3
0.5 0.3 0.2

 .
In this example, we suppose that agents 3, 6 and 10 have

more communication capability than other agents. Thus, we
choose them as leaders of clusters 1, 2 and 3, respectively.

The formation considered this time is pentacle. Then, the
formation specified by R(m) are given by

r1 = [0 4
√

3], r2 = [2 2
√

3], r3 = [4
√

3 2
√

3], r4 = [2
√

3 0],

r5 = [4 − 4
√

3], r6 = [0 − 2
√

3], r7 = [−4 − 4
√

3],

r8 = [−2
√

3 0], r9 = [−4
√

3 2
√

3], r10 = [−2 2
√

3].

and R = [r1 r2 r3 r4 r5 r6 r7 r8 r9 r10]T ⊗ [1 0]T . It is clear from
R that [[

r1
0

]
, · · · ,

[
r10
0

]]T

=

[[
rx

1 ry
1

0 0

]
, · · · ,

[
rx

10 ry
10

0 0

]]T

.

It means that two scenarios related to UAV’s positions and
velocities are taken into account: ten UAVs will be controlled
to reach a regular pentacle formation in the 2D plane corre-
sponding to their positions, and all of ten UAV’s velocites will
be achieve a common value such as

lim
t→∞
‖(p j − pi) − (r j − ri)‖ = 0,

lim
t→∞
‖(v j − vi)‖ = 0.

Each cluster is color coded, where the first cluster is red, sec-
ond is blue and third is black.

4.1. Heterogeneous constraints
Due to a limited range of sensor, and the limited velocity of

each UAV, the states of connected agents are bounded i.e., the

Table 1: The sate constraints of ten agents
1st state s j(m) s j 2nd state s j s j(m/s)
px

1, py
1 -5 15 vx1, vy1 -2 0

px
2, py

2 -10 0 vx2, vy2 -1 3
px

3, py
3 -19 15 vx3, vy3 -1.3 3.1

px
4, py

4 -12 5 vx4, vy4 -1.8 2
px

5, py
5 -17 12 vx5, vy5 0 3

px
6, py

6 -20 10 vx6, vy6 -4 5
px

7, py
7 -18 7 vx7, vy7 -3.7 1.2

px
8, py

8 -19 11 vx8, vy8 -4 3
px

9, py
9 -22 15 vx9, vy9 -1.5 1.3

px
10, py

10 -10 15 vx10, vy10 -3 3

state constraints are the saturation function (4) with heteroge-
neous constraints such as Table 1, and the initial conditions of
three clusters are randomized.
In t ∈ (tk, tk+1), the control protocol now is

ui =K
N∑

j=1

a(i j)

[
φ j(z

px
j ) − φi(z

px
i ) φ j(z

py

j ) − φi(z
py

i )
φ j(vx

j) − φi(vx
i ) φ j(v

y
j) − φi(v

y
i )

]

+ Q
[

rx
i ry

i
0 0

]
, (60)

where zpx
i = px

i − rx
i ; zpy

i = py
i − ry

i . Then, employing (60), the
dynamics of agent i can be reformulated as[

ṗx
i ṗy

i
v̇x

i v̇y
i

]
=

[
vx

i vy
i

−vx
i −vy

i

]
+ Q

[
rx

i ry
i

0 0

]
+

+ BK
N∑

j=1

a(i j)

[
φ j(z

px
j ) − φi(z

px
i ) φ j(z

py

j ) − φi(z
py

i )
φ j(vx

j) − φi(vx
i ) φ j(v

y
j) − φi(v

y
i )

]
.

At t = tk, the interaction of leaders can expressed as

xl(t+k ) = (Pl ⊗ I2)xl(tk) + rl − (Pl ⊗ I2)rl,

where l = 3, 6, 10, and

xli =

[
px

li
py

li
vx

li
vy

li

]
, xl =

 xl1
xl2
xl3

 , xl1 = x3,
xl2 = x6,
xl3 = x10.

Choosing Q = [0 1] to satisfy Theorem 1, and c = 0.1,Υ1 =

diag{0, 0.1},Υ2 = diag{0.1, 0.2}. Then, solving LMIs in Theo-
rem 2, one has the feedback matrix K = [−5.6625 − 6.0109].

The interaction among leaders occurs at some instant times.
These are defined based on some events or particularly demand
of systems, which is decided by an operator. In our simulation,
we assume that the reset time of the leader’s communication is
periodic and it happens at each second as depicted in Fig. 4
(upper). The evolution of leaders’ states is also depicted in Fig.
4. It is clear that leaders’ values are updated at the reset time tk
through the communication graph Gl.

Convergence of both the variable ψ2 in (18) and the Lya-
punov function (45) is depicted in Fig. 5. It again verifies that
the clustered network achieves formation under robust forma-
tion control protocol (3) if limt→∞ ψ2 → 0, shown in Theorem
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Figure 6: Ten-UAVs’positions (xi, y j) constraints (left) and ten-UAVs’velocities
(vxi , vyi ) constraints (right).

1, and the Lyapunov function satisfies the condtions (46) and
(48). Moreover, according to the simulation results depicted re-
spectively in Fig. 6, and Fig. 7, we see that all positions and
velocities of UAVs in clustered network reach the pentacle for-
mation and consensus under the state constraints.

4.2. Homogeneous constraints

Finally, in oder to investigate the influence of state con-
straints on the formation performance, we have carried out two

Figure 7: Pentacle formation of ten UAVs’positions (xi, yi) (lower) and consen-
sus of ten UAVs’velocities (vxi , vyi ) under state constraints (upper).

simulations. In the first simulation, we consider constraints
on positions that belong to [−15 15](m) and we suppose that
the speed shoud be in the interval [−15 8](m/s). The second
simuation suppose that the constraints on positions belong to
[−3 3](m) and that speed should be in [−3 3](m/s). The ob-
tained simulation resluts are depicted in Fig.8 and Fig. 9. In
both of cases, one can see that agents achieve and keep the de-
sired formation and that the values of state variables are in the
defined region. Moreover, one can remark that when the con-
straints on the speed are stricter (the second case) the achive-
ment of formation takes more time.

Figure 8: Ten-UAVs’ positions (xi, y j) under state constraints belonging to
[−15 15](m) (upper); Ten-UAVs’ positions (xi, y j) under state constraints be-
longing to [−3 3](m) (lower).
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Figure 9: Ten-UAVs’ velocities (vxi , vyi ) under state constraints belonging to
[−15 8](m/s) (upper); Ten-UAVs’ velocities (vxi , vyi ) under state constraints
belonging to [−3 3](m/s) (lower).

5. Conclusion

In this paper, a novel approach has been proposed to de-
sign distributed robust formation controllers for general linear
MASs under state constraints with the following features. First,
the considered networks are partitioned into clusters, where the
communication between agents inside each cluster is continu-
ous, but the cluster leaders interact at some reset times. Sec-
ond, it is shown that the robust formation design with state con-
straints can be indirectly solved by considering the stability of
an equivalent system. Third, sufficient conditions for the ro-
bust stability of this equivalent system were derived from so-
lutions of local convex LMI problems, which can be solved in
a distributed manner. A possible application of our proposed
approaches to the UAVs formation flying was illustrated.

Our future work will address the case of output constraints in
clustered network with switching topology.
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