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This paper studies the formation control problem in clustered network systems composing of linear agents that are subjected to state constraints. In each cluster, there exists an agent called a leader who can communicate with other leaders outside of its cluster at some specific discrete instants. Moreover, the continuous-time communication structure in each cluster is represented by a fixed and undirected graph. A robust formation control protocol is proposed to deal with the hybrid communication described above and the constraints on states of agents. It is next shown that the hybrid robust formation control design for clustered multi-agent networks can be indirectly solved through the robust stabilization design of an equivalent system obtained by matrix theory and algebraic graph theory. Then, a robust controller is designed for the initial clustered network system in terms of linear matrix inequalities. Finally, a formation design for unmanned aerial vehicles is carried out and simulated to illustrate the effectiveness of the proposed hybrid formation control design method.

Introduction

Multi-agent systems (MASs) and their cooperative control problems have been extensively investigated in the past two decades, motivated by many practical applications such as unmanned aerial vehicles (UAVs), wireless sensor networks, autonomous underwater vehicles (AUVs), transportation networks, satellite networks, etc. Formation is one of the most interesting problems and intensively investigated issue in MASs, because of both several theoretical challenges and a wide range of potential applications [START_REF] Zhao | Distributed finite-time tracking control for multi-agent systems: An observer-based approach[END_REF][START_REF] Liu | Finite-time formation control for linear multi-agent systems: A motion planning approach[END_REF][START_REF] Guo | Local control strategy for moving-target-enclosing under dynamically changing network topology[END_REF][START_REF] Dong | Output containment control for swarm systems with general linear dynamics: A dynamic output feedback approach[END_REF].

Currently, consensus-based control approaches are widely employed in solving the formation problem of MASs. The firstorder MASs was studied in [START_REF] Ren | Multi-vehicle consensus with a time-varying reference state[END_REF]. It was proved that they could achieve formation if the directed interaction topology contains a directed spanning tree. Extensions of consensus-based formation algorithms to second-order with linear dynamics under the fixed or the time-varying interaction graphs were also investigated in [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF]. In [START_REF] Oh | Formation Control and Network Localization via Orientation Alignment[END_REF], a formation control law based on local measurement of relative-positions was proposed for first-order MASs. In another research [START_REF] Dong | Timevarying formation control for unmanned aerial vehicles: Theories and applications[END_REF], based on consensus approaches, necessary and sufficient conditions were derived to deal with the time-varying formations for second-order UAV swarm systems. Another direction is to study the formation of secondorder MASs with time delays [START_REF] Cheng | Formation control of multi-agent systems with heterogeneous communication delays[END_REF]. Accordingly, the sufficient conditions were proposed for MASs to achieve desired stationary and moving formations. Next, the formation tracking control problems [START_REF] Han | Formation tracking control for time-delayed multi-agent systems with second-order dynamics[END_REF], which uses neighboring relative state, and position information for second-order MASs with time-varying delays, were considered. Moreover, the formation tracking problems were also investigated in [START_REF] Yang | Fault-tolerant Consensus of Leader-following Multi-agent Systems Based on Distributed Fault Estimation Observer[END_REF], where the agents' local coordinate systems are applied such that the centroid of the controlled formation tracks a given trajectory. Recently, some new studies concern the influence of environments on wireless communication [START_REF] Li | Robust Distributed Consensus Control of Uncertain Multi-Agents Interacted by Eigenvalue-Bounded Topologies[END_REF][START_REF] Gao | Distributed H ∞ Control of Platoon Interacted by Switching and Undirected Topology[END_REF]. This leads to the degradation of the performance of wireless communication, which causes the interaction topology among agents cannot hold for a long time.

Other significant and realistic issues have been encountered such as the constraints on the agent's inputs, states, or relative states because of the physical limitations of agents. This includes, for example, the formation of vehicles with limited speeds and limited working space, smart buildings energy control with constraints on temperature and humidity in specific ranges and so on. Recently, some studies have considered the cooperative control of MASs under the constraints on agent's inputs, states, or relative states [START_REF] Nedi | Constrained Consensus and Optimization in Multi-Agent Networks[END_REF][START_REF] Wei | Consensus problems for linear time-invariant multi-agent systems with saturation constraints[END_REF][START_REF] Mo | Distributed consensus of second-order multiagent systems with nonconvex input constraints[END_REF][START_REF] Zhou | Constrained consensus in continuoustime multiagent systems under weighted graph[END_REF][START_REF] Dinh | Multiagent system consensus under input and state constraints[END_REF][START_REF] Dinh | Robust consensus analysis and design under relative state constraints or uncertainties[END_REF]. In [START_REF] Nedi | Constrained Consensus and Optimization in Multi-Agent Networks[END_REF], a constrained consensus algorithm and distributed optimization problems were proposed, where agents with state constraints are investigated and they are required to lie in individual closed convex sets. In another work, [START_REF] Wei | Consensus problems for linear time-invariant multi-agent systems with saturation constraints[END_REF] studied a consensus problem of simple integrator MASs under input constraints. Following this research line, a distributed consensus of secondorder MASs with nonconvex input constraints was addressed in [START_REF] Mo | Distributed consensus of second-order multiagent systems with nonconvex input constraints[END_REF]. It is shown that the input constrained consensus achieved if the graph has a directed spanning tree. Another direction to deal with input and state constraints, discarded consensus algorithms are employed [START_REF] Zhou | Constrained consensus in continuoustime multiagent systems under weighted graph[END_REF]. Moreover, in order to achieve the global consensus in the presence of agents' inputs, states, or relative state constraints [START_REF] Dinh | Multiagent system consensus under input and state constraints[END_REF][START_REF] Dinh | Robust consensus analysis and design under relative state constraints or uncertainties[END_REF], the MASs is reformulated in form of a network of Lure systems. However, the formation problem under state constraints in the clustered network is still an open problem.

On the other hand, it has been noticed that interaction among agents in the aforementioned networks is either continuoustime or discrete-time. However, due to either energy constraints occurring in long-time interactions or communication constraints, agents can only impulsively exchange information with their neighbors or be subjected to abrupt changes at specific instants [START_REF] Hong Guan | Consensus analysis based on impulsive systems in multiagent networks[END_REF][START_REF] Zhi-Hong Guan | Impulsive consensus algorithms for second-order multi-agent networks with sampled information[END_REF][START_REF] Hu | Second-order consensus of multi-agent systems in the cooperationcompetition network with switching topologies: A time-delayed impulsive control approach[END_REF][START_REF] Liu | Consensus seeking in multi-agent systems via hybrid protocols with impulse delays[END_REF]. This leads to a hybrid interaction that combines both continuous and discrete interactions among agents. In [START_REF] Hong Guan | Consensus analysis based on impulsive systems in multiagent networks[END_REF], a sufficient result has been derived for the impulsive consensus of first-order MASs, where the graphs of continuous-time and impulsive-time topologies contain a spanning tree. Following this research line, there are several types of research [START_REF] Zhi-Hong Guan | Impulsive consensus algorithms for second-order multi-agent networks with sampled information[END_REF][START_REF] Hu | Second-order consensus of multi-agent systems in the cooperationcompetition network with switching topologies: A time-delayed impulsive control approach[END_REF], which have dealt with the consensus problem of the second-order MASs under an impulsive control strategy. Moreover, inspired by the results in [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF][START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF], the necessary condition of consensus on graph connections among agents may require. This is investigated in [START_REF] Liu | Consensus seeking in multi-agent systems via hybrid protocols with impulse delays[END_REF], where the first-order MASs with hybrid delay consensus protocols are described in the form of impulsive systems. In other directions on consensus problem under hybrid communication, the network is partitioned into several groups or clusters [START_REF] Cesar Bragagnolo | Reset strategy for consensus in networks of clusters[END_REF][START_REF] Irinel-Constantin Morarescu | Coordination in Networks of Linear Impulsive Agents[END_REF]. The works in [START_REF] Cesar Bragagnolo | Reset strategy for consensus in networks of clusters[END_REF] proposed a quasi-periodically reset strategy and provided some LMI conditions to guarantee the globally uniformly exponential consensus for MASs, where the intra-cluster communication structures are represented by directed and strongly connected graphs. The researches in [START_REF] Irinel-Constantin Morarescu | Coordination in Networks of Linear Impulsive Agents[END_REF] investigated the sufficient conditions for event-triggered consensus. Moreover, both of state and output consensus problem in the clustered network of generic linear MASs are respectively investigated in [START_REF] Van Thiem Pham | Consensus of Multi-Agent Systems in Clustered Networks[END_REF][START_REF] Van Thiem Pham | Impulsive Observer-Based Control in Clustered Networks of Linear Multi-Agent Systems[END_REF] and [START_REF] Van Thiem Pham | Adaptive Output Consensus Design in Clustered Networks of Heterogeneous Linear Multi-Agent Systems[END_REF]. However, in most of the above, constraints on the states of agents are not considered.

As a practical example, let us analyze two groups of multi-UAV. To support the cooperative flying, each UAV is equipped with a wireless device to communicate with other UAVs in the same group and on-board sensors to measure or estimate its absolute position and speed. Formation problem naturally appears when two groups are executing the same mission, e.g., scanning an area or protecting civil. Because of sensors' limited ranges and limited speeds of UAVs, the measurements of UAVs' positions and velocities are subject to saturation constraints. Moreover, due to the short-range communications of wireless technologies, it is impossible for each UAV to leave its group and continuously communicate with other UAVs in other groups. Therefore, it is more practical for the collaboration of these groups if each group has one leading UAV to communicate with other groups' leading UAVs through a cellular network at some specific discrete moments. As a result, the information exchange in these networks is not only continuous but also discrete.

Motivated by both theoretical and practical issues men-tioned above, this paper investigates the state formation control problem under state constraints in clustered MASs where agents have generic linear dynamics. Our approach covers broader systems and scenarios than those in the existing studies [START_REF] Cesar Bragagnolo | Reset strategy for consensus in networks of clusters[END_REF][START_REF] Irinel-Constantin Morarescu | Coordination in Networks of Linear Impulsive Agents[END_REF]. Next, a robust formation protocol, which deals with the continuous-time communication inside clusters and discrete-time information exchange between clusters, is introduced. Compared with the previous results [START_REF] Van Thiem Pham | Consensus of Multi-Agent Systems in Clustered Networks[END_REF][START_REF] Van Thiem Pham | Impulsive Observer-Based Control in Clustered Networks of Linear Multi-Agent Systems[END_REF], the protocol is more practical and complicated. It is then shown that the considered robust formation control problem can be indirectly solved by studying the robust stability of an equivalent system by matrix theory and algebraic graph theory. In comparison with the one in [START_REF] Cesar Bragagnolo | Reset strategy for consensus in networks of clusters[END_REF][START_REF] Van Thiem Pham | Consensus of Multi-Agent Systems in Clustered Networks[END_REF][START_REF] Van Thiem Pham | Impulsive Observer-Based Control in Clustered Networks of Linear Multi-Agent Systems[END_REF], our approach shows the important role of communication between leaders at some specific discrete instants, represented by the stochastic matrix. Accordingly, a sufficient condition will be derived in terms of LMIs for the robust distributed formation of clustered networks of generic linear agents under state constraints and hybrid communications.

The rest of the paper is organized as follows. Section II is dedicated to problem formulation. In Section III, the robust formation problem of MASs under state constraints in a hybrid clustered network is investigated. A possible application of the proposed control law to the UAVs formation flying is illustrated in Section IV. Finally, conclusions are provided in Section V.

Notations and symbols. N denotes the sets of non-negative integers. Real, and non-negative real numbers are denoted by R, and R + , respectively. 0 N denotes the zero matrices with appropriate dimensions. 1 N denotes the (N × 1) column vectors whose elements are all ones. A matrix is called SIA if it is stochastic, irreducible, and aperiodic. On the other hand, diag{} represents diagonal or block-diagonal matrices, and sym(A) denotes A + A T for any real matrix A. Lastly, • and ⊗ stands for the Hadamard and Kronecker product.

Problem Formulation

Graph Theory

An undirected graph G consists of a pair (V, E), where the vertex set V = {v 1 , • • • , v N } denotes the set of nodes and the edge set E ⊆ V × V represents the interactions. The adjacency matrix is defined as A = [a (i j) ], with a (i j) > 0 if (v j , v i ) ∈ E, and

a (i j) = 0 otherwise. The Laplacian matrix L = [L (i j) ] ∈ R N×N is defined as L (ii) = j i a (i j) ; L (i j) = -a (i j) .
In the sequel, we consider that the network

G is subdivided into m undirected subnetworks C τ , ∀τ ∈ {1, • • • , m} represented by the graphs G 1 , • • • , G m such that G 1 = (V 1 , E 1 ), • • • , G m = (V m , E m ), where V = V 1 ∪V 2 ∪. . .∪V m and V τ ∩V g = for all τ, g = 1, • • • m, τ g and E = E 1 ∪ E 2 • • • ∪ E m .
The communication graph of each subnetwork G τ is represented by a Laplacian matrix L τ . Each cluster has a specific agent called the leader, and denoted in the following by l τ ∈ V τ , ∀τ ∈ {1, • • • , m}. The remaining agents are called followers and are denoted by f h . The set of leaders will be denoted by

I = {l 1 , • • • , l m }. At par- ticular time instant t k , k ∈ N, t k ≥ 0 of a time sequence {t k } that satisfies t 1 < t 2 < • • • , lim t k →∞ t k = ∞,
the leaders interact following a predefined interaction map E l ⊂ I × I. The leaders communication graph G l = (I, E l ) is also supposed to be a undirected graph. Finally, without loss of generality, each leader is considered as the first agent of its cluster [START_REF] Van Thiem Pham | Adaptive Output Consensus Design in Clustered Networks of Heterogeneous Linear Multi-Agent Systems[END_REF].

C τ = {l τ , f m τ-1 +2 , • • • , f m τ }, ∀τ ∈ {1, • • • , m}, (1) 
where m 0 = 0, m m = N and the cardinality of C τ is given by

C τ = n τ = m τ -m τ-1 , ∀τ ≥ 1.

Network Dynamics

We consider a group of N linear identical agents that interact in m clusters. The dynamics of each agent i is described by

ẋi = Ax i + Bu i , (2) 
where

x i = [x i,1 , • • • , x i,n ] T ∈ R n is the state, u i ∈ R p is the control input; A ∈ R n×n , B ∈ R n×p and C ∈ R q×n .
According to (1), we concede that each agent has a vector state denoted by

x l τ = [x l τ,1 , • • • , x l τ,n ] T ∈ R n for the lead- ers l τ and x f h = [x f h,1 , • • • , x f h,n ] T ∈ R n for the followers f h , ∀τ h = 1, • • • , N. The desired state formation is denoted by R = [r 1 , r 2 , • • • , r N ] ∈ R Nn , where r i ∈ R n , ∀i ∈ V
is a formation variable of agent i. Therefore, the desired state formation R is meaning that agents in a network need to achieve a reference coordinate frame corresponding to their positions and velocities.

However, in practice, the measurement part may have bounded nonlinearities or saturation constraints due to sensor limitations as well as physical limitations. Moreover, different agents inside each cluster may have different interactive capabilities. Therefore, the upper and lower bounds of saturation constraints may also be different. This leads to the heterogeneous asymmetric saturation levels.

Because only the leaders of these clusters can communicate together at some reset times t k , a formation protocol for a clustered network with state constraints based on local information is given by

u i = K N j=1 a (i j) φ j (z j (t)) -φ i (z i (t)) + Qr i , t ∈ (t k , t k+1 ) (3)
where z i (t) = x i (t)r i denote the state formation variables of agent i, and K, Q ∈ R p×n denote the protocol gain matrices, respectively. The general continous functions

φ i (z i ) : R n → R n , i = 1, • • • , N satisfying the following sector-bounded con- ditions (φ i (z i (t)) -Υ 1 z i (t)) • (φ i (z i (t)) -Υ 2 z i (t)) ≤ 0 ∀z i (t) ∈ R n , (4) 
where

Υ 1 = diag{υ k,1 } k=1,••• ,n ∈ R n , Υ 2 = diag{υ k,2 } k=1,••• ,n ∈ R n
are matrices composed of known sector slopes υ k,1 < υ k,2 . An example of φ i is the saturation function s i (•) defined by

s i (z i (t))          s i : z i (t) ≤ s i , z i (t) : s i < z i (t) < s i , s i : z i (t) ≥ s i (5)
where s i ≤ 0 ≤ s i , s i < s i are known constants which are called saturation levels.

The exchanged information between leader's states at the reset time t k can be described by

∆z l i (t k ) = m j=1 a l(i j) (z l j (t k ) -z l i (t k )), t = t k , (6) 
where

∆z l i (t k ) = z l i (t + k ) -z l i (t - k )
, where z l i (t + k ) and z l i (t - k ) represent the right and left limit of z l i at t k , respectively. Without loss of generality, we assume that z l i (t - k ) = z l i (t k ). Furthermore, a l(i, j) is the (i, j)th entry of the weighted adjacent matrix A l = [a l(i j) ], and m denotes the set of leaders in graph G l . The Laplacian matrix

L l = [L l(i j) ] ∈ R m×m is defined as L l(ii) = m j i=1 a l(i j) ; L l(i j) = -a l(i j) .
Then the collective dynamics of system (2) under the consensus protocol [START_REF] Guo | Local control strategy for moving-target-enclosing under dynamically changing network topology[END_REF] and the interaction between leaders (6) can be rewritten as

żi (t) = Az i (t) -BK N j=1 L (i j) w j (t) + (A + BQ)r i , t ∈ (t k , t k+1 ), ∆z l i (t k ) = - m j=1 L l(i j) z l j (t k ), t = t k , (7) 
w i (t) = φ i (z i (t)).
It can be seen that the evolution of the dynamic system described by ( 7) is influenced by the events that happen at the reset moments t k . Thus, the evolution of the whole system can be viewed as a hybrid system that evolves as follows: during interval time (t k-1 , t k ), the interaction among nodes in each cluster C τ is related only to the graph G τ . Moreover, at each instant time t k , the leaders update their states instantaneously according to the topology of G l , and thus, there exit jump phenomena in the states' leader, while the states' followers in a cluster are recalculated based on the new information's leader. The objective of the above collaboration is to achieve a specific global objective namely state formation defined as follows.

Definition 1. The MASs (2) is said to be achieve state formation anticipated by R if there is vector h(t) ∈ R n such that

lim t→∞ (x i (t) -r i -h(t)) = 0, ( 8 
)
for any given bounded initial condition.

For the sake of clarity, an example, as depicted in Fig. 1, is given to illustrate this kind of problem. There are 6 agents divided into two clusters, red and black, that have to realize a hexagon formation. Each agent receives only the state information of its neighbors in the same subnetwork (the same color). If there is no communication between subnetworks (for example, agents 2 and 5 or agents 3 and 6), then the 6-agent network cannot achieve the desired formation. Therefore, in order to ensure the task of 6 agents, at some discrete-time instants, a communication between one red and one black agent (called leader 1 and leader 2, respectively) is activated.

Next, the following assumptions are utilized. A2. a l(i j) > 0, m j i=1 a l(i j) < 1.

A3. The matrix pair (A, B) is stabilizable.

Remark 1. Assumption A1 is needed to guarantee that the Laplacian matrix

L τ of G τ , ∀τ ∈ {1, • • • , m} satisfies the follow- ing proprieties L τ 1 N τ = 0, r T τ L τ = 0 and r T v 1 N τ = 1
, where 1 N τ , and r T τ = 1 N τ 1 N τ are the right and left eigenvectors of L τ associated with zero eigenvalue, respectively. Assumption A2 ensures the matrix P l = I -L l is a stochastic matrix with positive diagonal elements (more information is shown in (9)). Moreover, assumption A3 is for the existence of a controller. Definition 2. [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF] Let F p a nonnegative and square matrix whose row sums are all equal 1 (i.e., F p 1 = 1). Then, matrix F p is called row stochastic. Hereafter, the time index t is omitted in expressions of x i , h and other variables just for conciseness of mathematical representations. Now, the considered problem in the current research is stated as follows.

Hybrid Robust Formation Control Problem: Consider a group of N agents with their auxiliary systems defined in [START_REF] Oh | Formation Control and Network Localization via Orientation Alignment[END_REF], and suppose that assumptions A1-A3 hold. Design the hybrid robust distributed formation control (3) such that the collective dynamics of the clustered MAS ( 7) satisfies Definition 1.

Robust Distributed Formation Design

In this section, we propose a solution for the above hybrid robust formation control problem with fixed topologies G τ and G l satisfying assumption A1. The proposed design is composed of two steps. First, by employing results from matrix theory and algebraic graph theory, we show that the considered problem can be indirectly solved by the robust stability of an equivalent system. Then, the robust stability design of the equivalent system is derived in terms of LMIs.

Prerequisites

From the Ger šgorin theorem [START_REF] Olfati | Consensus problems in networks of agents with switching topology and time-delays[END_REF], we know that λ m ≤ 2d max (G l ), where λ m is the largest eigenvalue of the Lalapcian of the graph G l , and d max (G l ) is the maximum out-degree of the nodes of G l , where

deg out (v li ) = m i=1 a l(i j)
Therefore, we can get 0 < λ m < 2. Let us introduce P l(i j) = -L l(i j) = a l(i j) > 0,

P l(ii) = 1 -L l(ii) = 1 - m j i=1 a l(i j) > 0, (9) 
then m j=1 P l(i j) = 1, and P l = I -L l is a row stochastic matrix with positive diagonal elements, and according to A1 and A2, it has an eigenvalue λ 1 = 1 with algebraic multiplicity equal to one, and all the other eigenvalues satisfy 0

< |λ i | < 1, i = 2, • • • , m.
Moreover, as mentioned above the network is subdivided into m undirected subnetworks. Then, L ∈ R N×N stands for the Laplacian matrix associated with the graph G, which has a diagonal form

L =             L 1 • • • 0 . . . . . . . . . 0 • • • L m             . ( 10 
)
Now, some algebraic properties of L are presented in the following Proposition. Proof. See in [START_REF] Van Thiem Pham | Impulsive Observer-Based Control in Clustered Networks of Linear Multi-Agent Systems[END_REF].

Next, it follows (9), the system (7) can be written in a form of the overall network dynamics

ż = (I N ⊗ A)z -(L ⊗ BK)w + (I N ⊗ A)R, t ∈ (t k , t k+1 ) z l (t + k ) = (P l ⊗ I n )z l (t k ), t = t k (11) 
w = Φ(z),

where

P l = I -L l , A = A + BQ, Φ(z) = [φ T 1 (z 1 ), • • • , φ T N (z N )] T and z = [z T l 1 , z T f 2 , • • • , z T f m 1 , • • • , z T l m , • • • , z T f mm = z T f N ] T ∈ R Nn , z l = [z T l 1 , • • • , z T l m ] T ∈ R mn .
containing respectively the states of agents and leader's states.

Let us introduce the extended stochastic matrix P e as follows

P e = M T P l 0 0 I N-m M ∈ R N×N , (12) 
where M is a permutation matrix.

Then, the second equation in [START_REF] Yang | Fault-tolerant Consensus of Leader-following Multi-agent Systems Based on Distributed Fault Estimation Observer[END_REF] can be expressed by

z(t + k ) = (P e ⊗ I n )z(t k ), t = t k .
In the following, let U ∈ R N×N be an orthogonal matrix, and employing Proposition 1, we obtain

U -1 LU = 0 m 0 0 Γ = Λ ∈ R (N)×(N) , (13) 
Γ = diag{γ m+1 , • • • , γ N } ∈ R (N-m)×(N-m) .
Finally, let us also introduce the new variable

ψ = (U -1 ⊗ I n )z. ( 14 
)
It follows the variable ψ in ( 14), we now formulate our statement as the following

ψ = (I N ⊗ A)ψ -(ΛU -1 ⊗ BK)w + HR, t ∈ (t k , t k+1 ) ψ(t + k ) = (P ψ ⊗ I n )ψ(t k ), t = t k , (15) 
z = (U ⊗ I n )ψ, w = Φ(z),
where P ψ = U -1 P e U and H = (U -1 ⊗ A).

In the next part of this paper, thanks to results from matrix theory and algebraic graph theory, we show that the robust formation control problem of MASs in clustered network [START_REF] Yang | Fault-tolerant Consensus of Leader-following Multi-agent Systems Based on Distributed Fault Estimation Observer[END_REF] is indirectly solved by considering the robust stability of the system (15).

Formation Analysis in Clustered Network

In order to simplify the presentation of the next results let us partition the matrices U -1 , U into

U -1 = [U T 3 U T 4 ] T , U = [U 1 U 2 ], (16) 
where

U T 3 ∈ R m×N , U T 4 ∈ R (N-m)×N and U 1 ∈ R N×m , U 2 ∈ R N×(N-m) . U 1 =              1 N 1 • • • 0 . . . . . . . . . 0 • • • 1 Nm              , U T 3 =              r T 1 • • • 0 . . . . . . . . . 0 • • • r T m              , (17) 
which satisfies LU 1 = 0 N×n , U T 3 L = 0 m×N . This allows to decompose [START_REF] Nedi | Constrained Consensus and Optimization in Multi-Agent Networks[END_REF] into two parts :

ψ 1 = (U T 3 ⊗ I n )z, ψ 2 = (U T 4 ⊗ I n )z, (18) 
where ψ 1 ∈ R mn and ψ 2 ∈ R Nn-mn . Now we are able to introduce the first main results of this paper.

Theorem 1. Consider the overall network dynamics system (15) satisfying A1-A3 the hybrid robust formation control problem is solved if the following formation feasibility condition holds

(A + BQ)(r i -r j ) = 0, ∀i, j = 1, • • • , N. (19) 
and

lim t→∞ ψ 2 → 0 (20) 
for any given bounded initial conditions.

Proof. If the condition ( 19) holds, then one has that

[L ⊗ (A + BQ)]R = 0. (21) 
Pre-multiplying both sides of ( 21) with (U -1 ⊗ I n ) yields

[ΛU -1 ⊗ (A + BQ)]R = 0. ( 22 
)
Then pre-multiplying both the sides of ( 22) with

0 m 0 0 Γ -1 ⊗ I n
gives us [U -1 ⊗(A+ BQ)]R = 0, which is equivalent to HR = 0. Therefore, the system (15) leads to the following system

ψ = (I N ⊗ A)ψ -(ΛU -1 ⊗ BK)w, t ∈ (t k , t k+1 ) ψ(t + k ) = (P ψ ⊗ I n )ψ(t k ), t = t k , (23) 
z = (U ⊗ I n )ψ, w = Φ(z).
In the following, we firstly show that ψ 1 reaches a constant value, which depends on the dynamics of agents, the graph of each cluster, the interaction between leaders, and the initial conditions. Second, based on the analysis of the first step, the hybrid robust formation control problem, satisfying Definition 1, is solved. First, by employing ( 13), ( 18) and ( 23), the dynamics of ψ 1 can be represented as:

ψ1 = (I m ⊗ A)ψ 1 , (24) 
ψ 1 (t + k ) = (U T 3 P e U 1 ⊗ I n )ψ 1 (t k ) + (U T 3 P e U 2 ⊗ I n )ψ 2 (t k ).
Then, the solution of ( 24) with initial condition ψ 1 (t 0 ) = ψ 10 can be obtained by

ψ 1 = e (I m ⊗A)(t-t k ) ψ 1 (t + k ) = (I m ⊗ e A(t-t k ) )ψ 1 (t + k ), (25) 
and if lim t→∞ ψ 2 → 0, then ψ 1 (t + k ) can be expressed as:

ψ 1 (t + k ) = lim k→∞ k i=1 (U T 3 P e U 1 ⊗ I n )e (I m ⊗A)(t i -t i-1 ) ψ 1 (t 0 ) = lim k→∞ (U T 3 P e U 1 ) k ⊗ e A(t k -t 0 ) ψ 1 (t 0 ). ( 26 
)
In the following, by using results from Lemma 1 and Lemma 2, we prove that matrix U T 3 P e U 1 ∈ R m×m is a row stochastic matrix with positive diagonal elements.

According to (9), the extended stochastic matrix P e in ( 12) can be re-expressed as follows

P e =                        P l 11 0 • • • P l 1m 0 0 I N 1 -1 • • • 0 0 . . . . . . . . . . . . . . . P l m1 0 • • • P lmm 0 0 0 • • • 0 I Nm-1                        ∈ R N×N , (27) 
where

P l =             P l 11 • • • P l 1m . . . . . . . . . P l m1 • • • P l mm             =             P l 1 . . . P l m             ∈ R m×m , (28) 
and the matrix U 1 ∈ R N×m and U T 3 ∈ R m×N are given in [START_REF] Zhou | Constrained consensus in continuoustime multiagent systems under weighted graph[END_REF]. Now, the matrix P e U 1 is calculated as

P e U 1 =                        P l 11 • • • P l 1m 1 N 1 -1 0 (N 1 -1)×(N 1 -1) . . . . . . P l m1 • • • P lmm 1 Nm-1 0 (Nm-1)×(Nm-1)                        =              E 1 . . . E m              , (29) 
where ∀τ ∈ {1, • • • , m}, and

E τ = P l τ1 • • • P l τm 1 N τ -1 0 (N τ -1)×(N τ -1) ∈ R N τ ×m . (30) 
Then, the matrix U T 3 P e U 1 is determined as follows

U T 3 P e U 1 =              r T 1 • • • 0 . . . . . . . . . 0 • • • r T m                           E 1 . . . E m              =              r T 1 E 1 . . . r T m E m              , ( 31 
)
where

r T τ = [r τ 1 , • • • , r τ Nτ ] ∈ R 1×N τ , ∀τ ∈ {1, • • • , m}, and 
r T τ E τ = [r τ 1 P l τ1 + r τ 2 + • • • + r τ Nτ , r τ 1 P l τ2 , • • • , r τ 1 P l τm ].
The sum of the row matrix r T τ E τ is calculated by

N τ k=1 r T τ E τ = r τ 1 P l τ1 + N τ k=2 r τ k + r τ 1 N τ k=2 P l τk . (32) 
According to A1, A2 and ( 9), P l τ1 = 1 -m k=2 P l τk , then

N τ k=1 r T τ E τ = N τ k=1 r τ k = 1, (33) 
and P l τk > 0, then

r τ 1 P l τ1 + r τ 2 + • • • + r τ Nτ > 0, r τ 1 P l τ2 > 0, • • • , (34) 
r τ 1 P l τm > 0.
Subsequently, by employing ( 33) and (34), and according to Definition 2, we see that the matrix U T

3 P e U 1 ∈ R m×m is a row stochastic matrix with positive diagonal elements.

Furthermore, by employing ( 9), and ∀i, τ ∈ {1, • • • , m} Eq. (34) becomes

1 + r τ 1 (P l τ1 -1) = 1 -r τ 1 m i j=1 a l(i j) , r τ 1 P l τ2 = r τ 1 a l i2 , (35) • • • r τ 1 P l τm = r τ 1 a l im .
then the (i, j) th entry of U T

3 P e U 1 is r τ 1 a l(i j) , which implies that the graph G l and the graph of U T

3 P e U 1 have the same edge set. Thus, the graph of the matrix U T

3 P e U 1 is undirected and connected. It means that the graphs of U T

3 P e U 1 has at least one spanning tree.

Based on the above analysis, we showed that the matrix U T

3 P e U 1 is a row stochastic matrix with positive diagonal elements and its graph has at least one spanning tree. Then, according to Lemma 2, the matrix U T

3 P e U 1 is SIA. Therefore, from Lemma 1, there exits a column vector c T such that lim k→∞

(U T 3 P e U 1 ) k = 1 m c T . ( 36 
)
Then, by substituing (36) and ( 26) into ( 25), one has

ψ 1 = 1 m c T ⊗ e A(t-t 0 ) ψ 10 . ( 37 
)
Second, by introducing the variables

µ 1 = (U ⊗ I n ) ψ 1 0 , µ 2 = (U ⊗ I n ) 0 ψ 2 , ( 38 
)
one has z = µ 1 + µ 2 . Then, according to (38) the variable µ 1 is written such as

µ 1 = [U 1 ⊗ I n U 2 ⊗ I n ] ψ 1 0 = (U 1 ⊗ I n )ψ 1 . ( 39 
)
It follows that µ 2 = z -µ 1 , where µ 2 = (U 2 ⊗ I n )ψ 2 . And, by using (37) and (39), we obtain

µ 1 = U 1 1 m c T ⊗ e A(t-t 0 ) ψ 10 , = 1 N c T ⊗ e A(t-t 0 ) ψ 10 . (40) 
If it follows lim t→∞ ψ 2 → 0 and recalling that (U ⊗ I n ) is nonsingular, then follows from (38) that lim t→∞ µ 2 → 0. Finally, it follows from (40) that

lim t→∞ µ 2 = lim t→∞ (z -µ 1 ) = lim t→∞ (x -R -1 N c T ⊗ e A(t-t 0 ) ψ 10 h(t) ) → 0, = lim t→∞ (x i -r i -c T ⊗ e A(t-t 0 ) ψ 10 h(t) ) → 0, ( 41 
)
which implies that the system (11) can achieve state formation anticipated by R, meaning the hybrid robust formation control problem was solved. This completes the proof.

Remark 2. h(t) in [START_REF] Dong | Timevarying formation control for unmanned aerial vehicles: Theories and applications[END_REF] generally can be used to guide a group of agents to achieve an anticipated formation specified by R as shown in Fig. 2 and it is considered as the formation position function. Moreover, the formation function h(t) in considered clustered network is also described as (41), which depend on agents initial states and formation vector, agent's dynamics, communication networks' cluster and leaders.

Remark 3. According to Thorem 1, one sees that to ensure the state formation R, not only the communication topology is required to be connected and the Laplacian matrix is a symmetric matrix, but also the formation vector should satisfy the constraint [START_REF] Dinh | Robust consensus analysis and design under relative state constraints or uncertainties[END_REF] . Therefore, Theorem 1 establishes the relationship between the formability and the communication topology, the agents' dynamics and the formation vector.

Robust Stabilization Controller Design

Based on the above analysis in Subsection B, the objective now is to design the matrix K ∈ R p×n , such that the system (15) is robustly stable, i.e., lim t→∞ ψ 2 → 0. The design of such robust stabilization controller gain K is given in the following theorem.

Theorem 2. Consider the system (15) satisfying assumptions A1-A3 and condition [START_REF] Dinh | Robust consensus analysis and design under relative state constraints or uncertainties[END_REF]. It is robustly stable if there exist positive-definite and diagonal matrices P, Π, Z ∈ R n×n and X ∈ R p×n such that the following LMIs are feasible,

Ξ 1 γ 2 BX + (Υ 1 -Υ 2 ) 2 Z * -Z ≤ 0, (42) 
Ξ 2 -γ N BX + (Υ 1 -Υ 2 ) 2 Z * -Z ≤ 0, (43) 
Z P P Π -1 ≥ 0, (44) 
where

Ξ 1 = sym(AP + γ 2 BXΥ 2 ) + αP, γ 2 = min{Γ}, Ξ 2 = sym(AP + γ N BXΥ 2 ) + αP, γ N = max{Γ}. Furthermore, K = XP -1 .
Proof. Firstly, we define

V = V(ψ) = ψ T (Θ ⊗ P -1 )ψ, (45) 
where

P = P T > 0, Θ = 0 m 0 0 I N-m .
Obviously, V is positive semi-definite. If we can prove that between impulses t k and t k+1 , the function V is decreasing

V < 0, ∀t ∈ (t k , t k+1 ), (46) 
where

V =ψ T [Θ ⊗ (A T P -1 + P -1 A)]ψ- -ψ T [(ΘΛU -1 + UΛΘ) ⊗ P -1 BK]w. (47) 
and at reset time

t k V(t k ) ≥ V(t + k ). (48) 
Then according to the Lasalle's invariance principle, ψ(t) globally exponentially converges to the largest invariance set contained in {ψ ∈ R Nn | V(ψ) = 0} for any initial conditions. It can be seen from ( 47) and definition of matrix Θ in (45) that V(ψ) = 0 if and only if lim t→∞ ψ 2 → 0, where

ψ 2 = [ψ m+1 , • • • , ψ N ] T ∈ R Nn-mn .
In the following, the condition (46) is equivalent to V + αV ≤ 0, where α > 0. Thus, Eq. (47) becomes

V + αV = ψ T [Θ ⊗ (A T P -1 + P -1 A + αP -1 )]ψ- -ψ T [(ΘΛU -1 + UΛΘ) ⊗ P -1 BK]w ≤ 0. (49) 
Then, using the S-procedure and the sector-bounded conditions (4), there exits a diagonal matrix Π ∈ R n×n , Π ≥ 0, such that

V + αV - N j=1 (w j -Υ 1 z j ) T Π(w j -Υ 2 z j ) ≤ 0. ⇔ V + αV -w T (I N ⊗ Π)w -z T (I N ⊗ ΠΥ 1 Υ 2 )z+ + w T [I N ⊗ Π(Υ 1 + Υ 2 )]z ≤ 0. (50) Then, with z = (U ⊗ I n )ψ, U T = U -1 E.q (50) becomes V + αV -w T (I N ⊗ Π)w -ψ T (I N ⊗ ΠΥ 1 Υ 2 )ψ+ + w T [U ⊗ Π(Υ 1 + Υ 2 )]ψ ≤ 0. ⇔ ψ w T Ψ 1 Ψ 2 Ψ 3 Ψ 4 ψ w ≤ 0. ⇔ Ψ 1 Ψ 2 Ψ 3 Ψ 4 ≤ 0. ( 51 
)
where

Ψ 1 = Θ ⊗ (A T P -1 + P -1 A + αP -1 ) -I N ⊗ ΠΥ 1 Υ 2 , Ψ 2 = -ΘΛU -1 ⊗ P -1 BK + 1 2 U T ⊗ Π(Υ 1 + Υ 2 ), Ψ 3 = -UΛΘ ⊗ K T B T P -1 + 1 2 U ⊗ Π(Υ 1 + Υ 2 ), Ψ 4 = -I N ⊗ Π.
Subsequently, taking the Schur complement to (51) results in

Ψ 1 -Ψ 2 Ψ -1 4 Ψ 3 ≤ 0, in which -Ψ 2 Ψ -1 4 Ψ 3 = ΘΛ 2 Θ ⊗ P -1 BKΠ -1 K T B T P -1 + + 1 4 I N ⊗ Π(Υ 1 + Υ 2 ) 2 + 1 2 ΛΘ ⊗ (Υ 1 + Υ 2 )K T B T P -1 + + 1 2 ΘΛ ⊗ P -1 BK(Υ 1 + Υ 2 ).
Next, by considering Ψ 1 -Ψ 2 Ψ -1 4 Ψ 3 ≤ 0, and since Λ, and Γ in ( 13) are diagonal, one obtains

(A T P -1 + P -1 A + αP -1 ) -ΠΥ 1 Υ 2 + + γ 2 k P -1 BKΠ -1 K T B T P -1 + 1 4 Π(Υ 1 + Υ 2 ) 2 + (52) + 1 2 γ k (Υ 1 + Υ 2 )K T B T P -1 + 1 2 γ k P -1 BK(Υ 1 + Υ 2 ) ≤ 0, where γ k , k = m + 1, • • • , N.
After, multiplying both sides (52) with P, we get

PA T + AP + αP + 1 4 PΠ(Υ 1 -Υ 2 ) 2 P+ + γ 2 k BKΠ -1 K T B T + 1 2 γ k P(Υ 1 + Υ 2 )K T B T + (53) + 1 2 γ k BK(Υ 1 + Υ 2 )P ≤ 0.
Since P, Υ 1 , Υ 2 are diagonal matrices, PΥ 1 = Υ 1 P, PΥ 2 = Υ 2 P, and (53) is equivalent to

PA T + AP + αP + γ k Υ 2 PK T B T + γ k BKPΥ 2 + + 1 4 PΠ(Υ 1 -Υ 2 ) 2 P + γ 2 k BKΠ -1 K T B T + (54) + 1 2 γ k P(Υ 1 -Υ 2 )K T B T + 1 2 γ k BK(Υ 1 -Υ 2 )P ≤ 0.
It leads to

sym(AP + γ k BKPΥ 2 ) + αP+ + [γ k BKP + 1 2 (Υ 1 -Υ 2 )ΠP 2 ]× (55) × (ΠP 2 ) -1 [γ k BKP + 1 2 (Υ 1 -Υ 2 )ΠP 2 ] T ≤ 0.
Taking Z ΠP 2 , Z 0 and K = XP -1 . Then, using the Schur complement again with (55) leads to

Ξ γ k BX + (Υ 1 -Υ 2 ) 2 Z * -Z ≤ 0, (56) 
where Ξ = sym(AP + γ k BXΥ 2 ) + αP and γ k , k = m + 1, • • • , N are eigenvalues of Laplacian matrix L.

Since γ 2 = min{Γ}, γ N = max{Γ} and γ 2 ≤ γ m+1 ≤ • • • ≤ λ N , we can represent γ p , p = m+2, • • • , N-1 as convex combination of γ 2 and γ N . Thus, we derive (42) and (43). The LMI (44) is obtained straigthforward from Z ΠP 2 , Z 0.

On the other hand, at the reset time t = t k one has

V(ψ(t + k )) -V(ψ(t k )) = ψ(t k ) T [(P ψ ⊗ I n ) T (Θ ⊗ P -1 (P ψ ⊗ I n )- -(Θ ⊗ P -1 )]ψ(t k ).
Then, to guarantee the second condition (48), one needs

(P ψ ⊗ I n ) T (Θ ⊗ P -1 )(P ψ ⊗ I n ) -(Θ ⊗ P -1 ) ≤ 0. ( 57 
)
by multiplying both sides Eq. ( 57) by (I N ⊗ P) > 0, we obtain

(P ψ ⊗ I n ) T (Θ ⊗ P)(P ψ ⊗ I n ) -(Θ ⊗ P) ≤ 0. ( 58 
)
by employing P ψ = U -1 P e U, U -1 = U T and using [START_REF] Li | Robust Distributed Consensus Control of Uncertain Multi-Agents Interacted by Eigenvalue-Bounded Topologies[END_REF], and ( 9), it is easy to verify that P T e ΘP e -Θ ≤ 0. Thus, the condition (48) is always true. Remark 4. In case of homogeneous constraints, the upper and lower sectors and bounds for state constraints of all agents are the same, then Υ 1 and Υ 2 are multiple of identity matrices, i.e., Υ 1 = υ 1 I n and Υ 2 = υ 2 I n . Then, the variable P ∈ R n×n in Theorem 2 is not required to be diagonal. Thus, the associated LMI problem is less conservative and its feasibility would be improved.

Remark 5. According to the LMIs (42)-(44), one sees that the dimension of variables P ∈ R n×n , X ∈ R p×n are just equal to that of the matrix A ∈ R n×n of each agent. Thus, the complexity of those LMI problems is low. If γ 2 , γ N are computed by a given Laplacian matrix L with respect to graph G, then we can solve LMIs (42)-(44) in fully distributed fashion i.e., each agent can compute the gain matrix K by itself and implement the consensus protocol (3) using only local information (its information and its neighbors' information).

Application to Formation of UAVs

In this section, we consisder a group of N UAV's motion in d-dimensional Euclidean space, which is modeled as the second order dynamics in [START_REF] Lafferriere | Decentralized control of vehicle formations[END_REF], where the state variable consists of the configuration states (position-p x i , p y i ) and their derivatives (velocity-v x i , v y i ), the control input u i ∈ R p denotes the acceleration commands. Finally, the system matrices are given such as

A = I d ⊗ 0 1 a 1 21 a 1 22 , B = I d ⊗ 0 1 . (59) 
In order to illustrate that the proposed approaches are implemented in the complex network, we consider the following The dynamics of the agents and the Laplacian matrix of leader network G l are given by

A = I 2 ⊗ 0 1 0 -1 , B = I 2 ⊗ 0 1 . L l =         0.9 -0.4 -0.5 -0.4 0.7 -0.3 -0.5 -0.3 0.8         ⇒ P l =         0.1 0.4 0.5 0.4 0.3 0.3 0.5 0.3 0.2         .
In this example, we suppose that agents 3, 6 and 10 have more communication capability than other agents. Thus, we choose them as leaders of clusters 1, 2 and 3, respectively.

The formation considered this time is pentacle. Then, the formation specified by R(m) are given by

r 1 = [0 4 √ 3], r 2 = [2 2 √ 3], r 3 = [4 √ 3 2 √ 3], r 4 = [2 √ 3 0], r 5 = [4 -4 √ 3], r 6 = [0 -2 √ 3], r 7 = [-4 -4 √ 3], r 8 = [-2 √ 3 0], r 9 = [-4 √ 3 2 √ 3], r 10 = [-2 2 √ 3]. and R = [r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 r 9 r 10 ] T ⊗ [1 0] T . It is clear from R that r 1 0 , • • • , r 10 0 T = r x 1 r y 1 0 0 , • • • , r x 10 r y 10 0 0 T .
It means that two scenarios related to UAV's positions and velocities are taken into account: ten UAVs will be controlled to reach a regular pentacle formation in the 2D plane corresponding to their positions, and all of ten UAV's velocites will be achieve a common value such as

lim t→∞ (p j -p i ) -(r j -r i ) = 0, lim t→∞ (v j -v i ) = 0.
Each cluster is color coded, where the first cluster is red, second is blue and third is black.

Heterogeneous constraints

Due to a limited range of sensor, and the limited velocity of each UAV, the states of connected agents are bounded i.e., the 

u i =K N j=1 a (i j) φ j (z p x j ) -φ i (z p x i ) φ j (z p y j ) -φ i (z p y i ) φ j (v x j ) -φ i (v x i ) φ j (v y j ) -φ i (v y i ) + Q r x i r y i 0 0 , (60) 
where z p x i = p x ir x i ; z p y i = p y ir y i . Then, employing (60), the dynamics of agent i can be reformulated as

ṗx i ṗy i vx i vy i = v x i v y i -v x i -v y i + Q r x i r y i 0 0 + + BK N j=1 a (i j) φ j (z p x j ) -φ i (z p x i ) φ j (z p y j ) -φ i (z p y i ) φ j (v x j ) -φ i (v x i ) φ j (v y j ) -φ i (v y i )
.

At t = t k , the interaction of leaders can expressed as

x l (t + k ) = (P l ⊗ I 2 )
x l (t k ) + r l -(P l ⊗ I 2 )r l , where l = 3, 6, 10, and The interaction among leaders occurs at some instant times. These are defined based on some events or particularly demand of systems, which is decided by an operator. In our simulation, we assume that the reset time of the leader's communication is periodic and it happens at each second as depicted in Fig. 4 (upper). The evolution of leaders' states is also depicted in Fig. 4. It is clear that leaders' values are updated at the reset time t k through the communication graph G l .

x l i = p x l i p y l i v x l i v y l i , x l =           x l 1 x l 2 x l 3           , x l 1 = x 3 , x l 2 = x 6 , x l 3 = x 10 . Choosing Q = [ 0 
Convergence of both the variable ψ 2 in ( 18) and the Lyapunov function (45) is depicted in Fig. 5. It again verifies that the clustered network achieves formation under robust formation control protocol (3) if lim t→∞ ψ 2 → 0, shown in Theorem 1, and the Lyapunov function satisfies the condtions (46) and (48). Moreover, according to the simulation results depicted respectively in Fig. 6, and Fig. 7, we see that all positions and velocities of UAVs in clustered network reach the pentacle formation and consensus under the state constraints.

Homogeneous constraints

Finally, in oder to investigate the influence of state constraints on the formation performance, we have carried out two simulations. In the first simulation, we consider constraints on positions that belong to [- 15 15](m) and we suppose that the speed shoud be in the interval [-15 8](m/s). The second simuation suppose that the constraints on positions belong to [-3 3](m) and that speed should be in [-3 3](m/s). The obtained simulation resluts are depicted in Fig. 8 and Fig. 9. In both of cases, one can see that agents achieve and keep the desired formation and that the values of state variables are in the defined region. Moreover, one can remark that when the constraints on the speed are stricter (the second case) the achivement of formation takes more time. 

Conclusion

In this paper, a novel approach has been proposed to design distributed robust formation controllers for general linear MASs under state constraints with the following features. First, the considered networks are partitioned into clusters, where the communication between agents inside each cluster is continuous, but the cluster leaders interact at some reset times. Second, it is shown that the robust formation design with state constraints can be indirectly solved by considering the stability of an equivalent system. Third, sufficient conditions for the robust stability of this equivalent system were derived from solutions of local convex LMI problems, which can be solved in a distributed manner. A possible application of our proposed approaches to the UAVs formation flying was illustrated.

Our future work will address the case of output constraints in clustered network with switching topology.
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 12 Figure 1: The scheme of formation problem

Lemma 1 .

 1 [START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF] Let Γ be a compact set consisting of n × n SIA matrices with the property that for any nonnegative integer k and any B 1 ,• • • , B k ∈ Γ (repetitions permitted), k i=1 B i is SIA. Then,given any infinite sequence B 1 , B 2 , • • • (repetitions permitted), of matrices Γ, there exits a column vector c T such that lim k→∞ k i=1 B i = 1c T . Lemma 2. [25] If B = [b i j ] n×n is a stochastic matrix with positive diagonal elements, and the graph associated with B has a spanning tree, then B is SIA.

Proposition 1 .

 1 Let us consider a network of m clusters satisfying assumption A1, with the Laplacian L ∈ R N×N , then rank(L) = Nm and L has m eigenvalues at zero and all the other Nm eigenvalues of the Laplacian L ∈ R N×N are positive.

Figure 3 :

 3 Figure 3: The communication of the network

1 ]

 1 to satisfy Theorem 1, and c = 0.1, Υ 1 = diag{0, 0.1}, Υ 2 = diag{0.1, 0.2}. Then, solving LMIs in Theorem 2, one has the feedback matrix K = [-5.6625 -6.0109].
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 45 Figure 4: A reset signal and leaders' states of UAVs

Figure 6 :

 6 Figure 6: Ten-UAVs'positions (x i , y j ) constraints (left) and ten-UAVs'velocities (v x i , v y i ) constraints (right).

Figure 7 :

 7 Figure 7: Pentacle formation of ten UAVs'positions (x i , y i ) (lower) and consensus of ten UAVs'velocities (v x i , v y i ) under state constraints (upper).

Figure 8 :

 8 Figure 8: Ten-UAVs' positions (x i , y j ) under state constraints belonging to [-15 15](m) (upper); Ten-UAVs' positions (x i , y j ) under state constraints belonging to [-3 3](m) (lower).

Figure 9 :

 9 Figure 9: Ten-UAVs' velocities (v x i , v y i ) under state constraints belonging to [-15 8](m/s) (upper); Ten-UAVs' velocities (v x i , v y i ) under state constraints belonging to [-3 3](m/s) (lower).

Table 1 :

 1 The sate constraints of ten agents 1st state s j (m) s j 2nd state state constraints are the saturation function (4) with heterogeneous constraints such as Table1, and the initial conditions of three clusters are randomized.

	s j	s j (m/s)

In t ∈ (t k , t k+1 ), the control protocol now is
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