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ABSTRACT 
We examine two key human performance characteristics of a 
pen-like tangible input device that executes a different com-
mand depending on which corner, edge, or side contacts a 
surface. The manipulation time when transitioning between 
contacts is examined using physical mock-ups of three repre-
sentative device sizes and a baseline pen mock-up. Results 
show the largest device is fastest overall and minimal differ-
ences with a pen for equivalent transitions. Using a hardware 
prototype able to sense all 26 different contacts, a second ex-
periment evaluates learning and recall. Results show almost 
all 26 contacts can be learned in a two-hour session with an 
average of 94% recall after 24 hours. The results provide 
empirical evidence for the practicality, design, and utility for 
this type of tangible pen-like input. 

Author Keywords 
pen input; tangible interfaces; learning; command selection. 

CCS Concepts 
•Human-centered computing → Graphical user inter-
faces; Graphics input devices; Empirical studies in HCI; 

INTRODUCTION 
There is a class of tangible input devices that not only provide 
positional input, but also detect which geometric feature con-
tacts a surface. This class has an advantage over traditional 
input methods because it integrates command selection (how it 
contacts) and parameter manipulation (positional movement). 
A common example is a digital stylus which uses a nib end 
and an eraser end to switch between drawing and erasing. Ex-
tending this approach has been demonstrated in research like 
ToolStone [18], and a pen-like input device called Conté [27]. 

Conté is held in one hand, and manipulated so that one of the 
8 corners, 12 edges, or 6 sides of its cuboid shape contacts 
a tablet (Figure 1). In theory, these 26 different contacts 
enable selecting among 26 different commands. However, the 
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Figure 1. Conté, a tangible pen-like input device (from [27]). 

prototype only sensed 10 different contacts and required a 
diffuse illumination table top. No studies were conducted, so 
implicit claims by the authors that devices like Conté would 
be fast to manipulate and users could remember many contact-
to-command mappings have never been evaluated. 

Testing these manipulation and recall claims using a 26-
command Conté device contributes fundamental knowledge 
about tangible pen-like devices, general tangible input [8, 2, 
18], and 3D spatial memory for command selection [6, 19]. 
In this paper we examine these questions using the simple 
cuboid shape used for Conté, a logical and essential first step 
before examining other variations of 3D shapes and deeper 
investigations of underlying phenomena. 

We test manipulation and recall in two controlled experiments, 
and we describe a new hardware device to sense all 26 contacts 
on a standard touchscreen. Our first experiment examines 
manipulation by timing people as they rotate the device with 
their fingers or hand to move from one contact to another. 
Three device sizes are examined, with a pen mockup included 
as a baseline. Although the original work suggested small 
form factors would be faster to manipulate, we find the largest 
size is fastest overall. We also find most manipulation times 
are equivalent to transitions with the pen. 

We designed and created a new self-contained Conté prototype 
that can sense all 26 contacts and works with any capacitive 
display using a conductive case designed with pliable corners. 
Contacts are distinguished using the device angle from an 
internal IMU, and a 3D “mirror” visualization displays a re-
configurable mapping of commands to contacts. This device 
enabled us to study recall in a second experiment based on 
Gutwin et al.’s [5] protocol. An adaptation of FastTap [6] 
is used as a baseline comparison where commands are spa-
tially anchored in 2D, compared to 3D with the Conté device. 
Our results show that after approximately 2 hours of training, 
people can recall 24 out of 26 Conté commands 24 hours later. 
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Our work makes three contributions: (1) manipulating a tan-
gible input device like Conté can be fast, and speed increases 
with device size; (2) people can recall many command map-
pings when spatially mapped to a 3D object, and this number 
is comparable to a 2D spatial mapping; (3) a Conté device that 
senses and distinguishes all 26 contacts can be fabricated for 
current capacitive displays. 

BACKGROUND AND RELATED WORK 
A tangible input device is an object coupled with digital in-
formation [8]. They can be “graspable” to take advantage of 
spatial reasoning, existing manipulation skills, and a one-to-
one mapping between control and controller [2]. Fitzmaurice 
et al.’s Bricks is a classic example of a tangible input de-
vice. These Lego-sized extruded-rectangles act as graspable 
physical handles for direct manipulation of virtual objects. 
Rekimoto and Sciammarella [18] extend this idea to selecting 
six menus or modes based on which side of their mouse-sized 
Toolstone contacts the surface. Manipulation time was not 
investigated, and recall was not considered since the static 
mapping is labelled on the large sides of the device. Van 
Laerhoven et al. [26] describe methods to sense orientation 
and movement of a cube-shaped device. One example of 
contact-based input is described, where an audio-input mode 
is determined based on which side the cube rests. Manipu-
lation time was not investigated, and like ToolStone, recall 
was not tested since the large device could be labelled with 
the static mapping. Perelman et al. demonstrate a phone case 
with unique patterns to detect which side contacts a tablet, but 
neither edges or corners are considered [15]. Our prototype 
extends these general approaches of using orientation to detect 
how a device contacts a surface. 

Vogel and Casiez’s Conté [27] 
Built to resemble the artists’ square-sided crayon of the same 
name, the thin extruded-rectangle shape affords a pen-like 
feeling when a corner or end edge contacts a surface. Other 
edges and sides may be used for interactions like simulating 
a mouse, tool pallets, or context menus. When describing 
manipulation characteristics, the authors argue “Many nearby 
transitions should be quite fast.” but they admit “In our [two-
person] exploratory interview, participants commented on the 
extra time required to flip Conté end-over-end” [27, p. 360]. 
In addition to these untested and unproven statements about 
manipulation, the authors state “An open question is whether a 
user could recall command mappings for 26 different contact 
points” [27, p. 360]. Our work investigates exactly these 
issues related to manipulation time and recall. 

A possible reason why such fundamental questions were not 
examined may be the limited capability of their hardware pro-
totype. The device emitted infrared (IR) light from each corner 
and was covered in IR reflective paper with dot patterns on 
each side. When combined with a diffuse illumination table-
top, computer vision techniques could determine the device’s 
position, and distinguish between differently-shaped contacts. 
For example, the short, medium, and long edge could be distin-
guished, but edges of the same size could not be distinguished. 
Similarly, all eight corners appeared the same. As a result, 

only 10 out of 26 possible contacts could be identified. Our de-
vice demonstrates that distinguishing between all 26 contacts 
is possible without external tracking hardware or cameras. 

Device Manipulation Characteristics 
A simple form of contact-based input is flipping between “ink” 
and “eraser” ends of a digital pen [7, 13]. Li et al. investi-
gated this manipulation time in a larger study on general pen 
mode-switching [12]. They found flipping the pen slower than 
alternatives like pushing a button, but they did not control for 
device size, considered techniques with few mode-switches, 
and only this simple end-to-end transition was tested. Other 
projects related to pen manipulation include using pen grip 
changes for mode-switching, like Song et al. [21] and Sun et 
al. [22]. However, manipulation times are not evaluated, and 
these interactions are not contact-based. 

Many factors influence how a device is gripped and manipu-
lated. For instance, Olafsdottir et al. found grip is influenced 
by hand position, target position, and anticipated rotation when 
manipulating graphical objects on a tabletop [14]. However 
these are not tangible objects, and they do not control for ob-
ject size. When designing the Roly-Poly Mouse [16], Perelman 
et al. refer to informal tests that identified an 8 cm size de-
vice was easier to manipulate compared to 6 cm or 10 cm. A 
detailed examination of manipulation time for tangible input 
devices has not been performed. 

Learning and Recall for Spatially Mapped Interfaces 
Designing an interface to be spatially consistent leverages spa-
tial memory so item locations are retrieved with little effort 
[19]. This design principle has been adopted in many inter-
faces; we focus on FastTap [6] since it has been extensively 
tested and we use an adapted version as a baseline. 

FastTap is a 2D grid of spatially anchored command buttons. 
A command is invoked by pressing a menu button in one cor-
ner, then pressing a grid location. It is a rehearsal interface 
[10], where the grid is displayed after a short delay (150 to 250 
ms [5, 11]). A novice user waits to see the grid of command 
locations, but once learned, they use “expert mode” by press-
ing a grid location immediately. In a time-constrained training 
game, participants quickly transitioned to expert selections 
with a 12-item grid [5, 11], and expert usage persisted with a 
realistic application over the course of one week [11]. How-
ever, expert use was infrequent with a 24-item grid [5], but 
this was only tested in a real application. It remains unclear if 
this is due to the increase in number of items, or the lack of a 
preparatory training game. 

A contact-based tangible device like Conté is essentially a 3D 
spatial interface, since commands are mapped to landmarks 
defined by its shape. Perrault et al. [17] tested a 3D spatial 
interface with commands mapped to objects in a room, often 
with strong semantic relationships, and found 47 out of 48 
commands could be recalled after one week. This is encourag-
ing, but unlike being surrounded by commands in 3D, a Conté 
device is itself manipulated in 3D, so its spatial frame-of-
reference constantly rotates and translates. In 2D, the benefits 
of spatial consistency are robust to many transformations, like 
view-aligned translation, but large rotations and perspective 



changes incur significant “reorientation” times [20]. Whether 
3D spatial mapping is similarly affected is unknown. 

Understanding upper limits for learning spatial command lo-
cations is important, since some interfaces support up to 64 
[24] or 160 items [25]. Aside from Perrault et al., only a small 
subset are usually tested, typically 12 (e.g. [24]), and formal 
methods to assess learning, such as memory recall after 24 
hours [1], have not been used. 

26-CONTACT CONTE DEVICE 
This section describes our 26-contact capacitive Conté device 
(Figure 2). It retains the cuboid shape of Vogel and Casiez’s 
simple 10-command prototype, but its design and implementa-
tion are different in all other aspects. Our device is 85 × 30 × 
15 mm to accommodate a microcontroller, IMU, and battery, 
which is larger than the previous device, and weighs approx-
imately 25g (comparable to a 21g Apple Pencil). We show 
this increase in size has advantages in our manipulation ex-
periment. Unlike the previous device, ours senses 26 contacts 
on a conventional capacitive touch surface, the first device of 
its kind to do so. It is not a polished consumer product, but 
with routine recalibration, it is good enough to demonstrate the 
potential of the hardware approach, and allow users to learn 
command locations in our recall experiment. 3D drawings of 
parts, schematics, and software are available for replication1. 

Case Design 
The main case is printed in PLA wrapped in copper tape, and 
the ends are printed with Conductive 95 Shore A Thermo-
plastic Polyurethane (TPU) 2. The end corners are designed 
with hollow pockets to make them pliable enough to register 
on standard capacitive sensors, but stiff enough to feel like 
corners. The narrow sides of each end project 1.5mm form-
ing 11mm wide valleys. When combined with the narrower 
main case, this creates patterns of one, two, or four capaci-
tive touches when corners, edges, or sides are contacting the 
display. White marks are added to one end to create visual 
asymmetry, so different orientations are distinguishable. 

Internal Hardware 
Orientation, acceleration, and magnetic field data from the 9 
DOF MPU9250 IMU are processed by an on-board sensor-
fusion chip3 at 100 Hz, then passed to an Arduino-compatible 
ESP8285 microcontroller which packages the data, then sends 
it as a UDP stream over on-board WIFI at 100 Hz. All internal 
hardware is powered by a 3.7V, 150mAh LiPo battery. 

Software 
A host application, written in Java with Processing, combines 
the UDP stream of IMU data with a TUIO stream of touch 
events from a standard touch input device to create an OSC 
stream of device events. The events include down, move, and 
up events to describe which corner, edge, or side is contacting 
the display, the (x, y) position(s) of the touch points, and raw 
IMU data for custom usage. In the case of two or four touch 
1ns.inria.fr/loki/conte 
2rubber3dprinting.com/pi-etpu-95-250-carbon-black/ 
3tindie.com/products/onehorse/ultimate-sensor-fusion-solution-
mpu9250 

(a) (b)

Figure 2. Conductive 26-contact sensing Conté device: (a) internal hard-
ware and case; (b) used in an iOS iPad PDF application. 

points (most edges and sides), a single down and up event is 
sent when the first or last touch point is registered. In addition, 
an air event sends IMU data when the device is not contacting 
the touchscreen. 

Generating these events requires touch filtering and contact 
classification. 

When the device is dragged quickly, the reported touchscreen 
events can “skip” with spurious up and down events, leaving 
gaps in what should be a continuous line. To counteract this, 
up and down touchscreen events are ignored when they occur 
within 300ms and within a distance threshold (46mm for single 
points, 15mm for two or more points). An exception is made 
when more than 75% of the device acceleration is along the 
normal vector of the display, then the anti-skip filter is ignored 
and the touchscreen up event is immediately accepted. All 
values were determined by trial and error, to minimize spurious 
events with reasonable latency. 

The contact is classified from IMU data using a decision tree. 
Training data was gathered by touching the device to a touch-
screen 40 times per contact, each time at a different orientation 
over the possible range. Three frames of IMU readings were 
recorded after each touch down. This was performed by the 
first author, since this is hardware calibration to determine 
the relative orientation of the IMU to the touchscreen. The 
resulting 3,120 data points were used to train a decision tree 
in Weka with 10-fold cross-validation, resulting in 99.2% ac-
curacy. During actual usage, the host application uses the 
trained decision tree to classify the three IMU data frames 
after a down event, using a majority voting scheme with the last 
frame acting as tie breaker. Note IMU “drift” and magnetic 
interference reduce this ideal accuracy during real usage. Dur-
ing Experiment 2, participants performed a drift-reset after 
about 4.7 minutes of intense usage. Even with this precaution, 
there are still some misclassifications, most often with adja-
cent contacts, like a corner and short end edge. We manually 
correct these errors using video logs for experiment recall tests. 
Professional-grade engineering and IMU hardware would re-
duce the need for manual drift correction substantially. 

Using a dedicated host to generate events means applications 
can run on any platform. We demonstrate Conté with an iPad 
in the accompanying video, and our recall experiment runs on 
a Windows touchscreen laptop. 

https://3tindie.com/products/onehorse/ultimate-sensor-fusion-solution
https://2rubber3dprinting.com/pi-etpu-95-250-carbon-black


EXPERIMENT 1: MANIPULATION 
The goal of this experiment is to investigate the impact of 
device size on manipulation time: the fundamental tangible 
interaction of rotating the device with the fingers or hand to 
change how the device contacts a surface. Understanding 
manipulation time validates our larger hardware device and 
guides designers when mapping commands to contact types 
and locations. Device mock-ups with colour-based detection 
are used to avoid unnecessary engineering of custom hardware 
to replicate our device in very small form factors. Overall, 
we expected larger devices would take longer to manipulate, 
and that manipulation time would increase as the location of a 
contact was “farther away” — meaning rotating to a contact 
on the same end would be fastest, rotating to a contact along 
the barrel would be slower, and rotating to a contact at the 
opposite end would be slowest. Since Conté is considered 
“pen-like”, a pen mock-up is used as a baseline to compare 
with equivalent Conté contacts. 

Participants 
We recruited 12 participants, mean age 29 (SD = 7.6), 6 men, 
6 women, all right-handed. Left handed people were screened 
out to avoid asymmetric confounds. Each participant received 
$15 for the 90 minute study. 

Apparatus 
The Conté device mock-ups were 3D printed in PLA and each 
face painted with a unique colour in a consistent pattern (Fig-
ure 3a). The pen mock-up was a “paper blending stump” with 
unique colours on the ends and around the barrel. The exper-
iment was performed on a light box with a partially covered 
acrylic top with a transparent resistive touch sensor placed 
above an internal video camera (Figure 3b). When a mock-up 
touches the 10 × 4 cm window in the light box, the camera 
captures a frame and a hue-based classifier determines which 
contact was used based on the relative proportion of colours 
visible from below. The ideal diffuse illumination created by 
the light box made contact classification very reliable and the 
resistive display provided accurate timing. 

Procedure 
Before explaining the task procedure, we introduce terminol-
ogy and concise notation. A manipulation is when the device is 
rotated from touching one contact against the screen, to touch-
ing another contact against the screen, and back again. With 

(a) (b)

Figure 3. Apparatus: (a) device mock-ups for PEN, LARGE, MEDIUM, 
SMALL; (b) light table used to detect contact. 

start corner
S-C1

S-C2

S-E2
S-E2

O-E2

O-E1

S-C4

S-C3 S-C4

S-E1

S-E3
O-E4

O-E3
B-E3

B-E1
B-E4

S-E4

O-C3

O-C4

O-C1

S-S1

O-S1

B-S4

B-S3
B-S2

B-S1

Figure 4. Contact names and groups. Prefix denotes GROUP: ‘S’ means 
the contact is at the same end as the start corner, ‘B’ means the contact 
is located along the barrel, and ‘O’ means the contact is located at the 
other end relative to the start corner. Suffix denotes the contact type and 
number: ‘C’ for corner, ‘E’ for edge, ‘S’ for side. 

26 contacts, there are 325 (26 choose 2) such manipulations. 
We reduce that number by focusing only on manipulations 
starting from a specific corner. This is reasonable since Conté 
is primarily a pen-like device, where corners are used for 
modes like writing or drawing, and edges and sides used for 
interspersed commands. In the experiment, each manipulation 
goes from a “start corner” to one of the 7 remaining corners, 
or to one of the 12 edges, or to one of the 6 sides, or to the 
user’s finger, and back to the start corner. 

We use a concise notation to describe a contact relative to the 
start corner (illustrated in Figure 4). The prefix denotes the 
relative position: ‘S’ means the contact is at the same end, 
‘B’ means the contact is along the barrel, and ‘O’ means the 
contact is at the opposite end. The suffix denotes the type 
of contact (‘C’ for corner, ‘E’ for edge, ‘S’ for side) with a 
numeric id. For example, ‘S-C2’ is corner 2 at the same end, 
‘B-S1’ is side 1 of the barrel, and ‘O-E3’ is edge 3 at the opposite 
end. The prefixes ‘S’, ‘B’, and ‘O’ form contact location groups. 

Task 
The task required participants to perform manipulations in 
rapid succession, and they had to repeat two error-free manip-
ulations in a row to complete the task. The start corner and 
other contact in the manipulation were shown in side-by-side 
images on the screen located near the light table. The image 
of the active contact was highlighted in green and sound com-
municated successful and unsuccessful manipulations based 
on the recognized contact. Each participant was given brief 
instructions on how to interpret on-screen images and how 
to complete the task. Participants were instructed to hold 
the mockups like a pen when possible and told to complete 
each manipulation as fast as possible. For each manipulation 
contact, they could practice before actual trials. 

Design 
The primary independent variable is device SIZE with three 
levels: SMALL (63 × 6 × 6 mm), the size of an artist’s Conté 
crayon; MEDIUM (84 × 11 × 8 mm), the size of the Vogel and 
Casiez’s Conté device; and LARGE (85 × 30 × 15 mm), the 
size of our Conté hardware device. The second independent 
variable is CONTACT, the contact the manipulation uses other 



than the start corner. It is an unbalanced factor due to the topol-
ogy of the mock-ups tested. For MEDIUM and LARGE, there 
are 25 unique contact manipulations, but due to symmetry in 
the square-ended SMALL mock-up, only the 16 unique contact 
manipulations were tested. A manipulation between the start 
corner and touch is also tested for each mock-up (a related 
interaction highlighted by Vogel and Casiez), thus touch is 
included as a CONTACT. 

In addition, a mock-up of a digital pen (7 mm diameter, 110 
mm length) was tested. It has 5 contacts (nib end, eraser 
end, cylindrical barrel, and 2 edges separating the ends from 
the barrel) creating 4 CONTACT manipulations starting from 
the edge between the nib and barrel. Touch input was also 
included as a fifth CONTACT. 

The experiment design is within-subjects. The combined pre-
sentation order for SIZE and the pen condition was counter-
balanced using a Latin square, with CONTACT in random order. 
The dependent variable is Manipulation Time, which repre-
sents the total time to complete one manipulation. 

Results 
To simplify analysis, data from the 9 symmetric CONTACTS 
in the SMALL condition are also used for their counterparts, 
so all SIZES have the same number of data points. We ex-
amined manipulation times for the two consecutive error-free 
manipulations to identify outliers for each combination of 
SIZE and CONTACT, but did not remove any of the 1656/1872 
data points classified as outliers. 

Although we do not focus on errors, for context, a type of error 
measure can be calculated as the mean number of manipula-
tion attempts before performing the two consecutive correct 
manipulations required for our primary analysis. These er-
ror measures were 3.3 for SMALL, 1.6 for MEDIUM, 1.2 for 
LARGE, and 1.0 for the digital pen mockup. 

In the analysis to follow, data with log-normally distributed 
residuals is log-transformed. A repeated measures ANOVA 
is performed for balanced designs, and a linear mixed effects 
(LMM) ANOVA is used for unbalanced designs [3, 4]. Both 
are followed by post hoc paired t-tests. An ANOVA based 
on the Aligned Rank Transform (ART) [28] is used when 
residuals do not follow a known distribution or violate the 
homoscedasticity assumption of an LMM, and are followed by 
post hoc Wilcoxon signed rank tests. Holm’s sequential Bon-
ferroni procedure is used to correct for multiple comparisons 
in all post hoc tests. 

Learning Effect 
To determine if a learning effect is present, a two-level fac-
tor is created to separate manipulation data points into FIRST 
and SECOND, representing the order of the two consecutive 
error-free manipulations. We found a significant effect of this 
factor (F1,11 = 27.0, p < .001, ηG 

2 = .007) on log-transformed Ma-
nipulation Time, with SECOND (2.9s) faster than FIRST (3.0s). 
However, considering the small effect size, we aggregated 
both manipulation times. 
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Figure 5. Manipulation Time by CONTACT, contact LOCATION, and con-
tact TYPE (see Figure 4 for key to contact notation, T means manipula-
tion with touch input). Dashed connecting lines for readability, all fac-
tors are categorical. 

Manipulation Time by Device Size 
We expected overall Manipulation Time would increase with 
SIZE, but surprisingly, LARGE was fastest. A repeated mea-
sures ANOVA found a main effect of SIZE on log-transformed 
Manipulation Time (F2,22 = 8.9, p < .01, ηG 

2 = .1), with post 
hoc tests finding SMALL (3.47s, SD = 2.27s) slower than 
MEDIUM (2.86s, SD = 1.81s) and LARGE (2.62s, SD = 2.00s), 
and MEDIUM slower than LARGE (all p < .0001). 

Manipulation Time by Contact 
The overall pattern of time by CONTACT appears similar re-
gardless of SIZE (Figure 5). An ANOVA with ART found a 



main effect of CONTACT (F25,847 = 47.7, p < .0001), but no SIZE 
× CONTACT interaction. Across all three SIZES, six of the 
eight fastest (S-E1, S-E4, S-S1, B-S4, B-S1, T) and five of the 
eight slowest CONTACTS (O-E4, O-C2, O-C4, B-E3, O-C3) are the 
same, but their order in terms of time is not identical between 
all three SIZES. Post-hoc analysis found 203 significantly dif-
ferent pairs of CONTACTS. Compared to all other CONTACTS, 
touch (‘T’) is fourth fastest (1.53s). 

Manipulation Time by Contact Location 
To conduct this analysis, a 3-level LOCATION factor is created 
by grouping CONTACTS by prefix: same end (‘S-**’ contacts); 
barrel (‘B-**’ contacts); and opposite end (‘O-**’ contacts). 
An LMM ANOVA on log-transformed Manipulation Time, 
with LOCATION and SIZE as fixed variables and participant 
id as a random variable, found a main effect for LOCATION 
(F2,880 = 41.8, p < .0001) but no significant LOCATION × SIZE in-
teraction. Post-hoc comparisons found significant differences 
(p < .0001) between all levels, confirming our expectation that 
manipulations with nearby contacts are fastest (same end: 
1.89s, SD = 1.18s), followed by contacts along the middle of 
Conté (barrel: 3.00s, SD = 1.97s), and slowest when far away 
(opposite end: 4.09s, SD = 2.25s) (see bottom of Figure 5). 

Manipulation Time by Contact Type 
Similar to above, a 3-level TYPE factor is created by group-
ing CONTACTS by suffix: corners (‘*-C*’ contacts); edges 
(‘*-E*’ contacts); and sides (‘*-S*’ contacts). An ANOVA 
based on ART found a main effect of TYPE on Manipulation 
Time (F2,880 = 30.9, p < .0001) but no interaction effect of SIZE × 
TYPE. Post-hoc tests found manipulations with sides (2.29s, 
SD = 1.42s) faster than edges (3.12s, SD = 2.12s) and corners 
(3.53s, SD = 2.31s) (both p < .0001), and edges faster than cor-
ners (p < .01) (see bottom of Figure 5). For touch input (‘T’), 
there was no significant effect of SIZE. 

Comparison with Pen Manipulation Time 
The pen is treated differently, as it only has five contacts and 
is a different shape. The edge around the nib end is used as 
the pen’s starting contact, since this mimics the natural inking 
position and the pen has no corners. Pen manipulations are be-
tween the starting contact and the nib end ‘NIB’, cylindrical bar-
rel ‘BARREL’, eraser end ‘BACK’, and the edge around the eraser 
end ‘BACK EDGE’. For comparison, we consider these equivalent 
to Conté CONTACTS ‘S-S1’, ‘B-S4’, ‘O-S1’, and ‘O-C1’ respec-
tively. Equivalent CONTACTS were determined using first 
contact location, then contact type. The pen and Conté also 
both include touch as a CONTACT (‘T’). 

In most cases, Conté is comparable to the pen with the ex-
ception of Conté opposite corner (O-C1) and the edge around 
the pen’s eraser end (BACK EDGE) (Figure 6). To find this result, 
we created a factor SIZE+, which combines the three-level 
SIZE factor with a fourth pen level. We also created a 5-level 
factor called CONTACT+ representing the 5 equivalent pen and 
Conté CONTACTS. An ART ANOVA found main effects of 
SIZE+ (F3,209 = 17.75, p < .0001) and CONTACT+ (F4,209 = 54.01, 
p < .0001), and an interaction between SIZE+ and CONTACT+ 
on Manipulation Time (F12,209 = 4.82, p < .0001). Post-hoc tests 
revealed differences between the ‘BACK EDGE’ pen contact and 
the equivalent ‘O-C1’ Conté contact for SMALL and MEDIUM 

Figure 6. “pen-like” contact manipulation times for pen and Conté (er-
ror bars 95% CI). 

(both p < .05), but not LARGE. There were no other pairwise 
differences between PEN and equivalent Conté contacts. 

Discussion 
The main finding of this experiment is that manipulation time 
decreases with the largest device size we tested. We hypoth-
esized that larger devices would increase manipulation time 
due to contacts being "farther away", and Vogel and Casiez 
suggested small form factors would be easier to manipulate. 
We found the opposite. We believe this can be explained by 
smaller devices being more difficult to grip. The implication 
is that our large-sized Conté device with internal sensing hard-
ware should not impact manipulation performance. Given our 
results, a follow up study could explore additional sizes, such 
as sizes between medium and large, even larger sizes, and 
other cuboid dimensions. 

Other results confirm that manipulation time is lower for 
nearby contacts, independent of size. We also observed that 
sides are faster than edges and corners. Last, we did not ob-
serve a difference between a Conté device and a pen for four 
of five equivalent contact manipulations. There is some ma-
nipulation time cost when using Conté compared to a pen 
overall, but given the increase in usable contact-to-command 
mappings, this seems like a worthwhile trade-off. The ques-
tion remains if users can actually learn and remember so many 
contact-to-command mappings. 

EXPERIMENT 2: LEARNING 
Manipulating a Conté device to select a command assumes the 
user can remember what each contact does. The goal of this 
experiment is to formally investigate learning and retention of 
the associated 3D spatially mapped commands. Two levels of 
difficulty are evaluated, 9 commands mapped to contacts at 
one end, and 26 commands mapped to all possible contacts. 
An on-screen guide can be activated to see the command-to-
contact mapping. As a baseline comparison, a “Grid” 2D 
spatial interface (based on FastTap [5, 11]) is also tested. We 
also use the same “Shape Slicer” game and training method as 
the FastTap experiments. 



We expected people could learn and retain 9 commands in 
Conté and Grid. Previous FastTap studies showed 12 com-
mands are reasonable to learn if spatially mapped. In the 
Conté 9 command condition, all 9 commands are located on 
one end, so large end-over-end device rotations are not re-
quired, and the 3D spatial mapping is more stable. However, 
we expected it would be harder to remember 26 commands 
with Conté. Grid still has a stable 2D spatial mapping, but the 
3D spatial mapping is continually re-oriented in space when a 
Conté device is flipped end-over-end. 

Participants 
We recruited 32 participants for this between subjects exper-
iment, 8 per condition (mean age 27.2, SD = 5.9, 25 men, 7 
women, 6 left-handed). Remuneration was $20 for two-hour 
26-command conditions, and $10 for one-hour 9-command 
conditions. Adding more participants may reinforce existing 
significant differences and reveal more subtle ones, but our 
goal is not to beat Grid, but to use it as a relative comparison. 

Apparatus 
Our Conté device was used with a 13.3" (1920 × 1080 px, 165 
PPI) touch-screen laptop (Windows 10). The laptop screen 
was placed flat on a table with the laptop rotated 180◦ , and 
an external keyboard used (Figure 7). Note the functional 
prototype is needed to enable the more complex interaction 
and real capacitive display. 

Procedure 
The task is to invoke the command indicated by an icon falling 
from the top of the screen at a constant speed. In each trial, the 
icon appears at a random horizontal location, and falls with 
an experimentally controlled speed. Command invocation is 
accomplished by drawing or tapping with the Conté device. If 
the wrong command was used, the border of the icon turned 
red indicating an error, and the border turned green if the 
right command was used. As long as the icon did not reach 
the bottom, participants could try to complete the trial again. 
During the trial, they can optionally activate a guide to see 
the command mappings, but the guide must be closed before 
invoking a command; this is enforced by the software. 

The 26 commands are represented as icons in a drawing ap-
plication: 4 pencil sizes; 4 brush sizes; 3 eraser sizes; 8 
colours (different coloured paint cans); and 7 general com-
mands (delete, open, save, undo, redo, copy, paste). The 11 
pencil, brush, and eraser commands are invoked by dragging 

Figure 7. Touchscreen laptop, external keyboard, and game. 

the device through the falling icon. The path is rendered in a 
style matching the command, such as black lines of different 
widths for the 4 pencil commands. The other 15 commands 
are invoked with a tap anywhere on the screen, with the corre-
sponding command icon shown at the point of contact for 2 
seconds. 

A score provides behavioural incentive. Each completed trial 
is awarded 50 points. To deter guessing, 15 points are deducted 
for each error (up to a maximum of 45 points per trial) and 
for the icon reaching the bottom. To deter over reliance on the 
command guide, 10 points are deducted when it is triggered 
one or more times in a trial. Our scoring system is more 
fine-grained than the original Shape Slicer game [5]. 

When testing recall, the target command icon is centred on 
the screen with no movement or time limit. The guide is also 
disabled, there is no score, and no feedback is provided be-
yond confirming that a command was invoked (but not which 
command). There was no distinction between drawing or tap-
ping commands, and each recall task trial ended immediately 
after command invocation. Videos of Conté test blocks were 
reviewed to verify that the contact reported by the device was 
correct: 71 trials (8.8%) were manually corrected. Due to a 
logging error, one test block (26 trials) was only classified by 
video. We discuss recognition accuracy again below. 

Conté Technique 
The Conté device works as described above. To enable discov-
ery of command-to-contact mappings, there is an on-screen 
guide showing a mirrored view of the device as a 3D render-
ing, with non-occluded contacts labelled with command icons 
(Figure 8). Pilot studies indicated this was easier to use than a 
non-mirrored guide. Holding the ‘m’ on an external keyboard 
activates the guide after a delay of 500ms, and releasing ‘m’ 
dismisses it. Adding a delay is thought to promote novice-to-
expert learning [9]. Outside of an experiment, the guide could 
be activated by a gesture like shaking or a finger tap on the 
device’s side. Our focus is not on guide activation techniques, 
so a simple key press avoids confounds. The guide is used 
while the device is held in the air, and the guide orientation 
matches the device in real time using the IMU data stream. To 
correct for IMU drift, yaw angle is reset by pressing ‘n’ while 
the device is held in a known orientation. 

For the 26-command version, the 4 pen commands are mapped 
to corners on one end, and the 4 brush commands mapped to 
four corners on the other end. The 3 eraser commands and 
delete are mapped to edges on one end, and copy, paste, undo, 
redo are mapped to the four edges of the opposite end. Open 
and save are mapped to the end sides, and the 8 colours are 
mapped to barrel edges and sides. The 9-command version 
used only commands on one end. 

Grid Technique 
Although FastTap was designed for touch, our Grid technique 
uses the Conté device for selecting and invoking commands 
to avoid an input method confound. The device contact recog-
nition system was running during the Grid condition to avoid 
differences in responsiveness. Our goal is to examine learning 
and recall, we are not comparing Conté input with touch input. 



(a) 26 commands (b) 9 commands

Figure 8. Conté on-screen guide showing command-to-contact mapping: 
(a) 26-commands; (b) 9-commands. White marks create 3D landmarks. 

Like FastTap, the Grid technique has three steps. First, a 
selection mode is activated by pressing and holding the ‘m’ 
key. Second, any corner or end edge of the Conté device is 
used to tap a position corresponding to the desired command’s 
grid cell. Third, the selected command is invoked by either 
dragging through the falling icon, or tapping again anywhere 
on the screen, depending on command type. A guide showing 
the grid of commands is displayed if no selection occurs within 
500ms (Figure 9). Feedback is identical to the Conté technique, 
with the addition of highlighting the selected grid cell in blue 
until the ’m’ key is released. 

We designed the Grid interface to have a strong semantic 
grouping and layout that is directly comparable to Conté. For 
the 26-command version, four nested rings of rectangles are 
used (Figure 9a). The outer ring corresponds to Conté corners 
and edges of one end; the second ring corresponds to Conté 
barrel sides and edges; the third ring corresponds to Conté 
corners and edges at the other end. The innermost cell is split 
with each half corresponding to a Conté end side. The order 
of commands in each ring is the same as on Conté. The 9-
command version is the same size, but only the outer ring and 
single inner cell are used (Figure 9b). 

(a) (b)

Figure 9. Grid guide with: (a) 26-commands; (b) 9-commands. 

Design 
The primary independent variable is CONDITION with four lev-
els representing each combination of technique and command 
size: CONTE-26, CONTE-9, GRID-26, and GRID-9. Each par-
ticipant completed 24 blocks of training, where each block 
presented one trial per command, in random order. Follow-
ing Lafreniere et al.’s method for effective skill transfer [11], 
blocks are grouped into 6 speed stages with 4 blocks each. The 
time for an icon to fall is determined by the 6 stages, in this 

order: slow (20s), medium (10s), fast (5s), medium (10s), fast 
(5s), medium (10s). Before training began, each participant 
was briefed on the game and score, and shown how to use 
the technique with, and without the guide. They could take a 
break between stages. 

After all training blocks, participants immediately completed 
a test block of recall trials. Then they completed a post-
experiment survey and interview for 10-minutes, followed 
by another recall test block. Finally, they returned for a third 
recall test block after approximately 24 hours. Before training 
began, participants were told to expect recall tests, but they 
were not given any time to look at the guide or refresh their 
memory before test blocks. 

This is a mixed design with CONDITION a between-subjects 
factor and training BLOCK a repeated measure. The experi-
ment took 1 to 2 hours, depending on condition. 

Results 
Retention is examined directly using recall rates for the three 
test blocks, and learning relates to how performance changes 
during training. We examine completion time, expert usage, 
and error rate during all training blocks, paying special atten-
tion to the final stage. This stage has a less urgent medium 
speed, so it captures more realistic usage [11]. 316 (2.4%) 
trials more than 3 standard deviations from each CONDITION 
mean were removed as outliers. 

Unless stated otherwise, in the analysis below a repeated mea-
sures ANOVA on log-transformed data is used when residuals 
are log-normally distributed. When residuals do not conform 
to a known distribution, an ANOVA based on ART [28] is 
used if multiple factors are present, and a Kruskal Wallis test 
is used on analyses of one between-subjects factor. Both are 
followed by post hoc Mann-Whitney U tests corrected with 
Holm’s sequential Bonferroni procedure. 

Recall 
This is the proportion of correct command selections in a 
test block. We treat recall in each block as a distinct depen-
dent variable: Recall 0-min, Recall 10-min, and Recall 24-hr. 
Overall, Conté recall was comparable or higher than Grid. 
Even after 24 hours, participants could recall slightly more 
than 24 out of 26 Conté commands on average (Figure 10). 

For tests right after training and after 10 minutes, recall rates 
for Conté and Grid do not differ significantly regardless of 
command size (Figure 10). A Kruskal-Wallis test did not find 
an effect of CONDITION on Recall 0-min or Recall 10-min. For 
Recall 0-min, measured recall rates are: 93% for CONTE-26; 
99% for CONTE-9; 92% for GRID-26; and 96% for GRID-9. 
For Recall 10-min they are: 94% for CONTE-26; 100% for 
CONTE-9; 92% for GRID-26; and 99% for GRID-9. 

For recall tests after 24 hours, there is a significant difference 
between the two Grid conditions, but there is not a significant 
difference between any other pair of conditions. A main effect 
of CONDITION on Recall 24-hr was significant (χ( 

2
3) = 9.63, 

p < .05). Post hoc tests show GRID-9 (100%, SD = 0%) is 
higher than GRID-26 (88%, SD = 15.76%) (p < .05). Measured 



Figure 10. Recall after classification error correction (error 95% CI). 

recall rates for Conté after 24 hours were 97% (SD = 5.14%) 
for CONTE-9 and 94% (SD = 11.45%) for CONTE-26. 

Completion Time 
Completion time was measured using only successful trials, 
from when an icon began to fall until the correct command was 
invoked. This includes time to recover from user or device 
errors, and time to view the guide. All conditions have 
highest completion times in the initial slow stage and have 
slightly higher completion times in medium stages than fast 
stages. Examining blocks in the last stage only, there was 
no learning effect and times for conditions were comparable. 
An ANOVA on log-transformed data found no CONDITION × 
BLOCK interaction, and no significant effect of CONDITION or 
BLOCK on Completion Time. 

Expert Usage Rate 
This is defined as the proportion of trials in which the guide 
is not triggered. Adoption of expert techniques by the end of 
training indicates the participant is likely to continue to use it 
in a time-independent task [11]. Over all blocks, CONTE-26 
and CONTE-9 exhibit an increasing trend in expert use, and 
expert mode is used exclusively by the final stage. Expert use 
of GRID-26 and GRID-9 increases significantly during the first 
stage, but neither are ever completely adopted (Figure 12). 

Considering only the final medium stage, participants make 
expert selections more often with Conté. An ANOVA based 
on ART found main effects of BLOCK (F3,88 = 15.97, p < .0001) 
and CONDITION (F3,28 = 5.44, p < .01) on Expert Usage Rate, and 
a significant CONDITION × BLOCK interaction (F9,84 = 4.07, p < 
.001). Expert use with CONTE-26 was second highest (98.1%, 
SD = 3.9%), and CONTE-9 reached (100.0%, SD = 0%), both 

Figure 11. Completion Time by BLOCK (ribbons 95% CI). 

higher than GRID-26 (82.3%, SD = 33%) (p < .01) and GRID-9 
(65.6%, SD = 45%) (all p < .05). The main effect of BLOCK 
does not indicate a learning effect since expert rate did not 
increase over blocks, and the interaction with BLOCK can be 
explained by the larger variation in expert rate between blocks 
in both Grid conditions, particularly GRID-9. 

Error Rate 
This is defined as the proportion of trials with one or more 
errors, including user errors and device errors. Grid condi-
tions rely on a professionally manufactured laptop which we 
assume causes a negligible number of errors, while Conté 
conditions rely on our novel, lab-made device and contain a 
larger proportion of device errors. 

Over all blocks, CONTE-9, GRID-9, and GRID-26 have error 
rates below 22%. CONTE-26 has higher error rates throughout, 
but stabilizes near 20% in the final medium stage. In the final 
medium stage, there was no learning effect, and error rates are 
higher with Conté. We found higher Conté error rates than in 
Recall 24-hr (CONTE-26: 19.8% vs. 6%; CONTE-9 15.3% vs. 
3%). Retention tests were corrected using video footage and 
represent true user error rates, but the game itself was too fast-
paced and too long to do the same. An ART ANOVA showed 
there was a main effect of CONDITION (F3,28 = 20.73, p < .0001) 
on Error Rate, but no main effect of BLOCK and no inter-
action. GRID-9 has the lowest error rate (2.4%, SD = 5.5%), 
significantly lower than CONTE-26 (19.8%, SD = 11.9%) and 
CONTE-9 (15.3%, SD = 10.8%) (both p < .0001). GRID-26 has 
the second lowest error rate (5.2%, SD = 5.8%), significantly 
lower than CONTE-26 (p < .0001) and CONTE-9 (p < .01). 

Discussion 
To determine the impact of having a small number of partici-
pants per group, we performed a power analysis which reveals 
the magnitude of difference we could have detected with a 
Mann-Whitney U test. An effect size (r = 0.38) is computed 
from the test statistic (Z = 1.52, p = 0.1363) [29], and an inde-
pendent samples t test power analysis, used to estimate the 
observed power of the non-parametric Mann-Whitney U test, 
finds adequate power to have detected a medium to large signif-
icant difference (power = 0.24, r = 0.67, n = 8, p = .05) [29]. 
While the small number of participants is a limitation, any 
undetected differences between conditions are likely small. A 
power analysis cannot account for a confound in participants’ 

Figure 12. Expert Usage Rate by BLOCK (ribbons 95% CI). 



cognitive abilities, but conditions were assigned randomly, so 
this seems unlikely. 

The 26-command Conté has higher retention rates than ex-
pected, with an average of 94% after 24 hours, which is slightly 
higher than the grid condition. This suggests that tangible pen-
like input devices are a worthwhile alternative selection tech-
nique to 2D interfaces like FastTap, with additional benefits of 
integrating command selection with parameter manipulation. 

Completion time in the final stage was similar for all condi-
tions, which includes recovery time from user errors and time 
to use the guide. Conté completion time also includes recovery 
from device errors. It is possible that without device errors 
Conté conditions would have been faster than Grid. 

Grid expert usage was lower than Conté in the final stage, 
which is in contrast to Lafreniere et al.’s FastTap results [11]. 
Our grid technique is different since it is bimanual, has more 
commands, and uses a larger screen. We mitigate this with 
a longer novice delay, but the temporal cost of Conté novice 
selection (4.7s for 26 commands, 4.0s for 9) is still higher than 
grid novice selection (1.7s for 26 commands, 1.2s for 9), and 
might provide an incentive to use Conté expert mode. Using 
a similar training game, Lafreniere et al. found expert usage 
persists when the task is changed and speed requirement is 
removed if consistent expert selection is established in training 
[11]. Since Conté expert usage rates are similar to Lafreniere 
et al.’s, similar post-training persistence is expected. 

A high device error rate may have prevented us from measur-
ing the true, possibly higher, recall rate. We reviewed video 
logs to manually correct device misclassification errors in 
8.8% of test trials. A similar device error rate likely occurred 
during training and contributed to high Conté error rates, and 
may have made learning more challenging. Using the 8.8% 
device error rate in test blocks, we estimate user error rates 
in the final training stage: Conté-26 11% (originally 19.8%), 
Conté-9 6.5% (originally 15.3 %). Conté conditions still have 
higher estimated user error rates than Grid, Grid-26 5.2% and 
Grid-9 2.4%, but the difference is much smaller. Time con-
straints during training were not present during test blocks and 
may account for remaining differences. 

Of the 71 test trials corrected for device errors, 68 were “near 
misses” to adjacent contacts. All adjacent contacts have differ-
ent geometry, and future work could combine size and shape 
data from a touch sensor with IMU data to increase classifi-
cation accuracy. This would improve feedback, could make 
learning easier, and may result in even higher recall. 

DESIGN IMPLICATIONS 
It is important to recognize that the Conté device belongs to 
a broader category of input devices able to detect which of 
their geometric features contacts a surface. The 3D cuboid 
shape we test is one of the simplest instances, and arguably the 
most elemental and generalizable, but there are many possible 
variations. For example, the shape we tested has a minimal 
amount of visual and geometric asymmetry — the contacts 
have the smallest possible amount of distinction, just enough 
to create 3D landmarks. This means that our results are likely 
a lower bound for learning and recall performance. 

Visual, geometric, and passive haptic landmarks can help de-
fine a frame-of-reference when manipulating tangible pen-like 
devices in 3D. Designing a device using more varied visual 
markings on each surface, and making the shape itself more 
asymmetrical, such as extruding a trapezoid, perhaps with one 
end a pointed cone or rounded hemisphere, may make learning 
and recall even easier. Adding different passive haptic textures 
on different sides, such as patterns of bumps or ridges, would 
also increase available landmarks. Other related ideas include 
controlling the centre of mass to create a heavy end or side, 
and making some edges more pliable than others [23]. Diverse 
tactile patterns and asymmetries may also enable more reliable 
eyes-free usage and reduce error rate. 

Our manipulation experiment showed a Conté device needs 
to be large enough to facilitate grip. Commands with simi-
lar semantic meaning should be grouped together on nearby 
contacts. Results from the manipulation experiment further 
indicate that frequently used commands should be positioned 
in priority on the same side, while less frequently used com-
mands can be positioned on the barrel or opposite side. Further 
refining contact-to-command associations depends on the de-
gree of control needed by each command (e.g. a corner for 
writing) and possible additional landmarks if some contacts are 
permanently mapped to commands, such as a rubber feeling 
on a side mapped to an eraser command. 

CONCLUSION 
The original Conté paper was about the idea of a pen-like 
tangible input device. It demonstrated how transitioning to 
different contacts enabled a range of interactions like a mul-
tipurpose pen, an interactive ruler, a temporary mouse, and 
more. Now, our results show this type of device is practical 
in two key aspects that were never tested. It has contact-to-
contact manipulation times comparable to a pen, and people 
can learn and recall a large portion of the 26 possible contact-
to-command mappings using its 3D spatial layout. The latter 
is comparable to an equivalent grid interface using a 2D spatial 
layout. On a technical level, we designed and implemented a 
new version of Conté which realizes Vogel and Casiez’s vision 
of a self-contained hardware device that detects all 26 contacts 
and works with standard touch displays. This re-imagined de-
vice is a significant improvement on their 10-contact prototype 
that required a specialized tabletop. 

Yet, our work contributes more than a validation of the original 
Conté idea. Our investigation of size-dependent manipulation, 
and our comparison of learning with 2D and 3D spatial map-
pings, are higher level questions we believe have not been 
tested in this context. These results open up directions for 
future work, for example examining how these findings gener-
alize to other related devices and styles of tangible input. 
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