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Non-Lipschitz uniform domain shape optimization in

linear acoustics

Michael Hinz∗ Anna Rozanova-Pierrat† Alexander Teplyaev‡

Abstract

We introduce new parametrized classes of shape admissible domains in R
n, n ≥ 2, and

prove that they are compact with respect to the convergence in the sense of character-

istic functions, the Hausdorff sense, the sense of compacts and the weak convergence

of their boundary volumes. The domains in these classes are bounded (ε,∞)-domains

with possibly fractal boundaries that can have parts of any non-uniform Hausdorff di-

mension greater or equal to n− 1 and less than n. We prove the existence of optimal

shapes in such classes for maximum energy dissipation in the framework of linear acous-

tics. A by-product of our proof is the result that the class of bounded (ε,∞)-domains

with fixed ε is stable under Hausdorff convergence. An additional and related result is

the Mosco convergence of Robin-type energy functionals on converging domains.

Keywords: shape optimization, uniform domains, fractal boundaries, traces, exten-
sions, mixed boundary value problem, Mosco convergence, variational convergence

1 Introduction

he first step towards the solution of a shape optimization problem for a given functional
is to prove the existence of a shape which is optimal in a certain class of shapes in the
sense that it minimizes the functional. In the context of a boundary value problem for a
partial differential equation the functional typically is an energy of the respective solution,
and the class of shapes in which an optimal one sought for is a class of domains. Examples
for such classes of domains are the collections of all Lipschitz domains contained in a given
bounded open set D and satisfying the ε-cone condition for the same ε > 0, see [30, Section
2.4]. One specific feature of these classes of domains is their compactness with respect to the
convergence in the Hausdorff sense, in the sense of compacts and in the sense of characteristic
functions, [30, Theorem 2.4.10]. This is significant because suitable compactness properties
are a prerequisite needed to prove the existence of an optimal shape, [18, 26, 30]. A second
specific feature of these classes is that their elements Ω are Sobolev extension domains,
[13, 18, 31, 51], and moreover, that the linear extension operators extending an element of
W k,p(Ω) to an element of W k,p(Rn) have a norm bound depending only on n, ε, p and k,
and therefore valid uniformly for all domains Ω in the fixed class. A third specific feature,
particularly useful to discuss boundary value problems in variational formulation, is that
for domains Ω from these classes there are bounded linear trace and extension operators
between W 1,2(Ω) and suitable function spaces on the boundary ∂Ω, and that their operator
norms, too, are uniformly bounded for all domains in the class.

We are motivated by recent results on the existence of optimal shapes realizing the in-
fimum of the acoustical energy for a frequency boundary absorption problem over a class
of Lipschitz domains [42]. There the optimal shapes themselves were not necessarily ele-
ments of the same class, so that the infimum cannot be claimed to be a minimum. We are
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also motivated by corresponding numerical experiments [43, Section 5] in which a multiscale
behaviour of the optimal shapes was observed. This multiscale behavior is needed to have
almost optimal shapes on a fixed bounded range of frequencies [43, Section 5.2]. As the num-
ber of geometrical scales grows with the considered frequency range (with sizes converging
to 0), this leads to fractal type shapes [41] on an unbounded frequency range.

Here we address shape optimization problems for certain classes of domains more general
than Lipschitz domains. Well-established results on extension operators [31,48], and classical
results on their geometric structure [44, 56], suggest to look at classes of bounded (ε,∞)-
domains, also referred to as bounded uniform domains for fixed ε > 0. These classes contain
Lipschitz domains, but also domains with rough non-Lipschitz boundary such as snowflake
domains [58]. Since we are particularly interested in the existence of optimal shapes for
certain mixed boundary value problems, also trace and extension results for the boundaries of
such domains matter. Classical snowflake domains have boundaries that are d-sets, for which
properties of trace and extension operators are relatively well-known [35,54]. By definition
d-sets are, roughly speaking, everywhere of a fixed Hausdorff dimension n − 1 ≤ d ≤ n,
see Remark 3 below. Using more general trace results as in [1, Chapter 7] and [7] or [32]
we can also permit (bounded) (ε,∞)-domains whose boundaries may have parts of different
Hausdorff dimensions. This seems particularly adequate for shape optimization problems
in which parts of the boundary may vary, but other (and possibly more regular) parts are
kept fixed. To satisfy the respective hypothesis of these trace results the boundaries have to
carry measures satisfying specific scaling properties, see section 3. To discuss the existence of
optimal shapes in a certain class of domains, we have to discuss the convergence of measures
on the boundaries and to guarantee the stability of the specified class of domains under
this convergence. This can be done because the mentioned scaling conditions behave well
under weak convergence of measures, as observed in Proposition 2 and Proposition 3. This
fact is in line with the observation made in [42] that weak limits of (n − 1)-dimensional
Hausdorff measures on Lipschitz boundaries may not exactly be Hausdorff measures again,
but measures equivalent to Hausdorff measures.

We implement the mentioned ideas in Definition 2, where we define parametrized classes
of bounded (ε,∞)-domains Ω in Rn, n ≥ 2, with fixed ε > 0, that are all contained in a fixed
bounded open set D ⊂ Rn and all contain a fixed non-empty open set D0 (to prevent them
from collapsing to the empty set under Hausdorff convergence) and whose boundaries ∂Ω
are the supports of Borel measures satisfying Alfohrs regularity type conditions with fixed
exponents and constants, we call them boundary volumes. Since these parametrized classes
of domains are well suited to shape optimization problems, we refer to their elements as shape
admissible domains. The boundaries of shape admissible domains may have pieces that are
smooth or Lipschitz, self-similar fractals or d-sets, and in general they may have multifractal
structure. Our main result on shape admissible domains is Theorem 3. It asserts that each
parametrized classe of shape admissible domains is compact with respect to the convergence
in the Hausdorff sense, in the sense of compacts, in the sense of characteristic functions and
in the sense of weak convergence of the boundary volumes. It also concludes that the weak
convergence of the boundary measures entails the other convergences just mentioned. One
ingredient for this result is Theorem 1, which may be of independent interest. It states that
the class of bounded (ε,∞)-domains with fixed ε > 0 and contained in a fixed bounded open
setD ⊂ Rn (with n ≥ 2) is stable under convergence in the Hausdorff sense. To connect these
results with applications to partial differential equations we review the trace and extension
results from [1, 7, 32] and from [31, 48] and collect some consequences in Theorem 7 and
subsequent corollaries. To extend functions from closed sets to the whole space we can
use harmonic extension operators, which in the case of an L2-framework are linear. These
trace and extension results are formulated for a wider class of domains, which (roughly
following [3,20,49]) we call W 1,2-admissible domains, Definition 4. As a first application to
boundary value problems we show the Mosco convergence of energy functionals associated
with Robin problems on a sequence of suitably convergent domains, Theorem 8. We then
turn to linear acoustics and state the well-posedness of a mixed boundary valued problem for
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the Helmholtz equation on W 1,2-admissible domains, Theorem 9. This is a generalization
of an analogous result in [42] for d-set boundaries. On a fixed class of shape admissible
domains the (weak) solutions of the Helmholtz problems admit a uniform bound. This
allows to conclude the existence of an optimal shape minimizing the acoustical energy by
absorption, Theorem 10. In [42] an analogous existence result had been proved in the
framework of Lipschitz boundaries.

Related results on linear wave propagation problems with an irregular boundary can be
found in [12,16,17]. Shape optimization problems in the context of fluid dynamics had been
solved in [26] for domains with uniform thick boundaries, a class suitable to study problems
with homogeneous Dirichlet boundary conditions. Further results on compact classes of
admissible domains developed for problems with homogeneous Dirichlet boundary condition
can be found in [52] (dimension two) and [10] (higher dimensions). A free discontinuity
approach to a class of shape optimization problems involving a Robin condition on a free
boundary had been studied in [9].

The paper is organized as follows. In section 2 we prove the stability of bounded (ε,∞)-
domains under Hausdorff convergence, Theorem 1. In section 3 we recall the scaling prop-
erties for measures, including those specified in [32], and verify their stability under weak
convergence. In section 4 we recall several different notions of convergence for domains and
prove compactness results, Theorem 2. We then define parametrized classes of shape admis-
sible domains, Definition 2, and finally prove Theorem 3 on compactness and convergence.
In section 5 we introduce the functional framework needed for the well-posedness of various
problems, including the Helmholtz problem and for the shape optimization problem and
collect properties of the trace and extension operators acting on W 1,2-admissible domains,
Theorem 7. The Mosco convergence result, Theorem 8, is proved in section 6. In section 7
discuss the well-posedness of a mixed boundary valued problem for the Helmholtz equation,
Theorem 9, and solve the existence problem for an optimal shape in a fixed class of shape
admissible domains in Theorem 10.

By B(x, r) we denote the open ball in Rn centered at x and of radius r. We write λn for
the n-dimensional Lebesgue measure. We assume n ≥ 2 throughout the paper.

2 Bounded uniform domains and their Hausdorff conver-

gence stability

For the class of bounded Lipschitz domains satisfying the cone condition with the same
parameter the stability under Hausdorff convergence is proved in [30, Theorem 2.4.10]. We
aim at a larger class based on the following classical definition, [5, 31, 35, 44, 56, 58]. Recall
that a domain in Rn is a connected open subset of Rn.

Definition 1. Let ε > 0. A bounded domain Ω ⊂ Rn is called an (ε,∞)-uniform domain
if for all x, y ∈ Ω there is a rectifiable curve γ ⊂ Ω with length ℓ(γ) joining x to y and
satisfying

(i) ℓ(γ) ≤ |x−y|
ε and

(ii) d(z, ∂Ω) ≥ ε|x− z| |y−z|
|x−y| for z ∈ γ.

Remark 1. Condition (ii) is equivalent to saying that, in the terminology of [56, 2.1 and
2.4], the 1

ε -cigar

C(γ, ε) :=
⋃

z∈γ

B(z, ελ(z)), where λ(z) = |x− z|
|y − z|

|x− y|
, z ∈ γ, (1)

is contained in Ω. See also [44, 2.1 and 2.12].
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Let D ⊂ Rn be a bounded open set. A sequence (Ωm)m of open sets Ωm ⊂ D is said to
converge to an open set Ω ⊂ D in the Hausdorff sense if

dH(D \ Ωm, D \ Ω) → 0 as m→ ∞,

[30, Definition 2.2.8], which does not depend on the choice of D, [30, Remark 2.2.11].

Theorem 1. Let D ⊂ Rn be a bounded open set and let ε > 0. Any sequence (Ωm)m
of (ε,∞)-domains contained in D has a subsequence which converges to an (ε,∞)-domain
Ω ⊂ D in the Hausdorff sense.

This implies in particular that the limit Ω ⊂ D in the Hausdorff sense of a convergent
sequence (Ωm)m of (ε,∞)-domains Ωm ∈ D is an (ε,∞)-domain.

Our proof of Theorem 1 is based on Remark 1. Recall that the Frechét distance between
two curves γ1, γ2 ⊂ R

n is defined as

dF (γ1, γ2) := inf
(g1,g2)

max
t∈[0,1]

d(g1(t), g2(t)),

where the infimum is taken over all pairs (g1, g2) of parametrizations gi : [0, 1] → Rn of γi,
i = 1, 2, [2, Section I.1.4]. A sequence (γm)m of curves γm ⊂ Rn is said to converge to a
curve γ ⊂ Rn in the Frechét sense if dF (γm, γ) → 0 as m→ ∞.

Lemma 1. Let D ⊂ Rn, n ≥ 2, be a bounded open set and ε > 0. Suppose that (γm)m is
a sequence of rectifiable curves γm with distinct end points xm and ym in D, respectively,

such that ℓ(γm) ≤ |xm−ym|
ε and C(γm, ε) ⊂ D for all m. If x and y are distinct points in D

such that xm → x and ym → y then there are a sequence of indexes (mk)k and a rectifiable

curve γ connecting x and y with ℓ(γ) ≤ |x−y|
ε and C(γ, ε) ⊂ D.

Proof. Since D is compact, we can find a sequence of indexes (mk)k and a rectifiable curve
γ of length ℓ(γ) ≤ limk ℓ(γmk

) such that γmk
→ γ in D in the Frechét sense as k → ∞, [2,

Theorems 2.1.5 and 2.1.2]. To save notation we relabel and denote this convergent sequence
again by (γm)m. One can find suitable parametrizations g : [0, 1] → D and gm : [0, 1] → D
for γ and γm such that limm gm = g uniformly on [0, 1], [2, Lemma 1.4.1]. This implies in
particular that, without loss of generality, γ(0) = x and γ(1) = y. Given α > 0, consider
the open inner α-parallel set

{y ∈ C(γ, ε) : d(y, ∂C(γ, ε)) > α} =
⋃

t∈[0,1]:ελ(g(t))>α

B(g(t), ελ(g(t)) − α) (2)

of C(γ, ε). For any sufficiently large m we have
∣∣|xm − ym|−1 − |x− y|−1

∣∣ < α(2ε)−1(diam(D))−2 ∧ (α/2)

and
sup

t∈[0,1]

|g(t)− gm(t)| < α|x − y|(8ε diam(D))−1 ∧ (α/2).

Writing λm for the function defined as λ in (1) but with xm, ym and γm in place of x, y and
γ, respectively, we observe that for any such m we have

ε|λ(g(t))− λm(gm(t))|

< ε
∣∣|xm − ym|−1 − |x− y|−1

∣∣ |xm − gm(t)||ym − gm(t)|

+ ε|x− y| ||xm − gm(t)||ym − gm(t)| − |x− g(t)||y − g(t)|| < α

for any t ∈ [0, 1]. Consequently B(g(t), ελ(g(t)) − α) ⊂ B(gm(t), ελm(gm(t)) for all t with
λ(g(t)) > α, hence the set in (2) is contained in

C(γm, ε) =
⋃

t∈[0,1]

B(gm(t), ελm(gm(t)).
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In a similar fashion we see that for such m the set {y ∈ C(γm, ε) : d(y, ∂C(γm, ε)) >
α} is contained in C(γ, ε). Together this shows that D \ C(γm, ε) ⊂ (D \ C(γ, ε))α and
D \C(γ, ε) ⊂ (D \C(γm, ε))α for large m, what shows that C(γm, ε) → C(γ, ε) in Hausdorff
sense as m→ ∞.

Proof of Theorem 1. If (Ωm)m is a sequence of (ε,∞)-domains contained in D then by [30,
Corollary 2.2.26] we can find a sequence of indexes (mk)k and an open set Ω ⊂ D so that
Ωmk

→ Ω in the Hausdorff sense as k → ∞. To save notation, we relabel and denote this
sequence again by (Ωm)m. If x and y are two different points in Ω then by [30, Proposition
2.2.17] both x and y belong to Ωm for any large enough m. For each such m let γm ⊂ Ωm

be a rectifiable curve of length ℓ(γm) ≤ |x−y|
ε connecting x and y and let C(γm, ε) be as in

(1) but with γm in place of γ. An application of Lemma 1 with xm = x and ym = y for all
m shows the existence of a sequence of indexes (mk)k and a rectifiable curve γ connecting
x and y such that the sets C(γmk

, ε) converge to C(γ, ε) in the Hausdorff sense. Since
C(γm, ε) ⊂ Ωm for each m, it follows that C(γ, ε) ⊂ Ω, [30, (2.16) in 2.2.3.2].

3 Measures on closed subsets of Rn, scaling and stability

We consider Borel measures on closed subsets of Rn having specific scaling properties. In
later sections we will study boundary value problems, when the closed subsets under con-
sideration can be the boundaries of the respective domains, and the measures can replace
the surface measure.

3.1 Stability of lower and upper Ahlfors scaling conditions

For a Borel measure µ with K := suppµ, exponents 0 < s ≤ n, 0 ≤ d ≤ n, and constants
cAs > 0 and cAd > 0 we recall the local lower and upper Ahlfors regularity conditions

µ(B(x, r)) ≥ cAs r
s, x ∈ K, 0 < r ≤ 1, (3)

which implies dimH K ≤ s, where dimH K denotes the Hausdorff dimension of K, [24, 45],
and

µ(B(x, r)) ≤ cAd r
d, x ∈ K, 0 < r ≤ 1, (4)

which implies dimH K ≥ d. If µ satisfies both (3) and (4) then d ≤ s.

Remark 2. Obviously Borel measure satisfying (4) is locally finite. Note also that any Borel
measure on Rn is regular by [50, Theorem 2.18].

We also introduce a weaker local lower Ahlfors regularity condition

µ(B(x, r)) ≥ c̄As r
s, x ∈ K, 0 < r ≤ 1. (5)

Proposition 1. If 0 < s < n in (5) then K has empty interior, λn(K) = 0, and dimH K ≤
s.

For any closed set K ⊂ Rn and α > 0 we write (K)α := {x ∈ Rn : d(x,K) ≤ α} for its
closed (outer) α-parallel set. Recall that the Hausdorff distance between two compact sets
K1,K2 ⊂ Rn is defined as

dH(K1,K2) := inf{α > 0 : K1 ⊂ (K2)α and K2 ⊂ (K1)α}.

A sequence (Km)m of compact sets Km ⊂ R
n is said to converge to a compact set K ⊂ R

n

in the Hausdorff sense if limm→∞ dH(Km,K) = 0.
As usual we say that a sequence (µm)m of Borel measures µm converges weakly to a

Borel measure µ if

lim
m→∞

∫

Rn

f dµm =

∫

Rn

f dµ, f ∈ Cb(R
n).

The following convenient stability result is relatively well known.
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Proposition 2. Suppose that D ⊂ Rn is a bounded open set, µm are Borel measure with
suppµm ⊂ D for all m and that µm → µ weakly.

(i) If µm satisfy (4), then the limit measure µ also satisfies (4).

(ii) If µm satisfy (5), then the limit µ also satisfies (5) and

suppµm → suppµ for m→ +∞

in the Hausdorff sense.

Proof. Denote Km := suppµm. By [30, Theorem 2.2.25] we can find a subsequence of
(Km)m with limit K ′ in the Hausdorff sense. As can be seen from the proof, the choice of the
subsequence does not matter, so we write again (Km)m for this subsequence and µm for the
measure with support Km. By weak convergence it is clear that K ⊂ K ′. Let x ∈ K ′. Then
there is a sequence (xm)m of points xm ∈ Km such that limm xm = x, see [30, Proposition
2.2.27]. Given 0 < δ < r, we have B(xm, r − δ) ⊂ B(x, r) ⊂ B(xm, r + δ), and with the
Portmanteau theorem it follows that µ(B(x, r)) ≤ limm µm(B(x, r)) ≤ limm µm(B(xm, r +

δ)) and µ(B(x, r)) ≥ limm µm(B(x, r)) ≥ limm µm(B(xm, r − δ)). The existence of some
x ∈ K ′ \K would contradict (5) and the last conclusion, thus K ′ = K.

3.2 Refined scaling conditions and their stability

In [32] more refined scaling properties were key assumptions for trace and extension results
for Besov spaces on closed subsets of Rn. The conditions and results in [32] allow to treat
measures having non-integer Hausdorff dimensions, [46], and consisting of various parts
having different Hausdorff dimensions. Global versions of (6) were studied in detail in [57],
motivated by [4, 21]. Condition (7) seems to have been introduced by Jonsson for the first
time, see also [11, 40].

A Borel measure µ on Rn with support K := suppµ satisfies the Ds-condition for an
exponent 0 < s ≤ n if there is a constant cs > 0 such that

µ(B(x, kr)) ≤ csk
sµ(B(x, r)), x ∈ K, r > 0, k ≥ 1, 0 < kr ≤ 1. (6)

It is said to satisfy the Ld-condition for an exponent 0 ≤ d ≤ n if for some constant cd > 0
we have

µ(B(x, kr)) ≥ cdk
dµ(B(x, r)), x ∈ K, r > 0, k ≥ 1, 0 < kr ≤ 1. (7)

Apart from (6) and (7) we will also consider the condition

c1 ≤ µ(B(x, 1)) ≤ c2, x ∈ K, (8)

where c1 > 0 and c2 > 0 are constants independent of x.

Remark 3. Combining (6) and (8) one can find a constant cAs > 0 such that (3) holds.
Similarly (7) and (8) yield a constant cAd > 0 such that (4) holds. Moreover, (6) implies
the doubling condition µ(B(x, 2r)) ≤ c µ(B(x, r)), x ∈ K, 0 < r ≤ 1/2, where c > 0 is a
suitable constant, [32, Section 1]. If a Borel measure µ with support K satisfies (3) and
(4) with s = d for some 0 < d ≤ n, then µ is called a d-measure and K is called a d-set,
see for instance [35, 36, 54, 58]. The boundary of a Lipschitz domain, endowed with the
(n− 1)-dimensional Hausdorff measure Hn−1, is an (n− 1)-set.

Remark 4.

(i) If the closed set K is the union of two closed sets K1 and K2 supporting measures
µ1 and µ2 that meet conditions (6), (7) and (8), possibly with different constants and
exponents, then the measure µ = µ1+µ2 on K satisfies (6), (7) and (8) with readjusted
constants, see [32, Example 2].
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(ii) If µ is a Borel measure on Rn whose support K = suppµ is compact, then we
can always find a constant c1 > 0 so that the lower bound in (8) is satisfied: By
Fatou’s lemma the function x 7→ µ(B(x, 1)) is lower semicontinous on K, hence
c1 := minx∈K µ(B(x, 1)) is attained at some x0 ∈ K. But this minimum must be
strictly positive, otherwise µ(B(x0, 1)) = 0, a contradiction.

For the next lemma we need to introduce estimates

c1 ≤ µ(B(x, 1)) and µ(B(x, 1)) ≤ c2, x ∈ K. (9)

Remark 5. It is easy to see that (6) implies µ(B(x, r)) ≤ csµ(B(x, r)), x ∈ K, r > 0.
Therefore, if a Borel measure µ satisfies (6) and the first inequality in (9), then it satisfies
the lower bound in (8) with c1/cs in place of c1.

Proposition 3. Suppose that D ⊂ Rn is a bounded open set and µm are Borel measure with
suppµm ⊂ D and satisfying (6), (7) and (9). If µm → µ weakly then suppµm → suppµ in
the Hausdorff sense, and µ satisfies (6), (7) and (9).

Proof. Since by Remark 3 we have (3), the convergence of supports follows from Proposi-
tion 2 (ii). By the Portmanteau theorem

sup
δ∈(0,r)

lim
m→∞

µm(B(x, r − δ)) ≤ µ(B(x, r)) ≤ lim
m→∞

µm(B(x, r)) (10)

holds for any x ∈ R
n and 0 < δ < r. If x ∈ suppµ then there is a sequence (xm)m of points

xm ∈ suppµm such that limm xm = x. Given 0 < δ < r we have B(x, kr) ⊂ B(xm, k(r+ δ))
for any sufficiently large m and therefore, using (10) and applying (6) with k(r + δ) =
(k(r + δ)/(r − δ))(r − δ),

µ(B(x, kr)) ≤ lim
m→∞

µm(B(xm, k(r + δ)))

≤ cs

(
k(r + δ)

r − δ

)s

lim
m→∞

µm(B(xm, r − δ)) ≤ cs

(
k(r + δ)

r − δ

)s

µ(B(x, r)),

which proves (6) because δ can be arbitrarily small. Estimate (7) follows similarly using
(10) and k(r − δ) = (k(r − δ)/(r + δ))(r + δ), note that

µ(B(x, kr)) ≥ lim
m→∞

µm(B(xm, k(r − δ)))

≥ cd

(
k(r − δ)

r + δ

)d

lim
m→∞

µm(B(xm, r + δ)) ≥ cd

(
k(r − δ)

r + δ

)d

µ(B(x, r)).

The estimates (9) and follows as in Proposition 2.

4 Convergence of sequences of domains, stability and

compactness

We consider convergence properties of certain classes of bounded domains. A first com-
pactness result is Theorem 2 (i), which concludes the existence of subsequential limits in
the sense of weak convergence of measures on the boundary, in the Hausdorff sense and in
the characteristic function sense for domains confined to a bounded open set. Similarly as
in [30] the assumption of convergence in the sense of compacts can prevent the limit mea-
sure from having a support larger than the boundary of the (subsequential) limit domain,
Theorem 2 (ii). It allows a refined compactness result, including convergence in the sense
of compacts, Theorem 3, for certain classes of domains with fixed quantitative specifica-
tions, Definition 2.
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4.1 Sequences of domains and boundaries

A sequence (Ωm)m of open sets Ω ⊂ Rn is said to converge to an open Ω in the sense of
characteristic functions if

lim
m→∞

1Ωm
= 1Ω in Lp

loc(R
n) for all p ∈ [1,∞),

[30, Definition 2.2.3]. A sequence (Ωm)m of open sets Ωm ⊂ R
n is said to converge to an

open set Ω ⊂ Rn in the sense of compacts if for any compact L ⊂ Ω we have L ⊂ Ωm for
all sufficiently large m and for any compact L′ ⊂ Rn \ Ω we have L′ ⊂ Rn \ Ωm for all
sufficiently large m.

To a finite Borel measure µ whose support is the boundary ∂Ω of a bounded domain Ω,
suppµ = ∂Ω, we refer as a boundary volume for Ω. Note that since the topological dimension
of ∂Ω (defined without ambiguity in this situation) is n − 1 and the Hausdorff dominates
it, we have n − 1 ≤ dimH ∂Ω ≤ n. Therefore, if a boundary volume satisfies (3) then with
exponent n− 1 ≤ s ≤ n.

Theorem 2. Let D ⊂ Rn be bounded and open and n− 1 ≤ s < n. Suppose that (Ωm)m is
a sequence of domains Ωm ⊂ D and (µm)m is a sequence of boundary volumes µm for the
domains Ωm, respectively, which satisfy (5) with suppµm = ∂Ωm.

(i) If supm µm(D) < +∞ then there are a sequence (mk)k of indexes and an open set
Ω ⊂ D such that the sequence (µmk

)k converges weakly to a Borel measure µ satisfying
(5) with K = suppµ, and we have ∂Ω ⊂ K ⊂ D \ Ω. The sequences (Ωmk

)k and
(D \ Ωmk

)k converge to Ω and D \ (Ω ∪K), respectively, in the Hausdorff sense and
the sense of characteristic functions.

(ii) If (Ωm)m converges to Ω in the Hausdorff sense and in the sense of compacts and
(µm)m converges weakly to a Borel measure µ then suppµ = ∂Ω and µ satisfies (5).

Proof. We use the notation dK(x) := d(x,K) for closed K ⊂ Rn. To see the subequential
Hausdorff convergence of domains we follow [30, Theorem 2.2.25 and Corollary 2.2.26].

The fm = (f
(1)
m , f

(2)
m ) : D → R+ × R+, defined by fm(x) = (dD\Ωm

(x), dΩm
(x)), form an

equibounded sequence (fm)m, and since

|dD\Ωm
(x)− dD\Ωm

(y)| ≤ d(x, y) and |dΩm
(x)− dΩm

(y)| ≤ d(x, y) (11)

for all x, y ∈ D, it is also equicontinous. By Arzela-Ascoli we can find a sequence (mk)k so
that (fmk

)k converges to a continuous function f = (f (1), f (2)) : D → R+ × R+. We claim
that writing Ω := {f (1) > 0} and Ω′ := {f (2) > 0} we have f = (dD\Ω, dD\Ω′). To see

this, note first that D \ Ω = {f (1) = 0} and taking limits in (11) yields f (1) ≤ dD\Ω. Given

x ∈ D let xm ∈ D \ Ωm be such that dD\Ωm
(x) = d(x, xm). By the compactness of D (and

passing to further subsequences if needed) we can find a sequence xmk
with limit y ∈ D so

that f (1)(x) = limk f
(1)
mk(x) = limk d(x, xmk

) = d(x, y). Since f (1)(y) ≤ limk d(y, xmk
) = 0

we have y ∈ D \ Ω and therefore, and since x was arbitrary, f (1) ≥ dD\Ω. Similarly we

can see that f (2) = dD\Ω′ . Now it follows from [30, Proposition 2.2.27] that Ωmk
→ Ω

and D \ Ωmk
→ Ω′ in the Hausdorff sense. Since K := limk→∞ ∂Ωmk

equals {f = 0} and
{f (1) > 0, f (2) > 0} = ∅, it follows that Ω′ = D \ (Ω ∪K).

By the Banach-Alaoglu theorem we may, passing to a further subsequence, assume that
the boundary volumes converge weakly to a Borel measure µ. By Proposition 2 its support
K = suppµ is the limit in the Hausdorff sense of the boundaries ∂Ωmk

, and µ satisfies (5).
By [30, Proposition 2.2.16 and the remarks following it] we have ∂Ω ⊂ K. By definition the
open sets D \ ∂Ωmk

converge in the Hausdorff sense to D \K, and clearly Ωmk
⊂ D \ ∂Ωmk

for all k. According to [30, (2.16) in 2.2.3.2] it follows that Ω ⊂ D \K, hence K ⊂ D \ Ω.
For simplicity we relabel and denote the chosen subsequence again by (Ωm)m, and by

Banach-Alaoglu we may assume that (1Ωm
)m converges weakly∗ in L∞(D) to a function χ.
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Clearly χ ≤ 1D λn-a.e. and [30, Proposition 2.2.23] yields 1Ω ≤ χ λn-a.e. To show that
also χ ≤ 1Ω λn-a.e. suppose that δ > 0. For sufficiently small α > 0 we have λn((K)α) < δ
by Proposition 1, and in particular,

∫
(Ω)α\Ω

χdx < δ. We claim that if y ∈ D has distance

d(y,Ω) > α from Ω then for any ball B(y, r) with r < α/2 we have
∫

B(y,r)∩D

χdx = 0. (12)

If this is true then covering the closure of Aα := {x ∈ D : d(x,Ω) > α} by finitely many
such balls we can deduce that χ = 0 λn-a.e. on Aα. Since λn(∂Ω) ≤ λn(K) = 0 by the
preceding and Proposition 1, we obtain

∫

Ωc

χdx =

∫

∂Ω

χdx+

∫

(Ω)α\Ω

χdx+

∫

Aα

χdx < δ,

and since δ was arbitrary, χ = 0 λn-a.e. on Ωc. This shows that χ = 1Ω, so that by [30,
Proposition 2.2.1] we have Ωm → Ω in the sense of characteristic functions. To verify (12)
let y and r be as there and suppose there exists some γ > 0 such that

∫
B(y,r)∩D

χdx > 2γ.

Choose β > 0 so that λn((K)2β) < γ. By the weak∗ convergence in L∞(D) we have

lim
m
λn(B(y, r) ∩ Ωm) =

∫

D

1B(y,r)1Ωm
dx =

∫

D

1B(y,r)χdx,

hence λn(B(y, r)∩Ωm) > γ for all large enough m. Since D \Ωm → D \Ω in the Hausdorff
sense, it holds that D ∩B(y, r) ⊂ (D \ Ωm)β for all large enough m, hence B(y, r) ∩ Ωm ⊂
{x ∈ Ωm : d(x,D \ Ωm) ≤ β} and therefore, since ∂Ωm → K,

λn(B(y, r) ∩ Ωm) ≤ λn((∂Ωm)β) ≤ λn((K)2β) < γ

for all large enough m, what contradicts the preceding. Consequently (12) holds. The
convergence D \Ωm → D \ (Ω ∪K) in the sense of characteristic functions is an immediate
consequence, and this completes the proof of (i).

To see (ii) note that since by [30, Proposition 2.2.16 and the remarks following it] we
have ∂Ω ⊂ K, it suffices to prove K ⊂ ∂Ω. Suppose that there is a point x ∈ K \ ∂Ω.
Then x must be in Ω or in D \ Ω, and in either case we could find a small ball Bx around
x whose closure Bx is contained in Ω or in Rn \ Ω. By [30, Proposition 2.2.17] and by the
convergence in the sense of compacts, this implies Bx ⊂ Ωm for all sufficiently large m in
the first case and Bx ⊂ Rn \Ωm in the second. Both cases contradict the fact that x is the
limit of a sequence of points xm ∈ ∂Ωm.

4.2 Shape admissible domains and compactness

We prove a compactness result for suitable classes of domains with a quantitative control of
the geometry of the domain and its boundary. This generalizes [30, Theorem 2.4.10] and in
part follows its ideas. Recall that we assume n ≥ 2 throughout.

Definition 2. Let D0 ⊂ D ⊂ Rn be non-empty bounded Lipschitz domains. A pair (Ω, µ) is
called a shape admissible domain with parameters D, D0, ε > 0, n− 1 ≤ s < n, 0 ≤ d ≤ s,
c̄As > 0, cAd > 0 if Ω is an (ε,∞)-domain such that D0 ⊂ Ω ⊂ D and µ is a boundary volume
for Ω satisfying (4) and (5) with ∂Ω in place of K. The set of such domains is denoted by
Uad(D,D0, ε, s, d, c̄

A
s , c

A
d ).

Note that a pair (Ω, µ) can be called a Jonsson shape admissible domain with parameters
D, D0, ε, s, d, cs, cd, c̄1, c2 if D0 ⊂ Ω ⊂ D is a bounded (ε,∞)-domain and µ is a boundary
volume for Ω satisfying (6), (7) and (9) with ∂Ω in place of K. The set of such domains
is denoted by UJ

ad(D,D0, ε, s, d, cs, cd, c̄1, c2). It is clear that this set is a closed, and hence
compact, subset of Uad(D,D0, ε, s, d, c̄

A
s , c

A
d ) in the sense of the following theorem.
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Theorem 3. Suppose that the parameters are fixed in Definition 2.

(i) The class Uad(D,D0, ε, s, d, c̄
A
s , c

A
d ) of admissible domains is compact in the Hausdorff

sense, in the sense of characteristic functions, in the sense of compacts, and in the
sense of weak converges of the boundary volumes.

(ii) If for a sequence Ωm of shape admissible domains the boundary volumes converge
weakly, then Ωm converge in the Hausdorff sense, in the sense of characteristic func-
tions, and in the sense of compacts.

Proof. By (4) the measures are uniformly bounded, so that by Theorem 2 (i) we can find a
subsequence (mk)k, an open set Ω to which the domains Ωmk

converge in the Hausdorff sense
and in the sense of characteristic functions and a Borel measure µ with support K = suppµ
satisfying (4) and (5) and such that µmk

→ µ weakly. By Theorem 1 the open set Ω is a
bounded (ε,∞)-domain. Since D0 is a subset of all Ωmk

’s, it is a subset of Ω, which therefore
is seen to be non-empty.

It remains to show convergence in the sense of compacts. If L is a compact subset of
Ω then by [30, Proposition 2.2.17] L is contained in Ωm for any large enough m. Now
suppose that L ⊂ R

n \ Ω, we may assume that L has non-empty interior. Suppose that
there is a subsequence (Ωmk

)k such that L ∩ Ωmk
6= ∅ for all k. If (for some subsequence)

we have L ⊂ Ωmk
then λn(Ωmk

\ Ω) ≥ λn(L) > 0, what contradicts the convergence in the
sense of characteristic functions. If this is not the case, then we must have L ∩ ∂Ωmk

6= ∅
(for some subsequence). However, this also leads to a contradiction: Write γ := d(L,Ω).
Consider a sequence of points xmk

⊂ L ∩ ∂Ωmk
converging to a point x ∈ L. For large

enough k we have xmk
∈ B(x, γ/2). Since xmk

∈ ∂Ωmk
we can find ymk

∈ Ωmk
such that

|xmk
− ymk

| < 2−k, and passing to a subsequence if necessary, we may assume the ymk

converge to a point y ∈ B(x, γ/2). Fix a point z ∈ Ω. Then we have z ∈ Ωmk
for all

sufficiently large k by [30, Proposition 2.2.17], and for each such k we can find a rectifiable
curve γk joining z and ymk

such that C(γk, ε) ⊂ Ωmk
. Passing to another subsequence if

necessary we may, by Lemma 1, assume that the curves γk converge to a rectifiable curve γ
joining z and y and that the sets C(γk, ε) converge to C(γ, ε) in the Hausdorff sense. Since
C(γ, ε) ⊂ Ω by [30, (2.16) in 2.2.3.2] and y ∈ C(γ, ε) ⊂ Ω this implies that d(x,Ω) ≤ γ/2,
what contradicts the fact that x ∈ L. Consequently we have L ⊂ Rn \Ωm for all sufficiently
large m, and can conclude that Ωm → Ω in the sense of compacts. From Theorem 2 (ii) it
now follows that K = ∂Ω. This proves (i).

To see (ii), note that by Proposition 2 or Proposition 3, respectively, µ satisfies the
desired scaling conditions. By (i) and Theorem 1 Ωm has subsequence convergent in the
Hausdorff sense, in the sense of characteristic functions and in the sense of compacts to some
Ω ⊂ D which is an (ε,∞)-domain contained in D and such that suppµ = ∂Ω. Since the
limit domain of any such subsequences of domains must have this boundary but at the same
time be bounded, Ω is the limit of the sequence.

Remark 6. Theorem 2 and Theorem 3 rely on (5) in a crucial way. For d = 0 in Defini-
tion 2 estimate (4) reduces to a uniform bound for the total masses, but this already suffices
to have Theorem 2 and Theorem 3.

5 Trace and extension operators

We review known trace and extension methods that combine well with our setup and record
some consequences.

5.1 Traces and extensions for closed subsets of Rn

For any β > 0 the symbol Hβ(Rn) denotes the Bessel-potential space of order β, [1, 53, 54],

that is, the space of all f ∈ L2(Rn) such that (1+ |ξ|2)β/2f̂ ∈ L2(Rn), where f 7→ f̂ denotes

the Fourier transform. It is a Hilbert space with norm ‖f‖Hβ(Rn) := ‖(1 + |ξ|2)β/2f̂‖L2(Rn).
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We are interested in the trace of functions f ∈ Hβ(Rn) to a closed set K ⊂ Rn. For
β > n/2 we have Hβ(Rn) ⊂ C(Rn), see e.g. [53, 2.8.1], and one can use the pointwise
restriction f |K . However, for our purposes the case 0 < β ≤ n/2 is relevant. It is well
known that for any f ∈ Hβ(Rn) the limit

f̃(x) = lim
r→0

1

λn(B(x, r))

∫

B(x,r)

f(y)dy (13)

exists at Hβ(Rn)-quasi every x ∈ Rn and that f̃ defines a Hβ(Rn)-quasi continuous version
of f , [1, Theorem 6.2.1]. If µ is a Borel measure with support K = suppµ and satisfying
(4) for sufficiently large d, then it charges no set of zero Hβ(Rn)-capacity and consequently
the limit in (13) does exist for all x ∈ K \ N , where N ⊂ K is a µ-null set. Under these
circumstances one can define a µ-class TrK f on K by setting

TrK f(x) = f̃(x) if x ∈ K \N and 0 otherwise. (14)

We state a direct consequence of [1, Theorems 7.2.2 and 7.3.2, together with Propositions
5.1.2 and 5.1.4].

Theorem 4. Let 0 < d ≤ n, (n − d)/2 < β ≤ n/2 and 2 < q < 2d/(n − 2β) (with
1/0 := +∞). Suppose that K = suppµ with a Borel measure µ satisfying (4). Then TrK
is a compact linear operator from Hβ(Rn) into Lq(K,µ), and we have ‖TrK f‖Lq(K) ≤

cTr ‖f‖Hβ(Rn), f ∈ Hβ(Rn), with a constant cTr > 0 depending only on β, d, n, cAd , q.

In the situation of this theorem we have Hβ(Rn) = H̊β(Rn\K)⊕HK , where H̊β(Rn\K)
is the closure of C∞

c (Rn \K) in Hβ(Rn) and HK denotes its orthogonal complement, [27,
Corollary 2.3.1 and Lemma 2.3.4]. Given ϕ ∈ TrK(Hβ(Rn)) we say that g ∈ Hβ(Rn) is a
weak solution to the Dirichlet problem

(1−∆)βg = 0 on R
n \K TrKg = ϕ on K (15)

if 〈g, v〉Hβ(Rn) = 0, v ∈ H̊β(Rn \K), and TrKg = ϕ µ-a.e. on K. The following is folklore,

see for instance [25, 54].

Corollary 1. Let the hypotheses of Theorem 4 be in force.

(i) For any ϕ ∈ TrK(Hβ(Rn)) there is a unique weak solution HKϕ to (15).

(ii) The map ϕ 7→ ‖ϕ‖TrK(Hβ(Rn)) := infg∈Hβ(Rn),ϕ=TrKg ‖g‖Hβ(Rn) is a norm that makes

TrK(Hβ(Rn)) a Hilbert space.

(iii) The map HK : TrK(Hβ(Rn)) → Hβ(Rn), ϕ 7→ HKϕ, is a linear extension operator of
norm one, and TrK(HKϕ) = ϕ, ϕ ∈ TrK(Hβ(Rn)).

To the linear operator HK one also refers as harmonic extension operator.

Proof. If ϕ = TrKf with f ∈ Hβ(Rn) then the orthogonal projection HKϕ of f onto HK

has the desired properties, [27, Section 2.3]. The rest follows.

Remark 7. A description of the space TrK(Hβ(Rn)) in terms of an atomic decomposition is
provided in [33]. Note that for orders p of integrability other than 2 the harmonic extension
is generally no longer linear.

For later use we record the following convergence result for integrals of traces.

Theorem 5. Let D ⊂ R
n be a bounded open set, 0 < d ≤ n and (n− d)/2 < β ≤ n/2. Let

(µm)m be a sequence of finite Borel measures with supports Km = suppµm contained in D
and such that (4) holds for all m with the same constant. Suppose that (µm)m converges
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weakly to a Borel measure µ. If (vm)m ⊂ Hβ(Rn) is a sequence that converges to some v in
Hβ(Rn), then

lim
m→∞

∫

Km

|TrKm
vm|2dµm =

∫

K

|TrKv|
2dµ,

where K := suppµ.

Proof. By Proposition 3 also µ satisfies (4) and Theorem 4 applies. Since C∞
c (Rn) is dense

in Hβ(Rn), we can find a sequence (ϕj)j∈N ⊂ C∞
c (Rn) converging to v in Hβ(Rn). Following

[15], we observe that

∣∣∣∣
∫

Km

|TrKm
vm|2dµm −

∫

K

|TrKv|
2dµ

∣∣∣∣

≤

∣∣∣∣
∫

Km

|TrKm
vm|2dµm −

∫

Km

|TrKm
v|2dµm

∣∣∣∣+
∣∣∣∣
∫

Km

|TrKm
v|2dµm −

∫

Km

|ϕj |
2dµm

∣∣∣∣

+

∣∣∣∣
∫

Km

|ϕj |
2dµm −

∫

K

|ϕj |
2dµ

∣∣∣∣+
∣∣∣∣
∫

K

|ϕj |
2dµ−

∫

K

|TrKv|
2dµ

∣∣∣∣ . (16)

To estimate the first term on the right hand side of (16) we control it using the Cauchy-
Schwarz inequality and the reverse triangle inequality,

∣∣∣∣
∫

Km

|TrKm
vm|2dµm −

∫

Km

|TrKm
v|2dµm

∣∣∣∣

≤ ‖TrKm
(vm − v)‖L2(Km)

(
‖TrKm

vm‖L2(Km) + ‖TrKm
v‖L2(Km)

)
.

Since β, d, n and cAd are kept fixed and supm µm(D) < +∞ by weak convergence, Theorem 4
and Hölder’s inequality ensure the existence of a constant c′Tr > 0 independent of m such
that ‖TrKm

(vm − v)‖L2(Km) ≤ c′Tr‖vm − v‖Hβ(Rn), what goes to zero as m→ ∞. Since also

max{sup
m

‖TrKm
vm‖L2(Km), sup

m
‖TrKm

v‖L2(Km)} ≤ c′Tr sup
m

‖vm‖Hβ(Rn),

the first term in (16) is seen to converge to 0 as m → +∞. For the second term in (16)
we can use supm ‖TrKm

(v − ϕj)‖L2(Km) ≤ c′Tr‖v − ϕj‖Hβ(Rn) to see it converges to zero as
j → ∞, and the same with K in place of Km yield the convergence to zero of the last term.
The third term converges to zero as m→ ∞ by weak convergence.

If refined scaling properties of µ as in subsection 3.2 are known, one can introduce Besov
spaces on K with explicit norms, see [32–34]. We recall the definition originally given in [32].

Definition 3. Let 0 ≤ d ≤ n, d ≤ s ≤ n, s > 0 and (n− d)/2 < β < 1+ (n− s)/2. Suppose
µ is a Borel measure on Rn with support suppµ = K satisfying (6), (7), (8). The Besov
spaces B2,2

β (K,µ) on K is defined as the space of µ-classes of real-valued functions f on K
such that the norm

‖f‖B2,2
β

(K,µ) :=

‖f‖L2(K,µ) +




∞∑

j=0

2j(β−
n
2 )

∫ ∫

|x−y|<2−j

(f(x)− f(y))2

µ(B(x, 2−j))µ(B(y, 2−j))
µ(dy)µ(dx)




1/2

is finite.

The spaces B2,2
β (K,µ) are Hilbert spaces. If µ1 and µ2 are two different measures satis-

fying the hypotheses of Definition 3 and with the same support K, then Theorem 6 below
implies that the resulting spaces B2,2

β (K,µ1) and B2,2
β (K,µ2) are equivalent Hilbert spaces,

see [32, Section 3.5]. We therefore simply write B2,2
β (K) for B2,2

β (K,µ). The following result
is a special case of [32, Theorem 1].
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Theorem 6. Let 0 ≤ d ≤ n, d ≤ s ≤ n, s > 0 and (n− d)/2 < β < 1 + (n− s)/2. Suppose
K ⊂ Rn is a closed set which is the support of a Borel measure µ satisfying (6), (7), (8).
Then

(i) TrK is a continuous linear operator from Hβ(Rn) onto B2,2
β (K), and there is a constant

cTr > 0 depending only on β, s, d, n, cs, cd, c1 and c2 such that ‖TrK f‖B2,2
β

(K) ≤

cTr ‖f‖Hβ(Rn), f ∈ Hβ(Rn).

(ii) There is a continuous linear extension operator EK : B2,2
β (K) → Hβ(Rn) such that

TrK(EKf) = f , f ∈ B2,2
β (K).

The independence of the constant cTr of all except the stated quantities follows from [32,
Lemma 3 and its proof].

5.2 W
1,2-admissible domains

We define a class of domains well adapted to boundary value problems and prove basic facts
about associated trace and extension operators. We assume that n ≥ 2.

Recall that the Sobolev space W k,p(Ω) with k ∈ N and p ∈ [1,∞) is defined as the space
of all f ∈ Lp(Ω) for which we have Dγf ∈ Lp(Ω) in the distributional sense for any multi-
index γ satisfying |γ| ≤ k. It is well known and easy to see that for nonnegative integers k
the space Hk(Rn) coincides with the Sobolev space W k,2(Rn) in the sense of equivalently
normed vector spaces.

Given k = 1, 2, ... and 1 ≤ p ≤ ∞ a domain Ω ⊂ Rn is called a W k,p -extension
domain if there exists a bounded linear extension operator E : W k,p(Ω) → W k,p(Rn), [29,
p. 1218]. Every Lipschitz domain is a W k,p -extension domain for any k = 1, 2, ... and
1 ≤ p ≤ ∞, see [13, 51]. It was shown in [31] that any (ε, δ)-domain Ω ⊂ R

n, i.e., any
(possibly unbounded) domain Ω ⊂ Rn satisfying the conditions (i) and (ii) in Definition 1
for all x, y ∈ Ω with |x − y| < δ for some fixed δ > 0, is a W k,p-extension domain for any
k = 1, 2, ... and 1 ≤ p ≤ ∞, see also [5, 48]. In particular, we have the following.

Corollary 2. Every (ε,∞)-domain is a W k,p-extension domain for any k = 1, 2, ... and
1 ≤ p ≤ ∞, and therefore also every shape admissible domain in the sense of Definition 2.

Any Lipschitz domain is an (ε, δ)-domain for some ε and δ, [31], and any bounded
Lipschitz domain is an (ε,∞)-domain for some suitable ε > 0. For n ≥ 3 examples of
W 1,p-extension domains are known which are no (ε, δ)-domains, [31].

We quote an extension result for Bessel-potential spaces on domains Ω. For β > 0
we write Hβ(Ω) = {f ∈ D′(Ω) : f = g|Ω for some g ∈ Hβ(Rn)}. Endowed with the norm
defined by ‖u‖Hβ(Ω) = infg∈Hβ (Rn),f=g|Ω ‖g‖Hβ(Rn) it becomes a Hilbert space. It follows

from this definition that for W 1,2-extension domains Ω ⊂ Rn the spaces H1(Ω) and W 1,2(Ω)
agree as equivalently normed Hilbert spaces, see [53, 4.2.1 and 4.2.4] for a more classical
case. The following will be used in the next section.

Proposition 4. Let Ω ⊂ Rn be a bounded (ε,∞)-domain. Then there is a linear extension
operator f 7→ ExtΩ f such that for any 0 ≤ β ≤ 1 we have ExtΩ : Hβ(Ω) → Hβ(Rn) with
‖ExtΩ f‖Hβ(Rn) ≤ cExt ‖f‖Hβ(Ω), f ∈ Hβ(Ω), with a constant cExt > 0 depending only on
n, ε and β.

Proof. As in [14, Theorem 5.8] this proposition follows from [48, Theorem 8] and the fact
thatHβ(Ω) by interpolation from L2(Ω) andH1(Ω), to see this one can follow the arguments
used to prove [55, Theorem 2.13].

Remark 8. For a bounded (ε,∞)-domain Ω the existence of a bounded linear extension
operator from W 1,2(Ω) to W 1,2(Rn) with norm bound depending only on ε and n follows
from [31, Theorem 1]. However, [48, Theorem 8] allows to use one and the same extension
operator for different spaces W k,p, what allows interpolation.
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We have the following partial generalization of results from [3,49] and [25] on embeddings
and trace and extension operators and their compactness.

Theorem 7. Let Ω be a W 1,2-extension domain.

(i) The space W 1,2(Ω) is compactly embedded in L2
loc(Ω) (or in L2(Ω) if Ω is bounded).

The linear operator TrΩ : W 1,2(Rn) → W 1,2(Ω), TrΩf = f |Ω, is bounded and has a
linear bounded right inverse EΩ :W 1,2(Ω) →W 1,2(Rn).

(ii) Let µ be a Borel measure with compact support suppµ = Γ ⊂ Ω which satisfies (4)
with some n − 2 < d ≤ n. Then the operator TrΓ : W 1,2(Rn) → L2(Γ, µ), defined by
(14), is compact. The operator

TrΩ,Γ := TrΓ ◦ EΩ : W 1,2(Ω) → L2(Γ, µ)

is well defined in the sense that if u, v ∈ W 1,2(Rn) are such that u = v λn-a.e. in
Ω, then TrΓu = TrΓv µ-a.e. on Γ, and it is compact. The image TrΩ,Γ(W

1,2(Ω)) =
TrΓ(W

1,2(Rn)) is dense in L2(Γ, µ). The map

ϕ 7→ ‖ϕ‖TrΓ(W 1,2(Rn)) := inf
g∈W 1,2(Rn),ϕ=TrΓg

‖g‖W 1,2(Rn)

defines a Hilbert norm on TrΓ(W
1,2(Rn)) with respect to which both operators have

linear bounded right inverses HΓ : TrΓ(W
1,2(Rn)) →W 1,2(Rn) respectively

HΓ,Ω := TrΩ ◦HΓ : TrΓ(W
1,2(Rn)) →W 1,2(Ω).

(iii) Suppose that ∂Ω is compact and µ is a Borel measure with suppµ = ∂Ω which satisfies
(4) with some n− 2 < d ≤ n. For all u ∈ W 1,2(Ω) with ∆u ∈ L2(Ω) we can define a
bounded linear functional ∂u

∂n ∈ (Tr∂Ω(W
1,2(Rn)))′ by

〈
∂u

∂n
,TrΩ,∂Ωv〉(Tr∂Ω(W 1,2(Rn)))′,Tr∂Ω(W 1,2(Rn)) =

∫

Ω

v∆udx+

∫

Ω

∇v · ∇udx, (17)

v ∈W 1,2(Ω). Similarly, for any u ∈ W 1,2(Ω) and 1 ≤ i ≤ n, we can define a bounded
linear functional u · ni ∈ (Tr∂Ω(W

1,2(Rn)))′ by

〈u · ni,TrΩ,∂Ωv〉(Tr∂Ω(W 1,2(Rn)))′,Tr∂Ω(W 1,2(Rn)) =

∫

Ω

∂u

∂xi
vdx +

∫

Ω

u
∂v

∂xi
dx, (18)

v ∈W 1,2(Ω).

Remark 9. The distribution ∂u
∂n in (17) is a generalized normal derivative.

Remark 10. Even if ∂Ω is Lipschitz it can make sense to endow it with a measure µ that
satisfies (4) with maximal possible exponent n− 2 < d < n− 1, in this one allows µ to have
parts singular w.r.t. Hn−1.

Remark 11. If n− 2 < d ≤ s < n and µ satisfies (6), (7) and (8), then by Theorem 6 the
space TrΓ(W

1,2(Rn)) and the operator HΓ in Theorem 7 (ii) can be replaced by B2,2
1 (Γ) and

EΓ. Under these more restrictive hypotheses Theorem 7 (iii) holds with B2,2
1 (∂Ω) in place

of Tr∂Ω(W
1,2(Rn) and the same replacement can be made in Colorraly 3 and Colorraly 4

below.

Proof. Statement (i) is a special case of Theorem 2.12 point 2 in [3], which generalizes the
classical Rellich-Kondrachov theorem. Note that since Ω is W 1,2-extension domain, Ω is
an n-set and W 1

2 (Ω) = C1
2 (Ω), see [29, Theorem 5], and this is sufficient to conclude the

mentioned result in [3]. The first statement (ii) follows from 4 and the finiteness of µ.
That TrΩ,Γ : W 1,2(Ω) → L2(Γ, µ) in (ii) is well defined in the stated sense can be seen as
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in [58, Theorem 1] or [7, Theorem 6.1]. Its compactness follows from [7, Corollary 7.4] (see
also [49, Proposition 3]). The space {v|∂Ω : v ∈ C∞

c (Rn)}, is uniformly dense in C(∂Ω) by
the Stone-Weierstrass theorem, and C∞

c (Rn) is dense in W 1,2(Rn), hence TrΓ(W
1,2(Rn) is

dense in L2(Γ, µ). The last statements follow using Colorraly 1. For (iii) one can follow the
arguments of [3, Proposition 1] (originally due to [37, Theorem. 4.15]), the correctness of the
definition can be concluded using [27, formula (2.3.7) in Section 2.3]. In a similar manner
one can obtain (18), see [28, Theorem 2.5 and formula (2.17)] for the Lipschitz case.

Theorem 7 (iii) and [3, Definition 7] motivate to define a class of domains suitable to
discuss different types of boundary value problems (see also [20, 49]).

Definition 4. A W 1,2-admissible domain in Rn is a pair (Ω, µ) consisting of a W 1,2-
extension domain Ω ⊂ Rn and a Borel measure µ with suppµ = ∂Ω which satisfies (4) with
some n− 2 < d ≤ n. We call a W 1,2-admissible domain (Ω, µ) bounded if Ω is bounded.

Examples of W 1,2-admissible domains are Ck-regular domains (k ∈ N∗), Lipschitz do-
mains and domains with a d-set boundary (n − 2 < d < n) or a boundary composed of
different d-sets such as the cylindrical von Koch domains in [38, 39].

To discuss boundary value problems on W 1,2-admissible domains (Ω, µ) it is useful to
consider Tr∂Ω(W

1,2(Rn)) with equivalent scalar products. For any ϕ ∈ Tr∂Ω(W
1,2(Rn)) the

function H∂Ω,Ω(ϕ) ∈ W 1,2(Ω) is the unique minimizer for the Dirichlet energy
∫
Ω
|∇v|2dx in

the class of all v ∈W 1,2(Ω) with TrΩ,∂Ωv = ϕ µ-a.e. on ∂Ω. By ‖·‖Tr∂Ω(W 1,2(Rn)) we denote

the scalar product on Tr∂Ω(W
1,2(Rn)) associated with the Hilbert norm in Theorem 7 (ii)

with Γ = ∂Ω.

Corollary 3. Let (Ω, µ) be a bounded W 1,2-admissible domain in Rn and let γ be a non-
negative and bounded Borel function on ∂Ω which is positive on a subset positive µ-measure.
Then the bilinear form

〈ϕ, ψ〉Tr∂Ω(W 1,2(Rn)),γ :=

∫

Ω

∇H∂Ω,Ω(ϕ)∇H∂Ω,Ω(ψ)dx+

∫

∂Ω

γϕψdµ (19)

is an equivalent scalar product on Tr∂Ω(W
1,2(Rn)). There is a constant c > 0 depending only

on d, n, cAd , the total mass of µ and γ such that ‖ϕ‖Tr∂Ω(W 1,2(Rn)),γ ≤ c ‖ϕ‖Tr∂Ω(W 1,2(Rn)),

ϕ ∈ Tr∂Ω(W
1,2(Rn)).

Proof. Well known arguments, see [59, Theorem 21A and Step 3 in its proof on p. 247/248],
together with Theorem 4 show that the bilinear form

〈w, v〉W 1,2(Ω),γ :=

∫

Ω

∇w∇v dx+

∫

∂Ω

γ TrΩ,∂Ω wTrΩ,∂Ω vdµ, v, w ∈W 1,2(Ω),

is an equivalent scalar product on W 1,2(Ω), and with another application of Theorem 4 this
implies the result.

We complement Theorem 7 by results involving a Dirichlet boundary condition, they
will be used in section 7. Suppose that (Ω, µ) be a bounded W 1,2-admissible domain and
ΓDir ⊂ ∂Ω is a set of positive µ-measure. then

V (Ω,ΓDir) := {w ∈ W 1,2(Ω) : TrΩ,∂Ω w = 0 µ-a.e. on ΓDir} (20)

is a closed subspace of W 1,2(Ω). Accordingly, the image TrΩ,∂Ω(V (Ω,ΓDir)) of this space
under TrΩ,∂Ω is the closed subspace of Tr∂Ω(W

1,2(Rn)) consisting of all elements that are
zero µ-a.e. on ΓDir.

Corollary 4. Let (Ω, µ) be a bounded W 1,2-admissible domain in Rn and let ΓDir be a Borel
subset of ∂Ω with µ(ΓDir) > 0.
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(i) The Poincaré inequality
∫

Ω

|u|2dx ≤ CP (Ω, µ,ΓDir)

∫

Ω

|∇u|2dx, u ∈ V (Ω,ΓDir), (21)

holds with a constant CP (Ω, µ,ΓDir) > 0.

(ii) For all u ∈ V (Ω,ΓDir) with ∆u ∈ L2(Ω) we can define a bounded linear functional
∂u
∂n ∈ (TrΩ,∂Ω(V (Ω,ΓDir)))

′ by a counterpart of (17) when testing with functions v ∈
V (Ω,ΓDir).

(iii) Suppose γ is a nonnegative and bounded Borel function on ∂Ω which is positive on
a set of positive µ-measure. Then for any ϕ ∈ Tr∂Ω(W

1,2(Rn)) there is a function
ϕγ,⊥ ∈ Tr∂Ω(W

1,2(Rn)) such that

〈ϕγ,⊥,TrΩ,∂Ω v〉Tr∂Ω(W 1,2(Rn)),γ = 0, v ∈ V (Ω,ΓDir),

and ϕγ,⊥ = ϕ µ-a.e. on ΓDir. Here notation is as in (19).

Proof. The proof of (21) is standard, see for instance [22, Proposition 7.1], the second state-
ment follows like (17), and in the third we can take ϕγ,⊥ to be the orthogonal projection in
(Tr∂Ω(W

1,2(Rn)), 〈·, ·〉Tr∂Ω(W 1,2(Rn),γ) onto the orthogonal complement of TrΩ,∂Ω(V (Ω,ΓDir)).

6 Mosco convergence of energy functionals

We consider energy functionals and prove their Mosco convergence, [47], along a convergent
sequence of domains. As aways, we assume n ≥ 2.

Suppose that A, B and C are positive constants, D ⊂ Rn is a bounded Lipschitz domain,
Ω an (ε,∞)-domain contained in D and µ is a finite Borel measure with Γ = suppµ ⊂ Ω
and satisfying (4) with n− 2 < d ≤ n. We define an energy functional J(Ω, µ) on L2(D) by

J(Ω, µ)(v) =





A
∫
Ω

|v|2dx+B
∫
Ω

|∇v|2dx+ C
∫
Γ

|TrΩ,Γ v|
2dµ, v|Ω ∈ W 1,2(Ω),

+∞, v|Ω /∈W 1,2(Ω).
(22)

Remark 12. If Γ ⊂ ∂Ω then (17) implies that J(Ω, µ) is minimized by the weak solutions v,
in the sense of testing with elements of W 1,2(Ω), of the Robin problem B∆v = Av in Ω and
B ∂v

∂n +C1ΓTrΩ,∂Ω v = 0 on ∂Ω, cf. [59, Section 22.2g]. In the next section we will discuss a
mixed boundary value problem for the Helmholtz equation. In the case of zero Dirichlet and
Robin data the (acoustic) energy (35) of the solution to this problem is of a form somewhat
similar to (22).

Recall that a sequence (Im)m of quadratic functionals Im : L2(D) → [0,+∞] converges
to a quadratic functional I : L2(D) → [0,+∞] in the sense of Mosco if

1. we have limm→∞ Im(um) ≥ I(u) for every seqence (um)m∈N∗ converging weakly to u
in L2(D),

2. for every u ∈ L2(D) there exists a sequence (um)m∈N converging strongly in L2(D)
such that limm→∞ Im(um) ≤ I(u),

see [47, Definition 2.1.1].

Remark 13. The convergence of a sequence of quadratic functionals in the sense of Mosco,
[47], implies their Gamma-convergence, [8]. Originally convergence in the sense of Mosco
was formulated for real Hilbert spaces, [47], but the extension to extended real-valued func-
tionals on complex Hilbert spaces is straightforward.
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The main result of this section is the following.

Theorem 8. Let D ⊂ Rn be a bounded Lipschitz domain and ε > 0. Let Ωm ⊂ D be
uniformly bounded (ε,∞)-domains and µm finite Borel measures with Γm = suppµm ⊂ Ωm,
all satisfying (4) with n− 1 ≤ d ≤ n and the same constant. For each m, let J(Ωm, µm) be
as in (22) but with Ωm, µm in place of Ω, µ.

If limm Ωm = Ω in the Hausdorff sense and in the sense of characteristic functions and
limm µm = µ weakly then we have

lim
m
J(Ωm, µm) = J(Ω, µ). (23)

in the sense of Mosco.

Remark 14. For admissible domains, Definition 2, this can be combined with Theorem 3
(ii).

Proof of Theorem 8. Note that J(Ω, µ) is well-defined: By Theorem 1 Ω ⊂ D is an (ε,∞)-
domain, and Γ := suppµ is contained in the Hausdorff limit limm Γm, which by [30, 2.2.3.2
and Theorem 2.2.25] is a subset of Ω.

Let (um)m ⊂ L2(D) be a sequence converging to u weakly in L2(D) and (umk
)k ⊂ (um)m

such that limm J(Ωm, µm)(um) = limk J(Ωmk
, µmk

)(umk
). We will show that

lim
k
J(Ωmk

, µmk
)(umk

) ≥ J(Ω, µ)(u), (24)

what then implies the first condition in the definition of Mosco convergence.
We may assume the left hand side of (24) is finite, hence we can find a subsequence,

which for simplicity we still denote by (umk
)k, such that umk

∈ W 1,2(Ωmk
) for all k and

supk ‖umk
‖W 1,2(Ωmk

) < +∞. Since 1Ωm
→ 1Ω in L2(D) as m → ∞ we may assume that

1Ωmk
→ 1Ω λn-a.e. on D as k → ∞. Since all Ωm are bounded (ε,∞)-domains with the

same ε, Proposition 4 and Remark 8 ensure the existence of a constant cExt > 0 independent
of k such that

‖ExtΩmk
umk

‖W 1,2(D) ≤ cExt‖umk
‖W 1,2(Ωmk

). (25)

We endow L2(D)× L2(D,Rn) with the Hilbert space norm

(v, w) 7→

(
A

∫

D

|v|2dx+ B

∫

D

|w|2dx

)1/2

. (26)

Then ‖v‖W 1,2(D),A,B := (v,∇v) is an equivalent Hilbert space norm on W 1,2(D). Since by

(25) the sequence
((ExtΩmk

umk
,∇ExtΩmk

umk
))k

is seen to be bounded in L2(D) × L2(D,Rn) with respect to (26), we may, passing to
further subsequences if necessary, assume that (ExtΩmk

umk
)k converges to some u∗ weakly

in W 1,2(D) w.r.t. ‖·‖W 1,2(D),A,B and that (ExtΩmk
umk

,∇ExtΩmk
umk

) converges to some

(v∗, w∗) weakly in L2(D) × L2(D,Rn) w.r.t. (26). Banach-Saks type arguments show that
u∗ = u and (v∗, w∗) = (u,∇u). Using dominated convergence, we see that

lim
k

(1Ωmk
ExtΩmk

umk
,1Ωmk

∇ExtΩmk
umk

) = (1Ωu,1Ω∇u)

weakly in L2(D)× L2(D,Rn) w.r.t. (26), and as a consequence,

lim
k

{
A

∫

Ωmk

|umk
|2dx+B

∫

Ωmk

|∇umk
|2dx

}
≥ A

∫

Ω

|u|2dx+B

∫

Ω

|∇u|2dx. (27)
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Let 1
2 < β < 1. There is a linear extension operator ExtD : Hβ(D) → Hβ(Rn) such that

with vk := ExtΩmk
umk

we have

‖ExtD vk − ExtD u‖Hβ(Rn) ≤ cExt,D‖vk − u‖Hβ(D), (28)

with a constant cExt,D > 0, as follows from Proposition 4. Since the embedding of H1(D) =
W 1,2(D) in Hβ(D) is compact, see for instance [55, Theorem 2.7], this goes to zero as
k → ∞.

For the remaining proof we write v to denote theW 1,2(Rn)-quasi-continuous modification
ṽ (defined as in (13)) of a function v ∈ W 1,2(Rn). Since n− 1 ≤ d we may apply Lemma 5,
(28) and the fact that Γmk

⊂ Ωmk
and Γ ⊂ Ω to obtain

lim
k

∫

Γmk

|vmk
|2dµmk

=

∫

Γ

|ExtΩ u|
2dµ, (29)

and combining (27) and (29) we obtain (24).
To prove the second condition we may assume, without loss of generality, that u ∈

W 1,2(Ω). We claim that it follows with um = ExtΩ u for all m that

lim
m→∞

J(Ωm, µm)(ExtΩ u) = J(Ω, µ)(ExtΩ u).

By dominated convergence we have

lim
m

{
A

∫

Ωm

|ExtΩ u|
2dx +B

∫

Ωm

|∇ExtΩ u|
2dx

}

= A

∫

Ω

|ExtΩ u|
2dx+B

∫

Ω

|∇ExtΩ u|
2dx.

For the last term let w ∈ C∞(D) be such that ‖ExtΩ u− w‖W 1,2(Ω) < ε. Then

∣∣∣∣
∫

Γm

|ExtΩ u|
2dµm −

∫

Γ

|ExtΩ u|
2dµ

∣∣∣∣ ≤
∣∣∣∣
∫

Γm

|ExtΩ u|
2dµm −

∫

Γm

|w|2dµm

∣∣∣∣

+

∣∣∣∣
∫

Γm

|w|2dµm −

∫

Γ

|w|2dµ

∣∣∣∣+
∣∣∣∣
∫

Γ

|w|2dµ−

∫

Γm

|ExtΩ u|
2dµ

∣∣∣∣ ,

estimates similar as in the proof of Lemma 5 show that the first and the third summand on
the right hand side are smaller than a constant times ε, and for largem the second summand
is small by weak convergence.

Remark 15. Following the same arguments one can obtain versions of Theorem 8 if in
(22) the space W 1,2(Ω) is replaced by a suitable subspace of W 1,2(Ω). For instance, one can
consider V (Ω,ΓDir), defined as in (20).

7 Shape optimization for the Helmholtz boundary valued

problem

We consider a mixed boundary valued problem for the Helmholtz equation. In [42] this
problem was studied for domains with Lipschitz or d-set boundaries. Here we first estab-
lish the well-posedness of the problem for W 1,2-admissible domains Ω and then verify the
existence of optimal shapes in a class of shape admissible domains.

The domain Ω models a tunnel or chamber whose walls may contain noise sources and
reflective obstacles for the propagating waves. More precisely, we assume that the boundary
∂Ω of Ω has different parts on which Dirichlet, Neumann or Robin boundary conditions are
prescribed. Dirichlet conditions model noise sources, and homogeneous Neumann boundary

18



conditions model reflecting walls. The Robin boundary condition involves a fixed complex
coefficient α = α(ω), [42, Theorem 4], and models partial reflection and absorption at an
acoustically absorbent wall made of porous material. As in the most commonly known shape
optimization problems, the Dirichlet and Neumann parts of the boundary are kept fixed.
The question is what shape the absorbent wall must have in order to minimize the total
acoustical energy for a fixed source and a fixed frequency ω > 0.

To formalize the model, suppose that (Ω, µ) is a W 1,2-admissible domain in Rn, n ≥ 2,
whose boundary ∂Ω = suppµ is divided into three disjoint parts,

∂Ω = ΓDir ∪ ΓNeu ∪ Γ, (30)

each a Borel set and of positive measure µ. Here ΓDir and ΓNeu denote the fixed Dirichlet
and Neumann parts, respectively, and Γ denotes the Robin part which may vary, [42]. See
Fig. 1, page 20, for an example. We consider the formal problem

{
△u+ ω2u = f, on Ω,

Tr u = g on ΓDir,
∂u

∂n
= 0 on ΓNeu,

∂u

∂n
+ α(ω)Tr u = Tr h on Γ,

(31)

where ω > 0, α is a complex-valued function continuous on Ω with a strictly positive real
part Re(α) > 0, corresponding to the reflection at Γ, and a strictly negative imaginary part
Im(α) < 0, corresponding to the absorption at Γ, f is a function on Ω, g is a function on
ΓDir and h a function on Ω with well-defined trace Tr h on Γ. Equation (31) is a frequency
version of a time-dependent wave propagation problem. The case g = 0 was originally
studied in [6]. See [42, Section 2] for a discussion about how (31) models the absorption of
acoustical energy by a porous wall.

To formulate problem (31) rigorously, suppose that (Ω, µ) is a bounded W 1,2-admissible
domain in Rn and that µ|ΓDir satisfies the hypotheses of Theorem 6 with ΓDir in place of
K. Given f ∈ L2(Ω), g ∈ B2,2

1 (ΓDir) and h ∈W 1,2(Ω), we call u ∈W 1,2(Ω) a weak solution
of (31) on (Ω, µ) if TrΩ,∂Ωu = g µ-a.e. on ΓDir and

∫

Ω

∇u∇v̄dx− ω2

∫

Ω

uv̄dx+

∫

Γ

αTrΩ,∂ΩuTrΩ,∂Ωv̄ dµ

= −

∫

Ω

f v̄dx+

∫

Γ

TrΩ,∂ΩhTrΩ,∂Ωv̄ dµ (32)

for all v ∈ V (Ω,ΓDir). Note that ∂u
∂n ∈ (B2,2

1 (∂Ω))′ for a weak solution u of (31) by (17),

and by (32) and Colorraly 4 we have ∂u
∂n = 1Γ(TrΩ,∂Ωh− αTrΩ,∂Ωu), seen as an identity in

(TrΩ,∂Ω(V (Ω,ΓDir)))
′, what encodes both the Neumann condition on ΓNeu and the Robin

condition on Γ in (31).
The following well-posedness result generalizes [42, Theorem 2.1].

Theorem 9. Let Ω ⊂ Rn be a bounded W 1,2-admissible domain with ∂Ω = suppµ being the
disjoint union (30) of three Borel subsets ΓDir, ΓNeu and Γ of positive µ-measure. Suppose
that ΓDir is compact and µ|ΓDir satisfies (6) and (7) with ΓDir in place of K, that Γ has
nonempty open interior in ∂Ω and that it has positive distance to ΓDir. Let ω > 0 and let
α ∈ C(Ω) be such that Re(α) > 0 and Im(α) < 0.

Then for any f ∈ L2(Ω), g ∈ B2,2
1 (ΓDir) and h ∈W 1,2(Ω) there is a unique weak solution

u of the Helmholtz problem (31) on (Ω, µ). Moreover, there is a constant C > 0, depending
only on α, ω and on CP (Ω, µ,ΓDir) from Colorraly 4, such that

‖u‖W 1,2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖B2,2

1 (ΓDir)
+ ‖h‖W 1,2(Ω)

)
. (33)

In the case g = 0 the operator B : L2(Ω) × V (Ω,ΓDir) → V (Ω,ΓDir), B(f, h) = u, where u
is the weak solution of (31), is a compact linear operator.

19



Remark 16. The compactness of ΓDir and (6), (7) for µ|ΓDir can be dropped if B2,2
1 (ΓDir) is

replaced by the orthogonal complement in Tr∂Ω(W
1,2(Rn)) of the closed subspace TrΩ,∂Ω(V (Ω,ΓDir)),

endowed with the minimal energy norm.

Theorem 9 follows in the same way as [42, Theorem 2.1]: If g = 0 then, using the Poincaré
inequality, Theorem 7, the Riesz representation theorem and the Fredholm alternative, one
obtains unique weak solutions for h = 0 and f = 0, respectively, and their sum is the
unique weak solution for notrivial f and h. This method uses the Cauchy uniqueness shown
in [19, Theorem 1.2] for Lipschitz boundaries, thanks to Remark 4 (i) and (18) the proof
carries over. The case g 6= 0 we can deal with by linear superposition: If ĝ is the unique
element of W 1,2(Ω) such that ∆ĝ = 0 in Ω, TrΩ,∂Ωĝ = g µ-a.e. on ΓDir,

∂ĝ
∂n = 0 on ΓNeu

and ∂ĝ
∂n + Re(α)TrΩ,∂Ωĝ = 0 on Γ, then u satisfies (32) with given f and h if and only if

u− ĝ ∈ V (Ω,ΓDir) satisfies (32) with

f − ω2ĝ and h− i Im(α)ĝ. (34)

Note that we can always assume h or h − i Im(α)ĝ to be zero on ΓDir, otherwise we can
multiply with a smooth cut-off function. The function ĝ can be obtained using Colorraly 4
(iii): If g̊ is an arbitrary extension of g to an element of Tr∂Ω(W

1,2(Rn)) and γ := 1ΓRe(α)
then ĝ := H∂Ω,Ω(̊gγ,⊥) is as stated.

Remark 17. As a corollary of Theorem 9, the operator −∆ associated with the boundary
conditions of problem (31) does not have real eigenvalues.

The acoustic energy associated with the Helmholtz problem (31) with zero Dirichlet and
Robin boundary data g = 0 and h = 0, is E(Ω, µ, u(Ω, µ)) :=

∫
Ω |u|2dx, where u is the

unique weak solution, and for f = 0 identity (32) allows to rewrite this as

E(Ω, µ, u(Ω, µ)) =
1

ω2

(
‖∇u‖2L2(Ω,Rn) + ‖

√
Re(α)TrΩ,∂Ωu‖

2
L2(Γ,µ)

)
. (35)

We discuss the shape optimization problem for functionals similar to those introduced
in (22), evaluated for the weak solution of (31) with suitable given data. This is more specific
than (35) in the sense that α has to be constant, but more general in the sense that it can
have an additional term.

Γ

ΓNeu

ΓNeu

ΓDir
Ω Porous

D0 D1

Figure 1: Example of a domain Ω in R
2, shown in blue, with three types of boundaries:

ΓDir and ΓNeu are fixed and Γ can be changed in the restricted area D1 := D \D0. Here D
is the large rectangle, which is the union of Ω filled with the air and of the domain D \ Ω
with the porous material.
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To define a physically realistic situation, let D,D0, D1 ⊂ Rn be fixed bounded Lipschitz
domains, such that D = D0 ∪ D1, D0 ∩ D1 = ∅. Moreover, we assume that the triple
intersection ∂D∩∂D0∩∂D1 is a (n−2)-dimensional Lipschitz sub-manifold of each respective
boundary. As before we assume that D0 ⊂ Ω ⊂ D, and also that ΓDir ⊂ ∂D ∩ ∂D0 is a
compact non-empty Lipschitz (n − 1)-dimensional surface disjoint from D1, see Fig. 1. In
this set-up we define

Γ := ∂Ω ∩D1, ΓNeu := ∂Ω \ (Γ ∪ ΓDir) = (∂D ∩ ∂D0) \ ΓDir. (36)

For fixed ε > 0, n − 1 ≤ s < n and n − 2 < d ≤ s we write Ûad for the class of all
(Ω, µ) ∈ Uad(D,D0, ε, s, d, c̄

A
s , c

A
d ), where Ω is as just outlined and µ is the sum of the

(n−1)-dimensional Hausdorff measure Hn−1 on ΓDir∪ΓNeu and a more general measure µΓ

on Γ. In Theorem 10 below we allow (Ω, µ) to vary over Ûad, and by the above assumptions
this means that we allow Γ and µΓ to vary.

Let A ≥ 0, B ≥ 0 and C ≥ 0. Suppose that (Ω, µ) ∈ Ûad, ω > 0, α ∈ C(D1) and we are
given data f ∈ L2(D), g ∈ B2,2

1 (ΓDir) and h ∈ W 1,2(D1) and

J(Ω, µ, u(Ω, µ)) := A

∫

Ω

|u|2dx+B

∫

Ω

|∇u|2dx+ C

∫

Γ

|TrΩ,Γu|
2dµ, (37)

where u = u(Ω, µ) denotes the unique weak solution of (32) on (Ω, µ) with f , g, h.

Remark 18. To compare to the general form of functionals mentioned in [30, p. 144], we
point out that one can theoretically consider any objective functional of form

J(Ω, µ, u(Ω, µ)) =

∫

Ω

j1(x, u,∇u)dx+

∫

∂Ω

j2(x,TrΩ,Γ u)dµ,

where j1 : D×C×Cm → R is measurable, continuous in (y, p) for almost every x and such
that with a constant C > 0 we have |j1(x, y, p)| ≤ C(1 + |y|2 + |p|2), x ∈ D, y ∈ C, p ∈ Cn,
and j2 : ∂Ω × C → R is µ-measurable, continuous in y for almost every x and such that
|j2(x, y)| ≤ C(1 + |y|2), x ∈ ∂Ω, y ∈ C.

We have the following result on the existence of an optimal shape that minimizes
J(Ω, µ, u(Ω, µ)) in the class of domains Ûad.

Theorem 10. Let ω > 0 and α ∈ C(D). For any f ∈ L2(D), g ∈ B2,2
1 (ΓDir) and h ∈

W 1,2(D) there exists an optimal shape (Ωopt, µopt) ∈ Ûad which minimizes the functional
J(Ω, µ, u(Ω, µ)) defined in (37),

J(Ωopt, µopt, u(Ωopt, µopt)) = min
(Ω,µ)∈Ûad

J(Ω, µ, u(Ω, µ)). (38)

Moreover, (Ωopt, µopt) is the limit of a minimizing sequence (Ωm, µm)m ⊂ Ûad in the Haus-
dorff sense, the sense of compacts, the sense of characteristic functions and the sense of
weak convergence on D of the boundary volumes, and the limit u∗ = limm ExtΩm

u(Ωm, µm)
exists weakly in W 1,2(D) and satisfies u∗|Ωopt

= u(Ωopt, µopt).

Theorem 10 follows similarly as [42, Theorem 3.2] by a variational convergence argument:
Theorem 3 for the domains and Banach-Alaoglu and Proposition 3 for the measures µΓ imply
the existence of a subsequential limit (Ω∗, µ∗) ∈ Ûad for a minimizing sequence (Ωm, µm)m ⊂
Ûad. The simultaneous validity of Poincaré inequalities with the same constant for all Ωm

(which follows as in [20, Theorem 6] or, alternatively, by modification of the standard proof
as in [22, Proposition 7.1] or [23, Section 5.8] together with the convergence the sense of
characteristic functions) implies that the extensions ExtΩm

um of the unique solutions um
on the Ωm are uniformly bounded in W 1,2(D) and therefore have a subsequential weak limit
u∗. Using a variational convergence argument based on (32) and an application of Lemma 5
similarly as in the proof of Theorem 8 one can identify u∗|Ω∗

as the unique weak solution on
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(Ω∗, µ∗). Using superposition as in (34), Colorraly 3 and Theorem 4 one can see that similar
statements are true for the solutions of the corresponding equations with g = 0 and shifted
data f and h, and one can then use (32) for these solutions together with the convergence
in the sense of characteristic functions, Rellich-Kondrachov for D and Lemma 5 to conclude
that limm J(Ωm, µm, um) = J(Ω∗, µ∗, u

∗), what shows that Ωopt := Ω∗ and µopt := µ∗

satisfy (38).
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A Brief remarks on linear superposition

By linearity (32) allows to use a superposition principle, and this can be implemented in
many different ways.

The option we commented on after Theorem 9 is to consider the unique weak solution ĝ
of the problem

{
△ĝ = 0 on Ω,

Tr ĝ = g on ΓDir,
∂ĝ

∂n
= 0 on ΓNeu,

∂ĝ

∂n
+Re(α)Tr ĝ = 0 on Γ,

(39)

in the sense that ĝ − g ∈ V (D,ΓDir) and

∫

Ω

∇ĝ∇v dx+

∫

Γ

Re(α)TrΩ,∂ΩĝTrΩ,∂Ωv dµ = 0, v ∈ V (D,ΓDir).

As mentioned, this solution is ĝ = H∂Ω,Ω(̊gγ,⊥), where g̊γ,⊥ is the orthogonal projection, de-
fined as in Colorraly 4 (iii) with γ = Re(α)1Γ, of an arbitrary extension g̊ ∈ Tr∂Ω(W

1,2(Rn))
of g ∈ B2,2

1 (ΓDir) to ∂Ω.
It is then easy to see that (32) has a unique weak solution u if and only if

{
△z + ω2z = f − ω2ĝ on Ω,

Tr z = 0 on ΓDir,
∂z

∂n
= 0 on ΓNeu,

∂z

∂n
+ αTr z = Tr(h− i Im(α)ĝ) on Γ,

has a unique weak solution z ∈ V (D,ΓDir), and in this case u = z + ĝ.
Alternatively, one could for instance also consider the unique weak solution ǧ of the

problem {
△ǧ = 0, on Ω,

Tr ǧ = g on ΓDir,
∂ǧ

∂n
= 0 on ∂Ω \ ΓDir.

(40)

Then (32) is seen to have a unique weak solution u if and only if

{
△z + ω2z = f − ω2ǧ on Ω,

Tr z = 0 on ΓDir,
∂z

∂n
= 0 on ΓNeu,

∂z

∂n
+ αTr z = Tr(h− αǧ) on Γ,

has a unique weak solution z ∈ V (D,ΓDir), and in this case u = z + ǧ.
From the point of view of our problem the two options differ only by the way how

the function α is split up. The use of problem (39) involves slightly longer formulas, but if
Re(α) > 0 and µ(Γ) > 0, one can easily solve it using Colorraly 3 and Colorraly 4 (iii), which
rely on the relatively simple [59, Theorem 21A and its proof]. Problem (40) is a Zaremba
problem, [59, Section 22.2h], and it is solved using different, slightly more sophisticated
tools, see for instance [60, Definition 25.31, Theorem 25.I and Remark 25.32]. On the other
hand, it has the advantage that it allows shorter formulas in the substitution above.

B Proof of Theorem 9 on well-posedness

For the convenience of the reader we provide a proof of Theorem 9, the method follows [42,
Theorem 2.1].

Proof. Assume first that g = 0. By linear superposition we have u = uf + uh, where uf is
the unique weak solution of the Helmholtz problem with the given function f but Tr h = 0
on Γ and uh is the unique weak solution of the Helmholtz problem with the given function
h but f = 0.
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The function uf is the unique element of V (Ω,ΓDir) such that

〈
uf , v

〉
W 1,2(Ω),γ

− ω2
〈
uf , v

〉
L2(Ω)

+ i
〈
ImαTrΩ,∂Ω u

f ,TrΩ,∂Ω v
〉
L2(Γ,µ)

= −〈f, v〉L2(Ω) , v ∈ V (Ω,ΓDir),

where 〈·, ·〉W 1,2(Ω),γ is the equivalent scalar product on W 1,2(Ω) defined as in the proof of

Colorraly 3 and with the specific choice γ = 1ΓRe(α). In the sequel we consider also the
subspace V (Ω,ΓDir) with this scalar product and the associated Hilbert norm.

By the Riesz representation theorem there is a bounded linear operator A : L2(Ω) →
V (Ω,ΓDir) such that for w ∈ L2(Ω)

〈w, v〉L2(Ω) = 〈Aw, v〉W 1,2(Ω),γ , v ∈ V (Ω,ΓDir), (41)

and combined with Poincaré’s inequality (21),

‖Aw‖W 1,2(Ω),γ = sup
v∈V (Ω,ΓDir):‖v‖W1,2(Ω),γ=1

| 〈w, v〉L2(Ω) |

≤ CP (Ω, µ,ΓDir) sup
v∈V (Ω,ΓDir):‖v‖W1,2(Ω),γ=1

‖w‖L2(Ω)‖v‖W 1,2(Ω),γ

ensuring the bound ‖A‖ ≤ CP (Ω, µ,ΓDir) for the operator norm ‖A‖ of A.
Similarly, and again by the Riesz representation Theorem, we can find a linear bounded

operator Â : L2(Γ, µ) → V (Ω,ΓDir) such that for ϕ ∈ L2(Γ, µ) we have

〈ϕ,TrΩ,∂Ω v〉L2(Γ,µ)
=

〈
Âϕ, v

〉
W 1,2(Ω),γ

, v ∈ V (Ω,ΓDir),

since the functional v 7→ 〈ϕ,TrΩ,∂Ω v〉L2(Γ,µ)
is linear and continuous on V (Ω,ΓDir).

For the operator norm of Â we observe ‖Â‖ ≤ c since

‖Âϕ‖W 1,2(Ω),γ = sup
v∈V (Ω,ΓDir):‖v‖W1,2(Ω),γ=1

| 〈ϕ,TrΩ,∂Ω v〉L2(Γ,µ)
|

≤ c sup
v∈V (Ω,ΓDir):‖v‖W1,2(Ω),γ=1

‖ϕ‖L2(Γ,µ)‖v‖W 1,2(Ω),γ ,

here c ≤ min{cTr, infΓ α}. By the Poincaré inequality (21) the compact embedding S of
V (Ω,ΓDir) into L2(Ω) has norm bound ‖S‖ ≤ CP (Ω, µ,ΓDir), and the variational formulation
(32) can be rewritten as

〈
(Id−ω2A◦S+i ImαÂ◦TrΩ,∂Ω)u

f , v
〉
W 1,2(Ω),γ

= 〈−Af, v〉W 1,2(Ω),γ v ∈ V (Ω,ΓDir). (42)

Since the operator TrΩ,∂Ω : V (Ω,ΓDir) → L2(∂Ω) is compact, [3], also the operator T =

A ◦ S − i Imα
ω2 Â ◦ TrΩ,∂Ω : V (Ω,ΓDir) → V (Ω,ΓDir) is compact, because it is a sum of

compositions of continuous and compact operators. By the Fredholm alternative it now
suffices to prove that if (h, f) = (0, 0) then the unique weak solution is the zero function,
and this will allow us to conclude to the well-posedness of (42). Setting f = 0 in (42),
choosing v = uf and separating real and imaginary parts of the equality, we first obtain that
TrΩ,∂Ω u

f = 0 µ-a.e. on Γ (since | Imα| > 0). By the Robin boundary condition on Γ, we
then obtain that ∂u

∂n = 0 on Γ (in the sense of a continuous linear functional on V (Ω,ΓDir)).
Then, uf = 0 in Ω follows by the uniqueness of the solution to the Cauchy problem for
∆+ω2Id in the connected domain Ω with Cauchy data on Γ (see for example [19, Theorems
1.1 and 1.2], which by Remark 4 (i) and Theorem 7) can easily be adapted to the case of a
W 1,2-admissible domain Ω). Consequently the operator (Id − ω2T )−1 is well defined as a
continuous linear operator by the Fredholm alternative theorem. Thus, we obtain

‖uf‖W 1,2(Ω),γ ≤ ‖(Id− ω2T )−1‖‖A‖‖f‖L2(Ω) ≤ C(ω, α,CP (Ω, µ,ΓDir))‖f‖L2(Ω).
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In the case that f = 0 the unique weak solution uh ∈ V (Ω,ΓDir) satisfies
〈
(Id− ω2A ◦ S + i ImαÂ ◦ TrΩ,∂Ω)u

f , v
〉

W 1,2(Ω),γ
=

〈
Â ◦ TrΩ,∂Ω h, v

〉

W 1,2(Ω),γ

for all v ∈ V (Ω,ΓDir), and similarly as before we deduce that

‖uh‖W 1,2(Ω),γ ≤ ‖(Id− ω2T )−1‖‖Â‖‖TrΩ,∂Ω ‖‖h‖W 1,2(Ω),γ

≤ C(c, cTr, ω, α, CP (Ω, µ,ΓDir))‖h‖W 1,2(Ω),γ . (43)

Since ‖ · ‖W 1,2(Ω),γ ≤ (1 + cTr)‖ · ‖W 1,2(Ω) on W 1,2(Ω), and on the subspace V (Ω,ΓDir)
also ‖ · ‖W 1,2(Ω) ≤ (1 + CP (Ω, µ,ΓDir)‖ · ‖W 1,2(Ω),γ , we have proved the well-posedness and
estimate (33) with constants as stated for g = 0. Using linear superposition as described in
(34), or using the alternative variant described in section A, we to then obtain the result
with g 6= 0.

To prove that the regularity of the boundary improves the regularity of the solution, we
follow the classical approach, [23] Theorem 5 p. 323. The linearity and the continuity of B
are evident and equivalent to (33). We prove that for any fixed ω > 0, B is also compact (see
Ref. [3] for the real Robin boundary condition). Suppose that limj(fj , hj) = (f, h) weakly
in L2(Ω) × V (Ω,ΓDir) with respect to the scalar product 〈·, ·〉L2(Ω) + 〈·, ·〉W 1,2(Ω). Writing

uj = B(fj , hj) for all j and u = B(f, h), we observe that limj uj = u weakly in V (Ω,ΓDir)
by the linearity and the continuity of B. By Rellich-Kondrachov and the compactness of
the trace operator we have limj uj = u in L2(Ω) and limj TrΩ,∂Ω uj = TrΩ,∂Ω u in L2(Γ, µ).
Choosing v = uj in the variational formulation (32) we find

‖uj‖
2
W 1,2(Ω),γ = ω2‖uj‖

2
L2(Ω) − i

∫

Γ

Imα|TrΩ,∂Ω uj|
2dµ

−

∫

Ω

fjujdx+

∫

Γ

TrΩ,∂Ω hj TrΩ,∂Ω ujdµ,

and taking the limits of the right hand side as j → ∞, we arrive at

ω2‖u‖2L2(Ω) − i

∫

Γ

Imα|TrΩ,∂Ω u|
2dµ−

∫

Ω

fudx+

∫

Γ

TrΩ,∂Ω hTrΩ,∂Ω udµ

= ‖u‖2W 1,2(Ω),γ .

Having both limj uj = u weakly in V (Ω,ΓDir) and limj ‖uj‖W 1,2(Ω),γ → ‖u‖W 1,2(Ω),γ implies
that limj uj = u (strongly) in V (Ω,ΓDir), a priori with respect to ‖·‖W 1,2(Ω),γ , and by the

norm bound mentioned above also with respect to ‖·‖W 1,2(Ω).

C Proof of Theorem 10 on the existence of an optimal

shape

Suppose the hypotheses of the theorem are in force. Given (Ω, µ) ∈ Ûad we define a bilinear
form F (Ω, µ) : W 1,2(D)× V (D,ΓDir) → C by

F (Ω, µ)(w, v) := 〈∇w,∇v〉L2(Ω,Rn) − ω2 〈w, v〉L2(Ω)

+ 〈αTrΩ,∂Ωw,TrΩ,∂Ω v〉L2(Γ,µ) + 〈f, v〉L2(Ω) − 〈TrΩ,∂Ω h,TrΩ,∂Ω v〉L2(Γ,µ) , (44)

w ∈W 1,2(D), v ∈ V (D,ΓDir).

Lemma 2. Suppose that ((Ωm, µm))m ⊂ Ûad converges to a shape admissible domain
(Ω, µ) ∈ Ûad in the sense of characteristic functions and in the sense of weak convergence
of boundary volumes. Then, if (wm)m ⊂W 1,2(D) converges weakly in W 1,2(D) to some w,
we have

lim
m→∞

F (Ωm, µm)(wm, v) = F (Ω, µ)(w, v), v ∈ V (D,ΓDir). (45)

25



Proof. Let (wm)m and w as stated. Then for any v ∈ V (D,ΓDir) we have

|F (Ωm, µm)(wm, v)− F (Ω, µ)(w, v)|

≤ | 〈∇wm,1Ωm
∇v〉L2(D) − 〈∇w,1Ω∇v〉L2(D) |+ ω2| 〈wm,1Ωm

v〉L2(D) − 〈w,1Ωv〉L2(D) |

+
∣∣∣〈αTr∂Ωm,∂Ωm

wm,Tr∂Ωm,∂Ωm
v〉L2(Γm,µm) − 〈αTrΩ,∂Ωw,TrΩ,∂Ω v〉L2(Γ,µ)

∣∣∣

+ | 〈f,1Ωm
v〉L2(D) − 〈f,1Ω)v〉L2(D) |

+ | 〈Tr∂Ωm,∂Ωm
h,Tr∂Ωm,∂Ωm

v〉L2(Γm,µm) − 〈TrΩ,∂Ω h,TrΩ,∂Ω v〉L2(Γ,µ) |.

Clearly limm 〈f,1Ωm
v〉L2(D) = 〈f,1Ωv〉L2(D) by the convergence of the characteristic func-

tions, and since the compact embedding W 1,2(D) ⊂ L2(D) implies limm wm = w in L2(D),
also limm 〈wm,1Ωm

v〉L2(D) = 〈w,1Ωv〉L2(D). Using the convergence in L2(D) just estab-

lished and the orthogonal Helmholtz decomposition of elements in L2(D,Rn) into gradients
and divergence free fields we see that limm∇wm = ∇w weakly in L2(D,Rn), and since also
limm 1Ωm

∇v = 1Ω∇v in L2(D,Rn), we obtain

lim
m

〈∇wm,1Ωm
∇v〉L2(D,Rn) = 〈∇w,1Ω∇v〉L2(D,Rn) .

Similarly as in the proof of Theorem 8 we can fix some 1
2 < β < 1 and use the compactness of

the embedding W 1,2(D) ⊂ Hβ(D) together with Proposition 4 to see that limm ExtD wm =
ExtD w in Hβ(Rn). Using (36) and the fact that Γ∩ΓNeu has zero measure µ, together with
Lemma 5 as in the proof of Theorem 8 and polarization, we therefore obtain

lim
m

〈Tr∂Ωm,∂Ωm
h,Tr∂Ωm,∂Ωm

v〉L2(Γm,µm) = 〈TrΩ,∂Ω h,TrΩ,∂Ω v〉L2(Γ,µ) .

Since by Tietze extension and uniform smooth approximation in a neighborhood of D we
may assume that α is bounded and C1, so that in particular, ᾱv ∈ V (D,ΓDir), the same
argument also yields

lim
m

〈αTr∂Ωm,∂Ωm
wm,Tr∂Ωm,∂Ωm

v〉L2(Γm,µm)

= lim
m

〈Tr∂Ωm,∂Ωm
wm, ᾱTr∂Ωm,∂Ωm

v〉L2(Γm,µm)

= 〈TrΩ,∂Ω w, ᾱTrΩ,∂Ω v〉L2(Γ,µ) = 〈αTrΩ,∂Ω w,TrΩ,∂Ω v〉L2(Γ,µ) .

Proof of Theorem 10. Let (Ωm, µm)m ⊂ Ûad be a minimizing sequence for the functional
(Ω, µ) 7→ J(Ω, µ, u(Ω, µ)), which exists because J(Ω, µ, u(Ω, µ)) ≥ 0. By Theorem 3 there
are a shape admissible domain (Ω∗, µ∗) ∈ Uad(D,D0, ε, s, d, c̄

A
s , c

A
d ) and a subsequence

(Ωmk
, µmk

)k converging to (Ω∗, µ∗) in the Hausdorff sense, the sense of compacts, the sense
of characteristic functions and the sense of weak convergence of boundary volumes. We
relabel and denote this convergent sequence by (Ωm, µm). From the definition of Ûad it
follows that (Ω∗, µ∗) ∈ Ûad.

Let (um)m be the sequence of weak solutions um of the Helmholtz problems (31) on the
admissible domains (Ωm, µm), with the given data, respectively. By Proposition 4 there
exists cExt > 0 independent of m such that

‖ExtΩm
um‖W 1,2(D) ≤ cExt‖um‖W 1,2(Ωm). (46)

We now observe the following uniform variant of (33): There is a single constant C > 0 such
that for all m we have

‖um‖W 1,2(Ωm) ≤ C
(
‖f‖L2(Ωm) + ‖g‖B2,2

1 (ΓDir)
+ ‖h‖W 1,2(Ωm)

)
. (47)
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The validity of (47) follows from the proof of Theorem 9, provided that there is a single
constant CP > 0 such that for all m and all vm ∈ V (Ωm,ΓDir) we have

∫

Ωm

|vm|2dx ≤ CP

∫

Ωm

|∇vm|2dx. (48)

We can invoke [20, Theorem 6] to see this family of Poincaré inequalities holds with a uniform
constant CP > 0. This cited result is based on the fact that, since all Ωm are bounded (ε,∞)-
domains contained in the bounded Lipschitz domain D and ΓDir is a stated, there exists a
constant CE > 0 depending only on n, ε and D so that ‖∇EΩm

vm‖L2(Rn ≤ CE ‖∇vm‖L2(Ωm)

for all m and vm ∈ V (Ωm,ΓDir), where the EΩm
are suitable extension operators, see [31,

Theorem 2 and Section 5] resp. [48, p. 662]. An alternative proof of (48) follows from a
slight modification of the standard proof as in [22, Proposition 7.1] or [23, Section 5.8] using
the fact that Ωm → Ω in the sense of characteristic functions. Combining (46) and (47), we
obtain the uniform bound

sup
m

‖ExtΩm
um‖W 1,2(D) ≤ cExtC

(
‖f‖L2(D) + ‖g‖B2,2

1 (ΓDir)
+ ‖h‖W 1,2(D)

)
.

Consequently there exists u∗ ∈ W 1,2(D) such that, after passing to a subsequence and
relabeling, limm ExtΩm

um = u∗ weakly in W 1,2(D). Since ExtΩm
um − g ∈ V (D,ΓDir) for

each m and V (D,ΓDir) is a closed subspace of W 1,2(D), we have u∗− g ∈ V (D,ΓDir). From
Lemma 2 it follows that

F (Ω∗, µ∗)(u
∗, v) = lim

m
F (Ωm, µm)(ExtΩm

um, v) = 0, v ∈ V (D,ΓDir).

By extension and by the definition of F (Ω∗, µ∗) then also F (Ω∗, µ∗)(u
∗, v) = 0 for all v ∈

V (Ω∗,ΓDir), which by (32) implies that u∗ = u in W 1,2(Ω∗), where u is the unique weak
solution of (31) on (Ω∗, µ∗) with the prescribed data.

It remains to show that

lim
m
J(Ωm, µm, um) = J(Ω∗, µ∗, u). (49)

If this is true, then Ωopt := Ω∗ and µopt := µ∗ are seen to satisfy (38). We have limm ExtΩm
um =

u∗ in L2(D) by Rellich-Kondrachov for D. Lemma 5 and (36), applied similarly as before
in the proof of Lemma 2, yield

lim
m

∫

Γm

|TrΩm,∂Ωm
um|2dµm =

∫

Γ∗

|TrΩ,∂Ωu
∗|2dµ∗,

where Γ∗ := ∂Ω∗ ∩D1. In view of (37) it would therefore be enough to have

lim
m

‖1Ωm
∇ExtΩm

um‖L2(D,Rn) = ‖1Ω∇u
∗‖L2(D,Rn) (50)

to arrive at (49). To prove this we digress and show a statement analogous to (50) for the
corresponding solutions with shifted data in the case g = 0. They can be tested against
themselves in (32), and this helps to prove the desired fact. Let gγm,⊥ denote the function
obtained from an (arbitrary) extension g̊m ∈ Tr∂Ωm

(W 1,2(Rn)) of g by an application of
Colorraly 4 (iii) to Ωm and with γm = 1Γm

Re(α) and write ĝm := H∂Ωm,Ωm
(gγm,⊥). Let

gγ,⊥ with γ = 1Γ∗
Re(α) be defined similarly and set ĝ := H∂Ω∗,Ω∗

(gγ,⊥). Then

zm := um − ĝm ∈ V (Ωm,ΓDir) and z := u− ĝ ∈ V (Ω∗,ΓDir)

are the unique weak solutions of the Helmholtz problems with zero on ΓDir and with the
shifted data fm := f − ω2 ExtΩm

ĝm and hm := h− i ExtΩm
Im(α)ĝm, respectively with f∗

and h∗ defined similarly using ĝ. Since

‖zm‖2W 1,2(Ωm) ≤ (1 + CP ) ‖∇zm‖2L2(Ωm,Rn)

≤ (1 + CP )(‖um‖2W 1,2(Ωm) +
∥∥gm,Re(α),⊥

∥∥2
B2,2

1 (∂Ω),γ
)

≤ (1 + CP )(‖um‖2W 1,2(Ωm) + ‖̊g‖2B2,2
1 (∂Ω),γ)
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for any m, Colorraly 3, Theorem 6 and (25) allow to conclude that (ExtΩm
zm)m is bounded

in W 1,2(D). Passing to a subsequence, we may assume this sequence converges weakly in
W 1,2(D) to a function z∗, which then must satisfy z∗|Ω∗

= z by similar reasoning as before.
We claim that

lim
m

‖1Ωm
∇ExtΩm

zm‖L2(D,Rn) = ‖1Ω∇z
∗‖L2(D,Rn) . (51)

By Rellich-Kondrachov for D we have limm ExtΩm
zm = z∗ in L2(D). Applying Lemma 5

and (36) once again,

lim
m

∫

Γm

|TrΩm,∂Ωm
zm|2dµm =

∫

Γ∗

|TrΩ,∂Ωz|
2dµ∗.

It is not difficult to see that
∫

D

|1Ωm
ExtΩm

fm − 1Ω∗
ExtΩ∗

f∗|
2dx ≤ c ‖1Ωm

− 1Ω∗
‖L2(D) ‖g‖B2,2

1 (ΓDir)

with a constant c > 0 that by Colorraly 3 is independent of m. The convergence in the sense
of characteristic functions therefore implies that

lim
m

〈1Ωm
fm,ExtΩm

zm〉L2(D) = 〈1Ω∗
f∗, z

∗〉L2(D) .

By the preceding the functions hm = h−iExtΩm
Im(α)(um−zm) converge weakly inW 1,2(D)

to h∗ = h− i Im(α)(z∗ − u∗). Therefore we can use a compact embedding, Lemma 5, (36)
and polarization as in the proof of Lemma 2 to see that

lim
m

∫

Γm

TrΩm,∂Ωm
hm TrΩm,∂Ωm

zmdµm =

∫

Γ∗

TrΩ∗,∂Ω∗
hTrΩ∗,∂Ω∗

zdµ.

Combining this with (32), applied to the functions ExtΩm
zm, tested against themselves, we

obtain

lim
m

(
‖1Ωm

∇ExtΩm
zm‖2L2(D,Rn) +

∫

Γm

Re(α)|TrΩm,∂Ωm
zm|2dµm

)

= lim
m

(
ω2‖1Ωm

ExtΩm
zm‖2L2(D) − i

∫

Γm

Im(α)|TrΩm,∂Ωm
zm|2dµm

−〈1Ωm
fm,ExtΩm

zm〉L2(D) +

∫

Γm

TrΩm,∂Ωm
hm TrΩm,∂Ωm

zmdµm

)

= ω2‖1Ω∗
z∗‖2L2(D) − i

∫

Γ

Im(α)|TrΩm,∂Ωm
z|2dµ

− 〈1Ω∗
f∗, z

∗〉L2(D) +

∫

Γ∗

TrΩ∗,∂Ω∗
h∗TrΩ∗,∂Ω∗

zdµ

= ‖1Ω∗
∇z∗‖2L2(D,Rn) +

∫

Γ∗

Re(α)|TrΩ∗,∂Ω∗
z∗|2dµ.

This implies (51) by Lemma 5 and (36). Using the convergence in the sense of characteristic
functions together with

∫

D

|1Ωm
∇ExtΩm

ĝm − 1Ω∗
∇ExtΩ∗

ĝ|2dx ≤ c ‖1Ωm
− 1Ω∗

‖L2(D) ‖g‖B2,2
1 (ΓDir)

,

we now arrive at (50).
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