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ABSTRACT Multimode/multicore fibers are expected to provide an attractive solution to overcome the
capacity limit of the current optical communication system. In the presence of strong crosstalk between
modes and/or cores, the squared singular values of the input/output transfer matrix follow the law of the
Jacobi ensemble of random matrices. Assuming that the channel state information is only available at the
receiver, we derive a new expression for the ergodic capacity of the MIMO Jacobi fading channel. The
proposed expression involves double integrals which can be easily evaluated for a high-dimensional MIMO
scenario. Moreover, the method used in deriving this expression does not appeal to the classical one-point
correlation function of the random matrix model. Using a limiting transition between Jacobi and associated
Laguerre polynomials, we derive a similar formula for the ergodic capacity of the MIMO Rayleigh fading
channel. Moreover, we derive a new exact closed-form expressions for the achievable sum rate of MIMO
Jacobi and Rayleigh fading channels employing linear minimum mean squared error (MMSE) receivers.
The analytical results are compared to the results obtained by Monte Carlo simulations and the related
results available in the literature, which shows perfect agreement.

INDEX TERMS Additive white noise, Channel capacity, Detection algorithms, MIMO, Optical fiber
communication, Optical crosstalk, Probability density function, Rayleigh channels,

I. INTRODUCTION

TO accommodate the exponential growth of data traffic
over the last few years, the space division multiplexing

(SDM) based on multicore optical fiber (MCF) or multi-
mode optical fiber (MMF) is expected to overcome the bar-
rier from capacity limit of single core fiber [1]–[3]. Recently,
dense space division multiplexing (DSDM) with a large
spatial multiplicity exceeding 30 was demonstrated with mul-
ticore technology [4], [5]. The main challenge in SDM occurs
due to in-band crosstalk between multiple parallel transmis-
sion channels (cores and/or modes). This strong crosstalk can
be dealt with using multiple-input multiple-output (MIMO)
signal processing techniques [6]–[11]. Those techniques are
widely used for wireless communication systems and they
helped to drastically increase channel capacity. Assuming
important crosstalk between cores and/or modes, negligible

back-scattering and near lossless propagation, we can model
the transmission optical channel as a random complex unitary
matrix [12]–[14].

In [12], authors appealed to the Jacobi unitary ensemble
(JUE) to establish the propagation channel model for MIMO
communications over multimode and/or multicore optical
fibers. As suggested in [17, Section I.C], the Jacobi fading
channel can be used to accurately model the interference-
limited multiuser MIMO system. From mathematical point of
view, the JUE is a matrix-variate analogue of the beta random
variable and consists of complex Hermitian random matrices
which can be realized at least in two different ways [18], [22]:
(i) We mimic the construction of a Beta distribution random
variable B as a quotient of two independent Gamma random
variablesB = X1/(X1+X2) whereX1 andX2 are replaced
by two independent complex central Wishart matrices [22].
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We assume that the sum (X1 + X2) is reversible. (ii) We
can draw a Haar distributed unitary matrix then take the
square of the radial part of an upper-left sub-matrix [18].
By a known fact for unitarily invariant-random matrices
[22], the average of any symmetric function with respect to
the eigenvalues density can be expressed through the one-
point correlation function, also known as the single-particle
density. In particular, the ergodic capacity of a matrix drawn
from the JUE can be represented by an integral where the
integrand involves the Christoffel-Darboux kernel associated
with Jacobi polynomials ( [22], p.384). The drawback of this
representation is the dependence of this kernel on the size of
the matrix. Indeed, its diagonal is written either as a sum of
squares of Jacobi polynomials and the number of terms in this
sum equals the size of the matrix least one, or by means of the
Christoffel-Darboux formula as a difference of the product
of two Jacobi polynomials whose degrees depend on the size
of the matrix. To the best of our knowledge, this is the first
study that derives exact expression of the ergodic capacity
as a double integral over a suitable region. Recently in [19],
[20], the authors derived expressions for the exact moments
of the mutual information in the high-SNR regime for MIMO
Jacobi fading channel.The obtained exact moments lead to
closed-form approximations to the outage probability.

In this paper, we provide a new expression for the ergodic
capacity of the MIMO Jacobi fading channel relying this time
on the formula derived in [24] for the moments of the eigen-
values density of the Jacobi random matrix. The obtained
expression shows that the ergodic capacity is an average of
some function over the signal to noise ratio (SNR), and it
has the merit to have a simple dependence on the size of the
matrix which allows for easier and more precise numerical
simulations. By a limiting transition between Jacobi and
associated Laguerre polynomials [25], we derive a similar
expression for the ergodic capacity of the MIMO Rayleigh
fading channel [21]. Using the derived expressions and the
work of McKay et al. [41], we are able to derive closed-form
formulas for the achievable sum-rate of MIMO Jacobi and
Rayleigh fading channels employing linear minimum mean
squared error (MMSE) receivers.

The paper is organized as follows. In Section II, we recall
some notations, definitions of random matrices and special
functions occurring in the remainder of the paper. Section III
introduces the MIMO Jacobi fading channel and the discrete-
time input-output relation. In Section IV, an exact closed-
form expression is derived for the ergodic capacity of MIMO
Jacobi fading channel. Using the results of the previous
section, we derive a new exact closed-form expression of
the ergodic capacity of the MIMO Rayleigh fading channel
in Section V. In both MIMO Jacobi and Rayleigh fading
channels, we provide new closed-form expressions for the
achievable sum rate of MIMO MMSE receivers in Sec-
tion VI. In Section VII, we demonstrate the accuracy of
the analytical expressions through Monte Carlo simulations.
Finally, Section VIII is devoted to concluding remarks, while
mathematical proofs are deferred to the appendices.

II. BASIC DEFINITIONS AND NOTATIONS
Throughout this paper, the following notations and defini-
tions are used. We start with those concerned with special
functions for which the reader is referred to the original book
of Ismail [25]. The Pochhammer symbol (x)k with x ∈ R
and k ∈ N is defined by

(x)k = x(x+ 1) . . . (x+ k − 1); (x)0 = 1 (1)

For x > 0, it is clear that

(x)k =
Γ(x+ k)

Γ(x)
(2)

where Γ(.) is the Gamma function. Note that if x = −q is a
non positive integer then

(−q)k =

{
(−1)k q!

(q−k)! if k ≥ q
0 if k < q

(3)

The Gauss hypergeometric function 2F1(.) is defined for
complex |z| < 1 by the following convergent power series

2F1(θ, σ, γ, z) =
∞∑
k=0

(θ)k(σ)k
(γ)kk!

zk (4)

where (.)k denotes the Pochhammer symbol defined in (1)
and θ, σ, γ are real parameters with γ 6= {0,−1,−2, . . . }.
The function 2F1(.) has an analytic continuation to the
complex plane cut along the half-line [1,∞[. In particular,
the Jacobi polynomials Pα,βq (x) of degree q and parameters
α > −1, β > −1 can also be expressed in terms of the Gauss
hypergeometric function (4) as follows

Pα,βq (x) =
(η)q
q!

2F1(−q, q + η + β, η;
1− x

2
) (5)

where η = α + 1. An important asymptotic property of the
Jacobi polynomial is the fact that it can be reduced to the q-th
associated Laguerre polynomial of parameter α ≥ 0 through
the following limit

Lαq (x) = lim
β→∞

Pα,βq

(
1− 2x

β

)
, x > 0 (6)

Now, we come to the notations and the definitions related
with random matrices, and refer the reader to [18], [22],
[23]. Firstly, the Hermitian transpose and the determinant
of a complex matrix A are denoted by A† and det(A)
respectively. Secondly, the Laguerre unitary ensemble (LUE)
is formed out of non negative definite matrices A†A where
A is a rectangular m × n matrix, with m ≥ n, whose
entries are complex independent Gaussian random variables.
A matrix from the LUE is often referred to as a complex
Wishart matrix and (m,n) are its degrees of freedom and
its size respectively. Finally, let X = A†A and Y = B†B
be two independent (m1, n) and (m2, n) complex Wishart
matrices. Assume m1 + m2 ≥ n, then X + Y is positive
definite and the random matrix J, defined as J = (X +
Y)−1/2X(X + Y)−1/2, belongs to the JUE. The matrix J
is unitarily-invariant and satisfies 0n ≤ J ≤ In where 0n, In
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FIGURE 1. Schematic of an optical MIMO system with an MCF, Ck indicates kth fiber core, with k ∈ {1, 2, . . . ,m}

stand for the null and the identity matrices respectively1. If
m1,m2 ≥ n then the matrix J and the matrix (In − J)
are positive definite and the joint distribution of the ordered
eigenvalues of J has a probability density function given by

Fa,b,n(λ1, ..., λn) = Z−1
a,b,n

∏
1≤j≤n

λa−1
j (1− λj)b−1

× [V (λ1, . . . , λn)]21{0<λ1<···<λn<1}
(7)

with respect to Lebesgue measure dλ = dλ1 . . . dλn. Here,
a = m1 − n+ 1, b = m2 − n+ 1, Za,b,n is a normalization
constant read off from the Selberg integral [23], [24]:

Za,b,n =
n∏
j=1

Γ(a+ j − 1)Γ(b+ j − 1)Γ(j)

Γ(a+ b+ n+ j − 2)
,

1{.} stands for the indicator function: given a set A

1{x∈A} =

{
1 if x ∈ A
0 otherwise,

and V (λ1, . . . , λn) =
∏

1≤j<k≤n (λj − λk) is the Van-
dermonde polynomial. As suggested in [18], we can con-
struct the matrix J from the JUE ensemble as follows: let
U be an m × m Haar-distributed unitary matrix. Let t and
r be two positive integers such that t + r ≤ m and t ≤ r.
Let also H be the r × t upper-left corner of U, then the joint
distribution of the ordered eigenvalues of matrix J = H†H is
given by (7) with parameters a = r−t+1, b = m−r−t+1,
and n = t.

In the sequel the following notation will be used. Eν [.] will
denote the expectation with respect to the random variable
ν. We will denote the matrix determinant by det (.), and the
matrix inverse by [.]

−1. The (i, j)-th element of a matrix A
is indicated by [A]i,j .

III. SYSTEM MODEL
We consider an optical space division multiplexing where
the multiple channels correspond to the number of excited
modes and/or cores within the optical fiber. The coupling

1For two square matrices A and B, we write A ≤ B when B − A is a
non negative matrix.

between different modes and/or cores can be described by
scattering matrix formalism as reported in [14], [34]–[36].
In this paper, we consider m-channel near lossless optical
fiber with t ≤ m transmitting excited channels and r ≤ m
receiving channels, as indicated in Fig. 1 for multicore optical
fiber scenario. The scattering matrix formalism can describe
very simply the propagation through the fiber using 2m×2m
scattering matrix S given as

S =

[
R1 T2

T1 R2

]
, (8)

where the m × m complex block matrices R1 and R2

describe the reflection coefficients in input and output ports
of the fiber, respectively. Similarly, them×m complex block
matrices T1 and T2 stand for the transmission coefficients
through the fiber from input to output sides and vice versa,
respectively. We assume a strong crosstalk between cores or
modes, negligible backscattering, near-lossless propagation,
and reciprocal characteristics of the fiber. Thus, we model
the scattering matrix as a complex unitary symmetric matrix
[16], (i.e. S†S = I2m). Therefore, the four Hermitian
matrices T1T

†
1, T2T

†
2, Im−R2R

†
2, and Im−R1R

†
1 have the

same set of eigenvalues λ1, λ2, ..., λm. Each of thesem trans-
mission eigenvalues is a real number belong to the interval
[0, 1]. Assuming a unitary coupling among all transmission
modes the overall transfer matrix T1 can be described by
a m × m unitary matrix, where each matrix entry [T1]ij
represents the complex path gain from transmitted mode i to
received mode j. Moreover, the transmission matrix T1 has a
Haar distribution over the group of complex unitary matrices
[12], [14]. Given the fact that only t ≤ m and r ≤ m modes
are addressed by the transmitter and receiver, respectively,
the effective transmission channel matrix H ∈ Cr×t is a
truncated2 version of T1. As a result, the corresponding
MIMO channel for this system reads

y = Hx + z (9)

where y ∈ Cr×1 is the received signal vector of dimension
r × 1, x ∈ Ct×1 is a t × 1 transmitted signal vector with

2Without loss of generality, the effective transmission channel matrix H
is the r × t upper-left corner of the transmission matrix T1 [18], [37]
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TABLE 1. List of main variables

Variables Descriptions
m Number of overall available modes/cores
t Number of transmitted modes/cores
r Number of received modes/cores
S C2m×2m scattering matrix
R1 Cm×m matrix contains the reflection coefficients of the

m input modes/cores of the fiber
T1 Cm×m matrix contains the transmission coefficients

from the input to the output of the multi-mode/core fiber
R2 Cm×m matrix contains the reflection coefficients of the

m output modes/cores of the fiber
T2 Cm×m matrix contains the transmission coefficients

from the output to the input of the multi-mode/core fiber
H Cr×t matrix contains the transmission coefficients of the

effective channel when t ≤ m transmitting modes/cores
and r ≤ m receiving modes/cores are used.

Cm,ρt,r Ergodic capacity of MIMO Jacobi fading channel with t
transmitting modes/cores, r receiving modes/cores, m
overall available modes/cores (i.e. m ≥ t, m ≥ r),
and a signal to noise ratio equal to ρ.

Cρt,r Ergodic capacity of MIMO Rayleigh fading channel with
t transmitting antennas, r receiving antennas, and a signal
to noise ratio equal to ρ.

R General expression of the achievable ergodic sum rate for
the MMSE receiver under MIMO channel.

Rm,ρt,r Achievable ergodic sum rate of MMSE receiver under
MIMO Jacobi fading channel with t transmitting modes
/cores, r receiving modes/cores, m available modes/cores,
and a signal to noise ratio equal to ρ.

Rρt,r Achievable ergodic sum rate of MMSE receiver under
MIMO Rayleigh fading channel with t transmitting
antennas, r receiving antennas, and a signal to noise
ratio equal to ρ.

covariance matrix equal to Pt It, and z ∈ Cr×1 is a r×1 zero
mean additive white circularly symmetric complex Gaussian
noise vector with covariance matrix equal to σ2Ir [46], [47].
The variable P is the total transmit power across the t
modes/cores, and σ2 is the Gaussian noise variance. Table
1 provides the list of main variables used in this manuscript.

IV. ERGODIC CAPACITY OF MIMO JACOBI CHANNEL
The expression of the ergodic capacity of the MIMO Jacobi
fading channel was firstly expressed in [12] as an integral
over [0, 1] of the sum of squares of min(t, r) Jacobi polyno-
mials with real coefficients, is the same theoretical approach
adopted by Telatar [21]. Recently, ergodic capacity bounds
(upper and lower) of the MIMO Jacobi fading channel were
derived in [26] and [27]. In [26], authors derived lower
bound and low SNR approximation of the ergodic capacity of
MIMO Jocobi fading channel by rearranging the analytical
expression given in [12, Eq. (11)]. Using recent results on
the determinant of the Jacobi unitary ensemble and classical
Jensen’s and Minkowski’s inequalities, the authors, in [27],
derived tight closed-form bounds for the ergodic capacity
[12, Eq. (11)]. In addition, they also provided accurate
closed-form analytical approximations of ergodic capacity at
high and low signal to noise ratio regimes.

In this section, we provide a novel and simple closed-
form expression of the ergodic capacity in the setting of

MIMO Jacobi fading channel. We assume that the channel
state information (CSI) is only known at the receiver, not at
the transmitter. The investigation of the ergodic capacity of
the MIMO Jacobi fading channel under unknown CSI at the
receiver side is out of scope of the present work. Without
loss of generality, in the sequel of the present paper, we shall
assume that t ≤ r and m ≥ t + r. The channel ergodic
capacity, under a total average transmit power constraint, is
then achieved by taking x as a vector of zero-mean circularly
symmetric complex Gaussian components with covariance
matrix PIt/t, and it is given by [12, Eq. (10)]

Cm,ρt,r = EH

[
ln det

(
It +

ρH†H

t

)]
, t ≤ r, (10)

where EH[.] denotes the expectation over all channel realiza-
tions, ln is the natural logarithm function and ρ = P

σ2 is the
average signal-to-noise ratio (SNR). Given the fact that both
matrices H†H and HH† share the same non zero eigenvalues
even if m < t+ r, the authors in [12, Theorem 2] shows that
the ergodic capacity is given by

Cm,ρt,r = (t+ r −m)C1,ρ
1,1 + Cm,ρm−r,m−t, t ≤ r. (11)

In the sequel of this paper, we assume further that m >
t+ r ⇔ b ≥ 2 and the case m = r+ t⇔ b = 1 can be dealt
with by a limiting procedure. Actually, our formula for the
ergodic capacity derived below is valid for real a > 0, b > 1,
and we can consider its limit as b → 1. However, for ease of
reading, we postpone the details of the computations relative
to this limiting procedure to a future forthcoming paper.

Now, recall that the random matrix H†H has the Jacobi
distribution, then its ordered eigenvalues have the joint den-
sity given by (7) with parameters a = r − t + 1 and
b = m − t − r + 1. Using (7), we can explicitly express
the ergodic capacity (10) as

Cm,ρt,r =

∫ t∑
k=1

ln (1 + ρλk)Fa,b,t(λ1, . . . , λt)

dλ1 . . . dλt (12)

A major step towards our main result is the following
proposition.

Proposition 1: For any ρ ∈ (0, 1),

ΨCm,ρt,r = At,r ρ
t−1P r−t,m−t−r−1

t−1

(
ρ+ 2

ρ

)
2F1(t+ 1, r + 1,m+ 1;−ρ) (13)

where the operator Ψ = [Dρ(ρDρ)] with Dρ is the derivative
operator with respect to ρ, and At,r = r t!

(m−t+1)t
.

Proof: The full proof for Proposition 1 can be found at the
Appendix A. �

Using proposition 1, we are able to derive the following
new expression of the ergodic capacity of MIMO Jacobi
fading channel.
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3016925, IEEE Access

Amor Nafkha et al.: Preparation of Paper for IEEE ACCESS JOURNAL

Theorem 1: Assume that r ≥ t, m > t + r, and ρ ≥ 0, then
the ergodic capacity of an uncorrelated MIMO Jacobi fading
channel is given by

Cm,ρt,r = Bmt,r

∫ 1

0

ua−1(1− u)b−2P a−1,b
t−1 (1− 2u)

× P a−1,b−2
t (1− 2u)Li2 (−ρu) du (14)

where a = r − t + 1, b = m − r − t + 1, and Bmt,r =
t! (m−t)!

Γ(r) Γ(m−r) . The function Li2 (.) is the dilogarithm function
[50] defined as

Li2 (z) = −
∫ z

0

ln(1− v)

v
dv, z ∈ C

Proof: The appendix B contains proof of Theorem 1. �

V. ERGODIC CAPACITY OF MIMO RAYLEIGH CHANNEL
The ergodic capacity of the MIMO Rayleigh fading channel
was extensively examined in order to provide a compact
mathematical expression in several papers [21], [28]–[32].
In [28], [29], the ergodic capacity is provided using the
Christoffel-Darboux kernel, and the authors replaced the
Laguerre polynomials by their expressions which is a known
fact in invariant random matrix models. In [30]–[32], authors
derived a closed form expression of moment generating
function (MGF) so that the ergodic capacity may be derived
by taking the first derivative. However, this expression of
MGF relies on the Cauchy-Binet Theorem and only gives
a hypergeometric function of matrix arguments [33], from
which by derivatives, we can get again an alternating sum
coming from the determinant. Consequently, we can not
derive the proposed expression of the ergodic capacity (15)
from this sum.

Using the limiting transition (6) between Jacobi and as-
sociated Laguerre polynomials, we are able to give another
expression for the ergodic capacity expression of the wireless
MIMO Rayleigh fading channel. Indeed, it was shown in
[14], [15], that the parameter b in (14) can be interpreted
as the power loss through the optical fiber. Therefore, as b
becomes large, the channel matrix H in (9) starts to look like
a complex Gaussian matrix with independent and identically
distributed entries. As a matter of fact, the MIMO Jacobi fad-
ing channel approaches the MIMO Rayleigh fading channel
in the large b-limit corresponding to a huge waste of input
power through the optical fiber. In particular, the ergodic
capacity (14) converges as b → ∞ to the ergodic capacity
of the uncorrelated MIMO Rayleigh fading channel already
considered by Telatar in [21, Theorem 2], and we are able to
derive the following new result. Note that the pioneer work
of Telatar was recently revisited by Wei in [45].

Theorem 2: The ergodic capacity of the uncorrelated MIMO
Rayleigh fading channel with t transmitters and r receivers,
with r ≥ t, can be expressed

Cρt,r =
t!

(r − 1)!

∫ +∞

0

ur−t e−u Lr−tt−1(u)Lr−tt (u)

× Li2 (−ρu) du. (15)

Proof: The reader can refer to Appendix C for the proof of
Theorem 2. �

VI. ACHIEVABLE SUM RATE OF MIMO MMSE RECEIVER
In this section, we are interested in the performance of linear
MMSE receivers. Assuming to employ a MMSE filter, and
that each filter output is independently decoded. Let ρk de-
notes the instantaneous signal to interference-plus-noise ratio
(SINR) to the kth MIMO subchannel3. Minimizing the mean
squared error between the output of a linear MMSE receiver
and the actually transmitted symbol xk for 1 ≤ k ≤ t leads
to the filter vector

gk =

(
HH† +

t

ρ
Ir

)−1

hk (16)

where hk is the kth column of channel matrix H. Applying
this filter vector into (9) yields

xmmsek = g†ky (17)

The achievable ergodic sum rate for the MMSE receiver can
be expressed as

R =
t∑

k=1

Eρk [ln (1 + ρk)] (18)

As shown in [38], [41], [42], [44], the instantaneous received
SINR for the kth MMSE filter output is given by

ρk =
1[

(It + (ρ/t)H†H)
−1
]
k,k

− 1 (19)

In general, the analytical expression of the probability density
function of ρk is difficult to determine. This situation makes
the direct evaluation of the achievable ergodic MMSE sum
rate (18) very difficult.

Let Hk denotes the sub-matrix obtained by striking hk out
of H. As shown in [49, Theorem 1.33], the kth diagonal term

of the matrix,
(
It + ρH†H

t

)−1

, can be expressed as

[(
It +

ρH†H

t

)−1
]
k,k

=
det
(
It−1 +

ρH†kHk

t

)
det
(
It + ρH†H

t

) , (20)

where the matrix H†kHk is the k×k principal minor of matrix
H†H defined by striking out the kth column of H.

3In our case (t ≤ r), the MIMO channel can be decomposed into t parallel
subchannels.
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Similarly to what has been developed in [41], by substi-
tuting (19) and (20) in (18), we can obtained the following
expression of the achievable ergodic sum rate for the MIMO
MMSE receiver.

R = tEH

[
ln det

(
It +

ρH†H

t

)]
−

t∑
k=1

EHk

[
ln det

(
It−1 +

ρH†kHk

t

)]
(21)

By employing the Haar invariant property, exchanging any
two different rows or/and exchanging two different columns
do not change the joint distribution of the entries, the joint
probability density function of the ordered eigenvalues of
H†kHk is the same as H†jHj for all j 6= k and j ∈ {1, .., t}.
Thus, the achievable ergodic sum rate for the MMSE receiver
can be expressed as

R = tEH

[
ln det

(
It +

ρH†H

t

)]
−

tEH1

[
ln det

(
It−1 +

ρH†tHt

t

)]
(22)

In case of MIMO Jacobi fading channel, the matrix Ht is
the r× (t− 1) left corner of the channel matrix H. Then, the
joint distribution density function of the ordered eigenvalues
of H†tHt is given by (7) with parameters a = r − t + 2,
b = m − r − t + 2, and n = t − 1. The following result
characterizes the achievable ergodic sum rate of the MIMO
Jacobi fading channel when the linear MMSE filter is used at
the receiver side.

Theorem 3: For any ρ ≥ 0, The achievable ergodic sum rate
of MMSE receiver under MIMO Jacobi fading channel is
given by

Rm,ρt,r = t

[
Cm,ρt,r − C

m,
(t−1)ρ
t

t−1,r

]
(23)

Proof: By substituting (14) into (22). �

Very recently, Lim et al. [42] proposed closed form expres-
sion of the achievable sum rate for MMSE MIMO systems in
uncorrelated Rayleigh environments. However, the derived
expression, [42, eq.(67)], is not closed form and does not
allow a better understand of the MMSE achievable sum rate
due the use of the sum of Meijer G-functions (or equiva-
lent representation in terms of generalized hypergeometric
functions). In following corollary, we presented a novel and
exact closed-form formula for ergodic achievable sum rate
for MMSE receiver under MIMO Rayleigh fading channels.

Corollary 1: For any ρ ≥ 0, The achievable ergodic sum rate
of MMSE receiver under MIMO Rayleigh fading channels
with t ≤ r can be expressed as

Rρt,r = r [Ψ(t, r, ρ)−Ψ(t, r + 1, ρ)] +
t!

(r − 1)!

×
∫ +∞

0

ur−t+1e−uLr−t+1
t−2 (u)Lr−t+1

t−1 (u)

×
[
Li2

(
−ρu
t

)
− Li2

(
−ρ(t− 1)u

t2

)]
du. (24)

where

Ψ(t, r, ρ) =
t!

(r − 1)!

∫ +∞

0

ur−te−u
[
Lr−tt−1(u)

]2
× Li2

(
−ρu
t

)
du

Proof: By substituting (15) into (22). �

VII. NUMERICAL RESULTS AND DISCUSSION
In this section, we present numerical results supporting the
analytical expressions derived in Section IV and Section V.
All of the Monte Carlo simulation results were obtained
by averaging over 105 independent channel realization. For
MIMO Rayleigh fading channels, the entries in H ∈ Cr×t
are independent and identically distributed complex, zero
mean Gaussian random variables with normalized unit mag-
nitude variance, and they can be obtained using a built-in
MATLAB function (i.e. "randn"). For the MIMO Jacobi
fading channels, the simulation process is initialized firstly
by creating a random complex Gaussian matrix G ∈ Cm×m
with independent and identically distributed entries that are
complex circularly symmetric Gaussian with zero mean and
1/2 variance per dimension. Then, using QR decomposition
then matrix G can be decomposed as G = QR where
Q ∈ Cm×m is a unitary matrix and R ∈ Cm×m is upper
triangular matrix. Finally, the MIMO Jacobi fading channel
H was constructed by taking the r × t sub-matrix in the
upper-left corner of matrix Q. In both MIMO channel cases,
the ergodic capacity and achievable sum rate with MMSE
receivers can be obtained by averaging (10) and (22), respec-
tively, over all realization of the channel matrix H. Herein,
we consider the case where the channel state information is
available at the receiver side. Figure 2 examines the ergodic
capacity of the MIMO Jacobi fading channel as a function of
the SNR, when the number of parallel transmission paths is
fixed to m = 20 and the number of transmit modes equal
to the number of receive modes r = t. It is evident that
when we increase the number of transmitted and received
modes, we improve the ergodic capacity of the system. As
expected, the ergodic capacity increases with SNR. Figure 2
is also shown that the two theoretical expressions curves of
the ergodic capacity (14) and [12, (11)] perfectly matched the
simulation results.

Figure 3 shows the theoretical and simulated ergodic ca-
pacity of MIMO Jacobi channel as a function of the number
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FIGURE 2. The variation of the ergodic capacity of MIMO Jacobi channel as a
function of ρ for m = 20

of received modes. Here, we fixed the number of parallel
transmission paths tom = 25, the SNR to ρ = 10 dB, and the
number of transmit modes t to have following values {2, 3}.
It is shown that every simulated curve is in excellent agree-
ment with the theoretical curves calculated from (14) and
[12, (11)]. The relationship between the channel capacity and
the number of received modes is logarithmic. This implies
that trying to improve the channel capacity by just increasing
the number of received modes or cores is not efficient in the
sense that the capacity increases logarithmically with r. The
same relationship has been noted and discussed in the case of
the uncorrelated MIMO Rayleigh fading channel (see Fig. 5,
[21], and [40]).
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FIGURE 3. Ergodic capacity of MIMO Jacobi channel as function of receive
cores and/or modes with ρ = 10 dB and m = 25.

For the uncorrelated MIMO Rayleigh fading channel, the
proposed expression of the ergodic capacity was verified
through Monte Carlo experiments and it is shown in Fig.
4. In Fig. 4, the comparisons are shown between theoretical
expressions and simulation values of the ergodic capacity as a
function of the SNR. As we can observe in Fig. 4, for a given

SNR, the capacity increases as the numbers of transmit and
receive antennas grow. In all cases, the results demonstrate
an excellent agreement between analytical expressions and
Monte-Carlo simulations. Moreover, We can observe that
the expression in (15) matches perfectly with the expression
introduced by Telatar [21, Eq. (8)]. For the cases where
t = r = 2 and t = r = 4, the obtained results are consistent
with simulation results reported in [39], [40].
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FIGURE 4. Ergodic capacity of the uncorrelated MIMO Rayleigh fading
channel versus SNR for different numbers of transmit and receive antennas.

Figure 5 shows the ergodic capacity of uncorrelated
MIMO Rayleigh fading channel of as the number of receive
antennas r increases. As expected, we observe that the er-
godic capacity increases in logarithmic scale with respect to
r, this tallies with the result reported in [48, Eq. (6)]. As for
optical MIMO channel, the three different ways to compute
the uncorrelated MIMO Rayleigh fading channel capacity
give the same results. These simulations were carried out
to verify the mathematical derivation and no inconsistencies
were noted.
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FIGURE 5. Ergodic capacity of MIMO Rayleigh channel when the number of
received antennas increases and ρ = 10 dB.

We now focus on the ergodic sum rate for the MMSE
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receiver. We first consider the MIMO Jacobi fading channel.
Fig. 6 shows the evolution of the ergodic sum rate for the
MMSE receiver versus the SNR over the optical MIMO
channel. For these results, we suppose that either m = 20
or m = 8. As expected, the ergodic sum rate increases
with increasing SNR. Moreover, our simulation results show
that the formula derived in Theorem 3 and Monte Carlo
simulations provide the same results.
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FIGURE 6. Evolution of the ergodic sum rate for the MMSE receiver over
MIMO Jacobi fading channel.

Finally, Fig. 7 shows the evolution of the ergodic sum rate
for the MMSE receiver versus the SNR over an uncorrelated
MIMO Rayleigh fading channel. We compare the sum rate
obtained by means of Monte Carlo simulations and the one
obtained with the formula derived in Corollary 1. Fig. 7
shows a perfect match between Monte Carlo and analytical
result given in (24). It worth noting that, for t = r = 2 and
t = r = 4, the obtained simulation results are the same as
reported in [41], [42] and [43].
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FIGURE 7. Evolution of the ergodic sum rate for the MMSE receiver over an
uncorrelated MIMO Rayleigh fading channel.

VIII. CONCLUSIONS
This paper has investigated the ergodic capacity of MIMO
Jacobi fading channel which can be used to model accurately
multimode and/or multicore optical fibers with the following
characteristics: high crosstalk between modes and/or cores,
negligible backscattering and near-lossless propagation. We
assumed that a perfect channel state information (CSI) is
only available at the receiver side, by using the joint dis-
tribution of eigenvalues of the Jacobi unitary ensemble, an
exact expression of the ergodic capacity has been derived. By
appealing to the limit relation between Jacobi and associated
Laguerre polynomials, an exact expression of the ergodic
capacity of MIMO Rayleigh fading channels has further
been obtained. Furthermore, the above results led to exact
expressions of the achievable sum rate for MIMO MMSE
receiver in both fading channels. Monte Carlo simulations
have been conducted to check the validity of the analytical
results. Theoretical results show perfect matching with those
obtained by simulations, and allow to derive tight bounds on
the ergodic capacity for both MIMO fading channels. Con-
sidering the fact that wireless or fiber channels are subject to
eavesdropping, we will address the MIMO secrecy capacity
problem in future research papers.

.

APPENDIX A PROOF OF PROPOSITION 1
For ease of reading, we simply denote below the ergodic
capacity by C(ρ). Moreover, the reader can easily check that
our computations are valid for real a > 0, b > 1. We start by
recalling from [24, Corollary 2.3] that for any k ≥ 1,

∫ ( t∑
i=1

λki

)
Fa,b,t(λ)dλ =

1

k!

k−1∑
i=0

(−1)i
(
k − 1

i

)
k−i−1∏
j=−i

(t+ j)(a+ t+ j − 1)

(a+ b+ 2t+ j − 2)
.

Now, let ρ ∈ [0, 1] and use the Taylor expansion

ln(1 + ρλi) =
∞∑
k=1

(−1)k−1 (ρλi)
k

k

to get

t∑
i=1

ln(1 + ρλi) =
∞∑
k=1

(−1)k−1 ρ
k

k

(
t∑
i=1

λki

)
.

Consequently,

C(ρ) =
∞∑
k=1

(−1)k−1

k

ρk

k!

k−1∑
i=0

(−1)i
(
k − 1

i

)

×
k−i−1∏
j=−i

(t+ j)(a+ t+ j − 1)

(a+ b+ 2t+ j − 2)
. (25)
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Changing the summation order and performing the index
change k 7→ k + i+ 1 in (25), we get

C(ρ) =
∞∑
i=0

(−1)i
∞∑
k=0

(−1)k+i

(k + i+ 1)

ρk+i+1

(k + i+ 1)!

(
k + i

i

)
k∏

j=−i

(t+ j)(a+ t+ j − 1)

(a+ b+ 2t+ j − 2)
.

Now, one can observe that the product displayed in the right
hand side of the last equality vanishes whenever i ≥ t due
to the presence of the factor j + t,−i ≤ j ≤ k. Thus, the
first series terminates at i = t−1 and together with the index
change j 7→ t+ j in the product lead to

C(ρ) =
t−1∑
i=0

∞∑
k=0

(−1)k

(k + i+ 1)

ρk+i+1

(k + i+ 1)!

(
k + i

i

)
k+t∏
j=t−i

(j)(a+ j − 1)

(a+ b+ t+ j − 2)
.

Next, we compute for each t− i ≤ j ≤ t+ k

t+k∏
j=t−i

(j) =
(t+ k)!

(t− i− 1)!
=

(t+ 1)kt!

(t− i− 1)!
,

and similarly

t+k∏
j=t−i

(a+ j − 1) =
(a+ t)k(a)t

(a)t−i−1

t+k∏
j=t−i

(a+ b+ t+ j − 2) =
(a+ b+ t− 1)t+k

(a+ b+ t− 1)t−i−1

Altogether, the ergodic capacity reads

(a)t
(a+ b+ t− 1)t

t−1∑
i=0

t!

(t− 1− i)!i!
(a+ b+ t− 1)t−i−1

(a)t−i−1∑
k≥0

(−1)kρk+i+1

(k + i+ 1)2

(t+ 1)k(a+ t)k
(a+ b+ 2t− 1)kk!

.

But the series∑
k≥0

(−1)kρk+i+1

(k + i+ 1)2

(t+ 1)k(a+ t)k
(a+ b+ 2t− 1)kk!

as well as its derivatives with respect to ρ converge uniformly
in any closed sub-interval in ]0, 1[. It follows that

Dρ(ρDρ)
∑
k≥0

(−1)kρk+i+1

(k + i+ 1)2

(t+ 1)k(a+ t)k
(a+ b+ 2t− 1)kk!

=

ρi2F1(t+ 1, a+ t, a+ b+ 2t− 1;−ρ)

where Dρ is the derivative operator acting on the variable ρ.
Finally, the index change i 7→ t− i− 1 together with

(1− t)i = (−1)i
(t− 1)!

(t− 1− i)!

yield
t−1∑
i=0

t!

(t− 1− i)!i!
(a+ b+ t− 1)t−i−1

(a)t−i−1
ρi =

t!ρt−1

(a)t−1
P a−1,b
t−1

(
ρ+ 2

ρ

)
.

Since

t!ρt−1

(a)t−1

(a)t
(a+ b+ t− 1)t

=
t!(a+ t− 1)ρt−1

(a+ b+ t− 1)t
,

The statement of the proposition 1 corresponds to the special
parameters a = r − t+ 1 and b = m− t− r + 1.

APPENDIX B PROOF OF THEOREM 1
Let’s n = t and ρ ∈ [0, 1]. From [25, Eq. (4.4.6)], we readily
deduce that the hypergeometric function

2F1(n+ 1, a+ n, a+ b+ 2n− 1;−ρ)

coincides up to a multiplicative factor with the Jacobi func-
tion of the second kind Qa−1,b−2

n in the variable x related to
ρ by

−ρ =
2

1− x
⇔ x =

ρ+ 2

ρ
.

Consequently,

[Dρ(ρDρ)]C(ρ) = 2Ba,b,n
(1 + ρ)b−2

ρa+b−1
P a−1,b
n−1

(
ρ+ 2

ρ

)
Qa−1,b−2
n

(
ρ+ 2

ρ

)
where

Ba,b,n =
n!Γ(a+ b+ n− 1)

Γ(a+ n− 1)Γ(N + n− 1)
.

Moreover, recall from [25, Eq. (4.4.2)], that (note that (ρ +
2)/ρ > 1)

Qa−1,b−2
n

(
ρ+ 2

ρ

)
=

ρa+b−3

2a+b−4(ρ+ 1)b−2

∫ 1

−1

(1− u)a−1

× (1 + u)b−2 P a−1,b−2
n (u)

((ρ+ 2)/ρ)− u
du.

After some mathematical manipulation and since

u 7→ 1

((ρ+ 2)/ρ)− u

(
P a−1,b
n−1

(
ρ+ 2

ρ

)
− P a−1,b

n−1 (u)

)
is a polynomial of degree n−2, then the orthogonality of the
Jacobi polynomials entails

[Dρ(ρDρ)]C(ρ) =
Ba,b,n
2a+b−3

∫ 1

−1

(1− u)a−1(1 + u)b−2

× P a−1,b
n−1 (u)

P a−1,b−2
n (u)

ρ(ρ+ 2− ρu)
du.

Writing

1

ρ(ρ+ 2− ρu)
=

1

2

[
1

ρ
− (1− u)

ρ+ 2− ρu

]
, u ∈ [−1, 1],
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and using again the orthogonality of Jacobi polynomials, we
get

[Dρ(ρDρ)]C(ρ) = − Ba,b,n
2a+b−2

∫ 1

−1

(1− u)a(1 + u)b−2

×
P a−1,b
n−1 (u)P a−1,b−2

n (u)

(ρ(1− u) + 2)
du

which is still defined at ρ = 0. A first integration with respect
to ρ gives

[ρDρ]C(ρ) = − Ba,b,n
2a+b−2

∫ 1

−1

(1− u)a−1(1 + u)b−2P a−1,b
n−1 (u)

× P a−1,b−2
n (u)[ln(ρ(1− u) + 2)− ln 2]du

and a second integration leads to

C(ρ) = − Ba,b,n
2a+b−2

∫ 1

−1

(1− u)a−1(1 + u)b−2P a−1,b
n−1 (u)

× P a−1,b−2
n (u)

{∫ ρ

0

ln(v(1− u)/2 + 1)

v
dv

}
du.

Performing the variable changes u 7→ 1 − 2u in the last
expression, we end up with

C(ρ) = −Ba,b,n
∫ 1

0

ua−1(1− u)b−2P a−1,b
n−1 (1− 2u)

× P a−1,b−2
n (1− 2u)

{∫ ρ

0

ln(vu+ 1)

v
dv

}
du

for any ρ ∈ [0, 1[. By analytic continuation, this formula
extends to the cut plane C \ (−∞, 0) and is in particular
is valid for ρ ≥ 0. Specializing it to a = r − t + 1, and
b = m− t− r + 1 completes the proof of the Theorem 1.

APPENDIX C PROOF OF THEOREM 2
Perform the variable change ρ 7→ bρ in the definition of
Cm,ρt,r :

C(bρ) = Z−1
a,b,n

∫
ln

(
n∏
i=1

(1 + bρλi)

)
n∏
i=1

λa−1
i (1− λi)b−1

× V (λ)21{0<λ1<···<λn<1}dλ

=
Z−1
a,b,n

b(an+n(n−1))

∫
ln

(
n∏
i=1

(1 + ρλi)

)
n∏
i=1

λa−1
i

×
(

1− λi
b

)b−1

V (λ)21{0<λ1<···<λn<b}dλ.

On the other hand, our obtained expression for the ergodic
capacity together with the variable change v 7→ bv entail:

C(bρ) = −Ba,b,n
ba

∫ 1

0

ua−1
(

1− u

b

)b−2

P a−1,b
n−1

(
1− 2u

b

)
× P a−1,b−2

n

(
1− 2u

b

){∫ ρ

0

ln(vu+ 1)

v
dv

}
du

Now
lim
b→∞

Ba,b,n
ba

=
n!

Γ(a+ n− 1)

and similarly

lim
b→∞

Z−1
a,b,n

bn(a+n−1)
=

n∏
i=1

1

Γ(i)Γ(a+ i− 1)

Moreover, the limiting transition (6) yields

lim
b→∞

P a−1,b
n−1

(
1− 2u

b

)
= La−1

n−1(u)

lim
b→∞

P a−1,b−2
n

(
1− 2u

b

)
= La−1

n (u).

As a result,

lim
b→∞

C(bρ) = − n!

Γ(a+ n− 1)

∫ +∞

0

ua−1e−uLa−1
n−1(u)

× La−1
n (u)

{∫ ρ

0

ln(vu+ 1)

v
dv

}
du.

where
∏n
i=1

1
Γ(i)Γ(a+i−1) is the normalization constant of the

density of the joint distribution of the ordered eigenvalues of
a complex Wishart matrix [23]. The theorem is proved.
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