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Abstract

We consider the elliptic quasilinear equation −∆mu = up |∇u|q in RN with q ≥ m and
p > 0, 1 < m < N. Our main result is a Liouville-type property, namely, all the positive
C1 solutions in RN are constant. We also give their asymptotic behaviour : all the solutions
in an exterior domain RN\Br0 are bounded. The solutions in Br0\ {0} can be extended as a
continuous functions in Br0 . The solutions in RN\ {0} has a finite limit l ≥ 0 as |x| → ∞. Our
main argument is a Bernstein estimate of the gradient of a power of the solution, combined with
a precise Osserman’s type estimate for the equation satisfied by the gradient.
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6 The case p < 0 24

1 Introduction

In this paper we study local and global properties of positive solutions of the equation

−div
(
|∇u|m−2∇u

)
:= −∆mu = up |∇u|q , (1.1)

in RN , (N ≥ 1, 1 < m < N and p > 0) in the supercritical case

q ≥ m. (1.2)

We are concerned by the Liouville property in RN , which is wether all the positive C1 solutions are
constant. We also study the asymptotic behaviour of any solution of (1.1) near a singularity in the
punctured ball Br0\ {0}, in RN\ {0} or in an exterior domain RN\Br0 .

In the case q = 0, equation (1.1) reduces to the classical Lane-Emden-Fowler equation

−∆mu = up, (1.3)

which has already been the subject of countless publications. One of the questions solved is that
the Liouville property holds if and only if

p < p∗m :=
N(m− 1) +m

N −m
.

Note that p∗m is the Sobolev exponent. Since it is impossible to quote all the articles on the
subject, we only mention here the pioneering works and references therein. Gidas and Spruck [21]
first showed the nonexistence of positive solutions in RN for m = 2 and p < p∗2. They combine
the Bernstein technique applied in the equation satisfed by the gradient of a suitable power of u,
with delicate integral estimates ensuring the Harnack inequality, see also [6]. Then the complete
behaviour up to the case p = p∗2 was obtained by moving plane methods by [14], see also [16]. In
the general case m > 1, the nonexistence of nontrivial solutions for p < p∗2 was proved in a beautiful
article of Serrin and Zou [33], then the extension to the case p = p∗2 was done by [30] for m < 2,
then [36] for 1 < m < 2, and finally [29] for any m > 1.

When p = 0, (1.1) reduces to the Hamilton-Jacobi equation

−∆mu = |∇u|q .

The Liouville property was proved in [24] for m = 2, and in [9] for any m > 1, using the Bernstein
technique. In that case the nonexistence holds for any q > m − 1, without any sign condition on
the solution. Estimates of the gradient for more general problems can be found in [23].

For the general case of equation (1.1), consider the range of exponents

p > 0, p+ q + 1−m > 0.

As in the case q = 0, there exists a ”first subcritical case”, where

p <
N(m− 1)

N −m
− (N − 1)q

N −m
,
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for which any supersolution in RN of equation (1.1) is constant, from [19]. Beyond this case, a
second critical case appears when 0 ≤ q < m − 1: indeed there exist radial positive nonconstant
solutions of (1.4) whenever p ≥ p∗m,q, where

p∗m,q =
N(m− 1) +m

N −m
− q((N − 1)q −N(m− 1) +m)

(N −m)(m+ 1− q)
,

see [15] and [8].
When m = 2 < N and p > 0, equation

−∆u = up |∇u|q (1.4)

was studied in [8] for 0 < q ≤ 2. The case q = 2 could be solved explicitely by a change of
the unknown function, showing that the Liouville property holds for any p > 0. Using a direct
Bernstein technique we obtained a first range of values of (p, q) for which the Liouville property
holds, in particular it holds when p + q − 1 < 4

N−1 , covering the first subcritical case. Using an
integral Bernstein technique in the spirit of [21] we obtained a wider range of (p, q) ensuring the
Liouville property, recovering Gidas and Spruck result p < N+2

N−2 when q = 0. However some deep
questions remained unsolved: Does the property hold for any p < p∗2,q when q < 1 ? Does it hold
for any p > 0 when 1 ≤ q < 2 ?

In a recent article, Filippucci, Pucci and Souplet [20, Theorem 1.1] considered the case m = 2,
q > 2, of a superquadratic growth in the gradient, a case which was not covered by [8]. They proved
the following:

Theorem [20, Theorem 1.1] Any classical positive and bounded solution of equation (1.4) in RN
with q ≥ 2 and p > 0 is constant.

In this article, we prove that the Liouville property holds true not only for (1.4) but for the
quasilinear equation (1.1) without the assumption of boundedness on the solution. Our main
result is the following

Theorem 1.1 Let u be any positive C1(RN ) solution of equation (1.1), with 1 < m < N and

q ≥ m, p ≥ 0. (1.5)

Then u is constant.

We show that the case q = m can still be solved explicitely, giving the complete behaviour of
the solutions of the equation, see Theorem 2.1. Next we assume q > m. We prove that all the
solutions in an exterior domain are bounded, and we give the asymptotic behaviour (|x| → 0 and
|x| → ∞) of the solutions in RN\ {0}:

Theorem 1.2 Assume 1 < m < N, q > m, p ≥ 0. Then any positive C1 solution u of (1.1)
in RN\Br0 is bounded. If u is a non-constant solution, then |∇u| does not vanish for |x| > r0.
Moreover any positive solution u in RN\ {0} satisfies

lim
|x|→∞

u(x) = l ≥ 0. (1.6)

If l > 0, there exist constants C1, C2 > 0 such that for |x| large enough,

C1 |x|
N−m
m−1 ≤ |u(x)− l| ≤ C2 |x|

N−m
m−1 . (1.7)

3



Concerning the solutions in Br0\ {0} and in particular in RN\ {0} we proved an estimate of the
gradient, showing that the solution is continuous up to 0 but the gradient is singular at 0:

Theorem 1.3 Assume 1 < m < N, q > m, p ≥ 0. Any positive solution u in Br0\ {0} is
bounded near 0, it can be extended as a continuous function in Br0 , such that u(0) > 0, and for any
x ∈ B r0

2
\ {0}

|∇u(x)| ≤ C |x|−
1

q−m+1 , (1.8)

where C = C(N, p, q,m, u). Finally

|u(x)− u(0)| ≤ C |x|
q−m
q−m+1 , (1.9)

near 0, where C = C(N, p, q,m, u(0)). Moreover, if u is defined in RN\ {0} , then u(x) ≤ u(0) in
RN\ {0} .

Note that the exponent involved in (1.8) is independent of p, actualy the solution behaves like
a solution of the Hamilton-Jacobi equation

−∆mu = c |∇u|q , (1.10)

with c = up(0).

Finally we make an exhaustive study of the radial solutions for q > m, showing the sharpness
of the nonradial results. We reduce the study to the one of an autonomous quadratic polynomial
system of order 2, following the technique introduced in [10]. Compared to other classical tech-
niques, it provides a complete description of all the positive solutions, in particular the global ones,
without questions of regularity. We prove the following:

Theorem 1.4 Assume 1 < m < N, q > m, p ≥ 0 and u is any positive non constant radial
solution r 7→ u(r) of (1.1) in an interval (a, b) ⊆ (0,∞).

(i) If a = 0, then u is bounded, decreasing and singular:

lim
r→0

u = u0 > 0, lim
r→0

r
∣∣u′∣∣q−m+1

=
am,q
up0

, am,q =
(N − 1)q −N(m− 1)

q + 1−m
. (1.11)

And for given u0 > 0, there exist infinitely many such solutions;

(ii) If b =∞, then u admits a limit a limit l ≥ 0 at infinity and

lim
r→∞

r
N−m
m−1 |u(r)− l| = k > 0. (1.12)

Furthermore, for given l > 0, c 6= 0 there exists a unique local solution near ∞, such that

lim
r→∞

r
N−m
m−1 (u(r)− l) = c. (1.13)

(iii) For any u0 > 0, there exist infinitely many solutions in (0,∞), decreasing, such that limr→0 u =
u0, but a unique one, satisfying

lim
r→0

u = u0 and lim
r→∞

u = 0. (1.14)

There exist infinitely many solutions defined on an interval (0, ρ), such that limr→ρ u = 0, and an
infinity such that limr→ρ u

′ = −∞. Finally, there exist an infinity of solutions in (ρ,∞) such that
limr→ρ u = 0, and an infinity of solutions such that limr→ρ u

′ =∞.
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Note that Theorems 1.2 and 1.3 lead to the following natural question: are all the solutions
in RN\ {0} radially symmetric? This is still an open problem, even in the case p = 0 of the
Hamilton-Jacobi equation.

To conclude this paper, we improve another result of [20], where it was noticed that [20, Theorem
1.1] was still valid for p < 0, q ≥ 2. We prove here a much more general result covering the case
p = 0.

Theorem 1.5 Assume 1 < m < N, p ≤ 0 and p + q + 1 −m > 0. Then there exists a constant
C = C(N, p, q,m) > 0 such that for any positive C1 solution u of (1.1) in a bounded domain Ω,

|∇u(x)| ≤ C dist(x, ∂Ω)
− 1
q+1−m , ∀x ∈ Ω.

If Ω = RN , then u is constant.

Let us give a brief comment on the analogous equation with an absorption term:

−∆mu+ up |∇u|q = 0. (1.15)

In the case m = 2, 0 < q < 2, a complete classification of the solutions with isolated singularities
was performed in [17]. A main contribution was recently given by the same authors in [18] where
they obtained optimal estimates of the gradient for any 1 < m ≤ N , p, q ≥ 0, p + q −m + 1 > 0,
still by the Bernstein method.

Our paper is organized as follows. In Section 2 we first treat the case q = m. In Section 3 we
give the main ideas of our proofs when q > m = 2, and we introduce some tools for the general
case q > m > 1. Our main theorems are proved in Section 4, and Section 5 is devoted to the radial
case. The extension to the case p ≤ 0 is given in Section 6.

2 The case q = m

If q = m we can express explicitely the solutions of (1.1). We prove the following:

Theorem 2.1 Let 1 < m < N, p ≥ 0, q = m. Then

(i) any C1 positive solution in RN is constant;

(ii) any nonconstant positive solution in RN\Br0 has a limit l at ∞ and

lim
|x|→∞

|x|
m−N
m−1 |u− l| = c > 0;

(iii) any positive solution in Br0\ {0} extends as a continuous function in Br0 , or satisfies

lim
x→0

up+1

|ln |x||
=

(N −m)(p+ 1)

m− 1
; (2.1)

(iv) any positive solution in RN\ {0} is radial.
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Proof. We use a change of variable already considered in [1]: the equation takes the form

−∆mu = β(u) |∇u|m , with β(u) = up. (2.2)

We set γ(τ) =
´ τ

0 β(θ)dθ = τp+1

p+1 , and

U(x) = Ψ(u(x)) =

ˆ u(x)

0
e
γ(θ)
m−1dθ :=

ˆ u(x)

0
e

θp+1

(p+1)(m−1)dθ. (2.3)

A function u is a solution of (1.1) if and only if the above function U satisfies

−∆mU = 0,

and if u is nonnegative not identically 0, U is m-harmonic and positive. Conversely, u is derived
from U by

u(x) = Ψ−1(U(x)) =

ˆ U(x)

0

ds

1 + g(s)
where g(s) =

ˆ s

0
β(Ψ(w))dw =

ˆ s

0
Ψp(w)dw. (2.4)

(i) If u is a solution in RN of (2.2), it is constant. Indeed any nonnegative m-harmonic functions
U defined in RN is constant, from the Harnack inequality, see [28], [31] and [33, Theorem II].
(ii) If u is defined in RN\Br0 , then U is bounded, it admits a limit L at ∞ and there holds

|U(x)− L| ≤ C |x|
p−N
p−1 near ∞, see [3] for more general results. Clearly the same properties hold

for u (with another limit).
(iii) If u is defined in Br0\ {0}, it follows from [31] that, either U extends as a continuousm-harmonic

function in Br0 , or it behaves like k |x|
p−N
p−1 near 0, so (2.1) holds.

(iv) If u is a solution in RN\ {0}, it is proved in [27] that U is radial and endows the form

U(x) = k |x|
m−N
m−1 + λ with k, λ ≥ 0.

Then u is radial, and, using (2.4), it has the expression

u(x) =

ˆ λ

0

ds

1 + g(s)
+

ˆ k|x|
m−N
m−1

0

ds

1 + g(s− λ)
.

3 Main arguments of the proofs

3.1 Ideas in the case m = 2

Before detailling the proof of Theorem 1.1. for q > m, we give an overview of it in the simple case
of equation (1.4), with m = 2, p > 0, q > 2. We set u = vb, with b ∈ (0, 1), and obtain

−∆v = (b− 1)
|∇v|m

v
+ bq−1vs |∇v|q ,
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with s = 1−q+b(p+q−1). Next we explicit the equation satisfied by z = |∇v|2 . Taking in account
the Böchner formula and Cauchy-Schwarz inequality in RN ,

−1

2
∆z +

1

N
(∆v)2+ < ∇(∆v),∇v) ≤ −1

2
∆z + (Hessv)2+ < ∇(∆v),∇v >= 0,

we get an estimate of the form, with universal constants Ci > 0,

−∆z + C1v
2szq ≤ C2

z2

v2
+ C3

1

v
< ∇z,∇v > +C4v

sz
q−2
2 < ∇z,∇v >,

then

−∆z + C5v
2szq ≤ C6

z2

v2
+ C7

|∇z|2

z
. (3.1)

Using the Hölder inequality we deduce,

−∆z + C8v
2szq ≤ C9v

− 2(q+2s)
q−2 + C7

|∇z|2

z
.

The crucial step is an estimate of Osserman’s type in a ball Bρ valid for functions satisfying the
inequality

−∆z + α(x)zk ≤ β(x) + d
|∇z|2

z
in Bρ,

where k > 1. This is proved in Lemma 3.1 below, and it asserts that

z(x) ≤ C(N, k, d)

(
1

ρ2
max
Bρ

1

α

) 1
k−1

+

(
max
Bρ

β

α

) 1
k

in B ρ
2
.

Then we take b = q−2
p+q−1 , in the same spirit as in [20], so that B

α is constant and α−1(x) = v2(x).
We obtain an estimate

max
B̄ ρ

2

|∇v| ≤ C

((
maxBρ v

ρ

) 1
q−1

+ 1

)
.

But any solution in RN satisfies for any ρ ≥ 1

max
Bρ

v ≤ v(0) + Cρmax
Bρ
|∇v| ≤ Cρ(1 + max

Bρ
|∇v|), (3.2)

which yields

max
B ρ

2

|∇v| ≤ C((max
Bρ
|∇v|)

1
q−1 + 1).

Using the bootstrap method developped in [11] and [9] based upon the fact that 1
q−1 < 1, we deduce

that |∇v| ∈ L∞(RN ). Note that the boundness of |∇v| had been obtained in [20] but under the
extra assumption u ∈ L∞(RN ), an assumption that we get rid of. Returning to u = vb, it means
that

−∆u = up |∇u|q ≤ C |∇u|
2

u
,
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and the same happens for u − l , where l = infRN u. It implies that wl = (u − l)σ is subharmonic
for σ large enough. Then from [9], see also Lemma 3.3 below, and since u is superharmonic,

sup
BR

wl ≤ C
(

1

|B2R|

ˆ
B2R

w
1
σ

)σ
= C

(
1

|B2R|

ˆ
B2R

(u− l)
)σ
≤ C ′(inf

BR
u− l)σ.

Since C ′ is independent of R, it follows that supRN wl = 0, thus u ≡ l.
Next we consider a solution in an exterior domain and we replace (3.2) by a more precise

comparison estimate between v(x) and its infimum on a sphere of radius |x| , and use the fact that
this infimum is bounded as r → ∞. Then we can show that u is still bounded, and obtain the
behaviour near ∞ by a careful study of u and wl. Finally we study the behaviour in Br0\ {0} by
the Bernstein technique, not relative to v but directly to u, that means we take b = 1, so that
s = p. From (3.1) the function ξ = |∇u|2 satisfies

−∆ξ + C5u
2pξq ≤ C6

ξ2

u2
+ C7

|∇z|2

z
,

and k = infB r0
2
\{0} u is positive by the strong maximum principle, thus

−∆ξ + C8ξ
q ≤ C9ξ

2 + C7
|∇z|2

z
≤ C8

2
ξq + C11 + C7

|∇z|2

z
,

from what we deduce the estimates of ξ.

3.2 Some tools

In the sequel we use the Bernstein method. In the case p = 0, it appeared that the square of the
gradient is a subsolution of an elliptic equation with absorption, for which one can find estimates
from above of Osserman’s type. In the case of equation (1.1), the problem is more difficult, but
such upper estimates were also a main step in study of [8] of equation (1.4) for q < 2. Here also
they constitue a crucial step of our proofs below. The following Lemma gives an Osserman’s type
property of such equations, extending of [8, Lemma 2.2], see also used in [7, Proposition 2.1].

Lemma 3.1 Let Ω be a domain of RN , and z ∈ C(Ω)∩C2(G), where G = {x ∈ Ω : z(x) 6= 0} . Let

w 7→ Aw=−
∑N

i,j=1 aij
∂2w

∂xi∂xj
be a uniformly elliptic operator in the open set G :

θ |ξ|2 ≤
N∑

i,j=1

aijξiξj ≤ Θ |ξ|2 , θ > 0. (3.3)

Suppose that for any x ⊂ G,

A(z) + α(x)zk ≤ β(x) + d
|∇z|2

z
,

with k > 1, and d = d(N, p, q), and α, β are continuous in Ω and α is positive. Then there exists
c = c(N, p, q, k) > 0 such that for any ball B(x0, ρ) ⊂ Ω there holds

z(x0) ≤ c
(

1

ρ2
max
Bρ(x0)

1

α

) 1
k−1

+

(
max
Bρ(x0)

β

α

) 1
k

.
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Proof. Let B(x0, ρ) ⊂ Ω. We can assume that z(x0) 6= 0. Let r = |x− x0| . Let w be the function
defined in Bρ(x0) by

w(x) = λ(ρ2 − r2)−
2

k−1 + µ,

where λ, µ > 0. Let G1 be a connected component of {x ∈ Bρ(x0); z(x) > w(x)} . Then G1 ⊂ G
and G1 ⊂ B(x0, ρ) ⊂ G. We define Lw in Bρ(x0) by

L(w) = A(w) + α(x)wk − β(x)− d |∇w|
2

w
.

Then

wxi =
4λ

k − 1
(ρ2 − r2)−

2
k−1
−1xi,

wxixj =
4λ

k − 1
(ρ2 − r2)−

2
k−1
−1δij +

4λ(k + 1)

(k − 1)2
(ρ2 − r2)−

2
k−1
−2xixj ,

A(w) = −
N∑

i,j=1

aijwxixj =
4λ

k − 1
(ρ2 − r2)−

2
k−1
−1(−

N∑
i,j=1

aijδij)

+
4λ(k + 1)

(k − 1)2
(ρ2 − r2)−

2
k−1
−2(−

N∑
i,j=1

aijxixj)

≥ −Θ(
4λN

k − 1
(ρ2 − r2)−

2
k−1
−1 +

4λ(k + 1)

(k − 1)2
(ρ2 − r2)−

2
k−1
−2r2

= −Θ(
4λN

k − 1
(ρ2 − r2)−

2
k−1
−2(N(ρ2 − r2) +

k + 1

k − 1
r2)

= −Θ(
4λ

k − 1
(ρ2 − r2)−

2
k−1
−2(Nρ2 + (

k + 1

k − 1
−N)r2),

|∇w|2 =
16λ2

(k − 1)2
(ρ2 − r2)−

4
k−1
−2r2 =⇒ |∇w|

2

w
≤ 16λ

(k − 1)2
(ρ2 − r2)−

2
k−1
−2r2,

and
wk = (λ(ρ2 − r2)−

2
k−1 + µ)k ≥ µk + λk(ρ2 − r2)−

2k
k−1 = µk + λk(ρ2 − r2)−

2
k−1
−2.

We deduce from this series of inequalities,

L(w) ≥ α(x)µk − β(x) + λ(ρ2 − r2)−
2k
k−1 (λk−1C(x)

−Θ(
4

k − 1
(Nρ2 + (

k + 1

k − 1
−N)r2)− 16dr2

(k − 1)2

≥ α(x)µk − β(x) + λ(ρ2 − r2)−
2k
k−1 (λk−1C(x)− c′ρ2),

where c′ = Θ( 4
k−1(2N + k+1

k−1) + 16d
(k−1)2

= c′(N, p, q, k). We deduce that L(w) ≥ 0 if we impose

µk ≥ max
Bρ(x0)

β

α
and λk−1 ≥ c′ρ2 max

Bρ(x0)

1

α
.
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If x1 ∈ G1 is such that z(x1) − w(x1) = maxG1(z − w) > 0, then ∇z(x1) = ∇w(x1), and A(z −
w)(x1) ≥ 0. Therefore

0 ≥ L(z − w)(x1)) = A(z − w)(x1) + α(x)(zk − wk)(x1) + d

(
|∇w|2

w
− |∇z|

2

z

)
.

Since the last term is positive, it is a contradiction. Then z ≤ w in Bρ(x0). In particular z(x0) ≤
w(x0).

We also use a bootstrap argument, initialy used in [11, Lemma 2.2], and then in [9] in more
general form.

Lemma 3.2 Let d, h ∈ R with d ∈ (0, 1) and y be a positive nondecreasing function on some
interval (r1,∞). Assume that there exist K > 0 and ε0 > 0 such that, for any ε ∈ (0, ε0] and
r > r1,

y(r) ≤ Kε−hyd(r(1 + ε)).

Then there exists C = C(K, d, h, ε0) such that sup(r1,∞) y ≤ C.

Proof. Consider the sequence {εn} = {ε02−n}n≥1. Since the series
∑
εn is convergent, the

sequence {Pm} := {
∏m
i=1(1 + εi)}m≥1 is convergent too, with limit P > 0. Then there holds for

any r > r1

y(r) ≤ Kε−h1 yd(r(1 + ε1)) = Kε−h1 yd(rP1).

We deduce by induction,

y(r) ≤ K1+d+..+dm(ε−h1 ε−hd2 ..ε−hd
m−1

m )yd
m

(Pmr) = (Kε−h0 )1+d+..+dm(2h(1+2d+..+mdm−1))yd
m

(Pmr),

and rPm → rP, dm → 0, thus (y(Pmr))
dm → 1. Therefore we deduce that for any r > r1,

y(r) ≤ (Kε−h0 )
∑∞
m=1 d

m
2
∑∞
m=1md

m−1
= (Kε−h0 )

1
1−d 2

d
(1−d)2 .

We also mention below a property of m-subharmonic functions given in [9, Lemma 2.1]. It’s
proof is also based upon a boostrap method and is valid for more general quasilinear operators:

Lemma 3.3 Let u ∈ W 1,m
loc (Ω) be nonnegative, m-subharmonic function in a domain Ω of RN .

Then for any τ > 0, there exists a constant C = C(N,m, τ) > 0 such that for any ball B2ρ(x0) ⊂ Ω
and any ε ∈

(
0, 1

2

]
,

sup
Bρ(x0)

u ≤ Cε−
Nm2

τ2

(
1∣∣B(1+ε)ρ(x0)

∣∣ ˆ
B(1+ε)ρ(x0)

uτ

) 1
τ

.

Finally we use some simple properties of mean value on spheres of m-superharmonic functions,
in the same spirit as the ones given in [2, Lemmas 3.7, 3.8, 3.9] for mean values on annulus, and
in [13] for m = 2. For the sake of completeness we recall their proofs.
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Lemma 3.4 Let u ∈ C1(Ω) be nonnegative, m-superharmonic in Ω.

(i) If Ω = RN\Br0, then
r 7→ µ(r) := inf

|x|=r
u,

is bounded in (r0,∞), and strictly monotone or constant for large r.

(ii) If Ω = Br0\ {0} , then r 7→ µ(r) is nonincreasing in (0, r0).

Proof. (i) Let r > r0 be fixed. The function f(x) = µ(r)(1− ( |x|r0 )
m−N
m−1 ) is m-harmonic, and u ≥ f

on ∂Br ∪ ∂Br0 , therefore u ≥ f in Br\Br0 . Let k > 0 large enough such that 1− k
p−N
p−1 ≥ 1

2 . If we
take r > kr0 and any x such that |x| = kr0 we obtain

u(x) ≥ µ(kr0) ≥ f(x) = µ(r)(1− k
p−N
p−1 ) ≥ 1

2
µ(r),

so µ(r) is bounded for r > kr0. For any r2 > r1 > r0, ϕ(r1, r2) := infBr2\B1
u = min(µ(r1), µ(r2))

from the maximum principle. Then ϕ is nonincreasing in r2 and nondecreasing in r1. If µ has a
strict local minimum at some point r, then for 0 < δ < δ0 small enough, µ(r) < ϕ(r− δ0, r+ δ0) ≤
ϕ(r− δ, r+ δ), which yields a contradiction as δ → 0. Then µ is monotone. If it is constant on two
intervals (a, b) and (a′, b′) with b < a′ and non-constant on (b, a′) it follows by Vazquez’s maximum
principle [35] that u is constant on Bb \Ba and on Bb′ \Ba′ but non constant on Ba′ \Bb. It means,
always by Vazquez’s maximum principle,

- either min{µ(r) : a < r < b′} = µ(a) (if µ is nondecreasing) and the minimum of u in Bb′ \Ba is
achieved in any point in Bb \Ba, hence u is constant in Bb′ \Ba,
- or min{µ(r) : a < r < b′} = µ(a) (if µ is nonincreasing) and the minimum of u in Bb′ \ Ba is
achieved in any point in Bb′ \Ba′ , hence u is constant in Bb′ \Ba.
In both case we obtain a contradiction. Hence µ is either strictly monotone for r large enough, or
it is constant, and so is u.

(ii) For given r1 < r0, and δ > 0, there exists εδ ≤ r1 such that for 0 < ε < εδ, such that

δε
m−N
m−1 ≥ µ(r1). Let h(x) = µ(r1) − δ |x|

m−N
m−1 . Then u ≥ h on ∂Br1 ∪ ∂Bε, then u ≥ h in Br1\Bε.

Making ε→ 0 and then δ → 0, one gets u ≥ µ(r1) in Br1\ {0} , thus µ(r) ≥ µ(r1) for r < r1.

4 Proof of the main results

4.1 Proof of the Liouville property for q > m

We first give a general Bernstein estimate for solutions of equation (1.1):

Lemma 4.1 Let u be any C1 positive solution of ((1.1) in a domain Ω, with m > 1 and p, q
arbitrary real numbers. Let G = {x ∈ Ω : |∇u(x)| 6= 0} . Let u = vb with b ∈ R\ {0} and z = |∇v|2 .
Then the operator

w 7→ A(w) = −∆w − (m− 2)
D2w(∇v,∇v)

|∇v|2
= −

N∑
i,j=1

aijvxixj , (4.1)
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with coefficients ai,j depending on ∇v, is uniformly elliptic in G, and for any ε > 0, there exists
Cε = Cε(N,m, p, q, b, ε) such that

−1

2
A(z) +

(
1− ε
N

(b− 1)2(m− 1)2 − (1− b)(m− 1)

)
z2

v2
+

1− 2ε

N
|b|2(q−m+1) v2szq+2−m

+

(
1

N
2(b− 1)(m− 1)− s

)
|b|q−m bvs−1z

q+4−m
2 ≤ Cε

|∇z|2

z
.

(4.2)

Proof. The following identities hold if u = vb: ∇u = bvb−1∇v,

|∇u|m−2∇u = |b|m−2 bv(b−1)(m−1) |∇v|m−2∇v,

∆mu = |b|m−2 b(v(b−1)(m−1)∆mv + (b− 1)(m− 1)v(b(m−1)−m |∇v|m),

−v(b−1)(m−1)∆mv = (b− 1)(m− 1)v(b(m−1)−m |∇v|m + |b|q vbp+(b−1)q |∇v|q ,

and finally

−∆mv = (b− 1)(m− 1)
|∇v|m

v
+ |b|q−m bvs |∇v|q , (4.3)

with
s = m− 1− q + b(p+ q −m+ 1). (4.4)

We set z = |∇v|2 . Then in G,

−∆mv = f ⇐⇒ −∆v − (m− 2)
D2v(∇v,∇v)

|∇v|2
= f |∇v|2−m ,

from which identity we infer

−∆v = (m− 2)
D2v(∇v,∇v)

|∇v|2
+ (b− 1)(m− 1)

|∇v|2

v
+ |b|q−m bvs |∇v|q+2−m

where

< Hess v(∇v),∇v >= D2v(∇v,∇v) =
1

2
< ∇z,∇v > .

We recall the Böchner formula combined with Cauchy-Schwarz inequality,

−1

2
∆z +

1

N
(∆v)2+ < ∇(∆v),∇v) ≤ −1

2
∆z + (Hess v)2+ < ∇(∆v),∇v >= 0.

Since

−∆v =
m− 2

2

< ∇z,∇v >
z

+ (b− 1)(m− 1)
z

v
+ |b|q−m bvsz

q+2−m
2 ,

we deduce

< ∇(∆v),∇v >= −m− 2

2
< ∇< ∇z,∇v >

z
,∇v > +(1− b)(m− 1) < ∇z

v
,∇v >

− |b|q−m b(svs−1z
q+4−m

2 +
q + 2−m

2
vsz

q−m
2 < ∇z,∇v >).

12



we observe that

< ∇z
v
,∇v >=

< ∇z,∇v >
v

− z2

v2
and

< ∇z,∇v >2

z2
≤ |∇z|

2

z
,

thus

−m− 2

2
< ∇< ∇z,∇v >

z
,∇v >= −m− 2

2

(
D2z(∇v,∇v)

z
+

1

2

|∇z|2

z
− < ∇z,∇v >2

z2

)

≥ −m− 2

2

D2z(∇v,∇v)

z
− |m− 2| |∇z|

2

z
.

We define the operator A by (4.1); it satisfies (3.3) with θ = min(1,m− 1) and Θ = max(1,m− 1),
so it is uniformly elliptic in G. Therefore

−1

2
A(z) +

1

N
(∆v)2 − (1− b)(m− 1)

z2

v2
− |b|q−m bsvs−1z

q+4−m
2

≤ (b− 1)(m− 1)
< ∇z,∇v >

v
+

(q + 2−m) |b|q−m b
2

vsz
q−m

2 < ∇z,∇v >

+ |m− 2| |∇z|
2

z
.

(4.5)

For ε > 0 there holds by Hölder’s inequality,

q + 2−m
2

vsz
q−m

2 < ∇z,∇v >≤ ε

N
|b|2(q−m+1) v2szq+2−m + Cε

|∇z|2

z
,

(∆v)2 =

(
m− 2

2

< ∇z,∇v >
z

+ (b− 1)(m− 1)
z

v
+ |b|q−m bvsz

q+2−m
2

)2

≥ (b− 1)2(m− 1)2 z
2

v2
+ |b|2(q−m+1) v2szq+2−m + 2(b− 1)(m− 1) |b|q−m bvs−1z

q+4−m
2

−(m− 2)
|∇z|√
z

(|b− 1| (m− 1)
z

v
+ |b|q−m+1 vsz

q+2−m
2 ),

and for any ε > 0,

(m− 2)
|∇z|√
z

(|b− 1| (m− 1)
z

v
≤ ε

N
(b− 1)2(m− 1)2 z

2

v2
+ Cε

|∇z|2 ,
z

(m− 2)
|∇z|√
z
|b|q−m+1 vsz

q+2−m
2 ≤ ε

N
|b|2(q−m+1) v2szq+2−m + Cε

|∇z|2

z
,

thus (4.2) follows.

Proof of Theorem 1.1. We use Lemma 4.1 with b ∈ (0, 1), combined with the estimate(
1

N
2(b− 1)(m− 1)− s

)
|b|q−m bvs−1z

q+4−m
2 ≤ ε

N
|b|2(q−m+1) v2szq+2−m + Cε

z2

v2
.
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Then there exist constants Ci > 0 depending only on m, b,N, p, q, such that

1

2
A(z) + C1v

2szq+2−m ≤ C2
z2

v2
+ C3

|∇z|2

z
.

Next we choose s = −1 in (4.4), thus

b(p+ q −m+ 1) = q −m,

which is positive because q > m. We deduce using Hölder inequality,

A(z) +
C4z

q+2−m − C5

v2
≤ A(z) +

C1z
q+2−m − C2z

2

v2
≤ C3

|∇z|2

z
.

If we apply Lemma 3.1 with

α(x) =
C4

v2(x)
, β(x) =

C5

v2(x)
, k = q + 2−m,

we deduce that any solution in Bρ(x0) ρ > 0, satisfies

z(x0) ≤ C6

(
1

αρ2

) 1
k−1

+

(
C5

C4

) 1
k

≤ C7

(
maxBρ(x0) v

ρ

) 2
q+1−m

+ 1),

which yields

|∇v(x0)| ≤ C8

((
maxBρ(x0) v

ρ

) 1
q+1−m

+ 1

)
, (4.6)

where we observe that 1
q+1−m < 1, since q > m. Let ε ∈

(
0, 1

2

]
. As a consequence, for any solution

in B2R, (or even B 3R
2

) considering any x0 ∈ BR and taking ρ = Rε, we get

max
BR

|∇v| ≤ c

((maxB̄R(1+ε)
v

εR

) 1
q+1−m

+ 1

)
≤ cε−

1
q+1−m

((maxB̄R(1+ε)
v

R

) 1
q+1−m

+ 1

)
, (4.7)

max
B̄R(1+ε)

v ≤ v(0) +R(1 + ε) max
B̄R(1+ε)

|∇v| ,

maxB̄R(1+ε)
v

R
≤ 1 + v(0)

R
+ (1 + ε) max

B̄R(1+ε)

|∇v| ≤ c0

(
1

R
+ max
B̄R(1+ε)

|∇v|

)
,

where c0 = 2 + v(0) depends on v(0). If R ≥ 1,

(maxB̄R(1+ε)
v

R

) 1
q+1−m

+ 1 ≤ c
1

q+1−m
0

(
1 + max

B̄R(1+ε)

|∇v|)
1

q+1−m

)
+ 1 ≤ c1

(
1 + max

B̄R(1+ε)

|∇v|

) 1
q+1−m

.

Then from (4.7),

y(R) := 1 + max
BR

|∇v| ≤ 1 + c2ε
− 1
q+1−m (1 + max

B̄R(1+ε)

|∇v|)
1

q+1−m ≤ c3ε
− 1
q+1−m (1 + max

B̄R(1+ε)

|∇v|)
1

q+1−m .
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Using the definition of y, this is

y(R) ≤ cε−
1

q+1−m (y((1 + ε)R))
1

q+1−m ,

where c depends on v(0). Therefore y(R) is bounded as a consequence of Lemma 3.2. Thus |∇v| is
bounded and using the definition of v with the value of b,

|∇v|q−m = up+1 |∇u|q−m ∈ L∞(RN ).

Next we consider any l ≥ 0 such that u− l > 0. The function ul = u− l satisfies

0 ≤ −∆mul ≤ C∞
|∇u|m

u
≤ C∞

|∇ul|m

ul
,

with C∞ =
∥∥up+1 |∇u|q−m

∥∥
L∞(RN )

. Then the function wl = uσl with σ > 1 to be specified below,

satisfies

−∆mwl = σm−1ul
(σ−1)(m−1)(−∆mul + (σ − 1)(m− 1)

|∇ul|m

ul
)

≤ σm−1((σ − 1)(m− 1)− C∞)u
σ(m−1)−m
l |∇ul|m .

Therefore wl is m-subharmonic for σ large enough.
We first take l = 0, so w = uσ. By Lemma 3.3, for any τ > 0, there exists a constant Cτ =

Cτ (N,m, τ) such that

sup
BR

w ≤ Cτ
(

1

|B2R|

ˆ
B2R

wτ
) 1
τ

= Cτ

(
1

|B2R|

ˆ
B2R

uτσ
) 1
τ

, (4.8)

and since u is m-superharmonic, there holds for any θ ∈ (0, N(m−1)
N−m ), [34]

inf
BR

u ≥ cθ
(

1

|B2R|

ˆ
B2R

uθ
) 1
θ

. (4.9)

Taking τ = θ
σ , we deduce

sup
BR

u = (sup
BR

w)
1
σ ≤ C

1
σ
τ

(
1

|B2R|

ˆ
B2R

uτσ
) 1
sσ

≤ C
1
σ
τ

cθ
inf
BR

u. (4.10)

This means that u, and also w, satisfies the Harnack inequality in RN :

sup
BR

w ≤ Cτ
cσθ

inf
BR

w.

But r 7→ µ(r) = inf |x|=r u = infBr u from the maximum principle, is nonincreasing, so it has a limit
L ≥ 0 as r →∞. This implies that u is bounded and l = infRN u ≥ 0. If we replace u by ul and w
by wl, then (4.8) holds with w and u replaced respectively by wl and ul since wl is m-subharmonic,
but also (4.9) holds with u replaced by ul since ul is m-superharmonic. Thus

sup
BR

wl ≤ C(inf
BR

ul)
σ.

Therefore supBR wl tends to 0 as R→∞. Then wl ≡ 0, thus u ≡ l.
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4.2 Asymptotic behaviour near ∞

In this section we consider the behaviour of solutions defined in an exterior domain.

Proof of Theorem 1.2. Consider a nonnegative solution u = vb (0 < b < 1) of (1.1) in RN\Br0 .
From (4.6) the function v satisfies in Bρ(x0) (ρ > 0),

|∇v(x0)| ≤ C

((
maxBρ(x0) v

ρ

) 1
q+1−m

+ 1

)
, (4.11)

with C = C(N, p, q,m). Here we denote by ci some positive constants depending on r0, N, p, q,m.
Let R > 4r0 and 0 < ε ≤ 1

4 . Applying (4.11) with ρ = εR, we get

|∇v(x0)| ≤ c1

((
maxBεR(x0) v

εR

) 1
q+1−m

+ 1

)
≤ c1ε

− 1
q+1−m

((
maxBεR(x0) v

R

) 1
q+1−m

+ 1

)
,

then

max
|x|=R

|∇v| ≤ c2

((
maxR(1− ε

2
)≤|x|≤R(1+ ε

2
) v

εR

) 1
q+1−m

+ 1

)
≤ c3

((max R
1+ε
≤|x|≤R(1+ε) v

εR

) 1
q+1−m

+ 1

)
,

max
R
2
≤|x|≤2R

|∇v| ≤ c4

(max R
2(1+ε)

≤|x|≤2R(1+ε) v

εR

) 1
q+1−m

+ 1

 ,

and finally,

1 + max
R
2
≤|x|≤2R

|∇v| ≤ c5ε
− 1
q+1−m

(max R
2(1+ε)

≤|x|≤2R(1+ε) v

R

) 1
q+1−m

+ 1

 .

From Lemma 3.4-(i), µ(r) = inf |x|=r u = (inf |x|=r v)b is bounded : let M = maxr≥r0 µ(r). Note
that M depends on u. Now for any x such that |x| = ρ, there exists at least one point xρ where
v(xρ) = inf |x|=ρ v . We can join any point x ∈ Sρ to xρ by a connected chain of balls of radius
ερ with at points xi ∈ Sρ and this chain can be constructed so that it has at most π

ε elements.
Considering one ball containing x and joining it to a ball containing xρ, we get that

v(x) ≤ v(xρ) + CNε
−1ρ max

ρ
1+ε
≤|x|≤ρ(1+ε)

|∇v| ≤M
1
b + CNε

−1ρ max
ρ

1+ε
≤|x|≤ρ(1+ε)

|∇v| .

Then

max
R

2(1+ε)
≤|x|≤2R(1+ε)

v ≤ c1
M

(
1 + ε−1R max

R
2(1+3ε)

≤|x|≤2R(1+3ε)
|∇v|

)

≤ c2
Mε
−1R

(
1 + max

R
2(1+3ε)

≤|x|≤2R(1+3ε)
|∇v|

)
,

and
1

εR
max

R
2(1+ε)

≤|x|≤2R(1+ε)
v ≤ c3

Mε
−2

(
1 + max

R
2(1+3ε)

≤|x|≤2R(1+3ε)
|∇v|

)
.
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Using estimate (4.7) we obtain

1 + max
R
2
≤|x|≤2R

|∇v| ≤ c4
Mε
− 2
q+1−m

(
1 + max

R
2(1+3ε)

≤|x|≤2R(1+3ε)
|∇v|

) 1
q+1−m

. (4.12)

Let {εn}n≥1 be a positive decreasing sequence such that Pn :=
∏n
j=1(1 + εj) → 2 and Θn :=∏n

j=1 ε
dj
j+1 → Θ > 0 when n → ∞. It is easy to find such sequences such that εj ∼ 2−j . For

R
2 ≤ a < 2R ≤ b we set

y(a, b) = 1 + max
a≤|x|≤b

|∇v| .

Then (4.12) with (a, b) = (R2 , 2R) and ε1 = 3ε asserts that

y(R2 , 2R) ≤ c5ε
−h
1

(
y( R

2(1+ε1) , 2R(1 + ε1))
)d

with h =
2

q + 1−m
and d =

1

q + 1−m
∈ (0, 1).

Applying (4.12) with (a, b) = ( R
2Pn

, 2RPn) we obtain

y( R
2Pn

, 2RPn) ≤ c5ε
−h
n+1

(
y( R

2Pn+1
, 2RPn+1)

)d
.

By induction, we deduce

y(R2 , 2R) ≤ c1+d+d2+...+dn

5 Θ−hn

(
y( R

2Pn+1
, 2RPn+1)

)dn+1

. (4.13)

Since y( R
2Pn+1

, 2RPn+1)→ y(R4 , 4R), we obtain that

1 + max
R
2
≤|x|≤2R

|∇v| ≤ c
d

1−d
5 Θ−h := C(M,N, p, q,m). (4.14)

Then we conclude again that |∇v| is bounded for |x| ≥ 4r0, then in RN\Br0 since we have
assumed that u ∈ C1RN\Br0 . We consider again the function w = uσ, for σ depending of r0, large
enough so that (σ − 1)(m − 1) ≥

∥∥up+1 |∇u|q−m
∥∥
L∞(RN\Br0 )

. As in the proof of Theorem 1.1 we

conclude that w is m-subharmonic in RN\B̄r0 . Hence u satisfies the Harnack inequality, using the
estimate (4.10). Therefore, for any R > 2r0,

sup
R
2
≤|x|≤3R

2

u ≤ C inf
R
2
≤|x|≤3R

2

u.

Since u is is m-superharmonic, it follows by the strong maximum principle, that it cannot have any
local minimum in RN\B̄r0 . Since uσ is m-subharmonic it cannot have any local maximum too, and
u shares this property. As a consequence |∇u| does not vanish in RN\B̄r0 . The function r 7→ µ is
bounded by Lemma 3.4, hence u is also bounded by the above Harnack inequality. Finally µ(r) is
monotone for large r, so it admits a limit l ≥ 0 when r →∞.

If µ(r) is nonincreasing for r ≥ r1 > r0, then u − l ≥ 0, so we can consider the function wl
instead of w. Then

max
R≤|x|≤2R

wl ≤ C( inf
R≤|x|≤2R

(u− l))σ,
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Then wl tends to 0, thus u tends to l as |x| → ∞. Since u− l is m-superharmonic in RN\Br0 , then
there holds

u(x)− l ≥ C |x|
m−N
m−1 ,

with C = C(r0, N,m, u), see for example [5, Proposition 2.6], [33, Lemma 2.3]. It is the case
in particular when u is a solution in RN\ {0}. Note that the radial solutions such that µ is
nonincreasing are precisely defined in (0,∞).

Now, it follows from the upper estimate of y(R), that the function u satisfies

−∆mu = up |∇u|q ≤ C |∇u|
m

u
,

in RN\Br0 . Next suppose that l > 0. Then

−∆mu ≤ C ′ |∇u|m .

The function U (still used in case q = m), defined by

U = (m− 1)(e
u−l
m−1 − 1),

satisfies −∆mU ≤ 0 and U tend to 0 at ∞. Then there exists Rε > 0 such that U(x) ≤ ε for

|x| ≥ Rε. For R > Rε, the function x 7→ ω(x) := ε + (sup|z|=r0 U(z))( |x|r0 )
m−N
m−1 is a m-harmonic in

BR\Br0 , hence it is larger than U . Letting ε → 0 we get U ≤ C |x|
m−N
m−1 near ∞; and U has the

same behaviour as u− l , so we deduce the estimate from above,

u(x)− l ≤ C |x|
m−N
m−1 .

Then we get the estimate (1.7).

Remark 4.2 (i) In case u is defined in RN\ {0} and l = 0, we obtain the estimates

C1 |x|
m−N
m−1 ≤ u(x) ≤ C2 |x|

1
σ
m−N
m−1 .

It would be interesting to improve the estimate from above.

(ii) If u is defined in RN\Br0 and if µ is nonincreasing, we have proved that u has a limit l ≥ 0
as |x| → ∞. If µ is nondecreasing, we only obtain that µ(r) = inf |x|=r u(x) has a limit l, and
sup|x|=r u(x) has a limit λ ≥ l. Indeed the function w is m-subharmonic positive and bounded, so
the function r 7→ sup|x|=r w = (sup|x|=r u)σ is also monotone for large r and has a limit λσ. We
have w = uσ ≤ λσ, so sup|x|=r u is also nondecreasing. But we cannot prove that λ = l.

4.3 Behaviour near an isolated singularity

In this section we study the behaviour of solutions with an isolated singularity at the origin.

Proof of Theorem 1.3 Let u be a nonnegative solution u of (1.1) in Br0\ {0} . We apply directly
the Bernstein method to u : we obtain by Lemma 4.1 with b = 1, and then s = p. Setting ξ = |∇u|2 ,
we get

1

2
A(ξ) + C1u

2pzq+2−m ≤ C2
ξ2

u2
+ C3

|∇ξ|2

ξ
.
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By the strong maximum principle, there exists a constant a0 > 0 depending on r0 and N, p, q, such
that u ≥ a0 in B r0

2
\ {0} . Therefore, there holds

1

2
A(ξ) + C2p

1 a2p
0 z

q+2−m ≤ C2
ξ2

a2
0

+ C3
|∇ξ|2

ξ
,

in B r0
2
\ {0}. Then from Lemma 3.1, we deduce the inequality

z(x0) ≤ c

( 1

a2p
0 ρ

2

) 1
q+1−m

+

(
1

a
2(p+1)
0

) 1
q+2−m

 ≤ c2
0

(
1

ρ
2

q+1−m
+ 1

)
,

for any ball Bρ(x0) ⊂ B r0
2
\ {0}, with c = c(N, p, q,m) and c2

0 = c

(
a
− p
q+1−m

0 + a
− p+1
q+2−m

0

)
. Hence

for any x ∈ BR\ {0} , with R ≤ min(1, r08 ),

|∇u(x)| ≤ 2c0

|x|
1

q+1−m
≤ 2c0

|x|
1

q+1−m
.

As a consequence, considering any xR such that x, x′ ∈ B R
2
\ {0}, there holds

∣∣u(x′)− u(x)
∣∣ ≤ 2c0R

q−m
q+1−m .

Since q > m, u is bounded near 0. Then, with constants C > 0 depending on a0,

−∆mu = f ≤ C |∇u|q ≤ C |x|−
q

q+1−m .

Then f ∈ L
N
m

+ε

loc (BR
4

), since N − N
m

q
q+1−m = N(m−1)(q−m)

m(q+1−m) > 0. Thus from [31] u can be extended

as a continuous function, solution of the equation in the sense of distributions. Then we deduce
that for any x ∈ B R

2
\ {0},

|u(0)− u(x)| ≤ c0 |x|
q−m
q+1−m .

Moreover, replacing r0 by ρ > 0 small enough such that u(x) ≥ u(0)
2 in Bρ, then a0 ≥ u(0)

2 , hence
c0 ≤ C(N, p, q,m, u(0)), and for |x| ≤ min(1, ρ8), we infer

|u(0)− u(x)| ≤ C |x|
q−m
q+1−m .

Next assume that u is defined in RN\ {0} and is not constant. Then u is bounded, since it is
bounded near 0 and ∞. Then r 7→ µ(r) = inf |x|=r u is nonincreasing, thus µ(r) ≤ u(0): indeed
∀ε > 0, we have µ(|x|) ≤ u(x) ≤ u(0) + ε for any |x| ≤ rε, then from the monotone decreasingness,
µ(r) ≤ u(0) + ε for any r > 0. From Theorem 1.2 lim|x|→∞ u = l = limr→∞ µ. and then necessarily

l ≤ u(0). Suppose that there exists x 6= 0 such that u(x) > u(0); then u has a maximum in RN\ {0} ,
but |∇u| cannot vanish in RN\ {0} by Theorem 1.2, so we get a contradiction.
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5 Radial case

If u is a positive radial solution of (1.1), and if we denote for simplicity u(r) = u(x) with r = |x|,
then u satisfies the following o.d.e.

(
∣∣u′∣∣m−2

u′)′ +
N − 1

r

∣∣u′∣∣m−2
u′ + up

∣∣u′∣∣q = r1−N (rN−1
∣∣u′∣∣m−2

u′)′ + up
∣∣u′∣∣q = 0. (5.1)

We begin with a simple observation about the set of zeros of u′. We have shown above that any
solution of the exterior problem is either constant, or its gradient does not vanish. In the radial
case, the proof is elementary:

Proposition 5.1 Assume q > m − 1, p ≥ 0. Then any nonnegative radial solution of (5.1) on a
segment [r1, r2] ⊂ (0,∞) is constant, or strictly monotone.

Proof. By the strong maximum principle [35], we can assume that u > 0 on (r1, r2). The function

r 7→W (r) := rN−1
∣∣u′(r)∣∣m−2

u′(r)

is nonincreasing. Suppose that u′ has two zeros ρ1 and ρ2 in (r1, r2), then by integrating W ′ and
using the equation, we deduce that u′ ≡ 0 on [ρ1, ρ2], hence u is constant therein, therefore we can
assume that [ρ1, ρ2] is the maximal subinterval of [r1, r2] where u′ vanishes. If [r1, ρ1] 6= [r1, r2], for

example r1 < ρ1, then u′ > 0 on (r1, ρ1) where u′(r) = (r1−NW (r))
1

m−1 . By (5.1),

m− 1

m− 1− q

(
W

m−1−q
m−1

)′
= |W |−

q
m−1 W ′ = −rN−1−(N−1) q

m−1up, (5.2)

on (r1, ρ1) and limr→ρ1 u
′r) = 0. Since m − 1 − q < this implies limr→ρ1 W

m−1−p
m−1 r) = ∞, a

contradiction since u is bounded on [r1, ρ1]. We proceed similarly if r1 = ρ1 but ρ2 < r2 or if
ρ1 = ρ2. Hence either u is constant or it is strictly monotone.

Next we make a complete description of the radial solutions for p ≥ 0, q > m.

5.1 The case p = 0

This case p = 0 of the Hamilton-Jacobi equation is well known, since equation (5.2) can be directly
integrated, so the solutions are explicit, and are a Ariadne’s thread for studying the case p > 0.
We find different types of nonconstant solutions according to the sign of u′ :{

u′ = r
1−N
m−1 (C1 − a−1

m,qr
−am,q))

− 1
q−m+1

u′ = −r
1−N
m−1 (C2 + a−1

m,qr
−am,q))

− 1
q−m+1

where am,q = (N−1)q−N(m−1)
m−1 > 0 since q > N(m−1)

N−1 > m− 1; and the value of u follows by integra-

tion, with the requirement that u > 0. The solutions such that C1 > 0 satisfy limr→0 r
1

q−m+1u′(r) =

−a
1

q−m+1
m,q , then limr→0 u(r) = u0 > 0 , since q > m. The conclusions of theorem 1.4 follow in that

case.
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5.2 The case p > 0

Equation (5.1) can be reduced to an autonomous system, since it is invariant by the transformation
u 7→ Tλu (λ > 0) given by

Tλu(x) = λ
− q−m
p+q+1−mu(λx). (5.3)

Here we perform a change of unknown, introduced in [10], which consists in a differentiation of the
equation, as in the Bernstein technique. We set

X(t) = −ru
′(r)

u(r)
, Z(t) = −rup

∣∣u′∣∣q−m u′, t = ln r, (5.4)

and obtain the following quadratic system of Kolmogorov type, valid any point t where u′(t) 6= 0,
and any reals m, p, q, {

Xt = X(X − N−m
m−1 + Z

m−1)

Zt = Z(N − N−1
m−1q − pX + q+1−m

m−1 Z),
(5.5)

in the region Q =
{

(X,Z) ∈ R2 : XZ > 0
}

. Note that the trajectories X = 0 and Z = 0 are not
admissible in our study. Since p+ q 6= m− 1, we can recover u and u′ by

u = (rq−m |Z| |X|m−1−q)
1

p+q−m+1 , u′ = −Xu
r

= (r−(p+1) |Z| |X|p)
1

p+q−m+1 sign(−X). (5.6)

The fixed points of the system in Q are

N0 = (0, am,q) = (0,
(N − 1)q −N(m− 1)

q + 1−m
), O = (0, 0), A0 = (

N −m
m− 1

, 0).

We begin by a local study of the different points and the correponding results for the solutions of
(5.1):

Lemma 5.2 (i) The point N0 is a source, with eigenvalues 0 < λ1 = q−m
q+1−m < λ2 = (N−1)q−N(m−1)

m−1
and eigenvectors v1 = (1, cm,q) with cm,q > 0 and v2 = (0, 1). Then there exist infinitely many
singular decreasing solutions u of (5.1) defined near 0, satisfying (1.11).

(ii) The point O is a sink, with eigenvalues 0 > ξ1 = −N−m
m−1 > ξ2 = N − N−1

m−1q, and eigenvectors
u1 = (1, 0) and u2 = (0, 1). Then there exist infinitely many solutions u of (1.1) defined for large
r and either increasing or decreasing near ∞, satisfying (1.12) and (1.13)

(iii) The point A0 is a saddle point, with eigenvalues µ1 = − (N−m)p+(N−1)q−(m−1)N
m−1 < 0 < µ2 =

N−m
m−1 and eigenvectors w1 = (1,−dm,q) with dm,q > 0 and w2 = (1, 0). Then for any c > 0 there

exists a unique solution u of (5.1), defined at least for large r, such that limr→∞ r
N−m
m−1 u = c > 0.

Proof. (i) We perform the linearization at N0 : setting Z = am,q + Z, we get, with X > 0 and
Z > 0, {

Xt = q−m
q+1−mX

Zt = am,q(−pX + q+1−m
m−1 Z),

which gives the eigenvalues λ1, λ2 and their respective eigenvectors, with the value of cm,q

cm,q =
p(N − 1)q −N)(m− 1)

(N − 1)q2 − 2N(m− 1)q + (m− 1)(N(m− 1) +m)
.
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So N0 is a source; the particular trajectory X = 0 associated to λ2 is not admissible. There exists
an infinity of trajectories starting from N0 as t→ −∞, associated to the eigenvalue λ1; the solutions

(X,Z) satisfy X > 0, limt→−∞ e
− q−m
q+1−m tX = C0, where C0 > 0 is arbitrary and limt→−∞ Z = am,q;

then from (5.6) and the definition of Z , there exist infinitely many decreasing singular solutions u
of (5.1) defined near 0, satisfying (1.11).

(ii) The linearisation at O gives the system{
Xt = −N−m

m−1 X

Zt = (N − N−1
m−1q)Z,

with admits the eigenvalues ξ1, ξ2. So O is a sink, two particular trajectories are the axis X = 0
and Z = 0 which not admissible. There is an infinity of trajectories converging to O as t → ∞,
tangent to the axis Z = 0, associated to the eigenvalue ξ1, with either X,Z > 0, or X,Z < 0 .
They satisfy

X ∼t→∞ C1e
−N−m
m−1

t, Z =∼t→∞ C2e
(N−N−1

m−1
q)t, with C1, C2 > 0. (5.7)

The corresponding solutions u of (5.1) are defined for large r, and either decreasing or increasing;

from (5.6), we obtain limr→∞ u = (Cm−1−q
1 C2)

1
p+q−m+1 = l > 0 and limr→∞ r

N−1
m−1u′ = −lC1, thus

limr→∞ r
N−m
m−1 (u− l) = −lC1. Thus (1.12) and (1.13) follow. The uniqueness property follows from

the uniqueness of a trajectory satisfying (5.7) for given C1, C2, see also Remark 5.3 below.

(iii) Linearisation at A0 : setting X = N−m
m−1 +X, we get{

Xt = N−m
m−1 (X + Z

m−1)

Zt = − (N−m)p+(N−1)q−(m−1)N
m−1 Z,

which admits the eigenvalues µ1 < 0 < µ2 and the eigenvectors, with

dm,q =
m− 1

N −m
(N −m+ |µ1| (m− 1)

It is a saddle point. The trajectory X = 0 associated to µ2 is not admissible. Then a unique
trajectory TA0 converging to A0 as t→∞. By the scaling (5.3), we deduce the uniqueness property
for u.

Next we a complete description of the local and global solutions in the phase-plane leading to
the conclusions of Theorem 1.4:

Proof of Theorem 1.4 when p > 0. We consider the sets

LX= {(X,Z) ∈ Q : Xt = 0} =

{
(X,Z) ∈ Q : X − N −m

m− 1
+

Z

m− 1
= 0

}
,

LZ= {(X,Z) ∈ Q : Zt = 0} =

{
(X,X) ∈ Q : N − N − 1

m− 1
q − pX +

q + 1−m
m− 1

Z

}
.

The straight line LX has an extremity at A0, with slope −(m− 1), and the slope of TA0 is −dm,q <
−(m−1), so TA0 is above LX near t =∞. The line LX has an extremity at N0 , with slope p(m−1)

q+1−m ,
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is located above LX for X > 0. The trajectories issued from N0 have the slope cm,q, and we check

that it is greater than p(m−1)
q+1−m because q > 1−m; so they start above LZ .

(i) The trajectory TA0 stays in the region R =
{

0 < X < N−m
m−1 ;X − N−m

m−1 + Z
m−1 > 0

}
which

is negatively invariant. Then Xt stays positive, thus X is increasing, hence bounded. Either TA0

stays under LZ , then Zt < 0 and Z is bounded, thus TA0 converges to N0, or it crosses the line
LZ at time t0, and for t < t0 there holds Zt > 0 so that Z stays bounded, and TA0 still converges
to N0; in fact the second eventuality holds, because of the slope of the eigenvector at N0. So the
trajectory, TA0 joins N0 to A0. By scaling, for any u0 > 0 there exists a unique solution u defined
in (0,∞) satisfying (1.14).

(ii) All the trajectories with one point in the bounded invariant region R′ delimitated by the
axis X = 0, Z = 0 and TA0 , join N0 to O, and the corresponding solutions u are positive on (0,∞),
decreasing, and satisfy (1.11). The trajectories with one point in the region R′′ ⊂ Q above TA0

converge to N0 as t → −∞, and satisfy Xt > 0, since TA0 is above LX , and cannot be bounded,
since there is no fixed point in this region. They can be of two types:
• Either they cross LZ , then after crossing Z is decreasing, necessarily to 0; then from (5.6), u

is defined in a maximal interval (0, ρ) with u(ρ) = 0. Such solutions exists because by any point on
LZ passes a trajectory.
• Or they stay above LZ , thus Z increases to∞; in this case from (5.6) u is defined in a maximal

interval (0, ρ) with limr→ρ u
′ = −∞; Let us show the existence of such solutions: For given c > 0,

we define
Lc = {(X,Z) ∈ Q : X > 0, Z = cX + am,q} .

We compute the field on this line, and show that it is entering the region above Lc for c large
enough: indeed we obtain,

Zt
Xt
− c =

Z( q+1−m
m−1 (Z − am,q)− pX)

X(X − N−m
m−1 +

cX+am,q
m−1 )

− c

=
Z(c q+1−m

m−1 − p)

X − N−m
m−1 +

cX+am,q
m−1

− c > (c(q + 1−m)− p(m− 1))(cX + am,q)

(m− 1 + c)X + am,q − (N −m)
− c,

and

(c(q + 1−m)− p(m− 1))(cX + am,q)− c((m− 1 + c)X + am,q − (N −m))

= cX(c(q −m)− (p+ 1)(m− 1)− (p+ am,q(m− 1)) + c(q −m)am,q +N −m)− p(m− 1)am,q

is positive for large c, since q−m > 0. All the solutions with one point above Lc stay in this region,
so above LZ , which proves the existence.

(iii) All the trajectories with one point in {(X,Z) ∈ Q : X < 0} satisfy Xt > 0 from (5.5). Then
X increases necessarily up to 0, and then Zt > 0 for large t, thus (X,Z) converges to O, and u is
defined for r large enough, increasing and limr→∞ u = l > 0.
• Either they cross LZ , then before crossing Z is decreasing, necessarily to 0; then from (5.6),

u is defined in a maximal interval (0, ρ) with u(ρ) = 0. Such solutions exist as above.
• Or they stay under LZ , thus X and Z decrease to −∞; in this case from (5.6) u is defined in

a maximal interval (0, ρ) with limr→ρ u
′ = −∞. Let us show their existence: for given k > 0 we
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compute the field on the line Lk = {(X,Z) ∈ Q : X < 0, Z = kX} . On this line Xt > 0 and

Zt − kXt = Z(N − N−1
m−1q − pX + q+1−m

m−1 Z −X + N−m
m−1 −

Z
m−1)

= Z(( q−mm−1 −
p+1
k )Z − N−1

m−1(q −m)) = Z2( q−mm−1 −
p+1
k ) + N−1

m−1(q −m) |Z| ,

is positive for large k. The region below Lk is therefore negatively invariant, then the existence is
folllows. This conclude the proof.

Remark 5.3 The change of variable u(r) = ũ(s), s = r
m−N
m−1 , introduced in [22], and also used

in [13] in case m = 2 < N, leads to the equation

(|ũs|m−2
s ũ)s +

(
m−N
m− 1

)q−m
s
N−1
N−m (q−m)ũp |ũs|q = 0. (5.8)

Hence if u is not constant ũs does not vanish, from Remark 5.1, and (5.8) is equivalent to

(m− 1)ũss +

(
m−N
m− 1

)q−m
s
N−1
N−m (q−m)ũp |ũs|q−m+2 = 0. (5.9)

In particular we find again the existence and uniqueness of local solutions near ∞, satisfying (1.13)
for given l ≥ 0 and c 6= 0 (c > 0 if l = 0); indeed the problem reduces to the equation (5.9) with the
initial conditions ũ(0) = l and ũs(0) = c.

6 The case p < 0

Proof of Theorem 1.5. We still consider u = vb, with b > 0 : we recall that from (4.3) (4.4)

−∆mv = (b− 1)(m− 1)
|∇v|m

v
+ bq−m+1vs |∇v|q ,

with s = 1− q +m+ b(p+ q −m+ 1). Next we take

b =
q + 1−m

p+ q −m+ 1
,

thus here b ≥ 1 and s = 0, so,

−∆mv = (b− 1)(m− 1)
|∇v|m

v
+ bq−m+1 |∇v|q , (6.1)

where the two terms have the same sign. Then z = |∇v|2 satisfies

A(v) = −∆v − m− 2

2

< ∇z,∇v >
z

= (b− 1)(m− 1)
z

v
+ bq−m+1z

q+2−m
2 .

Setting , we get from (4.5)

−1

2
A(z) +

1

N
(∆v)2 + (b− 1)(m− 1)

z2

v2

≤ (b− 1)(m− 1)(
< ∇z,∇v >

v
+
q + 2−m

2
bq−m+1z

q−m
2 < ∇z,∇v >,
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where now the term in z2

v2
has a positive coefficient. Since b ≥ 1, we get an estimate of the form

A(z) + C1z
q+2−m ≤ C3

|∇z|2

z
.

Since q + 2−m > 1, we deduce the estimate in any ball Bρ(x0),

|∇v(x0)| ≤ C
(

1

ρ

) 1
q+1−m

,

from Lemma 3.1, where C is a universal constant, which leads to the conclusions.
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[35] Vàzquez J. L., A Strong Maximum Principle for Some Quasilinear Elliptic Equations, Appl.
Math. Opt. 12 (1984), 191-202.
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