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Abstract

One of the main issues when dealing with the numerical optimization of mechan-
ical structures is the balance between computation time and model accuracy.
The work presented herein aims at accelerating global optimization by using the
framework of Bayesian optimization on a quantity of interest together with mul-
tiple levels of fidelity. These multi-fidelity data are generated from a model-order
reduction framework: the LATIN Proper Generalized Decomposition. Within
this framework, a reduced-order basis is generated on-the-fly and re-exploited
to reduce the computational cost of observations. This strategy is illustrated on
two elasto-viscoplastic test-cases for which significant speedups can be observed.

Keywords: Bayesian optimization, Multi-fidelity kriging, Reduced-order
models

Introduction

Structural optimization with high-fidelity computer experiments has a long
tradition [1, 2, 3], using solver responses to build and optimize a quantity of
interest (QoI) y for a given design space D. In the recent years, there has been
a growing interest in Bayesian optimization [4], which has proven to be effec-5

tive for several difficult reference functions [5]. Bayesian optimization typically
works by modeling the costly objective function y by a cheaper surrogate one
ŷ, build as a Gaussian process regressor [6, 7, 8]. Roughly, the uncertainty
of the approximation is used to construct an acquisition function which esti-
mates the probability of improving the global optimum obtained and quantifies10

the exploitation-exploration trade-off. This acquisition function is maximized
to determine the next query point. This approach tries to reduce the number
of calculated points. This technique is commonly used in machine learning to
optimize parameters of the model [9, 10].
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When dealing with mechanical problems, each point in the design space can15

lead to several hours of computation in order to obtain the converged value of
the QoI. However, if the point is far from the accurate optimum zone, the QoI
might have been computed with an unnecessary accuracy. A solution to reduce
the duration of the optimization process is to use further data sources and to
generate a multi-fidelity metamodel. Low-fidelity points (obtained from low-20

cost calculations) are performed to estimate the region of the optimum. After
a certain number of calculations, low-fidelity and high-fidelity information are
both used for the next query points to ensure the obtained optimum , and
to estimate the optimal additive correction on the low-fidelity data previously
computed. Further developments have already made on this subject [11, 12, 13]25

and have been applied on structural optimization [14, 15].
Model reduction techniques constitute an efficient way to generate low-

fidelity data by seeking the solution of the problem in a reduced-order basis
(ROB), whose dimension is much lower than the original vector space. Using a
database of reduced order models as a low-fidelity data is quite recent [16] and30

uses a posteriori approach which usually consists of defining this ROB by the
decomposition of the solution of a surrogate model relevant to the initial model.
A priori methods like Proper Generalized Decomposition (PGD) [17, 18] follow
a different path by building progressively an approximation of the solution in a
separated-variable form, without assuming any basis. This method seems more35

appropriate when no a priori information on the design space is available and
was hitherto not tested in this multi-fidelity process.

The purpose of this paper is to show how to couple multi-fidelity kriging
and model-order reduction to speedup the global optimization of the QoI. This
strategy has already been performed for virtual charts generation [19]. Herein,40

optimization is made by calculating the QoI from the PGD modes generated
on-the-fly with the LATIN-PGD framework [20] to deal with nonlinear prob-
lems. This framework generates the solution s from an initial solution s0 by
computing at each step a spatio-temporal correction in a separated variable
form by PGD technique. Since the method characterizes the solution over its45

entire domain at each iteration, it is possible to compute an approximation of
the QoI without going to convergence. This property is particularly suitable for
a global optimization process requiring an exploration phase in the design space.
Then, low-fidelity fields are obtained by stopping the solver before convergence,
and high-fidelity information is obtained with converged fields. In addition,50

the solver ability to reuse information from previously calculated modes of the
reduced-order basis is exploited using what is called the ”multiparametric strat-
egy” [21, 22]. This accelerates more and more computations as the process is
moving forward. The coupling of these methods is done on viscoplastic test
cases and a 8.4× speedup is obtained, allowing a first demonstration of this55

approach.

Summary

We summarize herein the strategy in its whole and the related improvements
so that the reader could find, as well as the main guidelines to follow the in-
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teraction and the motivation of the various developments. First, the two main60

ingredients, that are multi-fidelity Bayesian optimization and model reduction
methods, are recalled. One one hand, multi-fidelity Bayesian optimization is
based on the generation of a metamodel using two different sources of informa-
tion: firstly, only low-fidelity data are used to generate a first metamodel which
is then enriched by the simultaneous use of high and low-fidelity data (typically65

examples of low/high-fidelity data are: numerical simulation/real tests, coarse
mesh/fine mesh, coarse model/accurate model ...). On the other hand, model
reduction methods rely on the a priori or a posteriori construction of separated
variables representations of the solution. The functions of these representations
are classically called modes. The main novelty introduced in this paper is the70

coupling of these two ingredients, and in a more detailed way, the improvements
concerns three aspects:

– the first aspect concerns the enhancement of the multi-fidelity kriging
strategy which led to a modification of the Evofusion method with the
taking into account of the variance on low-fidelity data;75

– the second aspect concerns the use of LATIN-PGD as a tool for generat-
ing low and high-fidelity data and its coupling with Bayesian optimization.
Low-fidelity data are generated by stopping the process of generating sep-
arate variable representations before convergence. High-fidelity data are
obtained at convergence of the method (low/high-fidelity data correspond80

to a truncated number of modes/converged number of modes);

– the third aspect is the use of a LATIN-PGD property which allows, from
solutions generated for different sets of optimization parameters (that con-
stitute a database of reduced-order models), to reuse the separate variable
representations to reduce the calculation costs of the solution associated85

with a new set of parameters.

Finally, in order to be able to deal with quasi-industrial test cases, an object-
oriented implementation using Matlab/OpenMP (not detailed here) was carried
out.

90

The development of the article is as follows. The bayesian optimization strat-
egy for multi-fidelity data is described on Section 1, with a focus on multi-fidelity
kriging methods, a modified Evofusion method and a non-usual acquisition func-
tion which take into account multi-fidelity data. Observations used in this opti-
mization process are computed thanks to the LATIN-PGD framework presented95

in Section 2. This framework is used in the context of viscoplastic problems and
exploit the multiparametric strategy to start computation from fields interpo-
lated from previously calculated solutions. This multi-fidelity bayesian opti-
mization process using the LATIN-PGD framework gives significant speedup
and results of this strategy is visible on Section 3 with a presentation of the test100

cases.
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1. Bayesian optimization strategy for multi-fidelity data

1.1. Bayesian optimization

Let us consider here a spatio-temporal mechanical problem defined by some
input parameters x in a design space D. For each value x ∈ D, the solution105

of the problem allows to compute a given quantity of interest (QoI), denoted
y(x) ∈ R, which is assumed to be scalar. The associated objective function
x 7→ y(x) is considered as a black-box function without analytical expression of
y nor its derivatives.

In the case of minimization, this problem is formulated concisely as follows:

Find (x∗, y∗) ∈ D × R, solution of x∗ = argmin
x∈D

y(x) and y∗ = y(x∗) (1)

As in this preliminary study, we focus on unconstrained problems, global opti-110

misation is presented without constraints. Indeed, In this context, literature
reports that Bayesian optimization is a successful option.

A non-exhaustive list of global optimization methods are presented in [23].
Standard gradient-based optimizers and heuristics are particularly appreciated
for their convergence properties but need many observed points. Among them,115

Bayesian optimization is commonly used in the case of black-box expensive op-
timization [24, 5, 25]. The black-box function y is modeled herein as a Gaussian
process ŷ conditioned on observations, using gaussian process regression [8, 6, 7].
Initial observations are chosen from near-random sampling method like Latin
Hypercube Sampling (LHS) [26] to prevent large areas without points. If needed,120

the training set is sequentially enriched by the global maximum of an acquisi-
tion function which estimates the probability of improving the global optimum.
This function is build from the posterior distribution of ŷ and is a cheap function
which can be globally optimized, unlike y.

Initial sampling in D

Compute data y

Build metamodel ŷ

Stop criterion?

In
fi

ll

NOK

OK

Global optimum found

Design space filling LHS

Mecanical solver LATIN-PGD
(Section 2)

Kriging
(Section 1.2)

Acquisition function EI
(Section 1.4)

Maximum of the
acquisition function

Figure 1: Classical bayesian optimization
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1.2. Gaussian Process Regression (kriging)125

N points xi are observed with ∀i ∈ [[1,N]], yi = y(xi). The set of the N
observed points is denoted as X and the set of their corresponding responses
y. They are used to create the training set (X, y). The objective is to build a
regressor from this training set. In the case of linear regression methods, the
output y(x) can be mapped by a linear combination of the input ŷ:

ŷ(x) = xTβ + Z(x) (2)

∀i ∈ [[1,N]] , yi = xTi β + Zi (3)

The term xTβ represents the scalar product between the input vector and the
weights associated β. The term Z is the estimated residual error between the
linear prediction and the true response.

Kriging [6, 7], also called Gaussian process regression [8], can be presented
as an extension to linear regression and can also be understood as a form of
Bayesian inference [27] by considering Z as a Gaussian process:

ŷ(x) = f(x)Tβ + Z(x) (4)

The covariance between any two samples is defined by the covariance function
(or kernel) k(x, x′; θ), (hyper)parametrized by θ. The Gaussian process ŷ is
conditional on observations, which means that by assuming the responses yi are
random variables, a joint distribution between the prediction and the observa-
tions is defined by equation (5):(

ŷ(x)
y

)
∼ N

((
f(x)Tβ
FTβ

)
,

(
1 kT(x)

k(x) C

))
(5)

with F the regression matrix such as Fij = f
i
(xj), C the covariance matrix

between observed data such as C = k(xi, xj ; θ) and k(x) the covariance vector130

between observed and predicted data such as kj(x) = k(xj , x; θ).

The predictive distribution is defined by
[
ŷ(x)|ŷ(X) = y, β, θ

]
where no-

tation [A|B] stands for the distribution of A conditionally to B. So, condi-
tionally to β and θ, the distribution x −→

[
ŷ(x)|ŷ(X) = y, β, θ

]
is Gaussian

N
(
µ(x), σ2(x)

)
with:{

µ(x) = f(x)Tβ+k(x)TC−1(y− Fβ)

σ2(x) =
(
k(x, x)2−k(x)TC−1k(x)

) (6)

Kriging means that x 7→ µ(x) is the surrogate model that is used to approx-
imate the objective function y. The kriging variance x 7→ σ2(x) represents the
model mean squared error. The great interest of using kriging is the definition
of the kriging variance as an error indicator of the metamodel on the whole135

design space. A 95% confidence interval can thus be computed corresponding
to µ(x)± 3σ(x) as shown in figure 2.
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Parameters β and hyperparameters θ can be obtained by integrating the
parameter posterior distributions, or by maximizing the likelihood function as-
sociated with the Gaussian process. Here, the Leave-One-Out (LOO) cross-
validation method is used. The idea is to generate n sub-training sets by ex-
tracting the observation (xi, yi), i ∈ [|1, n|] and using this one as a validation
set to monitor the performance. Hyperparameters are used to build metamodel
liked with each sub-training sets and the LOO predictive log probability when
leaving the training case i is computed :

log p(yi|X, y−i, θ) =
1

2
log(σ2

i ) +
(yi − µi)

σ2
i

(7)

where notation y−i means all targets except number i, and µi and σ2
i are respec-

tively the mean and the variance of the metamodel build without the training
case i on xi. Accordingly, the LOO log predictive probability is :

LLOO =

n∑
i=1

log p(yi|X, y−i, θ) (8)

The objective is to minimize this mesure to obtain the optimal hyperparameters.
It can be done by using bayesian optimization on hyperparameters [9].
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Predicted curve

Confident interval

Figure 2: Kriging based on observations of the Ackley function

(x, y) 7→ −20 exp
(
−0.2

√
0.5(x2 + y2)

)
− exp (0.5 (cos 2πx+ cos 2πy)) + 20

1.3. Data fusion with enhanced multi-fidelity kriging140

A way to reduce the design step is to reuse this process for kriging by con-
sidering multiple solvers from the coarse one to the finest one and merge data
observations. The reader can refer to [28] for a review of surrogate modeling
and multi-fidelity approaches.

In the context of variable-fidelity modeling, a possibility to take into account145

low-fidelity observations (X1, y1
) and high-fidelity one (X2, y2

) is to use the
cokriging approach. Cokriging modifies the covariance matrix C (see Equation
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(5)) and needs to establish a relation between the high-fidelity and low-fidelity
data. Some hypotheses are assumed to compute the cross-correlation between
these data and can be found in [13, 29, 30, 31]. All these methods modify the150

covariance matrix to take into account the solver quality and, even they allow
expert judgement, are intrusive.

Other methods based on recursive metamodeling exist: Hierarchical Kriging
[32] which replaces regression function f by a Gaussian process conditioned to
low-fidelity data ŷ1, and Evofusion [11]. Evofusion method is a simple one and
has given good results in a multi-fidelity benchmark [33]. Details of Evofusion
algorithm can be seen in Algorithm 1 where ycorr is defined by:

ycorr = y2 − ŷ1(X2) (9)

Algorithm 1: Evofusion Algorithm

Input: low-fidelity and high-fidelity observations (X1, y1
), (X2, y2

)
Build a low-fidelity metamodel with only low-fidelity data
(X1, y1

) −→ ŷ1

Compute the gap between the low-fidelity metamodel ŷ1 and
high-fidelity observations y

2
on high-fidelity points X2:

ycorr = y2 − ŷ1(X2)
Build a correction metamodel with correction data (X2, ycorr

) −→ ŷcorr
Modify low-fidelity observations with the correction metamodel:
y

1c
= y

1
+ ŷcorr(X1)

Build the fused metamodel with corrected data and high-fidelity data:
(X1, y1c

)
⋃

(X2, y2
) −→ ŷ

Output: Fused metamodel: ŷ

A modified version will be used herein. Corrected low-fidelity points were
interpolated on the classical method. The correction made by the ŷcorr error155

metamodel can be somewhat inaccurate due to a lack of information. Adding
variance on these points will release the exploration component of the acquisition
function (detailed in the next section) around LF points which are far away from
a high-fidelity observation (and therefore the correction is potentially false in
this area).160

So the improvement is to consider an estimated variance σε on low-fidelity
data. This noise can be quantified by the variance associated with the error
metamodel. Indeed, the sum of the random variables ỹ

1
and ŷc(X1) gives an

associated variance σε(X1) such that

σε(X1)2 = σ(ỹ
1
)2 + σ(ŷc(X1))2 + 2 Cov(ỹ

1
, ŷc(X1)) (10)

The independence of the random variables is assumed: Cov(ỹ
1
, ŷc(X1)) = 0. In

addition, no measurement noise is considered on the LF observations initially:
σ(ỹ

1
) = 0. We will therefore consider in the following σε(X1) = σ(ŷc(X1)).
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This analysis is also appropriate for HF data with σ(ŷc(X2)) = 0 at these
points.165

Figure 3 presents the method through the next functions:

y1 : x 7→ 0.5(6x− 2)2 + sin(12x− 4) + 10(x− 0.5)− 5

y2 : x 7→ 2y1(x)− 20x+ 20
(11)

Note that these two examples of function are simple one-variable functions
which have been used by several authors to compare multi-fidelity approaches
(e.g., [34, 35]).
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Figure 3: Illustration of the Evofusion method

1.4. Adapted acquisition function for multi-fidelity kriging

The role of the acquisition function is to guide the search for the optimum
by considering a good exploitation-exploration trade-off. The new point will
be around already known optimum zones (exploitation), or in wide unobserved
areas (exploration). To do that, the expected improvement function [4] is the
most widely used in the literature. It consists in calculating the average of the
improvement function by integrating the density function of the improvement
function I:

I(x) = 〈ŷ(x)− y∗〉+ (12)
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with ŷ the Gaussian process N (µ(x), σ(x)) which models y and y∗ the maximum170

of observed values.
The new query point is found by maximizing the expected improvement:

x = argmax E[I(x)] (13)

The likelihood of improvement E[I(x)] can be computed by integrating the
density function of I:

E[I(x)] =

∫ I=∞

I=0

I
1√

2πσ(x)
exp

(
− (µ(x)− y∗ − I)2

2σ2(x)

)
dI (14)

and can be evaluated analytically:

E[I(x)] = (µ(x)− y∗)Φ
(
µ(x)− y∗
σ(x)

)
+ σ(x)φ

(
µ(x)− y∗
σ(x)

)
(15)

where Φ and φ denote respectively the probability density function and the cu-
mulative distribution function of the standard normal distribution. The first
term in analytical expression (15) is the exploration term, whose contributions
will be significant in the unobserved areas of D. The second one is the exploita-175

tion term whose contributions will be significant in area around the observed
optimum.

In the case of kriging without variance associated with observations, EI(x) =
0. As the function is positive, the points already sampled will never be recom-
puted. For this reason, it is essential that the low-fidelity data have an associated
variance. In addition, the observed minimum is not necessarily accurate if it is
derived from low-fidelity data. To address this last point, it is possible to ignore
the observed minimum y? but the minimum of the mean or a specific quantile
of the Gaussian process at the observed points, noted µ? [36]. This method is
called “Expected improvement with plug-in”:

PI(x) = (µ(x)− µ?)Φ

(
µ(x)− µ?

σ(x)

)
+ σ(x)φ

(
µ(x)− µ?

σ(x)

)
(16)

This method does not take into account the noise of the future observation: the
improvement is defined and its expectation is calculated as if the next evaluation
would be deterministic. Nevertheless, it already gives better results than EI [36].180

2. Fast goal-oriented QoI computations using the LATIN-PGD frame-
work

2.1. Reference problem

For the sake of simplicity, let us consider the quasi-static and iso-thermal
evolution of a viscoelastic structure defined over the time–space domain I ×Ω,185

under the assumption of small perturbations. The continuum body is submitted
to surface forces Fd on a first part of its boundary ∂2Ω and to body forces fd in its

9



interior Ω. The continuum body is also submitted to prescribed displacements
Ud over the complementary part of ∂Ω, denoted by ∂1Ω (with ∂1Ω ∩ ∂2Ω = ∅).

Movement within the structure results in a displacement field with respect to
the initial configuration U : I ×Ω 7→ R3. Infinitesimal strain theory is assumed
and allows the linearization of the strain tensor ε = ε(U) = 1

2

[
∇U +∇T U

]
.

Internal forces are expressed by the stress tensor σ satisfying the following
boundary value problem:

div(σ) + fd = 0 on Ω, σ.n = Fd on ∂2Ω, U = Ud on ∂1Ω (17)

The nonlinear behavior laws are taken into account with the equation (18)
and will be in details on the following section, but formelly, one has:

∀(M, t) ∈ Ω× I,σ(M, t) = B(ε(M, τ), τ ∈ [0, t]) (18)

In the context of elasto-viscoplasticity, solving the boundary value problem
given by (17) is equivalent to minimizing the energy functional E : U 7→ R
defined as:

E(U) =

∫
Ω

B(ε) : εdΩ−
∫

Ω

fd ·U dΩ−
∫
∂2Ω

Fd ·U dS (19)

where U is a functional space of the form:

U =
{

U ∈ H1,p(Ω) / E(U) < +∞, U = Ud sur ∂1Ω
}

with p ≥ 1 and H1,p(Ω) the Sobolev space of functions in Lp(Ω,R3) with partial190

derivatives in Lp(Ω,R3).
A weak formulation of the boundary value problem given by (19) can be

written i.e. find U ∈ U such that

∀t ∈ I, ∀U∗ ∈ U∗, R (U(M, t); U∗) = 0 (20)

with U∗ the space of functions in U that vanish on the boundary ∂1Ω with
Ud = 0, and the residual function R is defined by:∫

I×Ω

B(ε(U)) : ε(U∗) dΩdt−
∫
I×Ω

fd ·U∗ dΩdt−
∫
I×∂2Ω

Fd ·U∗ dsdt (21)

The resolution of this nonlinear problem will be done using the LATIN
method explained on section 2.2.

2.2. The Chaboche elasto-viscoplasticity behavior law

Unified viscoplastic framework previously presented in [37] is considered. In
this constitutive law, strain ε is splited between elastic reversible strain εe and
plastic strain εp with ε = εp + εe. Stress is driven by σ = Cεe where C is
the Hooke operator. Plastic behavior zone appears when stress goes over an
elastic limit f . This limit is usually represented by an ellipsis in deviatoric
stress principal component space also called yield surface. Size and origin of

10



the ellipsis are driven respectively by isotropic hardening R (drag effect) and a
unique linear kinematic hardening X:

f = (σ −R)eq − σ0 (22)

where J2 = (σ − R)eq is the Von Mises equivalent stress and σ0 = σy − R is195

the yield surface size. We define the plastic strain p and the primal field linked
with X, α. Primal fields (p,α) are associated with (R,X).

The Norton-Hoff law drives the plastic strain p:

ṗ =

〈
f

k

〉N

+

(23)

where k, N are material dependant scalars, 〈· 〉+ are Macaulay brackets.
State laws are:

σ = Cεe (24)

X =
2

3
Cα (25)

R = R∞(1− e−bp) (26)

where C,R∞, b are material dependant scalars.
Defining a pseudo-dissipation potential F , the evolution equations can be

expressed:

d

dt

 εp−α
−p

 =

〈
f

k

〉N

+


√

3

2
N

−
√

3

2
N +

3γ

2C
X

−1

 (27)

with N the unitary normal vector defined as

N =

√
3

2

σD −X
(σD −X)eq

, (N)eq = 1 (28)

200

2.3. LATIN nonlinear solver for goal-oriented data

The LATIN framework [20] is a powerful method to obtain the linear equi-
librium of the structure with the respect of nonlinear behavior laws. Here we
recall the main principles of the method, the details of which can be found in
[38].205

Equations are separated into two sub-problems which define the two mani-
folds Ad and Γ. In our case, Ad contains solutions which satisfy kinematic and
static admissibility and state laws. These linear equations are global in time
and space. On the other hand, the variety Γ contains the nonlinear behaviour
equations. Ad,0 is similar to Ad with boundary conditions set equal to zero. Un-210

like Newton-like techniques, this approach provides a complete solution at each
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Figure 4: Schematic representation of nonlinear problem solving from iterative solvers

iteration of the algorithm. The schematic representation in Figure 4 illustrates
differences between the two solvers.

Lets denote s = (ε,σ) and ŝ = (ε̂, σ̂) set of fields respectively describing
the state of the structure in Ad and in Γ. The solution is alternately searched215

in each manifold using search directions E+ and E− which link the two sub-
problems. The physical quantities involved are written in the form of primary
mechanical fields and dual mechanical fields associated with the problem. The
solution is obtained at convergence and is in Ad ∩ Γ. The method can be also
apply to multiscale problems [39], for which micro and macro problems are220

solved alternately; domain decomposition [40], for which separation operates on
subdomains on the one hand and interfaces on the other hand; or multi-physics
[41]. This strategy has also been applied to other applications such as composite
damage [42], rapid dynamic [43] or contact problems [44].

s

s0

�

Ad

ŝm

sm+1

sm

E+

E�

sM

Figure 5: Schematic representation of the LATIN strategy
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Steps of the method are briefly described below and figure 5 gives a schematic225

representation.

• Elastic initialization: The algorithm is classically initialized by comput-
ing the elastic solution of the problem, such that s0 ∈ Ad, but s0 can be
enriched by adding Ad,0 fields interpolated from previous computations.

• Local stage: Knowing a solution s in Ad, local stage consists in finding
a local solution ŝ in Γ using search direction (ŝ− s) ∈ E+.

E+(σ̂ − σ) + (ε̂− ε) = 0 (29)

The local problem can be solved at each time steps and at each Gauss230

point. Here, the search direction is chosen to have ε̂ = ε.

• Global stage: The linear stage consists in finding s ∈ Ad knowing ŝ ∈ Γ
and using the search direction E− (30).

E−(σ − σ̂)− (ε− ε̂) = 0 (30)

The corresponding sub-problem is linear but global in space and time.
This problem is equivalent to the search of a correction δs ∈ Ad,0 of the
solution s̃ ∈ Ad calculated at the previous convergence iteration. Equation
30 can be written as:

E−((σ̃ + δσ)− σ̂)− ((ε̃+ δε)− ε̂) = 0 (31)

The chosen error indicator is a stagnation criterion on consecutive solutions
s and ŝ:

νi+1 =
||si+1 − ŝi+ 1

2
||C

1
2 ||si+1 + ŝi+ 1

2
||C

, ||s||C =

∫
Ω×I

1

2

(
ε : C ε+ σ : C−1σ

)
dΩdt (32)

where ||s||C is the norm associated to the Hooke operator.
This method is particulary adapted to our process:

• An interrupted Newton-Raphson resolution gives the converged solution
up to the time step it. In the case of the LATIN method, an approximation235

of the complete spatio-temporal solution is available. This property allows
the solver to be considered as a goal-oriented one and will be used to
generate multi-fidelity QoI data.

• It is possible to approximate the resolution at the global stage by searching
fields correction δs like separated variable functions. The computational240

cost of the global stage is reduced and the set of fields s can be written as
a PGD reduced-order model. This aspect will be explained in section 2.4.

• The initialization of the Newton-Raphson method by an already computed
spatio-temporal approximation is complex. By its inherent structure, the
LATIN method naturally allows the initialization of the calculation by a245

complete pre-calculated spatio-temporal solution. This property allows a
enhanced multiparametric strategy detailled in section 2.5.
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2.4. On-the-fly model-order reduction with the PGD method

The Proper Generalized Decomposition is a model reduction method. Initi-
ated under the name of radial approximation [45] as part of the LATIN frame-250

work for space-time decomposition, it is also used for rheology problems [46], for
an approximate resolution of the Navier-Stokes equation [47] or in image corre-
lation [48]. The method has been generalized with multiparametric use [49] —
or even in large dimensions [50] — with possible use of hyper-reduction methods
[51]. The method is also particularly suitable for application cases such as opti-255

mization [52], uncertainty quantification [53] in dynamic data-driven application
systems (DDDAS) [54] or in haptics [55].

The objective is to compute the best correction of an approximation of the
solution in a separated variable form. Modes database is no longer imposed as
in Proper Orthogonal Decomposition and the solution of the problem is sought260

at the same time as the best basis for its representation. The approximation
performed is enriched until a given error criterion is reached.

We assume that a PGD approximation of order m− 1 has already been
computed:

U(t,M) ≈ U0(t,M) +

m−1∑
i=1

λi(t) · Λi(M)︸ ︷︷ ︸
Uc(t,M)

(33)

with U0 the elastic solution such as U0 ∈ U and ∀i, (Λi, λi) ∈ U∗ × I, with I =
L2(I,R) the space of the sumable square functions in I, In the PGD approach,
neither functions Λk nor functions λk are given initially, and both families are
computed on-the-fly. At the global linear stage of the LATIN method, the
correction of field δU can be found with a separated-variable form:

δU = Λ · λ (34)

And can be obtained by minimizing the global search direction (20). It can be
expressed as [18],

Find δU(t,M) ∈ U∗ such that ∀U∗ ∈ U∗, a(δU,U∗) = `(U∗) (35)

where a is a continuous coercive bilinear operator according to H1
0 (Ω)⊗ I and

` is a continuous linear operator according to H1
0 (Ω)⊗ I.

The new pair (Λ, λ) ∈ U∗×I is defined as the one that verifies the following
double Galerkin orthogonality criterion:

a(ũm−1 + Λλ,Λλ∗ + Λ∗λ) = `(Λλ∗ + Λ∗λ), ∀λ∗ ∈ I∗,∀Λ∗ ∈ I (36)

We can thus define the two following applications:265

• Sm : I 7→ U is the application that maps a time function λ into a space
function Λ = Sm(λ) defined as:

a(ũm−1 + Λλ,+Λ∗λ) = `(Λ∗λ), ∀Λ∗ ∈ U∗ (37)

It is associated to a space problem.
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• Tm : U 7→ I is the application that maps a space function Λ into a time
function λ = Tm(Λ) defined as:

a(ũm−1 + Λλ,+λ∗Λ) = `(λ∗Λ), ∀λ∗ ∈ I (38)

It is associated to a time problem (scalar ODE).

A pair (Λ, λ) verifies (36) if and only if Λ = Sm(λ) and λ = Tm(Λ), which is
a nonlinear problem which could be solved with a fixed-point algorithm. The
interested reader can refer to [56] for a review of the different algorithms to solve270

a linear problem with the PGD and [57] for the special case of the viscoplastic
LATIN algorithm.

So with the LATIN-PGD framework, at each convergence step, a reduced-
order approximation of the complete spatio-temporal solution is obtained and
allow us to compute an approximation of the QoI firstly. By this aspect, a space275

and time basis can also be used to start future computations.

2.5. Fast computation of multiple solutions with LATIN multiparametric strat-
egy and PGD interpolation

For surrogate modelling, the computation of a quantity of interest yi is done
sequentially on certain points xi in the design space D. The computation of280

multiple solutions is fully compatible with a major feature of the LATIN frame-
work: its multiparametric strategy [58] which allows to start a new calculation
with fields created from previous computations. Its objective is to provide very
quickly the solution of nonlinear evolution problems for several parameter val-
ues of the model and reduce the number of iterations to reach the required error285

estimator level.

E�

s j

s0
sM0

sM j

s0

Ad

� j

�0

E+

E�

sM0

sM j

Figure 6: Schematic representation of the multiparametric strategy [59]. For computing
solution parametred by xj , the solution of a similar problem parametred by xj−1 can be used
to reduce the iteration number.
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We assume that for i ∈ [[1, j−1]], displacement solution Ui linked with the
problem parametred by xi has already been computed. Each solution are ex-
pressed from its space and time basis generated at the same time as the solution.

For the calculation of the query parameter xj , an approximation of s ∈ Ad

from previous computations is considered by interpolating the displacement
field Uj . Inverse distance weighting is considered, using euclidian distance in
the design space D:

Uj(t,M) ≈ Uj,0(t,M) +

j−1∑
k=0

ωk Uk,c(t,M) (39)

with ∀k ∈ [[1, j−1]], ωk = φ(||xj − xk||D), || • ||D the euclidian norm of D and290

φ : d 7→ 1

dp
.

Furthermore, a global space basis U =
[
Λ1,Λ2, . . . ,Λms

]
∈ Rds×ms can

be considered by orthonormalizing the concatenation of space bases previously
obtained, such as ∀k ∈ [[1, j−1]]:

Uk,c(t,M) =

ms∑
i=0

λ
(k)
i (t)Λi(M) (40)

So, by considering (39) and (40),

Uj(t,M) ≈ Uj,0(t,M) +

ms∑
i=0

λ̃i(t)Λi(M) (41)

with ∀i ∈ [[1,ms]] λ̃i =
∑j−1

k=0 ωkλ
(k)
i . Algorithm 2 summarizes the different steps

of the multiparametric strategy implemented.
It is important to note that we assume here that the design variables xi

modify only the manifold Γ. Thus the design variables are typically material295

coefficients or structural loads. In the developments proposed here, it is not
possible to take into account variations in parameters that would modify in
particular the kinematic admissibility conditions. However, manifold Ad can be
modified for example when optimizing the geometry, and in this context, one
could then integrate the geometrical parameters in the PGD decomposition [60].300

This strategy is tested on a turbine blade test case (see section 3.2). A 3D
solver implementation was developed for the test using MATLAB. To reach fast
and parallel computation, LATIN operators are organized as nd-arrays and a
parallel implementation of Einstein summation exploits variable broadcasting to
deal with time- and spatial-dependent operators. This computational paradigm305

allows to be as fast as commercial softwares. 200 equidistant points of the design
space [α, T ] = [81◦, 100◦] × [881◦C, 900◦C] are computed without the strategy,
and with the strategy by an ordered path (the 200 values are sorted on the
basis of a criterion of Euclidean distance in the design space, which leads to the
smallest possible evolutions of the parameters between 2 successive runs), and310
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Algorithm 2: Multiparametric strategy

Input: n points µ1, . . . , µn ∈ D
For each point µj

For each previous point µk

Calculation of the contribution: ωk = φ(d(µj , µk))

Field interpolation: Uj(t,M)←∑j−1
k=1 ωkUk(t,M)

Generation of the common spatial base
Concatenation of spatial modes:

[Ξ,Σ,V]
Thin SVD←−−−−−− [Ξ1, . . . ,Ξj−1]

Calculation of the associated elastic field: Uj,0(t,M)

For each spatial mode Λ
(Ξ)
i

Compute correction of time functions λ̄i ←
〈

Λ
(Ξ)
i , Ũj −Uj,0

〉
S

LATIN Correction: Uj ∈ Adj ∩ Γj

Output: Mechanical solution for the n points

15 random paths. In the later case, the 200 sets of design variables are used
in a random order, leading to potentially large changes in the design variables
between 2 successive runs. Given the randomness, this random path is repeated
15 times and an average of the results over the 15 paths is calculated.

Points computed 2 5 10 20 50 100 200

Ordered path 4.25× 4.24× 4.46× 4.86× 4.95× 4.87× 5.05×
Random path 2.09× 2.13× 2.22× 2.56× 3.13× 3.51× 3.78×

Table 1: Speedup provided by the multiparametric strategy on the turbine blade test case

As a result of the previous study, it can be deduced that with the LATIN-315

PGD framework, multi-fidelity QoI values can be obtained easily and also that
the multiparametric strategy allows good speedups. The objective is now to
see if coupling multi-fidelity bayesian optimisation with the multiparametric
strategy allows to simultaneously reduce the time computation and provide a
good estimation of the global optimum.320

3. Global optimization by coupling multi-fidelity kriging and reduced-
order models

3.1. Coupling algorithm

The different algorithmic blocks presented in the previous sections are as-
sembled in algorithm 7. Some parameters influence the calculation time and the325

accuracy of the optimum obtained. Mainly two of them can be discussed: the
number of low-fidelity observations nBF before enrichment with high-fidelity
data, and the quality of low-fidelity observations which will be driven by the
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Figure 7: Enriched bayesian optimization

LATIN indicator νBF which will be the stopping criterion of the solver. To
determine the pairs of parameters (nBF , νBF ) that allow to reduce calculation330

costs while reaching the optimum, an important testing campaign was carried
out. Results are presented on two test cases on following sections. A compro-
mise has been derived from this study between percentage of cases where the
global optimum area was found and reduction of the calculation costs.

3.2. Presentation of the damper test-case335

This first test case is freely inspired from a damper part of the Vulcain engine
of the Ariane 5 launcher [18]. The typical dimensions in directions (x,y,z) are
45× 70× 50 mm. The mechanical part is clamped on the upper, left and right
sides (Blue parts in figure 8). The turbine nose is visible on the bottom left
of figure 8. This one is loaded on the front and rear sides (green and red in340

the figure). The two loading pressures have the same intensity P (t) described
by figure 9 with Pmax = 80 MPa, but their directions are different. On each
side, the loading direction is driven by two angles (θ, φ) that vary in [0◦, 90◦].
The description of the angle-driven loading conditions is shown in figure 8. The
material is a 316 Steel at 600◦K. Material behavior is described by the Chaboche345

constitutive law (see Section 2.2) and Table 3 for the material coefficients.
The aim here is to obtain the worse loading case for the structure by dealing

with the maximum of the Von Mises stress during one loading cycle. All the
loading options describe a 4D design space D = [0◦, 90◦]4.
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Figure 8: Damper test case

Objective function y(x) = maxI×Ω σV onMises

Parameters x = (θ1, φ1, θ2, φ2) ∈ D = [0◦, 90◦]4

Space element type Linear triangular (30,000 DOFs)

Loading cycles One cycle (10s — 41 time steps)

Boundary conditions Clamped on blue side faces

P 1(t) = P (t) e1 on green side

P 2(t) = P (t) e2 on red side

Table 2: Second test case characteristics

E ν N k σ0 C γ R∞ b

137.6 GPa 0.3 14 150 MPa.s1/n 20 MPa 37.2 GPa 300 80 MPa 10

Table 3: Elastic-viscoplastic constitutive coefficients for the second test case
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Figure 9: Pressure evolution P(t)

3.3. Strategy parameters estimation on the damper test-case350

For each of the (n1, ν1) pairs tested, 100 optimizations are performed with
100 different random choice of initial points. Moreover, we consider a maximum
of 100 high-fidelity points (which means that we are limited in terms of the
maximum calculation time allowed for the study, which may lead to not reaching
the success criterion because it would have required more high-fidelity points).
As the objective function is to find the maximum of the Mises stress, a pre-study
(very costly in computing time) has determined that beyond 113 MPa we can
consider that the maximum is reached. Thus, we will consider as a success an
optimization which leads to a Mises stress higher than 113 MPa, i.e.:

y2(x?) > 113 MPa (42)

Table 4 shows the percentage of test-casees that converged to the global
minimum area. Table 5 gives computation time to obtain the success criterion
and Table 6 gives the impact of the random choice of initial points on the
computation time. In the following tables, n/dim means n points per dimension
of the design space. For example here, the design space is dimension 4, so355

10/dim corresponds to 10× 4 = 40 points.

n1

ν1
10−3 10−2 10−1

6/dim 56% 83% 75%

10/dim 58% 84% 74%

12/dim 63% 87% 74%

14/dim 59% 87% 77%

Table 4: Percentage of cases where the global minimum area was found

To reduce computation time, the best strategy is to consider firstly the
computation of 4 × 6 low-fidelity points, obtained by considering ν1 = 10−1 as
the solver stopping criterion. This result is hardly surprising when looking at
curve 10.360

This figure is the empirical cumulative distribution function obtained by
computing 20,000 QoI values from the 4D design space. The curve obtained
for ν1 = 10−1 allows to identify more easily the optimum area than informa-
tion given by high-fidelity values ν2. With this choice, the gain brought by
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n1

ν1

10−3 10−2 10−1

6/dim 27’40 9’48 3’14

10/dim 36’02 10’09 3’23

12/dim 42’38 10’27 3’26

14/dim 43’22 11’14 3’38

Table 5: Average calculation time — Only
high-fidelity data: 1h01

n1

ν1

10−3 10−2 10−1

6/dim 47% 87% 14%

10/dim 72% 73% 28%

12/dim 106% 78% 30%

14/dim 107% 91% 42%

Table 6: Normalized variance of computa-
tion time — Only HF: 34%

0 20 40 60 80 100 120 140 160 180 200
0%

25%

50%

75%

100%

Max. σVM (MPa)

P
oi

n
ts

u
n
d
er

th
e

sp
ec

ifi
ed

va
lu

e
(%

)

ν = 10-4

ν = 10-3

ν = 10-2

ν = 10-1

Figure 10: Empirical QoI cumulative distribution function

multi-fidelity is 19 times. The gain provided by the multiparametric method is365

estimated by testing multiple random paths of 30 points in the design space.
The contribution of the multiparametric strategy allows fields to be calculated
2.5 times faster, which allows to estimate that the gain provided by coupling
methods is around 47.5 times. Nevertheless, using ν1 = 10−2 seems to be a good
compromise between calculation time and success and this gain needs to be val-370

idated a posteriori by performing the calculation without the contribution of
the multiparametric strategy, with only high-fidelity data. The next test-casee
overcomes this last issue.

3.4. Presentation of the turbine blade test-case

The second test-case is an aircraft turbine blade. The mesh comes from375

[61]. This blade is considered as clamped on its base, with blocked movement
along the y-axis on some bottom sides (in purple in figure 11). This one has a
centrifugal load and a uniform load on the upper surface (in red in Figure 11).
The load direction is in the surface plane and is driven by angle α ∈ [0◦, 180◦] as
seen in Figure 11c. The intensity of loads are shown in Figure 12. The material380
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of this test-case is an Inconel 601 at temperature T ∈ [800◦C, 900◦C]. Oper-
ating temperature will influence material parameters. Three sets of material
parameters are given in table 7 and other values will interpolated from them.

The aim here is to obtain maxI×Ω σV onMises = 180 MPa. To do that, a mini-
mization is done on the 2D-design space with (α, T ) ∈ [0◦, 180◦]×[800◦C, 900◦C].385
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Figure 11: Different views of the structure

181 loading cases are tested with T = 900◦C and α ∈ [0◦, 180◦] to quantify
the influence of the error indicator explained in section 2.3 on the computation
time, on the number of PGD modes generated, and the error on the quantity
of interest. Results are presented in Figure 13 with an overkill solution. The
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T n K σ0 C γ R∞ b

800◦C 14 630 MPa.s1/n 80 MPa 615 GPa 1.53.106 s−1 80 MPa 300

850◦C 11 560 MPa.s1/n 71 MPa 497 GPa 1.36.106 s−1 70 MPa 250

900◦C 9 490 MPa.s1/n 60 MPa 362 GPa 1.2.106s−1 60 MPa 200

Table 7: Elastic-viscoplastic constitutive coefficients for the first test-case (with E = 210 GPa
and ν = 0.28)

Objective function y(x) = |maxI×Ω σV onMises − 180|
Parameters x = (α, T ) ∈ [0◦, 180◦]× [850◦C, 950◦C]

Space element type Quadratric triangular (330,000DOFs)

Boundary conditions Angle-driven load & Centrifugal load

Clamping on bottom part

Y-Block on bottom sides

Table 8: First test-case characteristics

Time (s)

15000 tr/min

1kN

0 1200 2400 3600

Takeoff Flight Landing

Centrifugal

Upper loading

Figure 12: Loadings time evolution

overkill solution used here is a solution computed with an excessively small390

value of the LATIN indicator (equal to 10−8), so that we can use this solution
as a reference. Theses results allow us to consider LATIN Indicator 10−4 as the
stopping criterion for converged field.

Figure 13a shows that even with low-fidelity data like ν1 = 10−1, the QoI
curves gives good trend and a good localization of the optimum area. A balance395

between QoI error and computation time can be found: if we consider low-
fidelity data with ν1 = 10−2, Figure 13b shows that the mean of the QoI error
is around 8%, but computation time is 4.6 times faster than with data obtained
with ν2 = 10−4. So 4 observations can be obtained faster than obtaining a
single high-fidelity observation, which allows to find faster the optimum zone.400

Nevertheless, high-fidelity information is still mandatory to verify the obtained
optimum.
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Figure 13: Influence of the value of the LATIN error indicator as stopping solver criterion

3.5. Results of the optimization test on the turbine blade test-case

To distinguish the gain provided by the multi-fidelity data fusion and the
multiparametric strategy, three computation batchs are performed. Each batch405

considers 20 optimisations made with different initial sampling to estimate the
average time savings. The first batch φ0 is performed with only exact data
without the multiparametric strategy. The second one φ1 is made with only
exact data and the multiparametric strategy, and the last one φ2 is obtained by
coupling methods. Each optimisation is made by initially computing 10 points410

per dimension with LF stopping criterion ν1 = 10−2.
The success criterion corresponds to the case where the exact solution cal-
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culated at least estimated is less than 180 MPa:

y2(x?) < 180 MPa (43)

In this case, the success criterion is met each time. The φ0 phase is performed
in 6h05, the φ1 phase in 2h51 and finally the φ2 phase in 44 minutes. The
multiparametric strategy provides a gain of 2.1× and the multi-fidelity strategy
a gain of 3.9× for a total gain of 8.4×. 17 high-fidelity points were requested on415

average by the algorithm to pass the objective (In the worst case, 24 high-fidelity
points were requested).

Figure 14a shows one of the 20 initial samplings used to start the bayesian
optimisation. Every low-fidelity observations are interpolated since we don’t
have any information about QoI error on these points. Figure 14b shows the last420

metamodel generated by the bayesian optimisation. Low-fidelity observations
were corrected by high-fidelity information and the correction metamodel. The
low-fidelity corrected point in (180◦, 900◦C) is not interpolant as we consider
the lack of information on the correction metamodel and so its variance. High-
fidelity points are filled on the figure. On the same position in the design space,425

low-fidelity points are also visible to understand the gap between low-fidelity
and high-fidelity data.

(a) The initial metamodel (with only low-
fidelity data)

(b) The final metamodel (High-fidelity data
are filled diamonds)

Figure 14: Metamodels generated during the optimization process

This figure can be compared to Figure 15a which is the QoI reference function
to give Figure 15b. The QoI error between the final metamodel generated by the
optimization and the reference shows that the QoI error is almost zero around430

the optimum, but quite important far from the optimum zone.

Conclusion

The aim of this work is to accelerate the global optimization of mechanical
structures to allow the use of more complex and accurate models within the
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14 %

12 %

10 %

  8 %
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(b) percent QoI error

Figure 15: Comparaison between the final metamodel generated by the optimization and the
reference

design offices. To achieve this goal, the bayesian optimization process has been435

improved to the use of multi-fidelity data by considering an adapted acquisition
function. The surrogate model generation step also uses an improved version of
the multi-fidelity kriging method Evofusion, which adds an estimated variance
on low-fidelity data.

The multi-fidelity data are not obtained by calling a given quality model, but440

by using a solver allowing the computation of mechanical fields with an adapted
level of fidelity. The proposed solver is based on the LATIN-PGD framework,
which has the triple advantage of a fast computation of the spatio-temporal
fields in a separated-variable form, giving an approximation of the complete
solution and the amount of interest at each iteration, and allowing to start445

computation from an approximation interpolated from previous computations
with the multiparametric strategy.

The two families of methods presented will thus work together to bring sig-
nificant time savings on the global optimization of a quantity of interest. The
generalization of the enrichment strategy requires the determination of the num-450

ber of calculated low-fidelity points, as well as of the solver stopping criterion in
this low-fidelity case. A parametric study campaign has been performed to esti-
mate these two parameters. 10 low-fidelity points per dimension with a LATIN
stopping criterion ν1 = 10−2 will be firstly considered before adding high-fidelity
points. With these parameters, the optimization of the airplane blade test-case455

was obtained in 44 minutes instead of 6 hours, which corresponds to a gain of
8.4×.

In the short term, the strategy is expected to be applied for geometric opti-
mization problems. The main difficulty concerns the multiparametric strategy
and the interpolation of fields for different geometries. This difficulty can be460

overcome by morphing around a single mesh [62], by using XFEM methods [63],
or by isogeometric parameterization of the structure [64]. In this last case, tools
already developed can be used using an IGA-FEM coupling method [65].
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Thereupon, the strategy can also be improved by a better choice of the
acquisition function. A comparison of the different acquisition functions should465

be made in the same way as [36] in the case of mechanical problems. Several
enrichment criteria, including the Approximate Knowledge Gradient (AKG)
criterion and the Augmented Expected Improvement (AEI) criterion, were not
compared to the others. However, it appears that the AKG function can help
to obtain the optimum faster.470
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fidelity gaussian process bandit optimisation, Journal of Artificial Intelli-
gence Research 66 (2019) 151–196. doi:10.1613/jair.1.11288.
URL http://dx.doi.org/10.1613/jair.1.11288500

27



[11] A. I. Forrester, N. W. Bressloff, A. J. Keane, Optimization using surrogate
models and partially converged computational fluid dynamics simulations,
Proceedings of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 462 (2071) (2006) 2177–2204. doi:10.1098/rspa.2006.1679.
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