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Abstract The purpose of this note is to provide an approximation

for the generalized bootstrapped empirical process achieving the rate
in [38]. The proof is based on the same arguments used in [36]. As
a conséquence, we establish an approximation of the bootstrapped
kernel distribution estimation. Purthermore, our results are applied
to two-sample testing procedures as well as to change-point problems.
We end with establishing strong approximations of the bootstrapped
empirical process when the parameters are estimated.

1. Introduction and Main Results

Let Xi,X2,... be a sequence of independent, identically distributed [i.i.d.] random
variables with common distribution function F(t) = P(X\ < t). The empirical
distribution function of X\,... ,Xn is

1 n
(1.1) Fn(t) = — V A{Xi < t}, —oo < t < oo,

n 1'
i-1

where 1I{A} stands for the indicator function of the event A. Given the sample
X\,... ,Xn, let X*,...,Xfn be conditionally independent random variables with
common distribution function Fn(-). Let

^ un
(1.2) Fm n(t) = — y A{X* < t}, -oo < t < oo,

i= i

dénoté the classical Efron (or multinomial) bootstrap (see, e.g. [29] and [30] for more
details). Define the bootstrapped empirical process, amj„(-), by

(1.3) O^m.nif) := y/^{-Prn,n(f) -^n(^))» OO ^ t < OO.

Classification AMS (2000) : Primary 62G30, 62G20, 60F17; secondary 62F03, 62F12, 60F15
Mots-clefs : General bootstrap, Brownian bridge, Best approximation, kernel density estimator,

Two-sample problem, Hypothesis testing, Goodness-of-fit, Change-point.
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Among many other things, [12] established weak convergence of the process in (1.3),
which enabled them to deduce the asymptotic validity of the bootstrap method in
forming confidence bounds for F(-). [46, Section 23.1] provied a simple proof of weak
convergence of the process in (1.3). The Bickel and Freedman resuit for Oim,n(-) has
been subsequently generalized for empirical processes based on observations in Rd,
d > 1, as well as in very general sample spaces and for various set and function-
indexed random objects [see, for example [8], [9], [10], [31], [39]]. This line of research
found its “final results” in the work of [33, 34] and [26].
By now, the bootstrap is a widely used tool and, therefore, the properties of am,n{-)
are of great interest in applied as well as in theoretical statistics. In fact, several
procedures can actually be described in terms of the empirical process an(-), the
limit distributions being functionals of B(F(-)), where B(-) is a Brownian bridge.
The fact that the limits may dépend on the unknown distribution F(-) makes it
important that good approximations of these limiting distributions be found and
that is where the bootstrap proved to be a very effective tool. There is a huge
literature on the application of the bootstrap methodology to nonparametric kernel
density and régression estimation, among other statistical procedures, and it is not
the purpose of this paper to survey this extensive literature. This being said, it
is worthwhile mentioning that the bootstrap as per Efron’s original formulation
(see [29]) présents some drawbacks. Namely, some observations may be used more
than once while others are not sampled at ail. To overcome this difficulty, a more

general formulation of the bootstrap has been devised: the weighted (or smooth)
bootstrap, which has also been shown to be computationally more efficient in several
applications. For a survey of further results on weighted bootstrap the reader is
referred to [7]. Exactly as for Efron’s bootstrap, the question of rates of convergence
is an important one (both in probability and in statistics) and has occupied a great
number of authors (see [25], [38], [36] and the references therein).
In this paper, we will consider a version of the Mason-Newton bootstrap (see [40],
and the references therein). As will be clear, this approach to bootstrap is very

general and allows for a great deal of flexibility in applications. Let (Xn)n>i be a
sequence of i.i.d. random variables defined on a probability space (fl, A, P). We ex-
tend (fl, A1P) to obtain a probability space (fT7r', A^\ P). The latter will carry the
independent sequences (Xn)n>i and (Zn)n>i (defined below) and will be considered
rich enough as to allow the définition of another sequence (B* ) of Brownian bridges,
independent of ail the preceding sequences. The possibility of such an extension is
discussed in detail in literature; the reader is referred, e.g., to [25], [38] and [11]. In
the sequel, whenever an almost sure property is stated, it will be tacitly assumed
that it holds with respect to the p.m. P defined on the extended space. We extend
and complément, in a non trivial way, the applications and the results in [3] and
[5] to the setting of weighed bootstrap of empirical process, we provide also some
new results. Even the list of applications is by no means exhaustive, it is sufficient
to point out how to apply our results in concrète situations that they stand as

archétypes for a variety statistical tests that can be investigated in a similar way.
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Define a sequence (Zn)n>i of i.i.d. replicæ of a strictly positive random variable Z
with distribution function G(-), independent of the Xn's. In the sequel, the following
assumptions on the Zn's will prevail:

(Al) E(Z) = 1; E (Z2) — 2 (or, equivalently, Var(Z) — 1).
(A2) There exists an s > 0, such that E (etz) < oo for ail |t| < e.

For ail n > 1, let Tn = Z\ H Y Zn and define the random weights,

(1.4) #(;„:= A, i = 1,... ,n.

The quantity
Tl

(i-5) n®=E #i;nU{2Q < t}, for —oo <t< oo.
i—1

will be called generalized (or weighted) bootstrapped empirical distribution function.
Analogously, recalling the empirical process based on Xi,...,Xn,

(1.6) an(t) = nl^(Fn(t) - F(t)), -oo < t < oo,

define the corresponding generalized (or weighted) bootstrapped empirical process by

(1.7) a*(t) = n1/2(F*(t) - Fn{t)), -oo < t < oo.

The System of weights defined in (1.4) appears in [40], p. 1617, where it is shown
that it satisfies assumptions (#/), (#//) and (#///) on p.1612 of the same reference,
so that ail the results therein hold for the objects to be treated in this note. In
particular, weak convergence for the process «*(•) to a Brownian bridge is proved.
For more results concerning this version of the the weighted boostrapped empirical
process, we refer the reader to [27]. Note that, as a spécial case of the System of
weights we are considering, one can obtain the one used for Bayesian bootstrap (see
[45]).

The paper is organized as follows: in Section 2, we state and discuss our main
strong approximation results of the Mason-Newton bootstrapped empirical process.
The main tools used to obtain such results are contained in [36]. In Section 3, we
state a strong approximation of a bootstrapped version of kernel-type distribution
estimators. Sections 4 and 5 are devoted to the two-sample and to change-point
problems, respectively. Finally, in Section 6, we deal with the strong approximation
of the integrated empirical process when parameters are estimated. In section 7,
we discuss some possible extensions. To prevent from interrupting the flow of the
présentation, ail proofs are gathered in Section 8.
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2. Approximations for general bootstrap of empirical processes

In what follows, we obtain a KMT rate of convergence for the process {«*(£) : t G
R} in sup norm. More precisely, we consider déviations between the generalized
bootstrapped empirical process {o*(t) : t G R} and a sequence of approximating
Brownian bridges {B*(F(t)) : t G R} on R. Our main resuit goes as follows.
Theorem 1. Let assumptions (Al) and (A2) hold. Then, it is possible to define a
sequence of Brownian bridges {B* (y) : 0 < y < 1} such that, for x > 0, for n large
enough, we hâve

(2.1) p( sup \a*n(t)-B*(F(t))\ > n~1/2(Kilogn + x)\ < A2 exp (-A3z),
\—œ<t<oo J

where K\, K2 and A3 are positive universal constants.

The proof of Theorem 1 is given in Section 8.
Remark 1 Theorem 1 implies the following approximation of the weighted boot-
strap:

(2.2) sup =
-oo<Koo \n / /

Corollary 2. Let assumptions (Al) and (A2) hold. //$(•) is a Lipschitz functional
defined on D[0, +00) such that the r.v. <J>(£?*(F(-))) admits a bounded density func-
tion, then, as n —> 00,

(2.3) sup |P{$K(.)) < x} - p{$(s;(F(-))) < x}\ =

For more comments on this kind of results, we may refer the reader to [23],
Corollary 1.1 and p. 2459.

Theorem 3. Let assumptions (Al) and (A2) hold. There is a Kiefer process {K{t\ x)
0<£<1;0<æ< 00} such that

(2.4) max sup \kal(t) — K(F(t), &)| °= 0(n1^4(logn)1//2).
1 <k<n -oo<t<oc

The proof of Theorem 3 is also given in Section 8. Theorem 3, together with the law
of the iterated logarithm for Gaussian sequences, gives, with probability 1, that

r supt€R|o£(*)| suPteR \K(F(t),n)\hm sup — = lim sup y=L==—1
n-+ 00 v log log n n—>cxd vnloglogn

= sup J2 Var(K(i?(t), 1)) = sup J2 Var(A(w, 1)).
t£R V uG[0,l] V

Plainly, Var(A(u, 1)) = u( 1 — u) and supu€[0.i] W(1 ~ u) — 1/4, so that (??) readily
implies the following Corollary:
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Corollary 4. Let assumptions (Al) and (A2) hold. With probability 1, we hâve that

suptGR |û£(*)| _ 1(2.5) lim sup — , .

n->oo V log l°gn % 1

Here is an immédiate applications of our results to goodness of fit. Consider the
problem of testing the null hypothesis

Ko : F = Fo,

Combining (2.2) and (2.5), it turns out that one could use the bootstrapped Kolmogoro^
Smirnov statistic and the bootstrapped Cramér-von Mises statistic defined, respec-

tively, by

Sn :=sup nV\F*n(t) - Fn(t)) , and T„ := n f ((F*(t) - Fn(t)))2 dFn(t).
JR

In fact, the following is in order.

Corollary 5. Let assumptions (Al) and (A2) hold. Under Ko, we hâve that, with
probability 1, as n —>■ oo,

log n \
(2.6)

(2.7)

S„-supjB;(F0(i))|

Tn - f [B*n(F0(t))f dF0(t)

O

= 0\

n1/2 / ’

log log n
log n

Let consider the average absolute déviation from the sample mean

Gn(X„) = -Y
n —*

i=1

Xi
1 n
zLxi

3=1

1 H
= -Y\x,-x,n '■■■S 1

2=1

As in [43], the hrst approximation is to replace Xn by the population mean, p,
which suggests that Gn(Xn) should be close to an average of independent random
variables |Xi — p\. An interesting functional in this setting, see [43], is given by

Gn(t) = -T\Xi-t\.
n t-—*

2=1

At each fixed t, the law of large numbers implies that Gn(t) is eventually close to

G(t) — J \x — t\dF{x).
The bootstrapped version is given by

n

g;(«) = 55^;„ \Xi—1\.
2=1
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By using similar arguments as those used by Csôrgô and Horvâth in the discussion
of the paper by [43], we hâve

GJW = n1/2(G*n(t) - Gn(t)) = J \x - t\da*n(x),
may be approximated by

r*(t) = j\x-t\d,B’n(F(x)).
By imposing the condition that E(X2), by flowing the proof of Csorgô and Horvâth
in the cited paper, we hâve

suPR(i)-r;(t)| = oP(i).

We can write

Xn = J xdFn{x), and X*n — J xdF*(x).
By similar arguments to those used in the preceding resuit, we hâve

P\Xn-X'n)~ J xdB'n(F(x)) = 0p{ 1).

3. An application to kernel distribution estimation

Let Xi,...,Xn be independent random replicæ of a real-valued random variable
with distribution function F(-). We assume that the distribution function F(-) has a
density /(•) (with respect to the Lebesgue measure on R). First of ail, we introduce
a kernel density estimator of /(•). To this end, let K{-) be a measurable function
fulfilling the following condition.

(Kl) K{u) > 0 and / K{u)du = 1.
Now, define the Akaike-Parzen-Rosenblatt kernel density estimator of /(•) (see [2],
[41] and [44]) as follows: for ail xGl, estimate f(x) by

(3.1) fn,hn(x) - nhr Fk
i— 1

(x-Xj\
V K J

where {hn : n> 1} is a sequence of positive constants satisfying the conditions

hn l 0 and nhn | oo, as n oo.

Secondly, we define the bootstrapped version of fn,hn(') by setting for ail hn > 0
and x ER,

(3.2) /*w4Êv(
i= 1 '

x - Xi
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where LV^n is defined in (1.4). Let us define the smoothed empirical distribution and
its bootstrap by

K,hn(x)= [ fn,hn{t)dt, and F*,hn(x) = f f*thn{t)dt.J —00 J —oc

We will provide an approximation rate for the process 7*, defined by

(3.3) 7nM = y/™ (K,hn(x) ~ Fn,hn(z)) , -00 < x < 00.
The following theorem, proved in Section 8, shows that a single bootstrap suffices
to obtain the desired approximation for (7*(x) : x G M}.
Theorem 6. Let conditions (Al), (A2), (Kl) prevail. Then we can define Brownian
bridges {Bf(y) : 0 < y < 1} such that almost surely along X\,X2,..., as n tends to
infinity, we hâve

(3.4) sup Jn(x) - f K (XA B-n(F(s))ds
—oo<x<oo J \ nn J

If, moreover, we suppose boundedness of the unknown density, f, i.e., if we suppose
the existence of M >0 such that sup_00<a;<00 f(x) < M, then, almost surely along
X\, X2, ■ ■., as n tends to infinity,

(3.5) sup |7*(ar) - B*(F(x))\ = 0P + hn\J\oghL1') .
—oo<x<oo \ vn /

4. The two-sample problem

This section is devoted to a two-sample problem. Let m,n G N*, and suppose

X\,..., Xm and Yi,..., Yn are independent random samples from continuons d.f.’s
F and G, respectively. Dénoté by and G*, the bootstrapped empirical d.f. asso-
ciated with F and G, respectively. As it turns out, tests for the null hypothesis

Bq : F = G,

can be based on the integrated two-sample empirical process defined, for each m, n G
N*, by

for te R.

We can use the following statistics for testing H'q \ the integrated two-sample Kolmogon
Smirnov statistic as well as the integrated two-sample Cramér-von Mises statistic,
defined, respectively, by

Sm,n := SUP |^m,n(^) | an<^ Tmjn := / dFn{t).
t GM J M
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Set, for any m, n G N*,

p(m, n) := max
logm logn\

’

y/n J
and

/ /loglogm /loglogn \0(m, n) := max I W log m, y log n I.
The following results are conséquences of Theorem 1.

Corollary 7. Let assumptions (Al) and (A2) hold. On a suitable probability space, it
is possible to define {£mn : ra,n G N*}, jointly with a sequence of Gaussian processes
{B^n : m, n G N*}, such that, under H'0, with probability 1, as min(ra,n) —>• oo,

suP|£m>nW-®m,nW| = 0{(p{m,n)),

where

(\/^B™Wt» ~ ÆSîB"Tw)).
the processes {B^ : m G N*} and {B^ : n G N*} consisting of two independent
sequences of Brownian bridges constructed as in Theorem 1.

Corollary 8. Let assumptions (Al) and (A2) hold. We hâve, under Hq, with prob-
ability 1, as min (m, n) —» oo,

Sm,n — SUp |B^)n(i)| 0(yp(m,n)), and T -J- 777.-77.
= O(0(m, n)'

As in [1], [16], consider the following modified two-sample empirical process, for a
fixed positive integer q,

for te R.
y 111 I /1/

Reasonable statistics for testing Hq would be the modified Kolmogorov-Smirnov
statistic and the modified Cramér-von Mises statistic

We extend Corollary 7 and 8 as follows.

Corollary 9. Let assumptions (Al) and (A2) hold. On a suitable probability space, it
is possible to define {^m]n : m, n G N*}, jointly with a sequence of Gaussian processes

|B^92 : m,n G N*}, such that, under Hq, with probability 1, as min (m, n) -» oo,

sup &(*) (,)wm.n
= 0{(p{m,n)),
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where

Corollary 10. Let assumptions (Al) and (A2) hold. UnderH'0, with probability 1,
as min(ra, n) —)• oo, vue hâve

-sup|B^(0|
tGM

0(ip(m,ri)) and = 0(</>(m,n)).

Remark 11. The family of statistics indexed by q may be used to maximize the
power of the statistical test for a spécifie alternative hypothesis as argued in [1].

The proofs of the results of this section are similar to those in [16], [5] and [15].

5. The change-point problem

Here and elsewhere, [t\ dénotés the largest integer not exceeding t. In many prac-
tical applications, we assume the structural stability of statistical models and this
fundamental assumption needs to be tested before it can be applied. This is called
the analysis of structural breaks, or change-points, which has led to the develop-
ment of a variety of theoretical and practical results. For good sources of references
to research literature in this area along with statistical applications, the reader may
wish to consult [17], [22] and [20] and the beautiful [37] . For recent references on
the subject we may refer, among many others, to [13], [4] and [14].

In this section, we deal with testing changes in d.f.’s for a sequence of independent
real-valued r.v.’s Xi,..., Xn. The corresponding null hypothesis that we want to test
is

Hq : Ai,...,An haved.f. F.
As frequently done, the behavior of the derived tests will be investigated under the
alternative hypothesis of a single change-point

TL" : 3 k* G {1,..., n — 1} such that Ai,..., Xk* hâve d.f. F

and Afc»+i,..., Xn hâve d.f. G.
The d.f.’s F and G are assumed to be continuons. Since the critical integer k* where
the structural break occurs can always be written as [ns*J for a certain s* G [0,1),
one is convinced that it is only natural to test the null hypothesis Hq basing on
functionals of the following (sequence of) process(es): set, for each n G N*,

|_nsj (n — [nsj )
77,3/2

for s G [0,1], t G R,(5.1) an(t,s):
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where Ffc is the bootstrapped empirical d.f. based upon the k first observations and
F*_k is that based upon the (n — k) last ones. In (5.1), we adopt the convention
that, for k = 0, Fq = Fq = 0, so that an(t, s) = 0 if s G (0,1/n).
Now, it is possible to define the random variables

■^15 ^i; [nsj 5***5 ^[nsj 5 -^[nsj ; [nsj âlld A/nsj +15 -^1 ;n— [ns] 5 • • • 5 Xn 5 ^n— [nsj ;n— [nsj

on the same probability space where two Kiefer processes {Ki(n, s) : s G R, u G
[0,1]} and {K2(n,s) : s G R,n G [0,1]}, are defined in such a manner that the “re-
stricted” processes {Ki(u, s) : s G [l,n/2],u G [0,1]} and {K2(n, s) : s G [n/2,n],u G
[0,1]} are independent. It turns out that a natural approximation of {àn : n G N*} is
given by the sequence of Gaussian processes [Kn{s,F{t)) : s G [0, l],t G R,n G N*}
defined by

/

Kn(n,s) := <

^ [K2(n, [ns\) - s(Ki(n, [n/2j) + K2(it, [n/2\)j]
for s G [0, |], u G [0,1]

^ [- Ki(n, [n(l - s)J) + (1 - s)(Ki(w, (n/2j) + K2(n, [n/2j))]
^for s G [5,1],u G [0,1].

More precisely, we hâve the following resuit.

Theorem 12. On a suitable probability space, it is possible to define {an : n G N*},
together with a sequence of Gaussian processes {Kn : n G N*} as above, such that,
under Hq, with probability 1, as n —> 00,

sup sup \an(t, s) — Kn(F(t), s)| = O
se[o,i] te1

According to [24], a way to test change-point is to use the following statistics:

(5.2) rn sup sup |an(£,s)|.
sG[0,l] teR

The corollary below, which is a conséquence of Theorem 12, deals with the weak
convergnece of rn, under Hq.
Corollary 13. If Hq holds true, then we hâve the convergence in distribution, as

n —>• 00, rn —» supS)Ue[0,i] |K(u,s)| , where K = |K(n,s) : s,u G [0,1]} is a
Gaussian process with mean zéro and covariance function E (K(u, s)K(s', n')) =
(n An' — uu')(s A s' — ss').

In fact, straightforward algebra yields, for any s,t,u,v G [0,1],

) = — (n A v — uv) il)n{t, s)
/ nE(Kn{u,s)Kn{t,v)
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with

ÿn(t,s)

[n(s A t)J — s[nt\ — t[nsj + 2[n/2\st for s,t E [0,1/2],

[n( 1 — s V t)\ - (1 — s) |_n(l - t)J
< -{l-t)[n(l-s)\+2[n/2\(l-s){l-t)

s[n( 1 — t)\ + (1 — t)[ns\ - 2|_n/2js(l - t)

(1 — s)[nt\ +t[n( 1 — s)J - 2[n/2j(l - s)t

for s,t E [1/2,1],
for s E [0,1/2], t E [1/2,1
for s E [1/2,1], t G [0,1/2

We immediately see that limn_>OG ^ s) = s A t — st, so that

lim E^Kn(£, v)Kn(u, s)^ = (s A t — st) (u Av - uv) = E^K(t, v)K(u, s)j
O

where K is the tied-down Kiefer process on [0,1] x [0,1]. This proves the convergence
° c °

of Gaussian processes in distribution, as n —> oo, Kn —> K, which in turn, to-
gether with Theorem 12, entails Corollary 13. Actually, according to [22], the most
appropriate way to test change-point is to use the following weighted statistic:

(5.3) Ai,tu
|û:n(i, s) |

sup sup -J—,
se[o,i] tm w{[ns\/n)

where w(-) is a positive function defined on (0,1), increasing in a neighborhood of
zéro and decreasing in a neighborhood of one, satisfying the condition

/ £W2(s) \
V s(l-s)/

ds

s(l - s)
< 00

for some constant e > 0. For a history and further applications of 7(m,e), we refer
to [21], Chapter 4. An example of such a function is given e.g. in [47]:

( J y/2
w{t) := \ t(l - t) loglog for t E (0,1).

Using similar techniques to those which are developed in [22], one is able to show
that, as n -A oo,

£ |K(*,s)|
Tn,w > SUp .

s,iG[0,l] WyS)
For more details, we refer to [4]. One can use the maximally selected Cramér-von
Mises statistic

Tn;2= SUp / s)dFn(t),
se[o,i] Je.
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and the analogue of the Kuiper statistic

7n;3 sup
s€[0,l]

|_nsj (n — [nsj )
77,3/2

X (£) - F+ , ,v ' n— [nsj

One can show that

rn-2~^ sup [ K2n(F(t):s)dF(t),
se[o,i] Jr

and

rn;3 -4 sup \supKn(F(t),s)-miKn(F(t)jS)
se[o,i] UeK

In a similar way as in Section 2.3 of [22], under Ho, we hâve the following immédiate
conséquences of Theorem 12, for fixed to G M and 0 < sq < 1, as n —>oo,

r» OO /»1

{an(t, s)}2 dsdt
—oo J 0

(so(l-so)) 1/2 (sup|an(t,s0)| } 4

F(to)(l-F(t0))/ j0

12

c
—f{F(t0){l-F(t0))) 1/2 < sup \an(t0,s

[se[o,i]

/oo r 1/ {an(t,s)} dsdx 4
-oo J0

12

c

/ {an(t0,s)}ds 4
Jo
r°° c

so(l-s0)jL{Sn(t'So)]dX -

{K(F(t),s)}2cM,
J — oo 70

sup |B(F(t))|,

sup |B(s)j,
se [o,i]

JV(0,1),

JV(O.l),

iV(0,l).

Remark 14. As already noted in [48], the statistic given by (5.2) should be more

powerful for detecting changes that occurin the middle, i.e., nearn/2, where k/n( 1 —

k/n) reaches its maximum, than for the ones occurring near the end points. The
advantage of using the weighted statistic defined in (5.3) is the détection of changes
that occur near the end points, while retaining the sensitivity to possible changes in
the middle as well.

6. Strong approximation of the bootstrapped empirical process when
parameters are estimated

In this section, we are interested in the strong approximation of the integrated
empirical process when parameters are estimated. Our approach is in the same
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spirit of [19]. Let us introduce, for each n E N*, the estimated bootstrapped empirical
process an:

(6.1) S;(t):=\Æ(F*(t)-F(t,§„)) for te R,
where {0n : n G N*} is a sequence of estimators of a parameter 0 from a family of
d.f.’s {F(t,0) : t G R, 0 G 0} (© being a parametric family, i.e. a s subset of Rd
and d a fixed positive integer) related to a sequence of i.i.d. r.v.’s {Xi : i € N*}. Let
us mention that a general study of the weak convergence of the estimated empirical
process was carried out by [28]. For a more recent reference, we may refer to [32]
where the authors investigated the empirical processes with estimated parameters
under auxiliary information and provided some results concerning the bootstrap in
order to evaluate the limiting laws.

Let us introduce some notation.

(6.1) The transpose of a vector V of Rd will be denoted by VT.
(6.2) The norm || • || on Rd is defined by ||(yi, ...,yd) || := maxi<»<d \yi\.
(6.3) For a function (t, 0) i-> g(t, 0) where 6 — ($i,..., Qd) € Rd, V'og(t, do) dénotés

the vector in Rd of partial dérivatives {(dg/d9i)(t, 0),..., (dg/d9d)(t, 0))) eval-
uated at 0 — 0o, and X2dg(t, 0) dénotés the d x d matrix of second order partial
dérivatives ((dPg/d9id9j)(t, 0)))1

(6.4) For a vector V — (ni,..., Vd) of real-valued functions, f V dénotés the vector
(fvh...,fvd).

Next, we write out the set of ail conditions (those of [19]) which will be used in
the sequel.

(i) The estimator 0n admits the following form: for each n G N*,

1 n
Vn (On — 0o) — -~r^ ^ l{Xii 0q) + £n,v i—1

where 0q is the theoretical true value of 0. /(•, 0q) is a measurable d-dimensional
vector-valued function, and en converges to zéro as n -> oo in a manner to be
specified later on. Notice that

4= l(s,80)<œn(s).
\n J — oo

(ii) The mean value of l(Xi,0o) vanishes: E(/(Xi,0o)) — 0.
(iii) The matrix M(0o) E(l(Xi, 0o)Tl(Xi, 0q)) is a finite nonnegative definite

d x d matrix.

(iv) The vector-valued function (t, 0) i->- X7oF(t, 0) is uniformly continuous in t G R
and 0 G V, where V is the closure of a given neighborhood of 0q.
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(v) Each component of the vector-valued function t l(t. Bo) is of bounded vari-
ation in t on each finite interval of R.

(vi) The vector-valued function 11-> VoF(t, Bo) is uniformly bounded in t G R, and
the vector-valued function (t,B) ^ B) is uniformly bounded in t G R
and B G V.

(vii) Set £(s,Bo) l(F~1(s,Bo),Bo) for s G (0,1), where F~1(s,Bq) = inf{£ G
R :F(f,90) > s}. The limiting relations below hold:

lim Vs log log(l/s) ||£(a, B0) || = 0,
S\0

and

lim y/(l -s)loglog[l/(l - s)] ||^(s,0o)|| = 0,
s/l

(viii) Set £'s(s, Bo) := |j(s, Oq) for s G (0,1). The partial dérivative i'a{s, Bq) exist
for every s G (0,1) and the bounds below hold: there is a positive constant
C such that s ||^(s, 0o)|| < C for ail s G (0, |) and (1 - s) \\i's(s, 0o)|| <
C for ail s G (|, l).

The next resuit is an analogous of Theorem 3.1 in [19]. For each n G N*, let Gn —

{Gn(t) : t G R} be the process defined by

G„(t) := 4= \K(F(t,e0),n) - ^l(s,eo)daK(F(s,e0),n)) V„F(t,0o)T)
= ^=^K(F(t,e0),n)-W{n)VeF(t,e0)T) for t € K,

where we set

W(r) := [ l(a, &o) dsK(F(s, 0O), r) for r > 0.
JR

The process {W(r) : r > 0} is a d-dimensional Brownian motion with a covariance
matrix of rank equal to that of M(Bq). The estimated empirical process given by S*
defined by (6.1) will be approximated in the sequence of processes Gn = {Gn(t) :
t G R}. Set ë„ := supteK \â*n(t) - Gn{t)|.
Theorem 15. Suppose that the sequence of estimators {Bn : n G N*} satisjïes
Conditions (i), (ii) and (iii). Then, as n -» oo;

_ p p
(a) en —> 0 if Conditions (iv), (v) hold and en —> 0;
(b) £n F—ï 0 if Conditions (vi)-(viii) hold and £n —$■ 0;
(c) £n — 0(max(h(n), n_e)) for some e > 0 if Conditions (vi)-(viii) hold and

£n — 0(h(n)) for some function h satisfying h(n) > 0 and h{n) —> 0.
The proof of this theorem is very similar to that of [15], [5] and [6] hence will be

omitted. The main idea is to rehearse the proof of Theorem 3.1 of [19] by replacing
the strong approximations of the empirical process by their analogous obtained in
Theorem 1.



235

Remark 16. It is well known that Theorem 1 can be used easily through rou-
tine bootstrap sampling, which we describe briefly as follows. Let N be a large
integer. Let wh^ — , Wn$ )T, for k — 1 ,... ,N, be vectors weights sat-
isfying the preceding conditions, and being independent of X\,... ,Xn. Moreover,
for any k — 1,... ,N, let us defîne the weighted bootstrapped empirical process by
a*nk\t) = n1/2(F^k\t)-Fn(t)), -oo < t < oo, where F^k\t) = Ya=i ^V^lLpf; -

t}, for — oo < t < oo, is the generalized weighted bootstrapped empirical distri-
bution function. Now, according to Theorem 1, we readily obtain the convergence

o/(an(-),^(1)('),...,an(iV)(-)) to (£n(-),Bn(1)(-),...,£n(iV)(-)) where B^l\-),...,
Bn^N\-) are independent copies of Bn{-). In order to approximate the limiting dis-
tribution of an(-), one can use the empirical distribution of a^'^an^N\-),
for N large enough. If we are interested to perform a statistical test based on a
smooth functional Sn := <p(ctn), with the convention that large values of Sn lead to
the rejection of the null hypothesis, Hq say, under some regularity conditions, a valid
approximation to the P-value for the test based on Sn, for N large enough, is given

jf J2k=î > Sn}, where sP := g) .

7. Possible extensions

7.1. The multivariate case

Let Xfc = (Xi;fe,..., Xd-k), k = 1,..., n, be i.i.d. random vectors with a d-dimensional
continuons df F(-). The joint empirical df.s is given, by Fn(u) = ~ J2k=i T{Ai;fc <
u\,..., Xd-k < ud}■ The empirical process /?n(-) associated with F(-), is defined, for
u E [0, l)d, respectively, by

(7.1) pn(u) = y/n{Fn(u) - F(u)).
Let us introduce the bootstrapped empirical distribution, F* (u) — YfU n,«nxvk <
u\,..., Xd-k < Ud}. We define the bootstrapped empirical process by, for u E [0, l]d,
£n(u) = \Tï(F;(u) — Fn(u)). Assume that the following conditions, as in [18], are
satisfied.

(B.l) The sequences {: 1 < k < oo} and {Zk : 1 < k < oo} are independent.
(B.2) The {Xfc : 1 < k < oo} are i.i.d. random vectors with values in [0, l]d and

with distribution function F(-).
(B.3) The [Zk : 1 < k < oo} are i.i.d. random variables with E (Zk) = 0, EZ2 = 1.
(B.4) The Zk hâve a finite moment generating function in an open interval con-

taining the origin.
Theorem 17. Under conditions (B.1)-(B.2)-(B.3)-(B.4), one can construct pro-
cesses {/?*(u) : u E [0, l]d} and (B*F(u) : u E [0, l]d} on some probability space,
such that, almost surely as n oo,

(7.2) sup \p*(u) - B; f(u)| - O (n-1/2(2(i_i) logn) ,
ue[o,i]d v 7
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where {B* F(u) : u G [0, l]d} is sequence of Brownian bridges fulfilling
(7-3)
E(B;f(u)) = 0, E(B* f(u)B* p(v)) = F(u Av) — F(u)F(v), for u, v S [0, \f.

Theorem 18. Under conditions (B.1)-(B.2)-(B.3)-(B.4); one can construct pro-
cesses {/3*(u) : u G [0, l]d} and {rF(u, n) : u G [0, l]d} on some probability, space
such that, almost surely as n -* oo,

(7.4) sup \Vn/3*{u) - rj(u,n)| = 0(n1/2_1/(4c°(logn)3/2),
uG[0,l]d

where {rF(u, n) : u G [0, l]d} is the Kiefer process that fulfills

E(rî(u,*)) = 0 and, E(rj(u,2)rï(v, t)) = (z A t) {F(u A v) - F(u)F(v)} ,

for u, v G [0, l]d and s, t > 0.
The results of this section may be proved by the techniques developed in the présent
paper in connection with the results of [18].

8. Proofs

This section is devoted to the detailed proofs of our results. The previously displayed
notation continue to be used in the sequel.

Proof of Theorem 1.

In the sequel, we will write || • || to indicate sup_00<f<+00 | • |. We hâve that

KM - B‘n(F(tm = \\MK(t) - Fn{t)) - B;(F(t))||.

Now, it is easily seen that

(8,i) MK(t) - Ut)) = (f-) 4Ê(
' n ' V i=1 V 7=1 /

Notice that

P (KM - K(F(t))|| > logn + x)
~ P s£î(t) + s${t) > n 1/2(K1logn + x)) ,

where

KM - B’(F(t))|
i=1

u{V < <} - B‘n(F(t))

+ I Y - 1 ) Bn(f«)

i=i /

s«M + s®M
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We will show that, for x > 0,

(8.2)

and

(8.3)

P

P

S£\t) >n 1//2(-&h logn -|- x)] < I<5 exp (-Kqx) ,

S^\t) >n 1/2(K7\ogn +x)\ < K8exp(-Kgx),

where Ki, i = are positive universal constants. First, we show that (8.3)
holds, for ail 0 < x < n. We note that there is a constant Kio such that

PiWJyx1'2) <K10exV(-x/2).(8.4)

Recall that under conditions (Al) and (A2), there are constants Kn,...K15 such
that such that (see [42] Theorem 2.6., p. 55)

(8.5) P Ez*-
i=1

> (xn)1/2 ) < Kuexp(-Ki2x),

for ail 0 < x < Ki^n, and

(8.6) P £z,-
i—1

> x < Ku exp(-iFi5x),

[38] hâve proved that there exists a standard Wiener process {W(s) : 0 < s < 00}
so that for ail x > 0 and integers n > 1, we hâve

(8.7) P (|Tn — n — W(n)\ > K\5 logn + x) < Kiq exp(-Knx)

where iFj, i — 15,..., 17 are positive universal constants. By using (8.7), we hâve

P (Tn — n< -n/2) = P {Tn - n - W(n) + W(n) < -n/2)
< P (|Tn - n - W(n)| > n/4) + P (|W(1)| > n1/2/4

(8.8) < K\q exp(—Kijn) < K\q exp(—K\7x).

Making use of (8.5) in connection with (8.8), we hâve

P ~ - 1
T71.

> (x/n)1/2 T-L 71

< P \Tn - ni >

> (x/n)1/2, {Tn > n/2 U Tn < n/2}

(nx)1/2\
' + P{Tn-n< -n/2)

< K\\exp(—x) P P (Tn - n < —n/2).(8.9)
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By combining (8.4) and (8.9) we obtain, for ail 0 < x < K\$n,

(8.10) P^S£\t) > n~l/'2(KiQlogn +x)^J < Ki7exp(-Ki8x).
where K{, i = 16,..., 18 are positive universal constants. For K\8n < x < oo, by
applying (8.6) and using similar arguments as in (8.9), we infer that

(8.11) P 77T-1Tn
> {x/n) ) < Kiq exp(—iF2ox),

Note that we hâve with probability 1 ||5*|| = 0((logn)1/2). This when combined
with (8.11) gives, for K\8n < x < oo, the following

(8.12) p( S^\t) > n~1//2(/F2ilogn + x)N) < iF22exp(-iF23^) i

where Ki, i = 21,..., 23 are positive universal constants. This complétés the proof
of (8.3). The proof of (8.2), we hâve

P Sfî(t) >n 1//2(^4logn + x)

< P ( (ë - 0 (it (z*-ïg■^*t}) - B'M
(8.13) >n 1/2(iF24 logn + x)') + iF25 exp (—iF26^)

where Ki, i — 24,. ..,26 are positive universal constants. For 0 < x < K\%n, we
hâve

(ë - 0 g (Zi ” 11 zj * *>) - B'nim
> n_1//2 (K4 log n + x]

< P I (n-Tn

> n~1/2(K4 logn + x)

¥ -1 ] BJKfW)

E< P\ (n-Tn)
a / 77,

i=l

> n~1//2 (FC* log n + x)
n

Tn n
+

Tn
1 B*(F(t))

{SM) P Tn
i K(m) >n 1/,2(K4\ogn +x)^j < Ki7exp(-Kisx),
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For Ki^n < x < oo, by combining the fact that

È - S È ZiJ nXi < t}j - 2Ç(F(t)) = O ( logn
JP1 ’

and équation (8.11), we readily infer that

P ~~1
T-*• n. ^Ê - J Ê^j * (>j -

> n 1/,2(iFi9 log n + z) ) < iF27 exp (-K2sx),

where Pd, i = 27,28 are positive universal constants. Making use of (8.13), (8.14)
and (8.15), we infer that

P^ 5^(i)| > n_1/2(iF4 logn + x)^ < K5 exp (-Kqx).
Hence the proof is complété. □

Proof of Theorem 3.

The proof is largely inspired from [36]. By Theorem 2.2 in [35] there is a two-time
parameter Wiener process {W(t,x), 0 < t,x < oo} such that

(8.15) sup
-00<t<00

i=l

a=' 0(n1/,4(logn)1//2).

By the preceding proof we hâve

(8.16) sup
—oo<t<oo

»1/2<(<) - (pmx, <n- F(t) ±zMÿ>
\i=l i=l ) y n )

a= O (logn).(8.17)

and therefore (8.15) implies

n1//2o*(t) — (W(F(i),n) — F(t)W(l, n)) a= 0(n1/4(logn)1//2).sup
-oo<t<oo

Observing that K(t, x) = W(t, x)—tW( 1, x) is a Kiefer process, the proof of Theorem
3 is achieved. □
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Proof of Corollary 2.

The proof follows the same lines of the of those in [5] and [6] that is included here
ini odder to make our présentation more self-contained. The functional $ being
Lipschitz, there exists a positive constant L such that, for any fonctions u, v,

|$(u) — $(u)| < T sup \u(t) — u(i)|,
ægm

inequality that we will use in the form

(8.18) $(i>) - Lsup |u(t) — v(t)\ < $(u) < $(u) + T sup |u(t) — u(t)|.

Let us choose for u,v the processes Un := ck*(-) and Vn := B^(F(-)). Applying
the elementary inequality \P(A) — P(B)\ < P(A\B) + P(B\A) to the events A —

{$([/n) < x} and B = {$(14) < x} provides, for any x G M and any n € N*,

\P{HUn) < x} - P{<£(Vn) < x}\
< pmun)<x<$(k)}+pmvn)<x<

By (8.18), we see that

P{HUn) <x< 4»(y„)} < P\ 4>(vy - L sup I Un(t) - Vn(t)\ <x< $(y„

P{Wn) <x<$(£/„)} < P $(y„) < * < $(y„) + lsupIun(t) -y„(i)|},
t tçM j

from which we deduce, by addition, that
(8.19)

|P{4-(P„) < x} - P{$(y„) < x}| < p(|$(y„) - x\ < £sup\Un(t) - Vn(i)|

On the other hand, by choosing x = c logn for a suitable constant c in (2.1) that
will be specified below and putting en := (A + c) logn/yfo, we obtain the estimate
below valid for large enough n:

P|sup \ Un(t) - Vn(t)| > en\ <l teR ) n

By choosing c > 1/(2C), we hâve

(8.20) p|sup \Un(t) - Vn(t) | >en\=o
A tGM
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Now, by (8.19), we write

\pmun) < x} - p{$(vn) < x}\
= P<fsup|£/n(t) -Vn(t)| < en,|$(K) -x\< Lsuip\Un(t) - Vn(t)\

v. £GK £GM

+p(sup|[/n(t) - Vn(t)\ > e„, \$(Vn) -x\ < Lswp\Un(t) - Vn(t)\
v £GM £GlR

(8.21) < P{\$(Vn) -x\ < Len} + p{sup|17n(t) - Vn(t)\ > en
\ £GK

Noticing that the distribution of B* does not dépend on n, which entails the equality
P{\$(Vn) — x\ < Len} = P{|$(y) — x\ < Len}, where V := and recalling
the assumption that the r.v. ^(K) admits a density fonction bounded by M say, we

get that, for any ïGR and any n € N*,

(8.22) P{\$(Vn)-x\<Len}<2LMen.

Finally, putting (8.20) and (8.22) into (8.21) leads to (2.3), which complétés the
proof of Corollary 2. □

Proof of Theorem 6.

We start by proving (3.4). We hâve for x G R

(K,hn(x) ~ Fn,hn(x)) = J K ({x- s)/hn) a*n{s)ds.
Now, Theorem 1 together with condition (Kl) give

sup
—oo<x<oo

(8.23)

o* (x — thn)K (t) dt B*n(F{x-thn))K{t) dt

< sup \a*n{u) - B*n(F{u))\
—oo<u<oo

K (t) dt = 0
logn

thus proving (3.4).
Once (3.4) is at hand, to prove (3.5), it suffices to bound

/ thn))àK(t)-Bl(F(x)) < \Bl(F(x-tK))-Bl(F(x))\K(t)àt,

in probability. By condition (Kl), and provided the unknown density / is bounded
(by a strictly positive constant, say M), for n large enough,

(8.24) \B’n(F(x-thn))-B'n(F(x))\< sup
|u-u|<<5n
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where ôn = Mhn. Now, it is always possible to define a Brownian Bridge, {B*(y) :
0 < y < 1}, on the same probability space carrying the sequence of Brownian Bridges
{5* (y) : 0 < y < l}n>i, such that for ail n, and ail e > 0

P l{2ôn\ogS~1}~1/2 sup sup \B*(u) - BZ(v)\ > 1 + e)
\ |u-î;|</i/ie[0,5n] y

= P ({2ônlogô~1}~l/2 sup sup \B*(u) - B*(v)\ > 1 + £ ) .
y \u-v\<h he[0,6n] J

Since ôn —y 0, by Theorem 1.4.1 in [25], we hâve with probability one

(8.25) lim {25n log^1}-1/2 sup sup \B*(u) - B*(v)\ = 1.
\u—v\<h h£[Q,5r,

Thus, as n —> oo,

P {{2ôn\ogôn1} 1/2 sup sup \B*(u)-B*(v)\>l + e -> 0,
V \u—v\<hhe[0,ôn] )

givmg

(8.26) sup sup |Bl(u) - B»| = 0P(Ji5n log V1) .
\u—v\<h ^€[0,(în] \ /

Put (8.24), (8.24) and (8.26) together to obtain

sup |7Î(x) - B*(F(x))\ = Op (bp + hnJlogK1
0<X<00 \ yîl—oo<x<oo

thus completing the proof of Theorem.

Proof of Theorem 12.

□

In the computations below, the superscript ” in the quantities Fn, F* and a
refers to the first k observations while the superscript “+” refers to the last n — k
observations. We hâve the following représentation for an(t,s): with probability 1,
for n G N*, t G 3R and s G (0,1),

S»(M) = LnjJ(^LnjJ) ((F[„,j(t) - Fn(t)) - (F„+_lH(t) - Fn(t))
[nsj (n — [nsj )

+

77,3/2
[nsj (n — [nsj )

„3/2 (FtM(i)-F„(<)))
(8.27) Vlns\ (n ~ M)

,3/2 ai ,(t) —|_nsj v '
[nsj y/n — [nsj

n3/2
*+ i in— [nsj (t).
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Notice that

sup
—oo<t<oo

,1/2
/ 71

a'n(t)-[Ylzin{xi<t}-F(t)'£lZi
\i= 1 i—1

T„
O(logn).

Making use of (8.16), we hâve

a/[hsJ (n - [nsj ) _

“Ln-jW
_ i i /M lns\ \

- J] Z'^Xi ^ EZ< + 0(logn/n-1/2).
\*=1 i=1 /

[nsj y/n — [nsj +

n3/2

[nsj
n3/2

n n \

Y, Za{Xi<t}-F(t) Y Z' +0(logn/n‘1/2)-
. i=[nsj+l t=[nsj + l /

With probability 1, as n —> oo, uniformly in s and t,

(8.28) 5„(t,s) = ôn(F(t),s) +

Now, observe that

(8.29) 6n(F(t),s) = 4=
\ n

[nsj

<t}-mYz'
i=1

/ /LnsJ

( lE^w

M(j2za{Xi<t}-F(t)Yz]\
\i=l i=l / /

- E za{Xi<t}-F(t) Y •
\i=[nsj+l i=[nsj + l / /

By Theorem 2.2 in [35], we hâve almost surely, as n —>• oo,

/M M \
£ < t} - f(t) E zi \ ~ MHt), M)

V=1
sup sup

se[o,i/2] teR i= 1

(8.30) 0((logn)2),

sup sup
se[l/2,l] teR

(8.31)

E ZiH{Xi<t}-F(t) Y Z‘) -Ki(F(t),[nsJ)
i= [nsj +1 i— [nsj +1 /

= 0((logn)2).



244

Notice that we hâve the following décomposition

n n |n/2j |_n/2j

'£/ZiV{Xi<t}-F(t)YiZi = ^ ZiHfXi < t} --F(i) E Zi
i=n z=l z—1 i=l

n n

+ y za{Xi<t}-F(t) y z>-
i=[n/2J+1 i=[n/2j+l

Hence, by adding (8.30) and (8.31), we readily infer that, almost surely, as n —>■ oo,

n n

sup Y Z^X* ^ <} “ f(i) E Z* - (KiWO, L»/2J) + K2(F(t), L«/2J)) = 0((logn)2).
z=n 2— 1

As a byproduct, from (8.29)—(8.32) and recalling the définition of Kn given just
before Theorem 12, we deduce that, almost surely, as n -> oo,

(8.32) sup sup\Sn(F(t),s) - Kn(F(t),s)| = O
se[o,i] t£R

We finally conclude from (8.28) and (8.32) by using the triangle inequality: almost
surely, as n -» oo,

sup sup|an(t,s)-Kn(F(t),s)
se[o,i] teM

< sup sup |are(£,s) - 5n(F(t),s)\
s€[o,i] tel

+ sup sup \5n(F(t)is)-Kn(F(t),s)\
SG[0,1] «€[0,1]

This complétés the proof of Theorem 12. □
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