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Based on the relation of exponential maps and interior products in exterior algebras, some formulas of Pfaffians, including expansion formulas and the Cayley-Jacobi formula for determinants of alternating matrices, are deduced with new proofs. As an application, Pfaffian powers of alternating bilinear forms [O. Loos, Discriminant algebras and adjoints of quadratic forms, Beiträge Algebra Geom. 38 (1997) 33-72] are interpreted in terms of exponential maps in algebras of alternating multi-linear forms.

Introduction

Exterior algebras of modules are not mere examples of graded algebras, but also devices which render calculations in linear algebras free from coordinates. Besides the interpretation of determinants as highest exterior powers, we call attention to that of Pfaffians as "reduced" exterior powers, namely homogeneous components in exponential maps, which goes back to C. Chevalley [START_REF] Chevalley | The construction and study of certain important algebras[END_REF]. This is, however, less standardized than the original matrix formula of C. G. J. Jacobi [START_REF] Jacobi | Über die Pfaffsche Methode, eine gewöhnliche lineare Differentialgleichung zwischen 2n Variablen durch ein System von n Gleichungen zu Integriren[END_REF], and is not touched upon in N. Bourbaki's Algèbre [START_REF] Bourbaki | Éléments de mathématique. Algèbre Chapitre 9: Formes sesquilinéaires et formes quadratiques[END_REF]. Having been working with exterior algebras in studying quadratic forms, I have frequently encountered Pfaffians and witnessed advantages of Chevalley's treatment; in fact, I found some errors in the literature, one of which has been overlooked by authors using Pfaffians. On account of this circumstance, it seems useful to have a reformulated theory.

The present article gives such a theory which culminates in the following three main results:

-expansion formulas of Pfaffians, including a correction of Bourbaki's exercise 5 in [3, §5] (Proposition 3.6);

-a new proof for the Cayley-Jacobi formula for determinants of alternating matrices (Subsection 4.5);

-an interpretation of the Pfaffian powers of alternating bilinear forms in terms of exponential maps (Theorem 5.2).

Expansion formulas are tools for calculating Pfaffians according to Jacobi's definition, which Bourbaki treated as an exercise inaccurately. It was A. Cayley [START_REF] Cayley | Sur les déterminants gauches[END_REF] who completed the result on the determinant det(X) of an alternating matrix X, which is either zero or the square Pf(X) 2 of Pfaffian depending on whether X is of even or odd size ("Cayley-Jacobi formula"). Pfaffian powers of alternating bilinear forms are introduced by O. Loos [START_REF] Loos | Discriminant algebras and adjoints of quadratic forms[END_REF], in his study of discriminant algebras for quadratic forms.

A natural coordinate-free counterpart of an alternating matrix X, say of size m, is an element u of the second exterior power ∧ 2 M of a module M which is projective of rank m (Subsection 3.2). Once this interpretation is combined with rudiments on interior products (Section one) and exponential maps (Section two), it is easy to find appropriate statements which are proved within quite similar contexts (Section four). They are extensively used for proving Loos's Pfaffian powers to be certain reduced powers in the algebra of alternating multi-linear forms. (Section five).

Apart from the discoverer H. Grassmann [START_REF] Grassmann | Die Ausdehnungslehre, vollständig und in strenger Form bearbeitet[END_REF], it was Bourbaki who gave a systematic account of interior products [START_REF] Bourbaki | Elements of Mathematics. Algebra, Part I[END_REF]. Since they are less standardized, some formulas of [START_REF] Bourbaki | Elements of Mathematics. Algebra, Part I[END_REF] which are afflicted by misprints or errors are reproduced in Section one. The effect of interior products to exponential maps is treated in Subsection 2.3. This is a common key for proofs of both expansion and the Cayley-Jacobi formulas. Furthermore, "Grassmannian isomorphisms" (Subsection 3.3), certain devices from which issue various interesting formulas, are treated in a way more natural than Bourbaki's using Rees algebras of invertible modules.

All modules are considered over an arbitrary commutative base ring k of scalars; tensor symbols without subscripts being understood over k. 

c(x 1 ∧ • • • ∧ x n ) = n ∑ p=0 c p,n-p (x 1 ∧ • • • ∧ x n ) by those maps c p, n-p : n ∧ M -→ ( p ∧ M ) ⊗ ( n-p ∧ M ) (for n ≥ 0 and 0 ≤ p ≤ n) sending each x 1 ∧ • • • ∧ x n ∈ ∧ n M to the sum ∑ σ∈S n p sgn(σ) (x σ(1) ∧ • • • ∧ x σ(p) ) ⊗ (x σ(p+1) ∧ • • • ∧ x σ(n) ),
where S n p denotes the set of those permutations σ in S n , the nth symmetric group, which increase in both intervals [1, p] and [p + 1, n]. We note, incidentally, that the σ ∈ S n p are in bijection with the subsets I ⊂ [1, n] with p elements by the rule

I = {σ(1) < • • • < σ(p)}, [1, n] -I = {σ(p + 1) < • • • < σ(n)};
we shall denote by σ I the corresponding permutation in the case where we have a set I at hand.

The algebra (

∧ M ) * gr and the homomorphism θ ∧ . We let M * denote the k-module Hom(M, k) dual to M and ⟨x, f ⟩ the value of x ∈ M at f ∈ M * . The notation is to be employed for other modules, especially for all exterior powers ∧ p M ; in fact, taking direct sums and annihilating parings of different degrees, we shall extend ⟨ , ⟩ to a paring between the whole ∧ M and the graded dual

( ∧ M ) * gr := ⊕ p≥0 ( p ∧ M
) * [START_REF] Bourbaki | Elements of Mathematics. Algebra, Part I[END_REF]]. Moreover, we endow ( ∧ M ) * gr with the product given componentwise by the maps (

∧ p M ) * ⊗ ( ∧ q M ) * → (∧ p+q M
) * dual to the co-products c p, q (Subsection 1.1). For the algebra opposite to ( ∧ M ) * gr , there exists a natural homomorphism θ ∧ from ∧ (M * ) uniquely extended from the inclusion

M * → ( ∧ M ) * gr [7, III- §11.5]
. This is compatible with the gradings and the induced homomorphism 

∧ p (M * ) -→ ( ∧ p M ) * is described by the formula ⟨x 1 ∧ • • • ∧ x p , θ ∧ (f 1 ∧ • • • ∧ f p )⟩ = (-1) p(p-1)/2 det (⟨x, f ⟩) for all p-tuples x = (x 1 , . . . , x p ) ∈ M p , f = (f 1 , . . . , f p ) ∈ (M * ) p .
z = x 1 ∧ • • • ∧ x n , z * = f 1 ∧ • • • ∧ f p ,
which is z * ⌟ z = 0 for p > n and

z * ⌟ z = (-1) p(p-1)/2 ∑ τ sgn(τ ) p ∏ j=1 ⟨x τ (j) , f j ⟩x τ (p+1) ∧ • • • ∧ x τ (n) (1.3.1)
for p ≤ n, where the sum ranges over those permutations τ ∈ S n which increase on the interval [p + 1, n]. We note here that, apart form notation, (1.3.1) is a corrected form of Bourbaki's formula (68) in [7, III, §11.9], in which he misstated the range of summation; and the third of three formulas displayed after (68) seems misprinted which is to be read as

⟨t, θ ∧ (v * ∧ u * )⟩ = ⟨u * ⌟ t, θ ∧ (v * )⟩ (1.3.2) (for all t ∈ ∧ M, u * , v * ∈ ∧ (M * ))
. The endomorphism z → z * ⌟ z is also denoted either d z * or d(z * ); similarly, we let l w = l(w) denote the left wedge product z → w ∧ z by any w in ∧ M . As well as the map l which is the regular representation of the algebra ∧ M , the map d :

∧ (M * ) → End ( ∧ M
) is also an algebra homomorphism which admits the following characterization, by the formula (1.3.1) applied to the case p = 1: the interior product d f by a degree-one-element f ∈ M * is the unique anti-derivation extending f :

∧ 1 M → ∧ 0 M
, in other words one has A basic fact is that for these structures the homomorphism θ ∧ is ∧ M -linear [7, III- §11.9, Proposition 11].

l x d f + d f l x = ⟨x, f

Exponential maps.

Definition of the exponential map. Let

+ ∧ M := k ⊕ 2 ∧ M ⊕ 4 ∧ M ⊕ • • •
denote the even part of the exterior algebra ∧ M , an algebra which is unital, associative, and commutative; we shall consider the group U( ∧ + M ) of units as a multiplicative Z-module. On the other hand, we fix any positive integer l and consider the 2lth power ∧ 2l M as a Z-module; this is the quotient of the 2l-fold tensor product M ⊗2l by the Z-submodule generated by those elements

x 1 ⊗x 2 ⊗• • •⊗x 2l having two proportional factors x j = λx i (i ̸ = j and λ ∈ k).
Now we observe that, since any decomposable element x 1 ∧ • • • ∧ x 2l =: y has square zero, there holds (1 + y) ∧ (1 -y) = 1; thus, we have an expression

1 + x 1 ∧ x 2 ∧ • • • ∧ x 2l =: E(x 1 , x 2 , . . . , x 2l ) in U( ∧ + (M ))
, which is multiplicative in each argument x i and "balanced" in the sense that the value

E(x 1 , . . . , λx i , • • • , x 2l ) is independent of suffix i when (x 1 , x 2 , . . . , x 2l ) ∈ M 2l
and λ ∈ k are fixed; moreover, it takes value 1 when two arguments are proportional. Hence E is compatible with the relations defining ∧ 2l M as a quotient of M ⊗2l . It follows that there exists one and only one map exp :

2l ∧ M -→ + ∧ M which induces a homomorphism ∧ 2l M → U( ∧ + M ) such that exp(z) = 1 + z for decomposable z ∈ 2l ∧ M. (2.1.1)
This is an obvious adaptation of Chevalley's "exponential mapping" constructed for vector spaces in [1, IV- §2]; a natural construction which easily generalizes to the case of an arbitrary base ring, and with a proof shortened by standard facts on tensor products [7, II- §4].

Remark.

A different proof of the existence of the exponential map can be found in [START_REF] Helmstetter | Quadratic mappings and Clifford algebras[END_REF]Theorem (4.5.1)]. Also, it should be noted that the exponential map can be extended to the direct sum

⊕ l≥1 ∧ 2l M by putting exp ( ∑ l≥1 z 2l ) = ∏ l≥1 exp(z 2l ).

Reduced powers.

By construction, the exponential exp(u) for gen-

eral u = u 2l ∈ ∧ 2l M is of the form exp(u) = 1 + u + u ⟨2⟩ + • • • • + u ⟨p⟩ + • • • (2.2.1)
with u ⟨p⟩ := exp(u) 2lp ∈ ∧ 2lp M , which is zero for sufficiently large p and one has u ⟨0⟩ = 1, u ⟨1⟩ = u. We call the operations u → u ⟨p⟩ reduced powers, since p!u ⟨p⟩ equals the p-fold exterior power u ∧ u ∧ • • • ∧ u; in fact, we shall prove

u ∧ u ⟨p⟩ = (p + 1)u ⟨p+1⟩ (2.2.2)
for any fixed p and u ∈ ∧ 2l M , which makes what we have asserted evident by induction on p. Indeed, write u as a sum

z 1 + • • • + z N of decomposable elements, so that exp(u) = (1 + z 1 ) ∧ • • • ∧ (1 + z N ) by (2.1.1)
; without loss of generality, we may suppose N > p. For any subset K of [1, N ], we denote by z K the product of z κ for κ ∈ K, which commute with each other. We have then

u ⟨p⟩ = ∑ ♯(I)=p z I , u ⟨p+1⟩ = ∑ ♯(J)=p+1 z J .
Since each z i has square zero, the product u∧u ⟨p⟩ is the sum of z j ∧z I for those couples (I, j) such that j / ∈ I. The assertion (2.2.2) is then a consequence of the fact that (I, j) → I ∪ {j} = J is a surjection with each fiber having p + 1-elements.

Remark. The operation u → u ⟨2⟩ is called also the reduced squaring, which goes back to Papy [START_REF] Papy | Sur l'arithmétique dans les algèbres de Grassmann[END_REF]. Note that the polar (u, v)

→ (u + v) ⟨2⟩ -u ⟨2⟩ -v ⟨2⟩
of the reduced squaring on ∧ 2l M equals the ordinary wedge multiplication, as verified at once by looking at decomposable elements.

The fundamental formula.

An important formula about the exponential map takes the form of operators. Using notation introduced in Subsection 1.3 and letting Y + (u) := l exp(u) for u ∈ ∧ 2l M , we shall prove

d f Y + (u) = Y + (u)d f + l f ⌟ u Y + (u) (2.3.1)
for all u ∈ ∧ 2l M , f ∈ M * . The assertion being evident for u = 0, obvious induction reduces the problem to deducing the formula for u + z from the one for u, where u and z are fixed arbitrarily in ∧ 2l M so that (2.3.1) holds for u and z is decomposable. Indeed, iterating the formula (1.3.3) written in the form

d f l x = ⟨x, f ⟩Id -l x d f we get d f l z = l f ⌟ z + l z d f as z is of even degree.
In particular,

d f (Id + l z ) = l f ⌟ z + (Id + l z )d f ,
to which we multiply Y + (u) from the left and add l f ⌟ u Y + (u)(Id + l z ), so as to get an expression of the right-hand side of (2.3.1) multiplied by Id + l z from the right; on account of

Y + (u + z) = Y + (u)(Id + l z ), the result is l f ⌟ (u+z) Y + (u) + Y + (u + z)d f + l f ⌟ u Y + (u)l z . Since l f ⌟ z Y + (u)l z is zero (in fact (f ⌟ z) ∧ z = 0 as z is decomposable), this
is the right-hand side of (2.3.1) with u replaced by u + z, as expected.

Remark. In the particular case l = 1 where u is a "two-tensor" (Subsection 3.2), the formula (2. 3. Alternating two-tensors and alternating matrices.

Duality conventions.

In the following two sections (Sections three and four), we suppose M finitely generated and projective. The canonical map M → M * * is then an isomorphism, which we shall treat as an identification; furthermore, θ ∧ is also an isomorphism by [7, III, §11.9, Proposition 11], which we shall treat as an identification as well. Then ∧ M and ∧ (M * ) are duals of each other in such a way that so are each ∧ p M and ∧ p (M * ) by 

⟨x 1 ∧ • • • ∧ x p , f 1 ∧ • • • ∧ f p ⟩ := (-1) p(p-1)/2 det(⟨x, f ⟩) (3.1.1) for all x = (x 1 , . . . , x p ) ∈ M p , f = (f 1 , . . . , f p ) ∈ (M * ) p . Always ∧ M is endowed with the left ∧ (M * )-

Alternating two-tensors.

We call an element of ∧ 2 M an alternating two-tensor over M ; it is also called "two-tensor" for short, synonymous to "two-vector" in the case of vector spaces. A linear map u : M * → M is said to be alternating if so is the associated bilinear form (f, g) → ⟨u(f ), g⟩ on M * , namely if ⟨u(f ), f ⟩ = 0 for all f ∈ M * . This implies u * = -u, with the converse holding in the case 2 ∈ k × . Every alternating map is constructed from a uniquely determined alternating two-tensor u by

u(f ) := -f ⌟ u (3.2.1)
or, equivalently, by ⟨u(f ), g⟩ = ⟨u, f ∧ g⟩ on account of (3.1.2). An effect of the minus sign is the compatibility with matrix notation. Namely, in the case where M is free with a base (e i ) 1≤i≤m , we identify a two-tensor u with the alternating matrix

X = (x ij ) (x ii = 0, x ji = -x ij ) by u = ∑ 1≤i<j≤m x ij e i ∧ e j (3.2.2)
which, after M * being equipped with the base (e * i ) i dual to (e i ) i , makes the map u : M * → M represented by X acting from the left. Interchanging the roles of M and M * , we regard two-tensors over M * also identified with alternating linear maps M → M * . Note that the product of alternating matrices is now globalized to the End(M )-and the End(M * )-valued bilinear compositions (u, v) → uv and vu in We shall not prove the fact that, for each integer p = 0, • • • , m, the linear map 

∧ 2 M × ∧ 2 (M * ),
ι p : ∧ p (M * ) ⊗ I -→ ∧ m-p M ι p (z * p ⊗ ω) := z * p ⌟ ω, ( 3 
∧ (z * ⌟ ω) = (z⌟ z * )⌟ ω (3.3.2) for all ω ∈ I, z ∈ ∧ M , z * ∈ ∧ (M *
), for which we shall give a proof here. The assertion being linear in both arguments z, z * , we may suppose them homogeneous; moreover, denoting by P(z) the assertion "the formula (3.3.2) holds for all z * ∈ ∧ (M * )" which is trivial in case z is of degree zero, we note that P(z ′ ) and P(z) imply P(z ′ ∧ z), because (z ′ ∧ z) ∧ (z * ⌟ ω) equals z ′ ∧ ((z⌟ z * )⌟ ω) by P(z), which equals (z ′ ⌟ (z⌟ z * ))⌟ ω by P(z ′ ), and which equals ((z ′ ∧ z)⌟ z * )⌟ ω by the associative law. Hence it suffices to prove P(x) for a degree-one element x ∈ M , and z * may well be supposed homogeneous, say of degree p. Now, since w * ∧ z * is zero for arbitrary

w * in ∧ m-p+1 (M * ), so is x⌟ (w * ∧z * ) = (x⌟ w * )∧z * +(-1) m-p+1 w * ∧(x⌟ z * ), whence (x⌟ w * )∧z * equals (-1) m-p w * ∧ (x⌟ z * ); thus, ⟨(x⌟ z * )⌟ ω, w * ⟩ = ⟨ω, w * ∧ (x⌟ z * )⟩ = (-1) m-p ⟨ω, (x⌟ w * ) ∧ z * ⟩ = (-1) m-p ⟨z * ⌟ ω, x⌟ w * ⟩ = (-1) m-p ⟨(z * ⌟ ω) ∧ x, w * ⟩ = ⟨x ∧ (z * ⌟ ω), w * ⟩,
which proves the assertion, as w * is arbitrary. Note that we have now used the basic duality mentioned in Subsection 3. 

z p ∧ w m-p = ⟨z p , ι -1 p (w m-p )⟩. (3.3.4)
Here and in the following, we shall tacitly extend scalars to the Rees algebra R := ⊕ n∈Z I ⊗n of I, so as to regard the pairing ⟨ , ⟩ as R-valued (in fact Ivalued, in the situation of (3.3.4)), or ι -1 p (w m-p ) merely as an exterior tensor over a module (the R-module deduced from M ).

Pfaffians as local coordinates.

Consider the case where M is free with a base (e i ) 1≤i≤m . Let X = (x ij ) be an m-rowed alternating matrix, considered as the coordinate of a two-tensor u ∈ ∧ 2 M as in (3.2.2). The exponential exp(u) is then the commuting product of all 1 + x ij e i ∧ e j for 1 ≤ i < j ≤ m, while ∧ + M has a base (e J ) where J ranges over the even subsets of [1, m]. Here and in the following, e I for any subset

I = {i(1) < • • • < i(p)} denotes the product e i(1) ∧ • • • ∧ e i(p)
; furthermore, we shall denote by X I the p-rowed square matrix whose (λ, µ)-entry is the (i(λ), i(µ))-entry of X. With this notation, there holds the important formula

exp(u) = ∑ J : even Pf(X J )e J (3.4.1)
with Pf denoting the usual Pfaffian which goes back to Jacobi [START_REF] Jacobi | Über die Pfaffsche Methode, eine gewöhnliche lineare Differentialgleichung zwischen 2n Variablen durch ein System von n Gleichungen zu Integriren[END_REF]: we recall that Pf(A) is defined for any alternating matrix A = (a ij ) of even size 2d ("even alternating matrix") by

Pf(A) = ∑ τ ∈T d sgn(τ )a τ (1)τ (2) a τ (3)τ (4) • • • • • a τ (2d-1)τ (2d) (3.4.2)
where T d denotes the subset of S 2d consisting of those permutations τ such that τ (2ν -1) is increasing in ν and τ (2ν -1) < τ (2ν) for each ν. In our situation, we get the formula (3.4.1) at once by noting that T d is in bijection with the set of decompositions ∪ d ν=1 {i(ν) < j(ν)} of [1, 2d] into d two-element subsets; note also that, as had been tacitly done in (3.4.1), the Pfaffian of the empty matrix is to be considered 1.

Adjoints of even alternating matrices.

We continue to consider even alternating matrices. For such an X = (x ij ), of size 2d, and for each couple (i, j) of distinct indexes, we put X ij := X [1, 2d]-{i, j} . This is the alternating matrix of size 2d -2 obtained from X by removing the ith and jth row and column; we note that X ji = X ij by definition. The adjoint X ♯ of X is defined to be the 2d-rowed alternating matrix which has (-1) i+j Pf(X ij ) as the (i, j)-entry for i < j, in other words

X ♯ = (x ♯ ij ) where x ♯ ij :=    (-1) i+j Pf(X ij ) if i < j 0 if i = j (-1) i+j-1 Pf(X ij ) if i > j.
(3.5.1) A coordinate-free meaning of adjoints will be given in the next section. This will yield various formulas concerning adjoints, among which are

XX ♯ = X ♯ X = Pf(X)E (3.5.2)
with E the unit matrix. This will be proved in Subsection 4.4. Similarly to the case of determinants, we get "expansion formulas of Pfaffians" by comparing diagonal entries in (3.5.2). As one of the main results, we shall record some important cases of expansion formulas, together with another formula (to be proved also in subsection 4.4) in the following 3.6. Proposition. Let X = (x ij ) be an even alternating matrix of size 2d.

For any fixed index i, one has

Pf(X) = i-1 ∑ j=1 (-1) i+j Pf(X ij )x ij + 2d ∑ j=i+1 (-1) i+j-1 Pf(X ij )x ij . (3.6.1)
In particular, for i = 2d,

Pf(X) = 2d-1 ∑ j=1 (-1) j-1 Pf ( X j, 2d ) x j, 2d . (3.6.2)
Furthermore, one has

∑ 1≤i<j≤2d (-1) i+j-1 Pf(X ij )x ij = dPf(X). (3.6.3)
Remark. The formula (3.6.1) is a corrected form of that [3, §5, exercise 5] of Bourbaki. Incidentally, there exists another error in the very next exercise [3, §5, exercise 6], which is to be corrected to the form

Pf ( 0 S -t S 0 ) = (-1) d(d-1)/2 det S (3.6.4)
where S is any square matrix of size d. This is in fact a special case of the formula [START_REF] Ikai | On subgroups of Clifford groups defined by Jordan pairs of rectangular matrices[END_REF], where u ∈ Hom(P * , N ) is any linear map with N , P any finitely generated projective modules, and each λ ν + the natural map Hom (

λ 1 + (u) ⟨ν⟩ = λ ν + ( ∧ ν u) proved in
∧ ν (P * ), ∧ ν N ) → ∧ 2ν (N ⊕ P ) defined by using the identification ( ∧ ν (P * )) * ∼ = ∧ ν P based on the pairing (3.1.

1). In the case

where

P = N * = ⊕ i kϵ * i is free of rank d put dual to N = ⊕ i kϵ i
and S represents u, the formula for ν = d becomes (3.6.4); a point being that it is the element (-1) d(d-1)/2 Id ∧ 2d N which λ d + maps to e [1,2d] , where (e j ) 1≤j≤2d denotes the base of N ⊕ N * defined by e i := ϵ i ⊕ 0, e d+i := 0 ⊕ ϵ * i .

Mixed Pfaffians.

We close this section by calling attention to how Pfaffians behave under sums. We note that, in the notation introduced in Subsections 1.1 and 3.4, for any subset I ⊂ [1, m] one has

e I ∧ e [1, m]-I = sgn(σ I )e [1, m] . (3.7.1) 
Let (X, X ′ ) by any couple of alternating matrices of size even 2d. For each integer p = 0, 1, • • •, d, we define the mixed Pfaffian as

Pf d p (X; X ′ ) := ∑ ♯(J)=2p sgn(σ J )Pf(X [1, 2d]-J )Pf(X ′ J ). (3.7.2)
On account of (3.4.1), (3.7.1), it is apparent that Furthermore, considering the second-to-highest component with the aid of the Grassmannian isomorphism ι 2 :

Pf(X + X ′ ) = d ∑ p=0 Pf d p (X; X ′ ). ( 3 
∧ 2 (M * ) ⊗ I ∼ → ∧ 2d-2 M (3.3.1), we define the ∧ 2 (M * ) ⊗ I-valued map u → u ♯ , in other words u ♯ := ι -1 2 ( u ⟨d-1⟩ ) ∈ ∧ 2 (M * ) ⊗ I. (4.1.2)
We have thus the expression

exp(u) = 1 + u + • • • + ι 2 (u ♯ ) + Pf(u). (4.1.3) 
By naturalness of construction, we may freely extend scalars and consider both Pf and ♯ to be polynomial maps; they are homogeneous of degree d and d -1, respectively.

Local situation.

In the case where M is free with a base (e i ), letting ω := e [1, 2d] = e 1 ∧e 2 

uu ♯ = Id M ⊗ Pf(u), u ♯ u = Id M * ⊗ Pf(u). (4.3.1) 
This amounts to identities Since σ ij has signature (-1) i+j-1 , the sum is nPf(A) by (3.6.3). This proves (5.3.1). We let A ′ := a ′ (x, x) and proceed to prove (5.2.2) using the same method and notation. The assertion is now a consequence of (3. 

⟨uu ♯ (x), f ⟩ = ⟨x, u ♯ u(f )⟩ = ⟨x, f ⟩Pf(
(u)d f Y + (u) -1 = l u(f ) + d f , we get Y + (u)d ρ Y + (u) -1 = ( l u(f 1 ) + d f 1 ) • • • • • • ( l u(fm) + d fm ) for ρ = f 1 ∧ • • • ∧ f m

Proof of the formula (5.2.3).

We fix v (and thus a) and proceed by induction on n, the assertion being evident for n = 0. Again consider x = (x 1 , . . . , x 2n ) ∈ M 2n arbitrarily and let

Π := ⟨x 1 ∧ • • • • • ∧ x 2n , θ ∧ (v ⟨n⟩ )⟩, Π i := ⟨x 1 ∧ • • • xi • • • ∧ x 2n-1 , θ ∧ (v ⟨n-1⟩ )⟩,
A := a(x, x);

we must prove Π = Pf(A), with Π i = Pf(A i, 2n ) holding by induction for 1 ≤ i ≤ 2n -1. We begin by noting that both Π and Π i are invariant when v ⟨n⟩ or v ⟨n-1⟩ are replaced by exp(v), respectively, as the pairing ⟨ , ⟩ having been so extended (Subsection 1.2). This being done, using the formula (1. 

z = 2n-1 ∑ i=1 (-1) i-1 a(x i , x 2n ) x 1 ∧ • • • xi • • • ∧ x 2n-1 .
Taking pairing with θ ∧ (exp(v)) and bearing previous remarks about Π i in mind, we arrive at Π ′ = 2n-1 ∑ i=1 (-1) i-1 a(x i , x 2n )Pf(A i, 2n ).

(5.4.2)

From (5.4.1), (5.4.2), the assertion Π = Pf(A) becomes a consequence of the expansion formula (3.6.2).

1 .

 1 Co-products in exterior algebras. Let M be any k-module. Recall [7, III- §11.1, Example 7] that the exterior algebra ∧ M has a natural coproduct c given component-wise

  3.1) proves Y + (u) to be an element of the Clifford group of the hyperbolic module H(M ), a basic fact in the theory of quadratic forms ([10, Subsection (4.3.1)], [11, Subsection 2.2]).

  module structure, and ∧ (M * ) with the left ∧ M -module structure, both given by left interior products. The formula (1.3.2) is now written simply as ⟨z * ⌟ z, w * ⟩ = ⟨z, w * ∧ z * ⟩ (3.1.2) for all z ∈ ∧ M , z * , w * ∈ ∧ (M * ).

which are dual to each other. 3 . 3 .

 33 Grassmannian isomorphisms. In the following, we suppose the rank m of M a constant positive integer. We let I denote the invertible module ∧ m M and put I in duality with ∧ m (M * ) ∼ = I * by the pairing (3.1.1).

.7. 3 ) 4 . 4 . 1 .

 3441 Pfaffians of alternating two-tensors Definition. Now we suppose the rank m = 2d even, namely, consider any faithfully projective module M of rank 2d, with I denoting the invertible module ∧ 2d M . Let u ∈ ∧ 2 M be any two-tensor over M . The highest component of the exponential exp(u) is an element of I which is defined to be the Pfaffian of u: this amounts to Pf(u) := u ⟨d⟩ ∈ I. (4.1.1)

5 . Pfaffian powers of alternating bilinear forms 5 . 1 . 5 . 3 .

 55153 harmlessly supposed decomposable. Moreover letting both members act on 1 and comparing the highest components, we find the element u(f1 ) ∧ • • • ∧ u(f m ) = (∧ m u) ρ, coming from the right-hand side, to be equal to the degree m component of exp(u) ∧ Ω, where Ω := ρ⌟ exp(-u). Since ρ is of maximal degree m, such Ω is either ⟨Pf(-u), ρ⟩ or zero according as m is even or odd. This completes our proof.Remark. In the local situation where notation of Subsection 3.2 pertains, we have (∧ m u)ω * = det(X)ω with ω := e 1 ∧ • • • ∧ e m and ω * := e * 1 ∧ • • • ∧ e * m , which reads m ∧ u = (-1) m(m-1)/2 det(X) ω ⊗ ω on account of the relation ⟨ω, ω * ⟩ = (-1) m(m-1)/2 (3.1.1). This, together with (4.2.1), renders the Cayley-Jacobi formula another form of (4.5.1). The Pfaffian power. Again we consider an arbitrary k-module M , not necessarily finitely generated projective. Let n be a non-negative integer.the mixed Pfaffian power π p, n-p (a, a ′ ), in the notation of Loos ([5, page 39]), is in fact the product π p (a)π n-p (a ′ ) taken in ( ∧ M ) * gr . Proof of formulas (5.2.1), (5.2.2). In order to prove the formula (5.2.1), it suffices to seeπ n-1 (a) • a = nπ n (a).(5.3.1)Let us compare the values of both members atx 1 ∧ • • • ∧ x 2n, where x = (x 1 , . . . , x 2n ) ∈ M 2n is fixed arbitrarily. Letting a ij := a(x i , x j ) denote the entries of the matrix A := a(x, x), we have(π n-1 (a) • a) (x 1 ∧ • • • ∧ x 2n ) = ∑ 1≤i<j≤2n sgn(σ ij )Pf(A [1, 2n]-{i, j} )a ijwhere σ ij ∈ S 2n denotes the permutation σ corresponding to {i, j}, namely [1, 2n] -{i, j} = {σ(1) < • • • < σ(2n -2)}, σ(2n -1) = i, and σ(2n) = j.

  7.3), since each π p (a)π n-p (a ′ ) takes as value the mixed Pfaffian Pf n n-p (A; A ′ ) (3.7.2): namely, by the definition of the multiplication in ( ∧ M ) * gr (Subsection 1.2), the value of π p (a)πn-p (a ′ ) on x 1 ∧ • • • ∧ x 2n is the sum ∑ σ sgn(σ) π p (a)(x σ(1) ∧ • • • ∧ x σ(2p) )π n-p (a ′ )(x σ(2p+1) ∧ • • • ∧ x σ(2n) )for σ ∈ S 2n 2p , and these permutations σ are in bijection with those subsets J ⊂ [1, 2n] with 2p elements (Subsection 1.1), with π p (a)(x σ[START_REF] Chevalley | The construction and study of certain important algebras[END_REF] ∧ • • • ∧ x σ(2p) ) equal to Pf(A J ) and π n-p (a ′ )(x σ(2p+1) ∧ • • • ∧ x σ(2n) ) to Pf(A ′ [1, 2n]-J ).

  4.1) with the ∧ M -linearity of θ ∧ , we getΠ = Π ′ where Π ′ := ⟨x 1 ∧ • • • ∧ x 2n-1 , θ ∧ (x 2n ⌟ exp(v))⟩. (5.4.1) Now since x 2n ⌟ exp(v) = exp(v)∧(x 2n ⌟ v) (2.3.1), the formula (1.3.2) converts Π ′ to the pairing ⟨z, θ ∧ (exp(v))⟩ with z := (x 2n ⌟ v)⌟ (x 1 ∧ • • • ∧ x 2n-1), and the degree-one-elementx 2n ⌟ v = θ ∧ (x 2n ⌟ v) is equal to x 2n ⌟ aagain by the ∧ M -linearity of θ ∧ ; thus, the pairing ⟨x i , x 2n ⌟ v⟩ is ⟨x i ∧x 2n , a⟩ = a(x i , x 2n ) by (1.4.1), which together with (1.3.1) yields

  Here and in the following, given bilinear form Φ on a product M × N of modules and given finite tuplesx = (x 1 , . . . , x n ) ∈ M n , y = (y 1 , . . . , y m ) ∈ N m ,Φ(x, y) denotes the n × m-matrix whose (i, j)-entry is Φ(x i , y j ). )-module structure by viewing θ ∧ as a base change. The external composition is denoted (z * , z) → z * ⌟ z and called the (left) interior product. Straightforward calculation yields an explicit formula of z

	1.3. The left structure also makes ∧ (M * )-module structure on ∧ M a right ( ∧ M ) * gr -module [7, III- §11.7], from which ∧ M . The co-algebra is deduced the left ∧ (M

* * ⌟ z for decomposable

  ∧• • •∧e 2d and denoting by X the coordinate of u relative to the base (e i ∧ e j ) i<j (3.2.2), we have Hence each Pf(X J )e J comes from (-1) i+j Pf(X ij )(e * i ∧ e * j ) ⊗ ω via ι 2 , whence their sum ι 2 (u ♯ ) from u ♯ e ⊗ ω. This proves (4.2.3). Returning to the global case, we consider the compositions (u, v) → uv and (u, v) → vu in ∧ 2 M × ∧ 2 (M * ) with values in End(M ) and End(M * ) (Subsection 3.2), and extend scalars to the Rees algebra of I; this renders both composites uu ♯ and u ♯ u meaningful in End(M )

	of [1, 2d] with 2d -2 elements. Considering complements puts these J in
	bijection with ordered couples i < j, and the correspondence J → (i, j)
	means X J = X ij ; furthermore, we have e J = (-1) i+j (e * i ∧ e * j )⌟ ω, since
	e * j ⌟ ω	= (-1) j-1 e [1, 2d]-{j} ,	
	e * i ⌟ e [1, 2d]-{j} = (-1) i-1 e [1, 2d]-{i, j} .	
	4.3. Adjoint formulas. ⊗ and in End(M * ) ⊗ I. We shall prove	I
		Pf(u) = Pf(X)ω.	(4.2.1)
	Furthermore, introducing the symbol e := (e i ) for the base and letting u ♯ e
	denote the two-tensor over M * with coordinate X ♯ , namely	
	u ♯ e :=	∑	(-1) i+j Pf(X ij ) e * i ∧ e * j ,	(4.2.2)
		1≤i<j≤2d	
	we shall prove			
			u ♯ = u ♯ e ⊗ ω.	(4.2.3)
	Indeed, the image ι 2 (u ♯ ) is by definition the component exp(u) 2d-2 (4.1.2)
	which is by (3.5.1) the sum of those Pf(X J )e J for J ranging over subsets

  u) in I (where x ∈ M , f ∈ M * are arbitrary), with the first being apparent by taking transposes. To prove the second, we let l x d f act on (4.1.2) and look at the highest component: the right-hand side gives the component ⟨x, f ⟩Pf(u) since l x d f = ⟨x, f ⟩Id -d f l x ; as to the left-hand side, it is the highest component of x ∧ (f ⌟ u) ∧ exp(u) by the fundamental formula (2.3.1) for the exponential, which isx ∧ (f ⌟ u) ∧ ι 2 (u ♯ ) = ⟨x ∧ (f ⌟ u), u ♯ ⟩ by(3.3.4); and since the latter is ⟨x, (f ⌟ u)⌟ u ♯ ⟩ = ⟨x, u ♯ u(f )⟩, by (3.1.2) with (3.2.1), we are done. Along the same line, we call attention also to the formula

	since the former is represented by the matrix XX ♯ , we get (3.5.2). Similarly
	(4.3.2), together with ⟨e i ∧ e j , e * i ∧ e * j ⟩ = -1 (3.1.1), proves (3.6.3).
	4.5. A coordinate-free proof of the Cayley-Jacobi formula. Here is
	another application of the formula (2.3.1). Let u be any two-tensor u over
	M , identified with an alternating linear map M * → M . Considering the highest exterior power ∧ m u : ∧ m (M * ) → ∧ m M , we regard it as an element of I ⊗ I by using the identification I ∼ = ∧ m (M * ) * made in Subsection 3.1;
	the assumption m = 2d having been tacitly forgotten. We shall prove
	m ∧	u =	{	(-1) d Pf(u) ⊗ Pf(u) for m = 2d even 0 for m odd,	(4.5.1)
	in other word that, for any ρ in	∧
				⟨u, u ♯ ⟩ = dPf(u),	(4.3.2)
	which is a consequence of (2.2.2), (3.3.4) and (4.1.2). We call either formulas
	in (4.3.1) or (4.3.2) adjoint formulas.
	4.4. Proof of formulas (3.5.2) and (3.6.3). Considering the local sit-
	uation as in Subsection 3.2, we find both formulas apparent as being other
	forms of adjoint formulas. Namely, from (4.3.1) together with (4.2.1), (4.2.3),
	we see that the endomorphism uu ♯ e is the scalar multiplication by Pf(X), and

m (M * ), the element ( ∧ m u) ρ ∈ I is either ⟨Pf(-u), ρ⟩Pf(u) or zero according as m is even 2d or odd; note that Pf in the former case is homogeneous of degree d. Indeed, iterating the formula (2.3.1), re-written in the form Y +
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Following Loos [START_REF] Loos | Discriminant algebras and adjoints of quadratic forms[END_REF]Subsection 1.4], we define the nth Pfaffian power to be the map

which sends an element a of ( ∧ 2 M ) * , viewed as alternating bilinear form on M , to the linear form π n (a) on ∧ 2n M given by

for all x = (x 1 , . . . , x 2n ) ∈ M 2n ; it is in fact a polynomial map by naturalness of construction, which is homogeneous of degree n. We have π 1 (a) = a by definition, and π 0 (a) = 1 as the Pfaffian of empty matrix. We note that Pfaffian powers are all even elements of the graded algebra ( ∧ M ) * gr (Subsection 1.2), which is anti-commutative [7, III- §11.4, Proposition 6] and whose even elements thus form a commutative sub-algebra.

Theorem. Each Pfaffian power is a reduced power, in the sense that one has

n!π n (a) = a n (5.2.1)

for any non-negative integer n and any element a in ( ∧ 2 M ) * ; it is also multiplicative, in the sense

and moreover compatible with the reduced power v → v ⟨n⟩ in ∧ (M * ) through the homomorphism θ ∧ , in the sense that one has

Remark. We are writing the product in ( ∧ M ) * gr (the extrior product of alternating multi-linear forms) multiplicatively, instead of ∧. If a has nth Pfaffian power zero for all sufficiently large n (which is not always the case), it is suggestive to consider the sum π(a) of all π n (a). The theorem then says that π is a germ of exponential map in ( ∧ M ) * gr which is compatible with that in ∧ (M * ) by means of θ ∧ . Also, from the formula (5.2.2), we see that