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I. INTRODUCTION

Among the components of self-assembling amphiphilic systems some are powerful ingredients necessary to form micelles, vesicles or bilayer sheets in an aqueous medium. In these systems, amphiphiles or surfactant molecules, containing both hydrophilic and hydrophobic ends, aggregate to spontaneously form a wide variety of structures relying heavily on competition between entropic effects and stoichiometric constraints in the surrounding environment 1 . Amphiphiles are also very important in microemulsions as well as in mixtures of homopolymers and diblock copolymers giving rise to a topological order that remain geometrically disordered between the mesophases. In such systems, the phase equilibria and microscopic structure can be quite complex.

A microemulsion is a thermodynamically stable dispersion containing a polar solvent (water), a nonpolar solvent (oil) and a surfactant composed of long amphiphilic molecules having at one end a hydrophilic polar segment and at the other end a hydrophobic segment. By its tendency to locate between water and oil regions, the surfactant reduces the interfacial tension by several orders of magnitude and favour the phase separation into bulk with the emergence of spatially modulated phases [START_REF] Gompper | Self-Assembling Amphiphilic Systems[END_REF] . Unlike a microemulsion, a nanoemulsion is thermodynamically unstable although both are characterized by a drop size of a few tens of nanometers. Usually the surfactant concentration in nanoemulsions is small (3 -10 wt %) compared to microemulsions (20 wt % or more) [START_REF] Date | [END_REF]4 . A nanoemulsion has the particularity of producing ultra-fine and fluid emulsions which require a large amount of emulsifiers to have a long term stability. Since emulsifiers can have irritating or harmful properties for the environment, it is advantageous to use nanoemulsions stabilized by the Pickering effect with solid particles (such as colloidal silica), which are extremely stable and do not require an emulsifier [5][6][7] .

Mixtures of high molecular weight dibloc-copolymers (sequence of A-monomers followed by one of B-monomers) can be regarded as macromolecular surfactants when blended with A and B homopolymers. The A-B diblock-copolymers are known to localize at the interfacial boundary separating discrete phases rich in A and B homopolymers [START_REF]Processing, Structure and Properties of Block Copolymers[END_REF][START_REF] Lieber | [END_REF][10] similarly to mixtures of water, oil and surfactant, though the diblockcopolymer is not generally a solubilizer of homopolymers so efficient as the amphiphile in mixture of oil and water.

The concept of passive colloidal particles 11 mentioned above has been generalized to active colloidal particles also called colloidal particles of Janus, which are characterized by a surface divided into two distinct zones of different chemical and physical properties. Recently synthesized, Janus particles have received considerable attention 12 . They have certain features in common with surfactants as well as interesting differences according to the choice of the chemico-physical surface properties. Thus, Janus particles are both surfaceactive and amphiphilic, whereas homogeneous particles are only surface-active. It has also been shown that they are more surface active compared to the passive particles 13 and can be used for the stabilization of water-in-oil or oil-in-water emulsions similar to surfactants 14,15 . In addition, their efficiency is found to be superior as compared to block copolymer-based compatibilizers. A large number of Janus particles of different shapes and properties, and micrometric sizes, are available for various applications 16 .

Another interesting feature of films of Janus particles is interstices between the particles at the interface, allowing for chemical exchange between the two sides contrarely to films made of conventional surfactants that are quite impermeable 17 . In addition, with half of its surface covered by hydrophilic groups and the other half by hydrophobic groups, a Janus particle can have the property of selfpropulsion, which represents a major advantage in the devel-opment of devices for the administration of drugs of relevant species in the biomedical field 18 . Encapsulation of active ingredients in nanocapsules is also possible thanks to nanoemulsions, which allows a slow and controlled release of the encapsulated substances 4 .

The particularity of surfactants is to leave dispersions macroscopically homogeneous and to arrange the mesophases on a microscopic scale. The microstructure can be examined by various techniques among them light and neutron scattering, conductivity, diffusion by NMR, etc. as a function of the temperature and the concentration of surfactant. For microemulsions, at low volume fraction of one component (water or oil) in the other, it seems now admitted that the picture of microstructure is that of swollen micelles of which the long-range order is absent 19 . At intermediate volume fraction of water and oil, microemulsions can organize themselves into mesophases spatially periodic, separated by equilibrium bicontinuous structures like sheets between water-rich and oil-rich domains [20][21][22] . Glassiness has also been predicted to occur above a critical volume fraction of surfactant 23 . Small-angle neutron-scattering (SANS) experiments reveal the hall-marks of the microstructure of self-assembly amphiphilic systems [24][25][26] . Fig. 1 shows the FIG. 1. Representative SANS spectra of AOT/DO/decane microemulsion at different volume fraction of surfactant. Curves redrawn from the article of Kotlarchyk et al. 25 .

SANS spectra of single-phase AOT/D 2 O/decane microemulsions, where AOT stands for sodium di-2-ethylsulfosuccinate, containing equal volumes of water and oil, and a variable volume fraction of surfactant (φ = 0.181, 0.237 and 0.323). Each scattered neutron spectrum exhibits a pronounced broad peak between 0.03 and 0.07Å -1 gradually shifted to larger values of q as φ increases. SANS technique has been also used to measure the structure factor of a number of homopolymers and diblock-copolymer blends of different sorts with varying concentrations and temperatures 10,27,28 . The structure factors for mixtures of polymers and diblock-copolymers show trends qualitatively similar 29 , in some respect, to those of the microemulsions. Above a certain temperature, the large collection of diblock copolymers is equally distributed in a disordered state like in liquids. At low temperature, when entropy is dominated by enthalpy, the homopolymers and diblockcopolymers blends form regular structures common to the microemulsions [30][31][32] .

These strongly correlated systems have a large variety of applications ranging from medicine to food science, petroleum industry and so on, and are of scientific interest because they give rise to drastic changes in structural properties 33 . The phenomenon of microphase separation observed in microemulsions and mixtures of homopolymers and diblock-copolymers is also common to other physical systems exhibiting diverse microstructures at two-and threedimensions known as modulated phases. Most of the available experimental data (lamellar, columnar or cubic structures and other exotic geometries) have stimulated a strong theoretical effort [34][35][36][37] . In particular, the microscopic inhomogeneities in these systems are characterized by two length scales, that depend on the temperature, the chemical constituents and the range of volume fractions. Competing interactions on different length scales cause in many cases the emergence of an intermediate length scale where new structures and inhomogeneities occur.

First theoretical interest in such systems was generated by the work of Hornreich et al. 38 who introduced the concept of Lifshitz line and calculated the critical exponents for a class of magnetic systems. The Lifshitz line behavior has been also suggested for diblock-copolymers and homopolymers melts 39,40 . Beside this concept, several other ways have been explored to predict a broad spectrum of equilibrium properties for micellar solutions, among them the molecularthermodynamic approach [41][42][43] . A variety of lattice models based on the pioneer work of Widom 44 have been proposed to account for the equilibrium microemulsion behavior [START_REF]Processing, Structure and Properties of Block Copolymers[END_REF]19 . Within the mean-field approximation, there has been a great deal of theoretical work by using the Landau-Ginzburg formalism to deduce phase diagrams as well as correlation functions and structure factor. Exploiting an electrostatic analogy, Stillinger 45 and Deem and Chandler 46 have been able to describe the competition between the entropic effects and the stoichiometric constraints of amphiphilic surfactants, allowing to fit the experimental structure factor successfully. Similar studies have been carried out in the context of homopolymers and diblock-copolymers blends 30,47 . In conjunction with a lattice model, Woo et al. 48 achieved the connection between the phenomenological coefficients involved in the Landau-Ginzburg (LG) formalism and the physical parameters like temperature, density and chain length of the surfactant. More recently, Ciach et al. 49 have described the amphiphilic and colloidal systems by using the Landau-Brazovski functional 50 and derived microscopic expressions for the coefficients in the functional in terms of isotopic interaction potentials.

In this work, we follow the same idea as the last authors by making the connection between the arbitrary phenomenological coefficients in the LG free-energy expansion and the microscopic parameters characteristic of the pair interaction, by getting closer the LG formalism to the microscopic theory of liquids. For this purpose, we used the double Kac potential consisting of a long-ranged repulsion after an attractive well at short distances beyond the collision diameter. This potential model has been studied in great details by Kac and coworkers 51 and used in numerous studies 52,53 to investigate the cluster formation in colloidal suspensions. From phenomenological and microscopic approaches, it is now well established that frustration, arising from competing repulsion and attraction interactions, plays a crucial role in microphase separating systems. As evidenced by some works [54][55][56] , the phenomenon of microphase separation in condition of thermodynamic equilibrium can be observed with the double Kac potential both in two and three dimensions.

In section II, we present the macroscopic approach of Laudau-Ginzburg to deduce the structure factor of the amphiphilic systems. In section III, the microscopic approach is mapped out for predicting the structure factor with the random phase approximate of the liquid state theory. In section IV, we compare these two expressions for the structure factor to find a link between the macroscopic parameters of the LG expansion and the microscopic parameters of the double Kac potential. It is found that the study of self-assembly within system models provides a better understanding of the role of competing interactions useful in the research of more complex self-assembly systems.

II. PHENOMENOLOGICAL THEORY OF THE STRUCTURE FACTOR A. Landau-Ginzburg free-energy expansion

The LG formalism starts with the free-energy functional from which the physical properties can be deduced by minimization. The Landau-Ginzburg theory [START_REF] Landau | The translation may be found in Men of Physics[END_REF] has been first developed to investigate the charged superfluids. Applied to selfassembly systems near the critical point, the expansion of the free-energy functional is written as an integral over all space of an appropriate function of the order parameter and its spatial deviations as:

F [m(r)] = a [m(r)] 2 + b [m(r)] 4 + c [∇m(r)] 2 + d ∇ 2 m(r) 2 + ... dr, (1) 
where the order parameter, noted m(r) = ρ(r)-ρ c , is the difference between the local density ρ(r) and the critical density ρ c . By virtue of the conservation law of particles, the odd powers of m(r) are omitted in the integrand (free-energy density), and the third and fourth terms are the square gradient and the square Laplacian of the order parameter, respectively. Depending on the system under study, other terms can be added or dropped in the expansion. For instance, in homogeneous fluids, all the spatial derivatives of the order parameter are neglected though m(r) is subject to fluctuations at the microscopic level [START_REF]Statistical Physics[END_REF] . By contrast, in inhomogeneous fluids the spatial derivatives are expected. Thus, the Ornstein-Zernike theory can be rederived [START_REF] Fisher | [END_REF] with Eq. ( 1), when only the coefficients a and c are kept. By stability consideration, both coefficients a and c are positive, but a vanishes at the critical point.

In other circumstances, as in microemulsions 20,60 and homopolymer-diblock copolymer blends 40,61 , the terms pertinent to a study of the critical behavior are those with the coefficients a, c and d, with a positive value of a in order that the free energy has a minimum. In that case, it has been argued that the stability condition imposes c 2 -4ad < 0, where d is positive whereas c can be positive or negative. It should be mentioned that during the change of sign of c, the system undergoes a phase separation into a bulk phase or a spatially modulated phase. The condition c = 0, referred to as the Lifshistz point, has been first introduced in the context of ferromagnetic systems 38 , but it is also known to exist in other systems like liquid crystals 62 , microemulsions 20,60 , diblock copolymers melts 40,61 . It has been shown that, the self-assembly in amphiphilic systems and in systems with competing interactions can be described by the LG functional 49 . This explains the similarity of their phase diagrams although the modulated phases are stable in a smaller region of the phase diagram 37 .

In the Landau-Ginzburg theory, it is convenient to write the free-energy functional F [m(r)] in an alternative form by expanding the order parameter and its spatial deviations in Fourier series as:

F [m q ] = V ∑ q (a + cq 2 + dq 4 ) |m q | 2 .
(

) 2 
It should be noted that each term of the sum in Eq. ( 2) depends only on single density modes m q contributing additively to the free energy. Thus, the different m q are statistically independent, i.e. noninteracting. Because of the truncation of the Fourier series, Eq. ( 2) is only valid for small q, where the wavelength 1/q is large compared to the interparticle distance.

B. Density uctuations near the critical point

To link the Landau-Ginzburg phenomenological approach to the microscopic approach, it should be pointed out that the free energy can be written as a function of the density fluctuations under the form [START_REF] Fisher | [END_REF] :

β F [m q ] N = ∑ q 1 S(q) m q ρ 2 , (3) 
where S(q) is the static structure factor, i.e. the linear response of the system with respect to the particle density. This relation results from the fluctuation-dissipation theorem showing that the structure factor S(q) of the system is directly proportional to the susceptibility χ(q), with χ -1 (q) = -

δ 2 F[m q] δ m 2 q
. The comparison of Eq. ( 2) with Eq. ( 3) allows us to deduce the following expression for the structure factor at small q :

S(q) 1 β ρ(a + cq 2 + dq 4 ) . (4) 
A point of particular interest is the correlation of the density fluctuations in complex systems near the critical point. To give an insight into the density fluctuations in fluids, the total correlation function h(r) can be investigated directly by Xrays or light scattering experiments from the structure factor S(q) that is related to the Fourier transform of h(r) by the relation:

S(q) = 1 + ρh(q).
The microscopic nature of the density fluctuations can also be studied by the Ornstein-Zernike relation whose the FT reads [START_REF] Hansen | Theory of Simple Liquids[END_REF] :

1 + ρh(q) = 1 1 -ρc(q)
, where c(q) is the FT of direct correlation function c(r). This shows that the correlation functions depend on a set of the phenomenological coefficients a, c, d, which are nonuniversal functions of microscopic parameters. The understanding of the physical origin of long-range character of h(r) is a major problem of complex fluids near the critical point.

The slower is the correlations attenuation, the greater is the characteristic size of fluctuations. In an attempt to explain the asymptotic behavior of h(r) for large r, we calculate the inverse FT of Eq. ( 4). Eq. ( 4) deduced from the Landau-Ginzburg expansion of the free-energy functional has been used for the structure factors of microemulsions 20 and diblock copolymers 10,28 . We will confine our attention on microemulsions made of oil, water and surfactant, and restrict the study to the case where there is a symmetry between oil and water so that the partial structure factors are S OO = S WW = -S OW , where S OO , S WW and S OW are the oil-oil, water-water and oil-water structure factors, respectively. The coefficients a, c and d are arbitrary phenomenological quantities fit accurately on experimental scattering data up to a microscopic cutoff, small compared to the inverse of the interparticle distance. Additional information about the disordered phases may be extracted from the structure factor when the discriminant ∆ of the polynomial in Eq. (4) changes of sign.

With the condition ∆ = c 2 -4ad > 0, where a > 0 and d > 0, the inverse FT of Eq. ( 4) leads to 20,[START_REF] Pini | [END_REF] :

h(r) 1 4πβ ρ 2 ∆ 1/2 1 r [exp(-r/ξ 1 ) -exp(-r/ξ 2 )] , (5) 
with the two correlation lengths :

ξ 1 = 2d c -∆ 1/2 , (6) 
ξ 2 = 2d c + ∆ 1/2 . ( 7 
)
With the condition ∆ = c 2 -4ad < 0, where a > 0 and d > 0, the inverse FT of Eq. ( 4) reads:

h(r) 1 4πβ ρ 2 |∆| 1/2 1 r exp(-r/ξ ) sin(r/δ ), (8) 
with the two correlation lengths :

ξ = 2 d 2 (ad) 1/2 + c , (9) 
δ = 2 d 2 (ad) 1/2 -c . ( 10 
)
Depending on the values of the coefficients a, c and d, the total correlation function h(r) presents either a decay resulting from a combination of two Yukawa functions, with the correlation lengths ξ 1 and ξ 2 , or a damped oscillatory behavior with the correlation length ξ and the periodic spatial variation δ generating modulated phases in the system.

To obtain some information on how the surfactant in microemulsions (or the copolymer in mixtures of homopolymers) tends to order the mesophases and also to order itself, it is useful to introduce the disorder line and the Lifshitz line 40 . (i) The disorder line of the system is the locus of points in the phase diagram at which the oscillatory behavior appears in the total correlation function h(r), i.e. when (c 2 -4ad) is negative. The total correlation function is presented in Fig. 2 for a system where a = d = 1 and c is varied. The discriminant (c 2 -4ad) is negative when 2 > c > -2. It can be seen that the weaker correlation takes place at c = 2 and the oscillatory behavior begins to dominate in h(r) for c < -1.5.

(ii) The Lifshitz line is the locus of points at which the peak in the structure factor S(q) just starts to move out of zero wave vector towards a nonzero value (Fig. 3). Its localization is given by 1 q ∂ S(q)

∂ q q=0

= 0, i.e. c = 0. In other words, it corresponds to the point at which the structure factor ceases to decay monotonously, in contrast to the disorder line which indicates the point at which the oscillatory component appears in the total correlation function h(r). It should be noted that the position, q c , of the peak in S(q) moves to large wave vectors when c decreases and that its divergence takes place for In the context of diblock-copolymer and homopolymer blends, Eq. ( 8) -with ∆ < 0 -is needed to describe the disordered phase with the correlation length ξ and the wavelength δ . The oscillation in h(r) reflects the tendency of the copolymer to order the A and B monomers in space. It depends on the temperature 28 and the concentration of diblock copolymers 65 . At low copolymer content, the parameter c is positive and the total correlation function decreases monotonously with the distance. As the copolymer density φ increases and the temperature remains constant, it is expected that the wavelength δ to decrease and to enforce the order over shorter distances. When the amount of copolymer continues to increase, c becomes negative at the composition of the Lifshitz line. Then, it remains negative for larger copolymer content up to the boundary for which (c 2 -4ad) = 0 where the peak in S(q) diverges. The divergence of the fluctuations at q = q c means an instability of the homogeneous phase leading to microphase separation. The wavelength of the fluctuations with respect to which the instability of the homogeneous phase is realized is δ = 2π/q c . It should be noted that the coefficient c depends on the copolymer density φ while the question arises whether it varies with the temperature 29 .

III. MICROSCOPIC APPROACH OF THE STRUCTURE FACTOR A. Random phase approximation

The structure factor is a crucial property of systems measured by X-ray or neutron scattering and calculated from the interparticular potential. The structure factor S(q) describes the arrangement of the particles in the reciprocal space, for any system. In the case of simple liquids, the principal peak in S(q), at q = q p , gives an indication on the mean distance between particles. More relevant is the value of S(q), at q = 0, that increases drastically when first-order liquid-vapor transition occurs due to the increase of the density fluctuations. By contrast, in more complex systems, a pre-peak can emerge in the structure factor at a small wave vector q c (0 < q c < q p ), which is the signature of cluster formation and mesophase separation on a microscopic scale [66][67][68] . In certain circumstances, the pre-peak in S(q) grows with the possibility to display spontaneous modulated phases when the pre-peak is diverging. This transition (modulated phases) as observed in S(q), at q = q c , has something similar to the liquid-vapor transition predicted by the divergence of S(q) at q = 0. Indeed, both transitions are the consequence of instabilities of the uniform phase with respect to the density fluctuations. In simple liquids with long-range attraction of the van der Waals type, the long-wavelength fluctuations are dominant, while in complex liquids, with a long-range repulsion, the density fluctuations of the microscopic wavelength 2π/q c predominate leading to the microphase separation.

To gain an insight into density fluctuations in complex liquids, we performed the calculation of the structure factor S(q), and specifically the magnitude and the position of the prepeak on S(q), at q = q c . By means of the computer simulation, the results are accurate and depend only on the potential model. In contrast, when the analytical theory of liquids is used, the results depend also on the choice of the approximation. The most notable achievement of computer simulation techniques has been to clarify the circumstances of microphases separation 19,66,69 . In this work, the particles are composed by hard spheres of diameter σ interacting through the double Kac potential that gives rise to a competition between repulsion and attraction interactions. The simple random phase approximation (RPA) is used to determine the direct correlation function c(r) leading to the expression for the structure factor [START_REF] Hansen | Theory of Simple Liquids[END_REF] :

S RPA (q) = 1 1 -ρc HS (q) -ρc lr (q) , (11) 
where c HS (q) is the FT of the direct correlation function in hard-sphere systems 70 whose the expression has been derived analytically by Ashcroft and Lekner 71 . The function ρc lr (q) is the FT of the direct correlation function c lr (r) -β u lr (r) (u lr (r) being the long-ranged part of the potential), which is defined as:

ρc lr (q) = 4π q [-ρβ u lr (r)] sin (qr) rdr. (12) 

B. Double Kac potential

For the self-assembly systems under study, we consider the double Kac pair potential [51][52][53] particularly interesting because it allows us to address the issue of frustration arising from competing long-ranged repulsion and attraction interactions. The generic expression for the double Kac potential is:

β u 2K (r) = -β ε a (σ γ a ) 3 exp (-γ a r) + β ε r (σ γ r ) 3 exp (-γ r r) , (13) 
where the parameters ε a and ε r stand for the strength of the attractive and repulsive interactions, respectively, whereas the inverse lengths γ a and γ r control both the range and the strength of the interactions. To obtain an attraction at short distance and a repulsion beyond the node r 0 (= 1

(γ a -γ r ) ln ε a γ 3 a ε r γ 3 r
), the four parameters have to be positive with the conditions γ a > γ r and ε a γ 3 a > ε r γ 3 r . The most popular feature of the double Kac potential is that the contributions to the second virial coefficient B 2 of the attractive and repulsive long-range interactions cancel when ε a = ε r .

To investigate the self-assembly systems, the total pair potential is modeled by Eq. ( 13) for r > σ and infinity for r < σ . The values of the potential parameters are often taken to be σ γ a = 0.5, σ γ r = 0.25 and β ε a = β ε r = 1, but a large number of possibilities are offered by other set of values for the parameters. Then, the FT of the direct correlation function, ρc lr (q), is expressed by Eq. ( 12) directly in terms of the model parameters under the analytical form:

ρc 2K lr (q) = 8πρσ 3 β ε a γ 4 a (q 2 + γ 2 a ) 2 - β ε r γ 4 r (q 2 + γ 2 r ) 2 . ( 14 
)
The direct correlation function c lr (r) into the core is not equal to that of the HS potential and can be corrected by an additional contribution 72 . For mathematical convenience, c 2K lr (q) has been calculated analytically with the direct correlation function, c 2K lr (r) -β u 2K (r), extended inside the core 52 . Even if the structure factors determined by RPA are not so accurate than those of simulation or integral equations calculations, it has been proven that RPA is an efficient tool to predict the particularities of the structure factor for systems with competing repulsion and attraction interactions 73 .

C. Structure factor at small wave vectors

As experimental scattering data of the microemulsions and diblock copolymers systems are measured precisely up to the cutoff q l -small compared with the inverse of the interparticle distances -, it seems natural to consider the structure factor for small wave vectors, in order to connect the microscopic parameters of the pair potential to the phenomenological coefficients of the Landau-Ginzburg expansion. Interesting reliable analytical expressions can be obtained for small wave vectors by means of the Taylor series expansion of Eq. ( 14). Computed up to the fourth order, the HS structure factor reads:

1 -ρc HS (q) = 1 + 24η L + MQ 2 + NQ 4 + O(Q 6 ) (15) 
with Q = qσ and

L = α 3 + δ 4 + γ 6 , M = - α 30 + δ 36 + γ 48 , N = α 840 + δ 960 + γ 1200 .
where

η = π 6 ρσ 3 ; α = (1 + 2η) 2 (1 -η) 4 ; δ = -6η (1 + η 2 ) 2 (1 -η) 4 ; γ = η 2 α.
Then, the fourth order of of the function ρc 2K lr (q) (Eq. 14) becomes:

ρc 2K lr (q) = 48η (β ε a -β ε r ) + 2 - β ε a γ 2 a + β ε r γ 2 r q 2 + 3 β ε a γ 4 a - β ε r γ 4 r q 4 . ( 16 
)
For further convenience, we use the ratios ε = ε r ε a and γ = γ r γ a for writing Eq. ( 16) as:

ρc 2K lr (Q) = 24η V +W Q 2 + XQ 4 + O(Q 6 ) , ( 17 
)
where

V = 2 (β ε a ) (1 -ε) , W = 4 (β ε a ) (σ γ a ) 2 -1 + ε γ 2 , X = 6 (β ε a ) (σ γ a ) 4 1 - ε γ 4 .
With Eqs. (15 and 17), we determine the structure factor S(q) with the RPA treatment (Eq. 11) expanded in a power series of q 4 , for small wave vectors. The comparison of this relation with Eq. ( 4) allows us to express the phenomenological coefficients of Landau-Ginzburg expansion as a function of the parameters of the double Kac potential and the density, namely:

a * = β ρa = 1 + 24η(L -V ), (18) 
c * = β ρc/σ 2 = 24η(M -W ), (19) 
d * = β ρd/σ 4 = 24η(N -X). (20) 
The phase diagram T * = 1 β ε a versus ρ for self-assembly systems is readily found as a function of the microscopic parameters of the potential model. Thus, the spinodal is obtained for a = 0, the Lifshitz line for c = 0, the disorder line for (c 2 -4ad) = 0 and the position of the pre-peak q c = -c 2d for c < 0.

IV. RESULTS

The aim of this work is to study the self-assembly amphiphilic systems differing from less-structured solutions. The double Kac (2K) potential is used with parameter values able to deal with the phenomenon of microphase formation, while the conventional liquid-vapour transition is ignored. For convenience, the most of our investigations are performed with the following parameters in reduced units: σ γ r = 0.25, σ γ a = 0.5, β ε r = 2, which are close to those used previously 53 . In Fig. 4 it can be seen that the 2K potential is not only sensitive to the ratios between the interaction strengths, γ = γ r γ a , and between the repulsive and attractive ranges, ε = ε r ε a , but also to the particular values of σ γ r , σ γ a , β ε r and β ε a making up these ratios. Potentials 1 and 2 with the higher barriers, displayed in Fig. 4, produce a finite height peak on the structure factor. On the other hand, potential 3, with a smaller barrier situated at longer distances, gives rise to a divergence of the peak on S(q) unlike the other two potentials.

Before presenting the typical variations of the total correlation function h(r) and the structure factor S(q) stemmed from the pair potential β u 2K (r), we would like to show the variation of the coefficients a * , c * and d * of the Landau-Ginzburg freeenergy expansion as a function of the parameter β ε a = (T * ) -1 by means of Eqs. ( 18), ( 19) and (20). β ε r = 2 with β ε a varying on a representative range, for the density ρσ 3 = 0.6. When the strength β ε a of the attractive part of the potential is small, the coefficients a * and d * are positive, whereas c * and ∆ are negative. The two coefficients a * and ∆ vary drastically with the strength β ε a , contrary to c * and d * that vary slowly. We remark that c * becomes positive for β ε a 8. This value corresponds to the Lifshitz line (c * = 0) for which the structure factor S(q) changes its convexity at q = 0. Thus, below β ε a 8, it could be thought that the peak of S(q) moves away from the origin, developing at the end into a singularity at a particular value of q. However, the structure factor S(q) has no solution for 2.8 < β ε a < 8, because a * becomes negative beyond β ε a = 2.8, which corresponds to the instable limit of bulk phase separation. The domain where the isothermal compressibility (χ T = 1/a * ) is large lies well underneath the Lifshitz line on the scale of β ε a .

In fact, the key condition for the existence of microstructures in self-assembly amphiphilic systems is ∆ < 0, that is required to describe the oscillatory regime for the decay of the total correlation function h(r) with the correlation length ξ and the wavelength δ . The parameter ∆ cancels to the value of β ε a = 2.5 defining the disorder line, which corresponds to the microphase separation characterized by the divergence of the peak of S(q), at qσ = 0.125. Fisher and Widom 74 have shown that the decay of the total correlation function h(r) is expected to be oscillatory when the correlating effects of the repulsive contribution of the pair potential predominate, while h(r) is asymptotically positive and exponentially damped when the attractive contribution of u(r) has a prominent role. In Fig. 6, we observe that the total correlation function h(r) is an exponentially damped sinusoid when β ε a < 2.5. For the values of β ε a = 1, 2, 2. By using the lattice model, the author found that to ξ δ = 0.2 is in qualitative agreement with the experimental results of Teubner and Strey 20 ( ξ δ = 0.4) and with ours. From a Landau-Ginzburg analysis, Teubner and Strey 20 concluded that the combination of the coefficients a * > 0, d * > 0 and c * < 0 is sufficient to explain the typical features of scattering curves of microemulsions. While, for ordinary liquids, the gradient term c * is positive, for microemulsions it is essential that c * is negative. The lattice models are also quite successful to describe the basic features of complex phase diagram among them spin models and microemulsions 44 . Computing the free energy of the systems by Monte Carlo simulation, the surfactant molecules are allowed to occupy lattice sites between polar and nonpolar molecules [START_REF] Gompper | Self-Assembling Amphiphilic Systems[END_REF]76 . It has been shown 75 that the lattice model is consistent with the Landau-Ginzburg approach. Against all expectations, there is no simple exponentially decaying for the total correlation function just below the Lifshitz line as the condition a * < 0 prevails against ∆ > 0. With further decreasing β ε a (and c * ) within the disorder line, the microemulsions occur tending to less-structured solutions. Beside h(r), an alternate possibility to characterize the microemulsions is with the structure factor S(q) at small wavevector, by defining the microemulsion as a solution 76 in which the microstructure generates a peak at q = 0, while an ordinary solution S(q) increases monotonously as q tends to 0. It should be noted that, for large q, the scattering curves behaves as 1/q known as Porod's law 77 . This decay observed just beyond the peak in SANS data for bicontinuous phases 22,78,79 is the manifestation of large domains rich either in water or oil. FIG. 7. Structure factor S(q) obtained with the same values of the parameters as in Fig. 6, for β ε a = 1 (full curve), β ε a = 2 (circles), β ε a = 2.3 (dash curve) and β ε a = 2.4 (squares). Fig. 7 depicts S(q) for the same parameter values as for h(r). The peak in S(q) increases gradually with β ε a and diverges at the disorder line for β ε a = 2.5. Concerning the peak position, our results do not support the findings of Abillon et al. 80 who claimed that the scattering peak did not move towards the origin with their model in contrast to what is seen in the experiments 25 . They remarked themselves that the disagreement could be due to the role of long range forces which had not been taken into account properly in their calculations. On the other hand, our results are in agreement with those of Ciach et al. 49 who studied the form of the FT of the pair potential -in particular the double potential of Yukawa. The curve has a well defined minimum at a position around the maximum of the structure factor, which moves in the same way as the peak of S(q). In Fig. 8, we display the 2K potentials from which the structural properties are deduced. Although the four representations of the 2K potential are alike, the three potentials for β ε a 2.4 allow to generate the h(r) and S(q) curves qualitatively compatible with the experimental results for microemulsions, whereas the potential for β ε a = 3 is incapable of yielding physical h(r) and S(q). As expected, when β ε a is increasing, the potential is deeper and the node of the potential is shifted towards the large distances.

It is interesting to compare the decay of the 2K potential with that of the total correlation function at long range as well as the enlargement of the part of β u 2K (r) around the potential barrier. From Fig. 8 it is difficult to explain why suitable structural properties are produced with β ε a = 2.4 while they can not be generated with β ε a = 3, although both pair potentials seems very similar. The nodes of the two potentials are close together, the heights of barriers are roughly the same and the decays are barely perceptible beyond r/σ ∼ 25 (β u 2K (r) ∼ 10 -5 for r/σ = 30). In contrast, from Fig. 6, it is seen that the total correlation function h(r) has an oscillatory behavior visible up to r/σ = 100. This is consistent with the intuitive idea that the correlation should not be of shorter range than the potential.

V. DISCUSSION AND CONCLUSION

A convenient theoretical boundary between the microemulsion and the ordinary disordered phase is the disorder line (DL) at which ∆ = 0. It has been shown that there is no phase transition between the microemulsion and the ordinary disordered phase 81 . It means that no thermodynamic singularities are encountered on crossing the disorder line, while only the form of the total correlation function changes. As we know, the total correlation function h(r) oscillates with finite wavelength in microemulsions, whereas it varies with simple exponential decreasing in the ordinary disorder phases where the peak of the structure factor S(q) disappears indicating that part of the structure is lost.

In microemulsions, Gompper and Schick 76 defined the parameter c * / √ 4a * d * as a measure for the amphiphilicity of the surfactant. As the gradient term c * is negative, the signature of strong amphiphies is a low negative value of c * and, when the surfactant density increases, the peak of S(q) moves out and its amplitude decreases in agreement with experiment. By contrast, a decrease in amphiphilicity is accompanied by an increase of the peak in the structure factor S(q) up to divergence when the DL is reached. Below DL, it has been borne out by the results obtained by Widom 75 -with lattice model -that the correlation and scattering functions are qualitatively like those in microemulsions, reflecting the amphiphilicity of the surfactant: ξ and δ are proportional to each other as well as with the surfactant chain length. Abillon et al. 80 pointed out that the characteristic sizes in the microemulsion increase with increasing chain length, while the ratio of the correlation length ξ to the wavelength δ of the oscillations in h(r) is damped when the DL is approached, in accordance with ours results.

With our parameter values, the competition between attractive and repulsive contributions of the 2K potential causes the occurrence of strong density fluctuations in microemulsions (at qσ = 0.125). In contrast, they do not permit us to describe the behavior of the scattering intensity of the ordinary solutions because the isothermal compressibility becomes infinite (a * = 0) before the occurrence of the LL (c * = 0). We mention the work of Farage et al. 82 showing that systems of active spherical colloidal particles can be mapped onto an equilibrium system interacting via an effective poten-tial consisting of a "bare" potential plus an activity-dependent contribution. With the bare Lennard-Jones potential, the effective potential is reduced to competing repulsion and attraction interactions modelled by the double Kac potential type. The authors show in particular the evolution of the effective potential as a function of the self-propulsion velocity v 0 of the particles. It can be seen that the range of attraction of the effective potential reduces significantly when v 0 increases in agreement with the expectation of Schwarz-Linek et al. [START_REF] Schwarz-Linek | Proc. Natl. Acad. Sci[END_REF] . Correlatively, the main peak of the pair correlation function g(r) grows and moves towards smaller separations.

The subject of the next study will be the search for suitable values of the parameters for the 2K potential allowing to predict the correlation and scattering functions of microemulsions and ordinary solutions simultaneously. In practical terms, it amounts to find a value for a * that cancels for larger values of β ε a as in Figs. 2 and3. If it is possible, that means that the double Kac potential is appropriate to treat both the microemulsions and the ordinary solutions simultaneously. Many years ago, Widom [START_REF] Widom | [END_REF] shown that h(r) decays exponentially only if u(r) decays more rapidly, but if u(r) decays less rapidly h(r) decays proportionally to u(r) with distance. In the case of more slowly vanishing potentials, the author rise the question whether the correlation in the position of two particles can disappear at distances at which the particles are still in mutual interaction, even if it is conceptually more difficult to accept.
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 2 FIG. 2. Total correlation function h(r) normalized by ∆ 1/2 , for the system with a = d = 1 and different values of c(-1.99, -1.5, -1, -0.5, 1.5, 2.1), from top to bottom.
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 3 FIG.3. Structure factor S(q) for a system with a = d = 1 and different values of c(-2, -1, 0, 1, 2), from top to bottom.
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 4 FIG. 4. Representation of three potentials of the 2Kac type for the same ratios γ = γ r γ a and ε = ε r ε a . Potential 1 (full curve) is obtained with σ γ r = 0.25, σ γ a = 0.5, β ε r = β ε a = 2, potential 2 (squares) with σ γ r = 0.5, σ γ a = 1, β ε r = β ε a = 2, and potential 3 (circles) with σ γ r = 0.25, σ γ a = 0.5, β ε r = β ε a = 4.
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 5 FIG. 5. Variations of the coefficients a * (stars), c * (squares), d * (crosses) and ∆ (triangles) of the Landau-Ginzburg free-energy expansion as a function of the parameter β ε a of the 2Kac potential, for the following parameters values: σ γ r = 0.25, σ γ a = 0.5, β ε r = 2 and ρσ 3 = 0.6. The variation of the coefficients is drawn in arbitrary units, since the only interesting results are the β ε a values for which the coefficients cancel. The marks D.L. and L.L. on the β ε a axis stand for the disorder line and the Lifshitz line, respectively.

Fig. 5

 5 Fig. 5 refers to the case where σ γ r = 0.25, σ γ a = 0.5,

FIG. 6 .

 6 FIG.6. Total correlation function h(r) obtained with the same values of the parameters as in Fig.5, for β ε a = 1 (triangles), β ε a = 2 (circles), β ε a = 2.3 (crosses) and β ε a = 2.4 (squares).

  3. and 2.4, the couples of parameters (ξ , δ ) are (6.21, 11.22), (7.05, 17.14), (7.6, 27.66) and (7.85, 47.68), respectively, leading to the ratios ξ δ = 0.54, 0.41, 0.28, 0.16. The smaller values for ξ and δ are obtained for small values of β ε a or lower values of c * . Widom 75 has been the first to show that c * and d * are of opposite signs with a positive value of d * stabilizing the systems, and that ξ and δ are both proportional to each other and to the surfactant chain length.
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 8 FIG. 8. Pair potential β u 2K (r) obtained with the same values of the parameters as in Fig. 5, for β ε a = 1 (triangles), β ε a = 2 (circles), β ε a = 2.4 (squares) and β ε a = 3 (stars).