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Foreword 

This handbook of paleodemography would not have existed without many years of 

collaborative work between historian-demographers and anthropo-archaeologists
1
 with the 

aim of comparing all the available data – demographic, anthropological, environmental, 

archaeological and historical – in order to acquire a clearer picture of the demographic 

features of historical populations. 

Reconstituting the behaviour and demographic mechanisms of societies that have left no 

relevant written documents means going to places where demographers do not usually 

venture. Success depends on both the specialist skills of a multidisciplinary team, and on 

sources of sufficient quantity and quality to test the methods on actual data rather than using 

artificial series created for that purpose. 

However, before hoping to correlate data as diverse as archaeological remains, ethnological 

data, and epidemic, climatic and demographic models, it is essential to have a clear 

understanding of our own sources. This requires designing specific methods that can be 

applied with tools appropriate to the demography of pre-statistical populations. This sort of 

approach necessarily involves a degree of controversy and error. It also requires a large 

measure of modesty. We are as yet far from an “integral paleodemography” [Integrating 

Archaeological Demography, Paine, 1997] running from pre-history to the modern period. 

The reader will realise how much is yet to be done, given the difficulties we shall explain, 

before we can envisage a “return to discussion of the demographic history of planet Earth” 

(Bocquet-Appel, 2005:287). We do have the benefit of 25 years’ research, but many problems 

remain to be solved, not least a re-examination of the quality of the sources used, be it for the 

dating of sites, of material remains or of skeletons. 

A number of avenues are possible, but we shall be looking for sociodemographic information 

in the biological archives, more especially the many thousands of preserved human skeletons. 

Not only do these provide arguments for reconstituting certain demographic behaviours in the 

past, but they also enrich our knowledge in other fields, such as social science, economics and 

medicine. Bones retain the marks of the health and living conditions of past populations, in 

the form of bone pathologies, stress indicators and markers of activity, or of cultural practices 

such as deliberate cranial deformation. They reflect the environment of those populations and 

certain cultural and demographic behaviours. The skeleton is a sort of biological memory, of 

interest both to geneticists, who seek to monitor long-distance migration and the effects of 

population mixing, and to paleo-epidemiologists looking for bacteria and viruses now dead or 

still active. This involuntary witness to the actions of everyday life, such as widely differing 

diets between groups, is sometimes the only remaining evidence of tragic past events – 

natural disasters, wars, and massacres. The study of graves provides specific information 

about past societies that is not covered by any other historical source; it gives a place to social 

categories often “forgotten” by written sources, such as women and children. It also provides 

this information for long stretches of time, since there are human remains practically all over 
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the world, and reveals health at different ages of life, and in different socioeconomic contexts 

(hunter-gatherer, early farming and urbanisation, industrialisation, effects of colonisation and 

migration). Combined with other sources of information, particularly environmental and 

archaeological, skeletons are invaluable indicators for the social and human sciences. 

After discussing the osteological evidence, the basis of paleodemographic analysis as we have 

defined it, and examining how far it may provide demographic information, we will return in 

greater detail to the estimation of the sex and age of the exhumed skeletons. All 

paleodemographic studies are based on the distribution of ages at death as observed in the 

archaeological population under study. However, despite some published claims, this question 

is far from settled and two opposing viewpoints still exist, although the controversy is less 

virulent now than in the 1980s. While some paleodemographers continue to work from the 

determination of individual age at death, others have clearly demonstrated the need to first 

estimate the age-at-death structure of a set of buried skeletons before making any individual 

determination.
2
 This approach, taking all the individuals into account, makes it possible to 

avoid a certain number of methodological and statistical pitfalls. 

The exclusive use of this notion of “collective” age limited the scope of French-speaking 

paleodemographers for demographic modelling. Apart from the “estimators” proposed by 

Jean-Pierre Bocquet-Appel and Claude Masset (see Chapter IV), which provide access to five 

demographic parameters, none of the tools of contemporary paleodemography are directly 

applicable, without major biases, on the basis of a “collective” age indicator. It is to meet this 

need that new model life tables appropriate to pre-industrial populations have been devised. 

                                                 
2
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working group on age estimation in paleodemography at the Max Planck Institute for 
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point English-speaking paleodemographers towards new avenues of research. 



 
This handbook has a simple purpose. It is a practical publication intended for anthropologists 

and archaeologists who wish to interpret the bone remains they study in demographic terms, 

without neglecting prospective aspects. Our intention is to remain accessible to a wider public 

in terms of the understanding and application of methods. We have chosen to present and 

propose methods that are currently “operational”, leaving to one side the many theoretical 

proposals which are either biologically impossible or technically impractical to apply to 

archaeological material. In deliberately focusing on the practical aspects of paleodemographic 

study, we do not rule out the exploration of other avenues that may lead to the development of 

other methods. 

The field covered is deliberately restricted to the historical periods of Western Europe. The 

methods we propose are based on comparisons with recent populations, because, while 

biological drift of a few centuries may be corrected, it would be hazardous to suppose a 

biological continuum for Homo sapiens for more than 100,000 years. Furthermore, the 

scarcity of material and human remains from the more distant periods calls for a radical 

review of the problem (see the work of Jean-Pierre Bocquet-Appel), while avoiding 

extrapolations that might deviate from reality.  

This is not the only handbook to propose new approaches in paleodemography; a number of 

recent books
3
 demonstrate the renewed vitality of the discipline. However, unlike other 

authors, who often address these problems in a highly theoretical manner, we have had the 

opportunity to test each of our proposed methods on site data from the Anthropolis database 

at CEPAM, comprising anthropological and archaeological information on a hundred and 

more populations from the classical and medieval periods, and a total of several thousand 

skeletons.
4
 This has enabled us to review and modify our tools

5
 so that they conform more 

closely to archaeological realities and demographic constraints. 

The time has come for new advances, for the discipline has not stood still while this handbook 

was being written. While the probability vector method has long been central to our work, 

guiding the adaptations and tools proposed in this handbook, we have also explored a quite 

different approach with help from colleagues in mathematics and statistics. These new 

proposals are opening up exciting new prospects, so we have included at the end of the 

handbook (“Prospective section”) the initial findings of these exploratory methods that may 

ultimately become standard in paleodemography. 

 

Isabelle Séguy and Luc Buchet 
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Preface 

At the Crossroad of Demography and archaeology 

 

What can we know of the demographics of early populations for which we have none of the 

standard sources of historical demography, such as parish records, nominal rolls and 

censuses? One idea that naturally comes to mind is to analyse the human remains excavated 

by archaeologists. But these bones must be made to talk, and the results interpreted carefully. 

And that is precisely the purpose of this book which, while quite unusual for demographers, is 

also familiar. It is unusual in its description of the techniques for estimating age at death from 

the gradual closure of the cranial bones, the wear and tear on certain joints and the number of 

cementum rings deposited on tooth roots, all of which are far removed from the world of 

demography. And yet familiar, because the book establishes an operational framework for 

these estimations by making full use of the demographer’s basic toolkit, starting with life 

tables. This is why paleodemography – the demography of early populations – is such a 

vigorous hybrid discipline. While it boasts some fine discoveries, it is also punctuated by 

lively controversies that called for a proper treatise to describe recent progress and to outline 

future developments. That task has now been accomplished in this handbook produced by 

Isabelle Séguy and Luc Buchet, with help from many colleagues, not least Daniel Courgeau 

and Henri Caussinus. 

Based on a meeting of minds between a demographer and an archaeologist, the book is also 

the fruit of long-standing cooperation between INED and the  Centre d'études Préhistoire-

Antiquité-Moyen  Age (Centre for prehistoric, ancient and medieval studies, CEPAM). This 

joint research unit of the CNRS and the University of Nice-Sophia Antipolis is one of 

France’s largest archaeological laboratories, with an unequalled collection of plant, animal 

and human remains, recorded in digital databases. More than ten years ago, CEPAM, then 

headed by Frank Braemer, approached INED with the audacious idea of providing a 

permanent position for a demographer at CEPAM while seconding one of its own researchers 

to INED’s “History and Populations” unit. With many joint publications to their name, the 

two scholars’ have more than fulfilled their contract. The archaeology-struck demographer 

found herself working alongside the demography-struck archaeologist, to the great benefit of 

both disciplines. This Handbook of Paleodemography is the culmination of their innovative 

cooperation. 

Outside the narrow circle of specialists, the idea of combining archaeology and demography 

was not an obvious one. I recall one meeting of INED’s Scientific Council at which some 

members expressed doubts about supporting a major joint paleodemography project between 

INED and CEPAM. Were we not moving rather too far from the central concerns of the 

Institute? Fortunately I had recently attended the 8th Journées Anthropologiques de Valbonne 

at CEPAM headquarters (June 2003), and could easily give practical examples of the 

synergies between the two disciplines. The Scientific Council was convinced and gave long-

term backing to the joint project. 

And yet, is it any wonder that demography and archaeology should work together, given the 

degree of openness of both disciplines? Archaeologists have a long tradition of calling upon a 

whole range of specialists, once called “auxiliaries”, specialised in epigraphy, numismatics, 



geological stratigraphy, physical and chemical materials analysis, numerous techniques for 

dating material objects and animal and plant remains, and, most recently, geographical 

information systems. Demographers, for their part, focus on their core competence, that of 

demographic analysis, known as “formal demography” outside France. But they nonetheless 

engage in mutual exchange with a wide range of disciplines, including sociology, economics, 

geography, history, politics, philosophy, and epidemiology. All of these fields are represented 

at INED, faithful to an interdisciplinary approach that is making its way in equivalent 

research centres elsewhere. Paleodemography (which might just as well have been called 

“archeodemography”) is no more than demographic analysis for population historians who 

wish to use the resources of archaeology. Specifically, paleodemography enables historians 

interested in population dynamics to exploit archaeological data in cases where no written 

archives exist. This is what defines paleodemography, more than any specific time period: it 

covers all periods from prehistory to the 20th century, including antiquity, the Middle Ages 

and the early modern period. 

Paleodemographers examine buried skeletons, so they naturally use some of the techniques of 

the forensic scientist. Our authors did consult the specialised literature of the forensic 

sciences, but make a clear distinction in terms of objectives: the forensic scientist seeks to 

identify the age of an individual, whereas the demographer is more interested in the age-sex 

structure of a population, in order to describe its general dynamics and specifically the 

probabilities of survival at given ages. There is a basic reason for this: repeated attempts to 

find a reliable biological indicator for age at death have failed. Individual variations severely 

limit any correlation between age estimated in this manner and actual age (these ages can be 

compared in the few cases where we have both human remains and their names). Coefficients 

are often below 0.5, even for the closure of the cranial sutures, one of the most frequently 

used indicators at present. 

As a result, the authors opt for a collective, probabilistic strategy for estimating the 

distribution of ages at death. The question discussed at length in this handbook is a subject of 

much debate: how can we reconstruct a plausible distribution of ages at death for a buried 

population? A “buried” population is never directly representative of the “burying” 

population, i.e. the individuals normally destined to be interred in the burial ground or 

cemetery under study, who, in turn, are quite likely to differ significantly from the 

surrounding society, because of demographic biases (caused by migration) or social ones 

(such as the aristocratic membership of certain religious communities of pre-Revolutionary 

France, or selective burial practices). This handbook alerts readers to the biases in 

representativeness that may arise at every stage, but does not fall into the converse trap of 

standardising the buried population at all costs: its specific features must not be averaged out, 

but recognised and properly accounted for when choosing and specifying the best-fitting 

model. 

The authors thus advance by stages. 

After determining the scope and limitations of the various bone-based estimation methods, 

they describe the range of models that can be used to reconstruct the demographic dynamics 

underlying the available data, for all their flaws and biases. One instrument well known to 

demographers working with poorly recorded societies is the set of model life tables published 

by Sully Ledermann from 1956 on: these tables are constructed from logistic relationships 

that empirically link the observed probabilities of dying at various ages. At a higher level, we 

have the “logit system” devised by William Brass in 1969, which consists of taking the life 

table of a known population as a reference standard in order to adjust the unknown table of 

the study population, using the variations in median age at birth and the relationship between 

child and adult mortality. Brass first established a standard for the mortality regime of 

Western Europe and then an “African Standard”. Since then, bodies such as the OECD, 



United Nations and the INDEPTH network of demographic surveillance sites have produced a 

large number of regional standards. The authors of this handbook prefer to use as references 

the life tables they have constructed themselves, based on data from pre-industrial countries 

that have not completed their demographic transition. This enables them to extrapolate 

mortality in the earliest years of life, seldom accessible from the archaeological data because 

of the poor conservation of child skeletons. In short, the standardising or modelling method 

involves applying to ancient societies where data are lacking the mortality distribution of 

societies for reliable records are available.  

This method, in turn, must be based on estimates of the age distribution at death. The 

handbook moves on to address this point. The authors opt for the “probability vector” method 

proposed by Claude Masset in 1973. Although originally designed to estimate the age 

distribution of populations recorded in historical demography, the method is extended here to 

buried populations: the authors closely follow the path traced by Jean-Pierre Bocquet-Appel 

while introducing various corrections and variants. 

This part of the handbook actually raises a disturbing question: how can we fill the gaps in 

our knowledge without unduly substituting our model for reality? Faced with obscure or 

incomprehensible evidence, we are tempted to force the unknown into the mould of the 

known, which is the very mechanism of bias itself, unless we exercise considerable caution – 

as our authors certainly do – to ensure that the model remains no more than a set of 

hypotheses that are both perfectible and refutable. In the social sciences as in the others, any 

model is reductionist in the sense that it simplifies and arranges reality, but this reductionism 

is productive if the truths that emerge from it exceed in both quantity and quality the details 

that have to be sacrificed. Rather than just filling in gaps by means of isolated estimates, the 

demographic models in this handbook use a coherent network of assumptions, a structure in 

the strictest sense of the word, to plausibly and verifiably link together the various parameters 

that define the dynamics of a population. Therein lies their strength. 

But the transfer still calls for considerable caution, and a constant awareness of the nature of 

these assumptions and their mode of construction. The aim is not to replace poorly supported 

archaeology or an inadequate timeline with a preconceived pattern. The authors are careful to 

specify that the demographic modelling will be all the more satisfactory where the 

osteological remains are properly dated and soundly supported by archaeological evidence. A 

further precaution is mentioned recurrently throughout the handbook: a model must never be 

applied mechanically but must take account, as far as possible, of the social and historical 

context, which may be influenced by migration, the presence of a garrison or religious 

institution, the selective use of cremation, the effects of epidemics, wars, and so on; the 

chapter on archaeological examples provides a very judicious reminder of this point. 

There is thus a tension in the handbook between two necessities: to construct a demographic 

model enabling the archaeologist-demographer to capture demographic dynamics despite 

highly fragmentary evidence, and yet to contain that model within the bounds of probability. 

For example, there are thresholds of life expectancy or mean length of life below which no 

population is viable, just as the model may produce disparities between mortality risks at 

different ages that lie outside the range of possible values. As always in demography, the 

work of indirect estimation is both modest and risky, both tentative and daring; it must be 

bold while keeping within certain bounds to avoid missing the target of the “plausible” and 

“demographically possible” – key words in this handbook. One might say that estimates of 

age at death must remain “demo-compatible”, to coin a phrase. Modelling has thus a double 

effect: it releases researchers from their impotence by giving them access to unseen 

structures; and it places reasonable limits on their ambitions. This handbook steers a course 

between the two necessities. In scientific terms, what could be healthier than this intellectual 

tug-of-war? 



In the last part of this handbook, Isabelle Séguy and Luc Buchet hand over to two eminent 

statisticians, Daniel Courgeau and Henri Caussinus, who have generously contributed their 

skills to this endeavour. They both return to the “probability vector” method of age estimation 

illustrated by Masset and Bocquet-Appel. They place this method within the wider set of 

statistical proportional fitting procedures, which start from the margins of a table (row and 

column totals) to reconstruct each of its cells (for our purposes, the number of deceased 

individuals in each age group and at each historical period or “stage”). 

The aim here, once again, is to start from the known and fill in the unknown, except that 

Courgeau and Caussinus adopt a truly Bayesian approach to do so: the gaps are not filled in 

arbitrarily by a prior model but rather the posterior estimation of probabilities is improved by 

making best use of pre-existing elements of certainty or likelihood, so that the reconstructed 

table of data differs as little as possible from the initial table. This discussion is necessarily a 

technical one, but it has already produced tangible results: the demographic estimations 

applied to certain illustrative populations throughout the handbook are substantially revised as 

a consequence. 

These methodological innovations by Daniel Courgeau and Henri Caussinus will fulfil their 

promise once they have been converted into reference tools accessible to researchers with less 

exceptional statistical skills. Whatever the future application of these ideas, this final section 

has the great advantage of opening up new lines of inquiry. For Isabelle Séguy and Luc 

Buchet, their Handbook of Paleodemography is not some definitive treatise designed to hand 

down canonical truths that are cast in stone. The subject is by its nature a complex and 

evolving one. The handbook is, as it were, a guide to a site in an advanced stage of 

excavation, where the first structures have been unearthed by such talented forerunners as 

Claude Masset and Jean-Pierre Bocquet-Appel, while the authors, with their sound knowledge 

of the literature and their own rich experience, have dug down further and classified the 

discoveries made so far. As for every excavation, it is clear that more exploration is needed. 

The authors and their collaborators may be justly proud of their work. 

François Héran 
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PART I 

The data of interest 

 



Chapter I 

Epistemology of the discipline 

1. Representativeness of the anthropological sample 

 
1.1. Biological archives: contribution and limitations 

The paleodemographic approach to ancient populations as defined above is based on a single 

source: human bone remains,
6
 which are a precious biological archive. It can only be used in 

those cases where the remains have survived. To adopt an effective demographic approach, 

the anthropologist attempts to determine the age at death and the sex of skeletons, while the 

archaeologist uses stratigraphic and typological observations to provide topo-chronological 

data for the site.  

Paleodemography depends, in part, on the excavation of burial sites that may be very different 

in size and nature, studied in the context of research excavations or rescue archaeology. In the 

best case, the site is exhaustively excavated, but usually the dig is only partial. The issue of 

representativeness arises in all anthropological or paleodemographic studies. It must be 

clearly stated, with well-defined limits  to the validity of the conclusions proposed. As early 

as 1957, Gyula Acsádi and János Nemeskéri defined the three preconditions they considered 

necessary for any demographic study based on osteological remains: the cemetery should be 

exhaustively excavated and an accurate topo-chronology established, the exhumed skeletons 

should be well conserved, and there should be biological or social links between the 

individuals. Since that date, there has been relatively little discussion of the issue
7
 (Walker et 

al., 1988; Wood et al., 1992; Hoppa, 1999), although in the real world of archaeology and 

paleoanthropology all three of Acsádi and Nemeskéri’s conditions are never met. The reason 

is that, from the very moment of burial, social factors (selection by age or social status) and 

biochemical factors (differential preservation of bones) distort the image of the population 

one may obtain. In the field, excavation of funeral sites is more often partial than exhaustive 

and the preservation of the skeletons varies in quality (Figure 2). 

In the laboratory, the inaccuracy inherent to the methods for estimating sex and age always 

leaves room for unwelcome uncertainties and margins of error. Between the buried population 

and the paleodemographic sample, defined as the entire set of exhumed skeletons whose age 

                                                 
6
 Consequently, the source is only available where funerary practices involve conservation, 

such as burial. Cremated remains are hard to use and some funerary practices do not preserve 

the bones (corpses abandoned, exposed, or immersed). In some cases the bones cannot be 

studied simply because of their state of conservation. 

7
 Many studies compare the results obtained for a single site from cemetery data and historical 

demography data, with the occasional wide chronological discrepancy (Piontek and Weber, 

1990; Molleson and Cox, 1992-1993), without checking the respective representativeness of 

the sets of data. Some studies take care to compare results from the two sources for a single 

place and time, but with no consideration of the problems of estimating the age at death of 

individual skeletons (Saunders, 1995; Saunders and Herring, 1995; Ortega Muñoz, 2004). 



and sex have been anthropologically determined, the loss of information is considerable. This 

loss must be identified and, if possible, quantified (see Antibes, Figure 3 and Chapter X 2.2). 

Figure 2. Constituting a skeletal sample 

 
 
Interpretation.  Obtaining an idea of the population living around the site, assuming that burials were 

local, calls for knowledge of all the contemporary cemeteries likely to have been used by the residents 

of the region involved, whose settlement sites are not always archaeologically identified. This would 

require the cemeteries to be a) preserved, b) located by archaeologists, c) excavated, and the skeletons 

to be d) removed and e) examined. Experience shows that these conditions are hardly ever all met, 

making it difficult for the anthropologist-paleodemographer to determine the representativeness of the 

exhumed sample. 

1.2. From the world of the dead to the world of the living: the question of 

representativeness 

What, therefore, does the exhumed sample represent? Does it show us the world of the living 

or does it only reflect the world of the dead? The question is now, as it has always been, a 

critical one. 

The first stage is to determine whether the sample is representative of the buried population: 

do we have all the skeletons that there should be in the burial ground? Was there selection 

before burial, or were cemetery areas divided by age, sex or social status? Was the excavation 

partial or exhaustive? If the sample faithfully reflects the sequence of deaths at that time and 

place, it is possible, with the help of certain hypotheses, to estimate a number of demographic 

parameters characterising the population that used the site. 

The second stage is to determine what population used the cemetery, i.e. the “burying” 

population. Was it a special group defined by marked social or migratory characteristics, or 

did it include all the residents in that place? Where there is more than one burial ground for a 

single community, was the population using the cemetery in question a representative subset 



of the whole population, or did it have specific characteristics (e.g. socioeconomic or 

religious)? This concept of “burying” population is an important one: it is what establishes the 

link between the deceased and the survivors, the world of the dead and the world of the living. 

The third stage is to attempt to trace the path back to the living population. This hazardous 

exercise requires the adoption of preliminary hypotheses about fertility, mortality and 

migration and the use of demographic models. While our English-speaking colleagues are 

happy with archaeological and paleodemographic modelling, the French-speaking community 

has remained somewhat reticent towards that approach, preferring to observe and compare 

skeletal samples. 

It is no easy matter to determine the representativeness of an osteological sample. Some 

anthropologists have focused on the biases due to funerary recruitment and have attempted to 

estimate the proportion of the buried population that thus escapes the anthropologist’s eye. 

However prudent this approach may be, it sometimes leads to discovering biases where in fact 

there are none. For example, with a cemetery reserved for a religious community, it would be 

pointless to reconstruct from the buried population the children and adults of the opposite sex 

who are missing or very few within that community. With a military cemetery, do the 

exhumed skeletons provide an image of the villagers living nearby or rather of the sub-

population using the cemetery, namely the garrison stationed there? Depending on the 

approach chosen, one may conclude that the paleodemographic sample is representative or 

non-representative. 

The approach is a difficult one, requiring the researcher to go beyond the usual standard 

frameworks (parish cemetery, “natural population”) and compare, wherever possible, the 

“ground archives” with the historical archives in order to seek out the features specific to each 

burial site and, consequently, its recruitment. For example, there is a high risk that a change in 

the recruitment of the cemetery population (e.g. a burial ground originally reserved for a small 

group of socially privileged persons which was opened up to the entire community) may be 

wrongly interpreted as a change in health conditions. 

 

 

Figure 3. Representativeness of a skeletal sample (Antibes site) 



 

Figure 3. Interpretation 

Each stage in the process leading from the living population to the skeletal sample under study is 

marked by a loss of quantitative and qualitative information: 

- from the “living population” (i.e. all the persons present on the territory under study during the 

period considered) to the “burying population”, who may only be a fraction, not necessarily 

representative, of the population occupying the site; 

- from the “burying population” (those using the cemetery under study) to the “deceased population”, 

which is the result of selective mortality (by age, sex, socioeconomic status, or individual 

pathology) applied to the population exposed to the risk of death; 

- from the “deceased population” to the “buried population” in the cemetery under study, which may 

only be part of the deceased population (particularly where the deceased are buried in their place of 

origin, or where there is more than one burial ground, or where funerary practices vary according to 

the deceased person’s age or social category); 

- from the “buried population” to the “exhumed population”, which is a potentially biased sub-sample 

because the archaeological excavation was not extensive or the skeletons were preserved 



differentially by site or age (with fewer of the youngest and oldest) or sex (with more men), 

although the subject is still disputed; 

- from the “exhumed population” to the “analysable population” (the paleodemographic sample) 

from which the anthropologist attempts to determine sex and estimate age, and which comprises 

only the well-preserved skeletons (whose proportion depends on the quality of the excavation and 

storage conditions). 

In this case (Antibes from 1877-1897, see the study in Chapter X, 2.2.), the observed living population 

totals around 8,200 individuals, of whom three-quarters lived in the city centre (blue area), and one-

eighth in the broad expanse contained within the city limits (grey zone). The remaining eighth is the 

population counted separately, corresponding to people temporarily residing in the city but domiciled 

elsewhere. 

The burying population is more or less the living population, and a similar hypothesis is made for the 

overlap between the deceased population and the buried population. 

As the cemetery was only partially excavated, only a small proportion of the individuals recorded as 

buried there were collected (5%), from whom fewer than half made up the paleodemographic sample. 

 

We cannot, therefore, stress too strongly the precautions that must be taken when attempting 

to assess the living population from the osteological remains of a few of its members. Even in 

optimal archaeological conditions it is never certain that the proportion exhumed is 

significantly representative of all the components of the buried population. For example, a 

brief calculation shows that hardly 50% of the expected population has been found in the rural 

medieval cemetery at Frénouville (Normandy, 6th-7th centuries AD), even though the burial 

area has been fully excavated (Buchet, 1978; Pilet, 1980), because most of the children are 

missing. The paleodemographic sample taken from the urban cemetery in Antibes (Alpes-

Maritimes, 19th century), although it includes only 2.5% of the population that was buried 

there, has turned out to be statistically representative of the age distribution of buried adults 

(for more detail, see the site studies in Chapter X). It is consequently not so much the 

sampling ratio that matters as the sampling method. A random sample is more likely to 

represent all the components of a population than a sample taken from a burial selection 

(which is nonetheless representative of the selected population).  

1.3. Problems with small samples  

The Antibes case (see Chapter X) exemplifies another recurring problem in 

paleodemography: the small number of skeletons observed. Few sites are able to provide 

more than a hundred or so analysable skeletons, which then need to be classified by 

chronological phases of varying duration. 

The many studies that seek to circumvent the difficulties of the discipline, and merely 

compare samples with each other, either chronologically or geographically, inevitably run 

into this problem, without necessarily realising its full extent. Any conclusions drawn from 

these comparisons lack a degree of statistical significance. The small number of individuals 

generally analysed may provide a deceptive picture and random variations are like mirages in 

the field of paleodemography. 

It is difficult, therefore, to identify a general trend from an insufficient number of skeletons, 

because it is masked by the dispersion of their individual characteristics. As a result, findings 

that may appear to reveal major changes in mortality from one site to another, or one period to 

another, in fact merely reflect random variations affecting the small number of skeletons 

observed. 

The reliability of paleodemographic findings depends closely, therefore, not only on the 

thoroughness of the method used but also on the sample size. This is why we believe it is 



important to specify the statistical limitations of the results obtained by applying validity tests 

and calculating confidence intervals. 

For small samples, non-parametric tests
8
 are to be preferred, because they do not assume that 

distributions are normal. They are more sensitive to the median than the mean (ranking). 

Note, however, that these tests have less statistical power than parametric tests (for equal 

sample sizes). 

1.4. The migration question 

The survival of DNA in archaeological bone remains gives us a direct access to the genomes 

of past populations and makes it possible, among other things, to reconstitute migration 

patterns. This approach is as yet limited owing to problems of contamination, conservation 

and recovery of DNA from the bones, and also to the cost of the analyses. Pending the 

information on large series promised by current research on DNA, the only way of identifying 

migrants in a skeletal sample is to observe each individual’s phenotype by macro- and 

microscopic examination, supplemented by physico-chemical analysis of the bones collected. 

However, it must always be borne in mind that although the phenotype does reflect the 

genotype, any resemblances between individuals found in this way do not guarantee 

relatedness, just as relatedness does not always translate into resemblance. 

The phenotypical differences between populations originate from the history of settlement 

under the combined effect of biological, social and environmental factors.
9
 The weight of 

each factor is hard to discern: some people migrated, others transmitted ideas and material 

cultures, and others adopted them. It is this alternation between change and equilibrium, this 

permanent biological and cultural cross-breeding, that causes populations to be born, die or 

transform themselves and that underlies their homogeneity or heterogeneity at a point in time 

t of their existence. By analysing the morphological effects of these changes on skeletons, the 

anthropologist may hope to reveal migrations, but in order to conclude that a biological 

phenomenon, such as morphological heterogeneity, corresponds to a historical phenomenon, 

such as migration, anthropological data cannot be used alone; they must be cross-referenced 

against all the data available, both archaeological and historical. 

This exercise is not risk-free and to base historical conclusions on osteological data is not a 

straightforward task (witness the misuse of anthropological analysis by certain ideologies). 

For that reason few anthropologists go there, preferring to assume that their populations are 

closed and to conclude that the observation of bone remains is pointless for the study of 

settlement patterns. 

1.5. Is it futile to study the demography of archaeological populations? 

The pitfalls encountered by paleodemographers when they attempt to describe the population 

to which an archaeological sample belongs have been clearly signposted. Yet the techniques 

for overcoming these obstacles with a satisfactory margin of confidence remain to be 

established. The picture of the living population as provided by a set of deceased persons 

supposed to represent them is distorted by a range of factors that are hard to identify and, 

therefore, difficult to correct. 
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 We may cite Mann-Whitney and Wilcoxon’s tests, which can be used to compare two 

independent samples, and Krukskal-Wallis’s test, which determines whether k populations are 

identical and whether at least one of them tends to be different.  

9
 The influence of migration, and the effects due to small samples, are well described in 

Langaney, 1988. 



Nevertheless, the paleodemographic sample does, to some extent, reflect the mother-

population. For some of that population’s demographic features it does provide some meagre 

information, albeit obscured by funeral practices, and it translates what the living thought of 

themselves via their presentation of their dead and their ideas about death. We believe, 

therefore, that it is possible to cautiously move towards creating population models from 

archaeological and anthropological indicators. 

2. Ideas about age 

2.1. Age, a word with many meanings 

Age as a quantitative, continuous, generally reliable fact has been one of the foundations of 

demography since the first “political arithmeticians” established the link between mortality 

and age more than three centuries ago.
10

 The use of this variable in exploring and revealing 

socio-demographic phenomena, with respect to the age of the individuals who experience or 

initiate them, gives credence to the idea that age is the determinant of most demographic 

behaviour (Véron, 1994). However, a concept as “ordinary” (Pressat, 1979) as age, marking 

the time elapsed from an individual’s birth until the demographic phenomenon analysed, 

should not conceal the various realities it covers for different speakers in different times and 

places. 

In paleodemography, age measures the time elapsed between birth and death (discerning 

events during the buried person’s lifetime remains extremely difficult). It is not calculated 

from historical civil records or declarations of age (in, say, a funerary inscription), but rather 

estimated from biological indicators of growth for juveniles and of ageing for adults. It is 

therefore not a civil or chronological age measuring events occurring between two calendar 

dates but a biological age expressed variably in each individual within a well-defined 

developmental pattern. In other words, an individual’s biological age necessarily falls within a 

range of estimates reflecting the biological diversity of the whole population. Use of 

biological age leads us to consider the idea of age with a certain “distance”, to look beyond an 

exact age to a probable age, ascribing to this variable an unusual degree of relativity. 

Neither is the age we work with the exact measurement of time elapsed between birth and 

death, but rather the reflection of the individual’s place at a given time within their social 

environment. Hierarchy and the social segmentation of ages vary from one time and place to 

another. In truth, analysing demographic phenomena on the basis of such a relative variable 

involves a number of paradigm changes, which we venture to outline below. 

2.2. Civil age, biological age and social age: an individual’s place in society 

Age is not only the measure of the number of years lived but also, and perhaps above all in 

the periods of interest to us, a state. For both adults and children, every age in life is 

characterised, in social, political, economic and legal terms, by the powers it confers or 

denies, which distinguish it from other ages. The breakdown of life into various stages is a 

universal phenomenon, but the stages are not the same from one culture to another. They 

correspond to individuals' perceptions of the continuities and discontinuities in their own lives 

(Haraven, 2000). 

                                                 
10

 This section is based on a paper given to the AIDELF conference in Dakar, 2002 (Séguy 

and Buchet, 2006). 



The social structure of medieval France, for example, used a division of ages inherited from 

classical tradition and identified by Gregory of Tours, who distinguished seven
11

 ages (Figure 

4). Three ages in childhood: infantia up to 7 years, pueritia from 7 to 14, and adolescentia 

from 14 to 21; and four ages in adulthood: pueritia adolescens up to 25 or 30 years, juventus 

up to 40 or 45, senectus up to 60 or so, and senium beyond 60 (Lett, 1997). 

Figure 4. The Ages of Man 

 
Illumination from Jean Corbichon’s translation (14th century) of De proprietatibus rerum, 

Bartholomeus Anglicus (13th century). © BnF 

 

This division has the merit of roughly corresponding to physiological observations: 

appearance of first permanent teeth, puberty, menopause, and old-age dependency. Educators, 

doctors and lawyers agreed that the stages of biological development marked the child’s 

progress within society: from birth to the first deciduous teeth at about 2 or 3 years, which 

corresponded to the age of weaning;
12

 from the age of reason, at about 7 or 8 years, and the 

first permanent teeth, to puberty, at about 14 or 15 years,
13

 which marked the end of 

childhood and entry into the world of adults. In mediaeval France, the legal age of majority 

was 14 or 15 years for boys and 12 years for girls (Alduc-Le Bagousse, 1994, p. 32). At that 

point adolescents had rights, such as that of pleading or testifying, and duties. This was also 

the average age at which boys entered apprenticeship or, in the aristocracy, began to bear 

arms; whereas for women, the age of majority and the age of marriage often coincided.
14
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 The number 7 had a great symbolic value in Antiquity and throughout the Middle Ages. 

12
 Late weaning is attested by both written sources and anthropological analyses (Gallien, 

1992; Herscheer, 2003). 

13
 Age at which it is agreed that the girls of that period had their first periods (menarche) 

(Post, 1973; Lett, 1997). 

14
 Many mediaeval literary sources illustrate the early age of marriage for girls throughout the 

Middle Ages, at least in aristocratic society. 



In the eyes of their contemporaries, adolescents were adults; in the eyes of the anthropologist, 

they were still immature. And what of the demographer? By including them as “children”, are 

we not overlooking the “adult” risks to which they were exposed, such as pregnancy and 

accidents of warfare? 

Other ages raise problems for the paleodemographer, particularly the youngest, since infants 

remained outside society until they were enrolled into the Christian community by the 

sacrament of baptism
15

 (Lett, 1995). The many newborns who died before being christened 

were often banished to the margins, literally, of the Christian cemetery (Treffort, 1997; 

Séguy, 1997; Séguy and Signoli, 2008; Tzortzis and Séguy, 2008; Séguy, 2010). 

2.3. Towards socially significant age groups 

Clearly therefore, social age categories, like biological ages, do not strictly align with civil 

age groups. While for demographers age is regularly divided in a linear but rather artificial 

fashion, for anthropologists (in the broadest sense), historians and paleodemographers, age 

corresponds to uneven segmentations (Figure 5). Although it can be convenient to use 

predefined age groups, this may also mask serious breaks and discontinuities. 

Demographic analysis must be able to detect any inflection points in the measurement of risk; 

and mortality, fertility and indeed migration,
16

 must be measured with respect to the 

individuals concerned. Just as the scale chosen to observe demographic phenomena – short, 

medium or long term – determines the vision we may have of them (Véron, 1994, p. 378), so 

age grouping by socio-biological criteria may well provide a new viewpoint for certain 

demographic phenomena, particularly for children (Séguy and Buchet, 2006; Buchet and 

Séguy, 2008). 

Figure 5. Biological stages and social time 
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 Infant baptism, just after birth, was far from general practice before the 12th century, even 

in aristocratic families, who were the most Christianised (Alexandre-Bidon and Lett, 1997). 

16
 Far from being sedentary, children in the Middle Ages often left their homes, or even their 

towns or villages, for events as varied as family recomposition after a separation or death of 

one of their parents; oblation (gift of a child to a monastery); marriage; starting work or 

apprenticeship; entering domestic service; fosterage (the aristocratic practice of entrusting an 

adolescent’s education to another lord). The practice of entrusting infants to wet-nurses 

appears to have been only marginal at that time; this was not true of child slavery, which 

involved much larger-scale migration. 



 
 

3. Considerations concerning reference populations 

3.1. The hypothesis of biological uniformity 

All currently available methods for estimating age were developed on sets of recent skeletons 

whose sex and age at death are known; these sets are called “reference populations”. The 

morphological criteria recognised to be discriminating parameters in the reference population 

are then used on ancient series. These methods assume, therefore, that the biological 

parameters used are constant, or vary little, over time. 

This is the hypothesis of biological uniformity (Howell, 1976), invoking the non-variability of 

biological phenomena over time, that underpins all paleodemographic research. It posits that 

(a) the biological processes relating to human mortality and fertility in the past are similar to 

those observed at the present day by demographer-anthropologists and that (b) biological 

development takes place within the same timeframes for all populations, irrespective of time 

and place. 

These last two postulates have been the subject of lively discussion within the 

paleodemographic community for the last fifteen years or so. 

Although we cannot accurately measure them or be sure of their linearity,  growth processes 

do appear to vary over time and space. Over a short time period (a few generations), changes 

have been measured in a number of biological processes, such as in the order of eruption of 

teeth, in the mean age of puberty (Biraben, 1982; De La Rochebrochard, 2000) and in growth 

processes related to recent improvements in living conditions (Hoppa, 2000; Piontek et al., 

2001). The use of standard correlation tables constructed from contemporary observations 

should therefore, in theory, be restricted to populations whose dietary, health and economic 

conditions are close to those used as models. In practice, until such day as more ancient 

reference materials become available, ages at death of all children and adults buried since the 

first Upper Palaeolithic sites are still determined on the basis of contemporary reference 

populations. For these reasons, in addition to the individual variations reflected in a mean age, 

there is a non-measurable margin of uncertainty between actual age at death and estimated 

age. 



Paleodemographers are aware of the fragility of the biological uniformity hypothesis 

underpinning their work and have pondered the possible consequences of a drift of biological 

markers over the centuries. If the growth or ageing processes do not occur at the same speed 

in the archaeological population as in the reference population, major discrepancies between 

estimated age and actual age may occur. However, although the possibility of a centuries-long 

drift of biological age indicators cannot be dismissed,
17

 anthropologists have chosen to 

neglect it, for lack of any means to measure it,
18

 while hoping that any discrepancies are not 

too great. 

3.2. Towards a pre-industrial biological standard? 

One solution is to come as close as possible to the standards of pre-industrial populations, 

albeit not ancient or medieval, who are largely non-urbanised, have little or no access to 

modern medicine and have barely, if at all, begun their demographic transition. This is how 

Bocquet-Appel (1977b) and Masset (1982) proceeded, by choosing collections of skulls from 

the late 19th century. This is also the solution adopted in this handbook. 

However, although well-documented 19th-century bone remains are available, establishing an 

acceptable reference population remains a delicate task. Each usable series has its own 

characteristics and it is often hard to interpret the differences observed between series. When 

the reference collection intended for studying cranial sutures was being established (see 

Chapter III-1), major differences in the age distribution by cranial closure were found 

between the Portuguese collections used by Claude Masset
19

 and the Simon collection
20

 in 

Geneva. Is this the effect of geographical distance (ethnic features), local health conditions 

(more deaths from tuberculosis and epidemics in Lisbon), difficulties in interpreting the 

closures (now impossible to verify since the Portuguese collection was destroyed by fire in 

1978) or small sample size?
21

 

For the purposes of estimating children’s age at death, establishing a reference collection is 

even more problematic. Since there is no properly accessible osteological collection, the 

solution is to establish a reference collection on the basis of dental indicators. This task too is 

a delicate one because the only data available for the 19th century concern tooth emergence; 

for example, the major series published by Eduard Mühlreiter in 1920 gives the mean ages for 

tooth eruption among children in Vienna between 1870 and 1890. However, a comparative 

study of two populations, one from the Roman period and the other from the 19th century, 

concludes that there is no significant drift in the tooth mineralisation process (Saunders et al., 

2000), so we can accept the hypothesis that observations of contemporary teeth may serve to 
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 For example, with respect to the drift in the closure of cranial sutures: Masset, 1982; 

Bocquet-Appel and Masset, 1995; Simon, 1983, 1987; Molleson and Cox, 1992-1993. More 

recently, Hoppa (2000) has revealed morphological changes in the pubic syphysis between 

two chronologically distinct samples. 

18
 According to Masset and Castro e Almeida, “This is as yet only a statistical link, which we 

are largely unable to interpret… To settle this point, we lack too many data that lie 

inaccessible in the cemeteries”, (1990:130). 

19
 See Chapter III, Box 4, concerning the three Portuguese reference collections. 

20
 Concerning the creation of this collection, Gemmerich Pfister, 1999. 

21
 Differences in age distributions by cranial closure may be observed between populations. 

They do not contradict the theory of biological uniformity, which holds that age distributions 

of stages of closure remain invariable. 



construct a reference population. Care must be taken, however, to measure the degree of 

mineralisation and not emergence, which cannot be observed on dry bone. 

3.3. Influence of the sex and age structure of the reference population 

Without an appropriate method of correction, the profile of the sex and age structure of the 

reference population determines that of the population under archaeological study, as Masset 

has shown. There are basically two causes for this, biological and statistical. Whereas the 

biological indicator of age is a linear function of the subject’s age within limits that vary little 

from one population to another, an individual’s civil age is only partly a function of the 

biological indicator, because of considerable individual variability. In other words, while a 

given biological age corresponds to a stage of suture closure, that stage of suture closure does 

not correspond to a precise chronological age. 

Furthermore, Figure 6 clearly illustrates the difference in approach between the probability 

vector method (based on the B regressions) and those proposed by Jean-Pierre Bocquet-Appel 

and Jean-Noël Bacro (2008) and Henri Caussinus and Daniel Courgeau in the prospective part 

of this book, Chapter B, which are based on the A regressions. 

Choice of reference population alone may explain alleged differences between two 

archaeological sites. In Figure 6, depending on whether the individuals included in the 

comparison collection are mostly young (reference population I) or older (reference 

population II), the estimated distribution by age at death in the archaeological series will 

reflect these differences. 

Figure 6. Influence of structure of reference population on structure of study population 

 
 
Interpretation. The regression lines A1 and A2 of sutures by age vary little between populations I and 

II (biological uniformity). The regression lines B1 and B2 of ages by suture, on the other hand, depend 

on the distribution by age at death of the selected reference population. Populations I and II have quite 

different age distributions. If regression B1, based on the suture characteristics of population I, was 

used to estimate the age of the individuals in population II, the results obtained would be quite 

unrealistic. 

Source: based on Masset, 1982, p. 23. 

Mathematically speaking, the matrix approach used to estimate a “collective” age at death 

takes no account of the structure of the reference population, since the frequencies are 

observed by age group.
22

 However, in practice (Figure 7), the statistical distribution comes up 
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 This observation holds whatever the mode of calculation: frequencies of biological stages 

by age group (see Chapter IV) or frequencies of age groups for a given stage (prospective 

part, Section B). 



against the dual problem of the small number of individuals in the comparison collections 

(see the inventory proposed by Usher, 2002) and the even smaller number of archaeological 

skeletons to which these calculations are applied. 

Figure 7. Influence of reference population structure 

 
Interpretation. The archaeological population taken from the dig at the old cemetery in 

Antibes (late 19th century) was adjusted to the age structure of deaths in the town of Antibes 

in 1881 (Buchet and Séguy, 1999, 2003) and to that observed during the plague epidemic in 

the town of Martigues in 1720 (Signoli et al., 2005; Séguy et al., 2006). 

Similarly, the sex distribution in the reference population may have an effect when the 

osteological indicator of ageing evolves differently for men and women (such as the closure 

of cranial sutures, see below). In fact, paleodemographers must remain alert to the nature of 

the reference collections that underpin their results. 

3.4. Choice of reference population structure 

One solution for reducing this bias
23

 would be to establish the largest possible comparison 

collection, with each age group having roughly the same number of individuals, and, if 

possible, a balanced sex ratio. This  constraint can, to some extent, be integrated when 

establishing a comparison sample based on contemporary individuals (see Chapter III), but 

cannot be introduced in dealing with older comparison collections, without running the risk of 
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 The influence of the reference collection would not be eliminated , but would be reduced to 

a flattening of the estimated distribution. 



moving away from the biological model of pre-industrial populations. Alternative solutions 

have been considered.
24

 

3.4.1. The idea of a standardised population (Masset, 1982) 

In order to control the influence of the reference population and prevent it from being 

reproduced in the study population, Claude Masset (1982) thought of “standardising” his 

collection so as to produce a neutral reference population. To that end, he allocated to each 

age class the same number of individuals, proportional to the number of years included (the 

first had 12, the last 4, and all the others 10).
25

 Where there were insufficient subjects in an 

age class, he randomly created fictional individuals with the same sutural characteristics as 

those in that age group.  In their attempts to estimate the distribution of ages at death in their 

study populations, this “standardised” comparison collection provided anthropologists with a 

reference population that was both common to all (enabling inter-site comparisons) and 

assumed to be bias-free since it had no intrinsic structure of its own (the age distribution is 

linear, reflecting the underlying histogram, which is flat). 

This proposal was adopted and improved by Christian Theureau in 1996 and 1998. Noting 

that the paleodemographic results were influenced not only by the age distribution of the 

reference population but also by the stage distribution of the biological indicators, he 

established a new reference population with the same numbers in each age class and each 

stage. For that purpose, he collated the data from two comparison collections, in Hungary 

(Nemeskéri and Harsányi, 1958; Acsádi and Nemeskéri, 1970) and Portugal (Bocquet-Appel 

and Maia Neto, 1978; Masset, 1982). But only the individuals in the Portuguese collection are 

of known sex and age. In so doing, the author falls into other statistical traps: first, ages and 

stages cannot be standardised simultaneously; one has to be chosen over the other (stages, 

say); and second, he bases his estimates on observed data (age at death for the Portuguese 

collection) and estimated data (individual age by osteological indicators, with no margin of 

error, for the Hungarian collection). 

3.4.2. A pre-industrial population structure 

Use of a standardised reference population is not satisfactory because a population never has a 

uniform age structure. The distribution of ages at death is not flat and the proportion of old 

people is generally much higher than that of the young (except for the special case of military 

cemeteries). Consequently, the distribution of deaths obtained from a standardised reference 

population considerably overestimates the proportion of young adults, at the risk of leading to 

erroneous explanations linked to social conditions or health. 

However, it is useful to maintain this unity of method and measurement that is the strength of 

anthropological research in the French-speaking world, and propose a population structure 
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 All the proposed solutions are based on the  probability vector method, the only one used 

by French paleodemographers until recent work by Jean-Pierre Bocquet-Appel (2008) and 

Henri Caussinus and Daniel Courgeau in this handbook. Starting from the stage distribution 

observed in a given age group, the new proposed solution avoids the problems of a possible 

centuries-long drift and the influence of the structure of the reference population, since it 

depends only on the assumption of biological uniformity. 
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 Some authors have criticised this choice of methodology on the grounds that natural 

populations never present an equal probability of dying in all age classes (Buikstra and 

Konigsberg, 1985; Konigsberg and Frankenberg, 1992; cited by Schmitt, 2002). 



that is acceptable as a reference population for historical periods. We believe that it should 

come as close as possible to the characteristics of pre-industrial populations (see Chapter III). 

3.5 Other insidious biases in current reference collections 

In addition to the previous two problems (over-contemporaneous assumptions and the 

influence of age and sex structure), the currently available comparison collections suffer from 

other failings, no doubt considered to be minor, that nonetheless influence estimates by sex 

and age of buried populations. 

The fact that these collections generally only contain a few tens or hundreds of individuals 

rules out any representative statistical coverage of the entire spectrum of possible realities. 

Collections with thousands of individuals may suffer from other biases, every bit as serious, 

such as attribution of age by biological criteria rather than civil records (unclaimed corpses 

and violent deaths, for example), serious illnesses unrepresentative of the general health of the 

population (in the case of anatomical pathology collections). 

Most collections are made up of the unclaimed corpses of patients who died in hospital .
26

 If 

health status and socio-economic category affect the chosen biological age criteria, then this 

type of recruitment may well impact the estimate of age at death. 

3.6. Towards an ideal comparison collection 

Even if the ideal comparison collection remains utopian, attempting to define one is a way of 

identifying the failings and advantages of existing collections. 

In absolute terms, an ideal collection would comprise several thousand individuals, with equal 

proportions of males and females of all ages (including extreme old age), properly registered 

in civil records. These individuals would be fully preserved (skeleton, skull and postcranium) 

to allow for a multi-criteria approach to age estimation, while maintaining a relative 

population homogeneity. Not least, to ensure a certain uniformity in growth and ageing 

processes, the population would be precisely situated in time and space as close as possible to 

the pre-industrial populations for which it was to act as yardstick. 
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 They also include the corpses of people who donated their bodies to science, and those 

taken from morgues, autopsy rooms and prisons (see Yann Ardagna’s PhD thesis, Université 

de la Méditerranée, Marseille, 2004). 



 

Chapter II 

The osteological data 

With the exception of DNA analysis (see below) – although sex identification is not a 

research priority in molecular biology
27

 – each method uses a specific reference population 

made up of recent skeletons of known sex and age at death. 

At present, bearing in mind what has been said about reference populations, it is not possible 

to combine more than one method in a single estimation. To estimate age using a multi-

criteria approach, all selected indicators must be observed for each individual. Yet few 

osteological collections comprise statistically large enough numbers of skeletons for which 

both the entire set of bones and accurate indications of sex and age are available.
28

 The 

collection proposed by Claude Masset (see below) would have met these criteria in all 

respects, and had the further advantage of representing a pre-industrial population. 

Unfortunately, it was destroyed by fire and most of it is no longer accessible to further 

measurement. There are other collections (Yann Ardagna, 2004) that might meet these 

requirements, and this point deserves further research. 

In general, anthropologists must therefore establish as many comparison collections as the 

number of age indicators they have selected. More than one collection may sometimes be 

used for a single age indicator. One example is the various collections of contemporary teeth 

used by Ursula Wittwer-Bachoffen (Germany), Joël Blondiaux (northern France) and Claude 

Rücker (southern France), to estimate age from the growth rings in the dental cementum. 

It must be remembered that all these methods, whatever the biological age indicators used, 

assume that the indicators remain constant, or vary little, over time, under the principle of the 

biological uniformity of Homo sapiens sapiens. Estimation consequently entails a risk of error 

that cannot be measured so long as there is no properly documented ancient reference 

collection available. 

1. Identifying sex 

The methods used to determine sex vary both in the bone element studied and the 

examination procedure (morphoscopic, morphometric or biochemical). 

1.1. Adults 
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 For a brief overview of research on ancient DNA, see Christine Keyser-Tracqui et al., 2002. 

28
 Most published multivariate approaches are in practice based on large numbers of 

comparison collections of highly variable quality. 



 

Analysis of well-defined osteological characteristics – usually of the pelvis  and skull – 

determines the sex of an adult skeleton with a satisfactory success rate (over 90%). The 

quality of results depends upon both the indicator and the state of preservation of the skeleton. 

Experienced anthropologists can often determine the sex of a skeleton they are examining 

with a risk of error of less than 5% if they can use more than one characteristic and the 

skeleton is well preserved. The fewer the indicators, the higher the risk of error. 

The method developed by Jaroslav Bruzek (Bruzek, 1991, 1992, 2002; Bruzek et al., 1992, 

1996, 2005), adapted by Pascal Murail (Murail et al., 1999, 2005; Bruzek and Murail, 2006), 

using scopic or metric criteria of the hipbone, is usually recommended at present. For “extra-

coxal” features, an initial overview was published by Denise Ferembach et al. in 1979 and a 

more recent one by Dominique Castex et al. in 1993. The effectiveness of certain methods 

(hipbone, skull and post-cranium) has been tested
29

 on the Simon collection in Geneva and 

the collection at the Institut de Médecine Légale in Nice.
30

 Although the hipbone is usually 

presented as the only indicator to be used, the results obtained from skull and femoral features 

are just as good. 

In 1963-1964, Eugene Giles and Orville Elliot proposed discriminant functions to determine 

sex from human skulls. This method was not as successful as hoped because it can only be 

used on exceptionally well-preserved skulls, which are rare in archaeology. 

Where the osteological remains are suitable, paleogenetic techniques can be used.
31

 Once the 

fossil DNA has been extracted, the sex of an adult can be determined from the size 

polymorphism between the alleles of the gene for amelogenin
32

 on the X and Y chromosomes 

(Mannucci et al., 1994; Sullivan et al., 1993; Faerman et al., 1995, 1997).
33

 However, in 

addition to the problems of DNA preservation in soil, this technique is difficult and costly, so 

cannot be applied on a routine basis (Hänni, 1994; Orlando, 2005). 

1.2. Juveniles 

In practice, it is impossible to determine a child’s sex from their bones. Some features of the 

skull and hipbone give approximate results, but for all the attempts that have been made,
34

 

there is as yet no satisfactory method. Consequently, children are studied considering both 

sexes together. As in the case of adults, and with the same reservations, genetic markers may 

be analysed. 

2. Estimating age 

                                                 
29

 By Isabelle Aymard, in a dissertation in 2004. Contrary to a commonly expressed opinion, 

Aymard did not note any influence of age on the results (see also, Aymard et al., 2005).  

See also Phillip L. Walker’ s work (2008). 

30
 See Hilmi, 2005. 

31
 Fattorini et al., 1993; Larsen et al., 1996, 2000; Stone et al., 1996. 

32
 Protein found in developing tooth enamel. 

33
 This was the method used to identify the remains of Tsar Nicholas II’s family (Gill et al., 

1994; Akane et al., 1992). 

34
 Boucher, 1957; Vito (de) and Saunders, 1990; Fazekas and Kósa, 1978; Hunt, 1990; Majó, 

1992, 1997; Majó et al., 1993; Mittler and Sheridan, 1992; Schutkowski, 1986, 1987, 1989, 

1993; Sundick, 1978; Weaver, 1980. 



In the absence of civil records, estimating the age of individuals, alive or dead, is not an easy 

task, and where research data are incomplete, demographers have to use biological indicators 

of age.
35

 Growth and ageing are revealed by a succession of morphological changes occurring 

at precise times within a relatively circumscribed period. From observation it is possible to 

define what point an individual has reached in their growth or ageing and thereby deduce their 

age. 

Where the subject of study is bone remains, paleo-anthropologists and forensic scientists use 

the same methods to determine biological age at the time of death, with certain differences 

which are not without importance in paleodemography. Forensic scientists work in almost all 

cases with isolated corpses whose age they attempt to estimate as accurately as possible, but 

with no concern for the demographic implications. They may combine a number of 

techniques and trust their judgement (past experience) without being required, as are 

paleodemographers, to standardise their observations in order to guarantee the neutrality of 

the observer and the reproducibility of the estimate. Not least, in forensic science, the margin 

of error inherent in the individual approach is of little importance, whereas it has considerable 

effects in paleodemography, although anthropologists with forensic training often tend to 

“forget” the margins of error that apply to their estimates. 

Age at death estimations of buried individuals are not based on the same criteria for children, 

i.e., individuals who has not completed their growth, and adults, whose skeletons bear the 

marks of more or less advanced biological ageing. Within a given social context, biometric 

development differs little from one child to another. However, it can vary where health 

conditions affect growth (malnutrition, childhood diseases, epidemics, etc.). Conversely, adult 

age indicators are based on criteria of biological ageing such as changes in bone tissue and 

joint surfaces, development of teeth and periodontium, and the closure
36

 of the neurocranial 

bones.
37

 Their great variability from one individual to another makes the choice of indicator a 

difficult one and considerably increases the margin of error in an estimate. None of the 

currently known age indicators has a high statistical correlation with chronological age, and a 

hundred years of scholarly debate have not brought agreement among paleodemographers on 

the choice of the best age indicator (Table 1). 

2.1. Juveniles 

For children, estimating age is relatively easy. Human growth involves a succession of 

morphological changes in bones and teeth that occur at precise times within a short period. It 

is therefore possible to determine at what point in the growth process the child died and thus 

deduce their age (always bearing in mind any variations due to health conditions).
38
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 For example, the work of Nicholas Townsend and Eugene A. Hammel (1990), who have 

also shown that in some conditions children’s biological age could be more reliable than their 

declared “chronological” age. 

36
 Fusion of two bones.  

37
 Part of the skull housing the brain and sense organs. 

38
 Many methods are proposed. They are based on length of diaphyses (bone shafts) (Bass, 

1971; Fazekas and Kósa, 1978; Johnston, 1962; Stloukal and Hanáková, 1978; Sundick, 

1978), stages of tooth eruption and mineralisation (Schour and Massler, 1940, 1941; 

Ubelaker, 1978, 1989; Moorrees et al., 1963a and b; Chaillet, 2003; Buchet et al., 2005, 

2006), closure of epiphyses of long bones (methods collated by D. Ferembach et al., 1979) 

and the maturation of hand bones (Lalys, 2002). 



The most frequently used biological age indicators are ossification of the skeleton, length of 

the long bones and tooth growth. 

 

Table 1. Chronological age and biological age 

 
 

Indicator 
 

Men 
 

Women 
Both sexes References  

Ectocranial sutures 0.59 

0.57 

0.34 

0.53 

0.56 

– 

Meindl,  Lovejoy, 1985 
 

Buchet, Séguy, in the present book 

Endocranial sutures 0.59 

0.51 

0.35 

0.35 

– 

– 

Bocquet, Masset,  1982 

Acsádi, Nemeskéri, 1970 

Neck of humerus 0.44 0.34 – 
Bocquet-Appel, Masset,  1982 

Neck of femur 0.56 0.58 – 
Bocquet-Appel, Masset,  1982 

Pubic symphysis 0.37 

 
0.84 

0.68 

 
0.69 

0.36 

 
0.78 

McKern,  Stewart, 1957 ; Gilbert,  McKern,  1973 

Meindl  et al., 1985a 

Auricular surface – 

0.55 

– 

– 

0.63 

– 

0.60 

– 

0.72 

Bedford et al., 1989 

Falys et al., 2006 

Meindl  et al., 1985a 

Dental cementum 0.96 0.93 

 
– 

– 

 
0.88 

Wittwer-Backofen 
et al., 2002 

Gabard  et al., 2007 

Disclaimer. The reported correlations reported between chronological age and the age indicators used are the sole responsibility of the 
authors. 

 

The state of ossification of the skeleton is determined by the appearance of points of 

ossification, and then the closure of the epiphyses
39

 during the growth process. This method is 

appropriate for the first months of life. After the first two years, children’s morphological 

development is subject to individual variation and the margin of error for each estimate is 

fairly wide (methods collated by Denise Ferembach et al., 1979; Johnston and Zimmer, 1989). 

This variability in skeleton maturation is due to genetic factors (Tanner, 1962; Garn and 

Rohmann, 1966; Scheuer, Black, 2000), diet, diseases and living conditions. Furthermore, 

according to Arthur. B. Lewis and Stanley M. Garn (1960) and Wilton M. Krogman (1962), 

emphyseal fusion may occur earlier in girls. 

In anthropological terms, the ossification of the spheno-occipital synchondrosis (union 

between the sphenoid and occipital bones at the base of the skull), which occurs around age 

19, marks the end of childhood and the entry into mature adult life. 

As shown in Figure 8, the length of the long bones correlates with children’s age (Stloukal 

and Hanáková, 1978; Sundick, 1978; Alduc-Le Bagousse, 1988; Adalian, 2002, 2006; Lalys, 

2002, 2006). However, estimates based on this indicator are also affected by individual 

variability and the child’s sex (a datum at present virtually inaccessible from the skeleton). 

 

Figure 8. Variation in epiphyseal fusion in major long bones 
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 Ends of long bones, not fused in immature subjects and fused in adults. 



 

Source: Luc Buchet, after Brothwell (1972). 

Tooth growth was first measured by observing eruption stages according to the tables of Isaac 

Schour (1940) and then Schour and Maury Massler (1941), which were long accepted as 

authoritative. The wider use of x-ray examinations, particularly panoramic plates, made it 

possible to study successive stages in dental mineralisation without damaging the alveolar 

tissue. Anthropologists were provided with a large number of tables for estimating the age of 

juveniles from the degree of mineralisation of their deciduous and permanent teeth. Those 

most often used come from Ubelaker (1978, 1989) (Figure 9) and Moorrees et al. (1963a, 

1963b) (see Box 2). 

2.2. Adults 

The problems of estimating age at death for adults are far from fully resolved and are still the 

subject of scholarly dispute. As in the case of sex determination, a large number of methods 

have been devised. Mary Jackes (1989) and Aurore Schmitt (2002) propose good comparative 

approaches for those most commonly used. 

While growth of the bones of the postcranial skeleton is completed by around age 25, closure 

of the skull bones continues beyond age 70, which explains the early interest taken in this 

feature by anthropologists seeking to ascribe an age to the skeletons they were studying. The 

first to propose a table of age estimates by cranial suture closure was Hermann Welcker in 

1866, followed by Paul Broca in 1875 and, not least, in 1906 by Jakob Frédéric, whose work 

was used by Rudolf Martin in the first edition of his Lehrbuch der Anthropologie, dated 1928. 

In 1924 in America, T. Wingate Todd and David W. Lyon Jr also took an interest in suture 

closure as a biological phenomenon. Although their results are only poorly applicable to age 

estimation,
40

 they were used in 1930 by Earnest Albert Hooton and then in 1937 by Henri-

                                                 

40
 Their aim was not to determine age from the sutures. They were examining whether among 

mammals there was a typically human pattern in the order and speed of suture closure, and 

how these might vary by sex and race. They concluded that there was a single pattern 

independent of sex and race. An age estimation table was constructed from their work, taking 



Victor Vallois, who thus succeeded in setting French paleodemography on the wrong track 

until the 1970s. 

Figure 9. Estimating a child’s age from dental mineralisation observed on a skeleton and an x-

ray 

 
Sources: drawing Luc Buchet after Ubelaker (1978); x-ray plate, CEPAM. 

 

Box 2. Brief history of methods for estimating children’s dental age used until 2007 

Anthropologists have long used tooth development as an indicator of children’s age at death. 

The first method of quantifying tooth growth was to define a stage of tooth eruption. 

However, many factors of variability distort the correlation between age of eruption, 

osteological age and chronological age.
1
 Among these factors, one may note that children 

from disadvantaged backgrounds present later development and dates of eruption (Heuzé, 

2004); that warm climates appear to bring forward tooth eruption; that the eruption of the 

permanent teeth of boys and last-born siblings occurs later than for girls; and that the latest 

eruption is observed in the European population.
2
 

The first charts for attributing age from the stage of tooth development were drawn up by 

Schour and Massler in 1940. The sample used apparently comprised a mere thirty or so 

subjects suffering from chronic diseases (Halcrow et al., 2007). In 1949, Veikko O. Hurme 

calculated the mean age in years for the eruption of each tooth, with the standard deviation, 

for each sex and dental arch. However, his work has only rarely been used by anthropologists. 

In 1963, Coenraad F. A. Moorrees, Elizabeth A. Fanning and Edward E. Hunt Jr proposed a 

different approach, based on close observation of x-rays, noting the degree of mineralisation 

of each tooth. Because of the technical observation difficulties they encountered, their method 

could only be used for three deciduous teeth
3
 and ten permanent teeth (the maxillary incisors 

                                                                                                                                                         

no account of the biases in the sample that reduced the age of the subjects studied, especially 

the women (it has since been shown that the closure pattern is not the same for the two sexes, 

see Masset, 1971, 1982). One result was  a massive over-estimation of deaths of young 

women in those paleodemographic studies that used this method. 



and eight mandibular teeth). The results obtained were better than those from the degree of 

eruption,
4
 but the method still has certain disadvantages.

5
 Anthropologists have the further 

difficulty of determining the tooth’s stage of mineralisation (fourteen stages per tooth, prone 

to observer subjectivity). Furthermore, since the diagrams are not available for all teeth, the 

study of an ancient population can be complicated, due to the differential preservation of 

human remains in an archaeological setting. 

The charts published by Douglas H. Ubelaker (1978, 1987, 1989, 1994) are based on those of 

Schour and Massler, modified to facilitate the study of Amerindian populations. Although he 

did not originally intend to propose a universal model, his work was used by European 

anthropologists, probably because it was published in “Recommandations pour déterminer 

l’âge et le sexe sur le squelette” (Ferembach et al., 1979) and approved by the Workshop of 

European Anthropologists (WEA, 1980). 

In Ubelaker’s method, all the teeth, deciduous and permanent, are taken into account as a 

whole for the twenty-one growth stages described. The margins of error are set wider than 

those of Schour and Massler, but the confidence interval is still not known. 

Having to take all the teeth into account raises problems in archaeology (for taphonomic
6
 

reasons, teeth are often missing) and the remains under study rarely coincide with one of the 

charts, which obliges researchers to “juggle” with more than one estimate (this problems 

arises with any sort of typology). In the early 1970s, Arto Demirjian (Demirjian et al., 1973) 

published dental maturity tables using eight criteria of calcification as bases for calculating a 

maturity index that can be transformed mathematically into a dental age.
7
 The estimate of 

dental age was no longer based on a “snapshot” of the final phase of dental eruption, but 

included the entire mineralisation process for each tooth. It used a point score given to each 

tooth according to its stage of development. Dental age in the table corresponded to the sum 

of these scores for all teeth. This was an individual age and, allowing for the margin of error, 

the problem still arises of allocating that individual to a given age class where the estimate 

covers more than one. 

In his thesis, defended in 2003, Nils Chaillet preferred a Bayesian approach for estimating the 

age of juveniles rather than linear regression techniques  or Demirjian scores. 

Chaillet also demonstrated the value of using multifactorial evidence,
8
 under a Bayesian 

approach, from which he claims to derive age estimates from 4 to 18 years with a precision 

of ±12 months.
9
 The main weakness of his proposal is its absence of discussion of the 

composition and role of the reference population (three populations in this case), which may 

considerably distort the estimates.
10

 A second criticism concerns the difficulty with this 

method of attributing certain individuals to a precise age class. He merely observes that he 

correctly attributes 60% of individuals to five-year classes in a contemporary population 

sample (Chaillet, 2003, p. 103)
11

. 

The advantage of scoring systems based on observing individual dental development, as 

proposed by Demirjian and Moorrees et al., is that the operator is not required to “stick” at all 

costs to a rigid typology. However, the reproducibility claimed by the authors is not fully 

guaranteed, particularly for the Moorrees et al. method, which is so complex that it introduces 

a dose of subjectivity (how can one be sure that one-half or one-quarter of a tooth has been 

reached if it is not complete?). For that reason our proposal is based on a simpler 

interpretation (see Chapter III-2). The problems with the Demirjian method are of a different 

order: no proposals for a collective age, and a reference population (established in Quebec) 

inappropriate to other populations (Frucht et al., 2000; Chaillet, 2003; Heuzé, 2004). Practical 

reasons, too, may explain why these methods have not caught on with anthropologists, who, 

rather than a long examination, prefer to use Ubelaker’s table. 
 



1 
Based on Chaillet, 2003, p. 116: “The study of dental emergence shows a high percentage of 

individuals wrongly classified in terms of dental maturation”. 
2 

Analysis of causes of variation at www.dentaire.ups-

tlse.fr/pedagogie/cours/eruption/texte.html. 
3 

Milk teeth. 
4 

The method was tested before publication on 874 x-rays with a 90% success rate for the 

lower jaw and 75% for the upper jaw (with no error exceeding one stage) (Grøn, 1962). 
5 

The authors themselves list a number of causes of variation (Moorrees et al., 1963b p. 1500). 
6
 Taphonomy is the study of processes occurring after death (decomposition, diagenesis, etc.). 

7 
Demirjian used two selections of four teeth: M2, M1, PM2, PM1 and M2, PM2, PM1, I1. 

8 
His databases are taken from Southern France: panoramic dental X-rays (Chaillet, 2003), 

fetuses (Adalian, 2001) and hand bones (Lalys, 2002). 
9 

The margin of error he gives is close to that we obtain in our study for the same region, 

using the sole indicator of dental mineralisation. 
10 

See Chapter III concerning the influence of the reference population. 
11 

He does initiate a short but instructive discussion of the relevance of the division into five-

year age classes (Chaillet, 2003:103-105). 

With the renewal of interest in paleodemographic research, other approaches were examined 

that used various biological age indicators. While making no claim to an exhaustive 

inventory, below are some of the methods that most attracted the attention of 

paleodemographers. 

2.2.1. Modifications of the enamel organ 

The first precise method for defining age from a tooth was proposed by Gösta Gustafson in 

1947. . 

This method was adapted by Emanuel Vlcek and Lubor Mrklas in 1975, William R. Maples 

and Prudence M. Rice in 1979 and Dave Lucy et al. in 1995. It was popular for a time, mainly 

with forensic scientists, but was seldom used by anthropologists because of technical 

difficulties in applying it and not least because it was a destructive test (initially it involved 

using a thin layer taken from the tooth). Henri Lamendin (1988; Lamendin et al., 1990, 1992) 

proposed a simplified method using two of Gustafson’s criteria (root dentin transparency and 

periodontal recession), but the results were not satisfactory for paleodemographers (Foti et al., 

2001; Megyesi et al., 2006). Each of Gustafson’s six criteria has continued to be studied 

separately but only one, cementum apposition, looks likely to become an acceptable age 

marker (see below). 

Dental abrasion, for example, is easy to observe (Scott, 1979; Walker et al., 1991) but a poor 

indicator of age at death because of the important role of diet. Similarly, although secondary 

dentin is laid down within the pulp cavity throughout life, it may be disturbed by factors such 

as periodontal recession.
41

 Root dentin transparency (due to occlusion of the root’s secondary 

tubules
42

), one of the two criteria adopted by Henri Lamendin, is of interest but hard to 

estimate without preparing the tooth (Pedinielli et al., 2004). The extent of periodontal 

recession, Lamendin’s other criterion (Lamendin et al., 1990) is hard to assess on an 

archaeological skeleton, particularly when the teeth are discovered outside their sockets. 

Furthermore, since the degree of periodontal recession is closely linked to dental hygiene 

(Jousset et al., 2006), the constitution of a reference population relevant to historical 
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 Resorption of the tooth socket, especially with age. 

42
 Dentinal tubules are small channels perpendicular to the tooth’s main channel. 



populations is a controversial task. Conservation in an archaeological environment also raises 

problems for observing root resorption, which in any case correlates poorly with age 

(Johanson, 1971; Solheim and Kvaal, 1993). 

Whereas the methods proposed using these five criteria are poorly suited to providing a 

satisfactory age at death for paleodemographers, there has been a growing interest in recent 

years in an age estimation method based on microscopic observation of dental cementum.  

Cementum is a crucial part of the support tissue for the tooth and is laid down annually in 

concentric rings around the root. Examination of cross-sections of the roots with an optical 

microscope reveals the successive layers of cementum and can be used to deduce the subject’s 

age. After initial work (Lipsinic et al., 1986) that was virtually ignored, it was mainly the 

research done by Peter Kagerer and Gisela Grupe in 2001, and Ursula Wittwer-Backofen, 

Jutta Gampe and James W. Vaupel in 2004, that attracted anthropologists’ attention. Their 

observations tend to demonstrate a satisfactory correlation between this indicator and actual 

age. 

In addition, Vitamin D intake, bone disorders and infectious diseases such as bone 

tuberculosis may cause anomalies in the successive accumulation of cementum layers. 

The rings in dental cementum are therefore an unexplored marker for bone anomalies 

attributable to crises in health and subsistence
43

 (Blondiaux et al., 2006). Some of these crises, 

if they affect an entire buried population, may be interpreted as demographic crises. 

2.2.2. Degenerative joint disorders 

Alterations of the pubic symphysis
44

 drew the attention of early researchers such as Todd in 

1920. His work was taken up by Thomas W. McKern and T. Dale Stewart in 1957 and 

regularly improved upon, up to and including publications by Darryl Katz and Judy M. 

Suchey in 1986 and Sheilagh T. Brooks and Judy M. Suchey in 1990. 

In Europe, Hungarian anthropologists (Nemeskéri et al., 1960) proposed a similar approach. 

This indicator, particularly popular among American researchers (Meindl et al., 1985a) is 

only approximate, particularly for women over 40 (Figure 10), perhaps because of a poor 

choice of reference population. It also raises practical problems because the pubic symphysis 

is a particularly fragile area and seldom preserved on archaeological skeletons. 
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 Studies have shown a correlation between certain pathologies causing a deficiency in 

calcium metabolism and anomalies in the regularity of the cementum rings. Other factors may 

also be involved in laying down wide layers, mainly large hormonal variations, such as during 

pregnancy. 

44
 Pubic symphysis: joint located between the two pubic bones. 



 

 

Figure 10. Age distribution of a known sample by pubic symphysis 

 

 
Key: The four methods used (Acsádi, Nemeskéri, 1970; Meindl, Lovejoy, 1989; Todd, 1920; 

Brooks, Suchey, 1990) produce four different distributions of age at death. 

Source: Luc Buchet, based on Jackes, 2000. 

 

The sacroiliac joint is often affected by early degenerative disorders (at ages 30-40) because 

the layer of cartilage covering the auricular surface is very thin (Paquin et al., 1983; Brunner 

et al., 1991), so has attracted interest for estimating age at death (Lovejoy et al., 1985b; 

Meindl, Lovejoy et al., 1985a; Schmitt, 2000, 2005). However, Tracy L. Rogers (1990) 

considers that the criteria defined by this method are only applicable to young adults.
45

 

2.2.3. Alterations of bone tissue 

Alteration of the bone trabeculae of the neck of the femur and neck of the humerus, often 

progressing to osteoporosis, can be observed by radiography; it was proposed as an age 

indicator by János Nemeskéri et al. in 1960 and is often associated with other criteria (Acsádi 

and Nemeskéri, 1970; Bocquet-Appel et al., 1978; Walker and Lovejoy, 1985). This bone loss 

affects everyone but varies from one individual to another (Robling, Stout, 2000) because it 
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 In 1975, Herbert Ullrich indeed recommended restricting its use to men only. 



depends on the bone mass acquired by that individual during their growth period. This bone 

indicator, too, is poorly suited to archaeological material because of the alteration of bone 

tissue, especially cancellous bone, in soil. 

2.2.4. Changes in bone structure 

The number of osteons and the diameter of the Haversian canals
46

 are two data points that 

change with age, and microscopic examination of histological cross-sections of long bone 

diaphyses provides details of bone structure. First to use this method was Ellis R. Kerley in 

1965, followed by Marianne Bouvier and Douglas H. Ubelaker in 1977, Samuel D. Stout and 

Sarah J. Gehlert in 1980, Jean-Pierre Bocquet-Appel et al. in 1980, Ubelaker in 1987 and 

many others. These authors’ results rarely agree and implementation of the method again 

raises the problem of bone destruction, not to mention the frequent post mortem deterioration 

of the bone structure by micro-organisms (Garland, 1987). The method has only rarely been 

adopted in paleodemographic studies. 

2.2.5. Combining indicators 

Some authors have attempted to improve the results by simultaneously using more than one 

indicator. Gyula Acsádi and János Nemeskéri in 1970 proposed combining four indicators: 

closure of cranial sutures – observed on the endocranial surface –, alterations of the 

symphysis and the degree of osteoporosis observed in the neck of the humerus and femur. 

This method contains two errors. It assumes that each indicator correlates with age in an 

identical manner, which is false (see Table 1): the higher the indicator’s correlation 

coefficient, the greater its relative weighting. And in their calculation the authors omitted to 

include the specific margins of error for each age indicator used. 

Since each indicator correlates differently with age, Christian Theureau proposed (1996, 

1998, 2007) weighting coefficients.
47

 In so doing, he corrected the first error, but the second 

remains. Furthermore, the poor state of conservation of skeletons taken from archaeological 

digs often deprives the observer of one or more indicators, so that the age may well be 

estimated from a different number of indicators from one individual to another.  

2.2.6. Qualitative estimation of age 

To avoid these biases, some authors prefer to stick with a qualitative estimation of age, using 

a number of indicators to divide adult skeletons into adultus, maturus and senium (Liptak, 

1980; Alesan et al., 1999; White and Folkens, 2000) or “young adult”, “young mature”, 

“mature”, “old mature” and “old” (Signoli, 1998, 2008; Signoli et al., 2002; Ardagna, 2004; 

Rigeade et al., 2006). Similarly, children may be divided into “babies”, “infans I”, “infans II” 

and “juvenile” (Alesan et al., 1999), with no agreement on age categories from one author to 

another. 

This sort of approach is too often subjective, particularly when it uses pathological criteria 

such as arthritis, which correlate only very approximately with age. The assignation of a 

skeleton to a category may vary between anthropologists and tends to lead to age rounding. 
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 Osteon (or Haversian system): basic structure of compact bone, consisting of concentric 

layers of bone tissue around the Haversian canal containing the bone’s nerve and blood 

supplies. 

47
 Theureau’s proposed weighting for the age indicators (1998, p. 43): 0.34 for endocranial 

sutures; 0.25 for pubic symphysis; 0.18 for humerus neck and 0.23 for femur neck. 



By increasing the number of biological age indicators, this method does not escape the 

problem of their poor correlation with actual age nor that of attraction to the mean. Nor do the 

categories proposed coincide with the age groups habitually used in paleodemography, 

making comparison between sites impossible. 

2.2.7. Closure of cranial sutures 

None of the results obtained to date with these methods are convincing and, pending a good 

indicator – with its own good reference population – examination of the cranial sutures 

remains of interest. 

Until the 1970s, anthropologists who wanted to attribute an age to a skeleton on the basis of 

the degree of cranial suture closure referred to the table which was drawn up by Paul Broca in 

1875 and later revised in treatises of anthropology by authors such as Henri Vallois (1948) 

and Georges Olivier (1960). Estimation was highly subjective, given the margins of each 

segment (Figure 11). It was Claude Masset (1982) who first attempted to rationalise 

observation so as to make suture closure a practical criterion for paleodemography. Ten 

sectors are selected along the sagittal, coronal and lambdoid sutures and the degree of closure 

is assessed for each segment on a scale from 0 to 4 (Figure 12). The mean of these figures is 

the “closure coefficient”, a basic data point for the calculations that will be explained in later 

chapters. 

3. Problems with the methods for determining age and sex 

Critical analysis has focused primarily on the method based on cranial suture closure. The 

drawbacks and advantages of this method are therefore well known, making it a more 

dependable tool. 

Figure 11. Estimating the age of adults from the degree of cranial suture closure 

 



 
N.B. Until the 1980s, the age estimate was directly calculated from macroscopic examination 

of the cranial sutures (men and women) using the guidelines  shown. 

Source: diagram after Broca, revised by Olivier, 1960. 

 

Figure 12. New method for estimating the age of adults from the degree of cranial suture 

closure 

 



 
N.B. Following Masset (1982), 10 sutural sectors are selected for calculating a cranial closure 

coefficient (for paired segments, the mean is taken for each pair). 

Source: drawing by Luc Buchet after Olivier, 1960. 

Six main causes of systematic error in estimating age were identified by Masset (Masset, 

1971, 1973a and b, 1982, 1995). They are responsible, in particular, for the inaccurate image 

of excess female mortality between ages 18 and 29 and the virtual absence of older people in 

paleodemographic reconstructions. Although these criticisms concern sutures, they could 

equally well be directed at other indicators. The most frequent errors are summarised in Table 

2 along with their effects and initial solutions proposed (Bocquet-Appel, Masset 1977; 

Masset, 1982). 

Alongside the biological errors, such as sexual dimorphism
48

 and the age-sex composition of 

the reference population, there are the statistical errors, primarily the attraction of the mean
49

 

(Figures 13 and 14). The regression that links biological condition with a subject’s “real” age 

provides an estimate of individual age at death, but again with a margin of error. To ignore 

this margin, in the belief that any over- or under-estimates cancel out, leads to over-estimating 

individuals of mean age compared with those who are older and younger; this explains, for 

example, the absence of old people in earlier paleodemographic studies based on individual 
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 The obliteration of cranial sutures is a slower process in women than in men, requiring the 

use of separate closure tables for each sex, otherwise the results of the female 18-29 age 

classes will be exaggerated. 

49
 An individual age is always estimated within a range but the range is often ignored in 

paleodemographic studies using a sample made up of a set of individual ages. 



ages (see Figure 13: based on the mean age, the adult population will be distributed between 

ages 30 and 60, rather than ages 18 and 75. Similarly, if the margin of error associated with 

children's ages is not taken into account – Figure 14 – they will be distributed between ages 6 

and 14 rather than ages 0 and 18) (see also Box 3). 

For the study of a single grave, by an archaeologist or forensic scientist, the estimation of age 

at death,
50

 as usually proposed, is satisfactory. In paleodemography, we deal with a set of 

estimates and our objective is to reconstitute the demographic structure. So how should the 

margin of error associated with each estimate be taken into account? 

To summarise, because of the poor correlation between age estimated from bone indicators 

and real age, no method determines an individual age accurately enough to be used in a 

demographic approach to historical populations. To solve this problem, some researchers, in 

particular Masset and Bocquet-Appel in France, have taken another path: determining the age 

at death of a buried population via a probabilistic approach. 
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 Henceforth “individual age”, as opposed to “collective age” as estimated for a set of 

individuals. 



 

Table 2. Main causes of error in determining age and sex: consequences and responses provided by Bocquet-Appel and Masset 

Type of pitfall Description Consequences Responses provided by Bocquet-

Appel and Masset 

A. Taphonomic pitfall 

Differential conservation of bones 

in earth 

 

The structure of the adult bone 

resists biochemical degradation 

better than the bones of children 

and old people.
a
 

A. Taphonomic pitfall 

Slight over-estimation of young 

adults and under-representation of 

deceased infants and old people. 

 

The estimator method avoids the 

errors both in adult age 

determination and the under-

representation of infants. 

B. Biological pitfalls 

1. Sexual dimorphism 

 

The obliteration of cranial sutures 

is a slower process in women than 

in men, especially in young adults 

(a phenomenon long unknown to 

anthropologists). 

B. Biological pitfalls 

When a cranial suture table drawn 

up on the basis of a male sample 

is used for a female skeleton, this 

causes a major under-estimation 

of age at death and exaggerates 

the size of the 18-29 age class.
d
 

 

Masset drew up separate 

endocranial and ectocranial suture 

tables for each sex.
e
 

2. Long-term drift in suture 

closure 

The closure of cranial sutures in 

historic subjects may have been 

more rapid than in the reference 

population. 

Under-estimation of age at death 

of buried individuals. 

No solution at present.
f
 

3. Age-sex composition of 

reference population 

The mean age of skulls at the 

same suture closure stage is 

highly dependent on the age- sex 

structure of the reference 

population. 

Cemetery populations cannot be 

compared if the estimates of age 

and sex are not based on the same 

reference population (a precaution 

omitted by many anthropologists). 

Use of a “standardised” reference 

population, in which all the age 

classes are of the same size 

(proportionally to their duration). 

C. Statistical pitfalls 

1. Regression errors 

 

The connection between age at 

death and age indicator is 

biological (ageing). The statistical 

connection from a set of skulls of 

a given age to the corresponding 

C. Statistical pitfalls 

Any statement based on this type 

of regression is necessarily false. 

 

To go from a given suture closure 

stage to a mean age, the proper 

regression must be used, i.e. it 

must be based on a correct model. 



mean suture closure stage can be 

calculated,
b
 but not the reverse. 

Age does not depend on any age 

indicator. 

2. Attraction to the mean Individual age is estimated within 

a range of error, which tends to be 

ignored when the individuals are 

aggregated (it was long supposed 

that the errors cancelled out). 

If this range of error is ignored, 

mean ages are over-estimated in 

comparison with the oldest and 

youngest subjects (hence the 

absence of old subjects in the 

earliest paleodemographic 

studies). 

Use of a frequency matrix 

allocating the reference 

population to biological stages 

and age groups. 

 

Key 
a
 Bone resistance to post mortem physical-chemical degradation is minimal for infant skeletons, is maximal for adult skeletons and declines for 

older individuals. This can significantly distort apparent mortality curves (Masset, 1994, p. 382). The relationship between age at death and the 

actual state of conservation of bones in earth is less clear (Masset 1973a; Baud and Gossi, 1980; Guy and Masset, 1997; Guy et al., 1997; Walker 

et al., 1988); poor conservation makes it particularly difficult to use the most fragile age indicators, such as the pubic ramus of the hipbone. 
b
 Except, of course, if it is a representative sub-sample of the reference population. 

c
 Masset, 1973b; Henry, 1954, p. 273. 

d
 The image of excess female mortality persists in the most recent studies (Simon and Leemans, 1991; Cocquerelle, 1993; Guy, 1995), although it 

is not clear whether this is due to errors in determining individuals’ age and sex (caused by a possible long-term shift in the biological parameters 

– e.g., sutures, pubic symphysis), selective burial practices (Henry, 1959), or a population structure affected by an imbalance between the sexes. 

Historically, there have indeed been cases of excess female mortality, corresponding to women’s deteriorating living conditions (Perrenoud, 

1975). Although this issue is not as acute as has been claimed in paleodemographic studies, it is still worthy of attention, if only as a trace of 

socio-cultural habits associated with women’s status in society. 
e
 This method has been adopted by most French anthropologists, but the use of “unisex” tables of correlation between suture closure stage and 

age is still frequent, e.g. Todd and Lyon (1924 and 1925) in English-speaking countries and Nemeskéri in Eastern Europe (Masset, 1982). 
f
 The question of whether such a drift exists remains unresolved.  

Source: Buchet and Séguy, 2002. 



 

Figure 13. Distribution of individual ages at death (mean and standard deviation) for a male 

population of the Merovingian period: Cutry, Meurthe-et-Moselle, N.E. France) 

 

 
Key. The bone age indicator used is the closure of the ectocranial sutures (Masset, 1982), 

which explains the size and regularity of the margin of error (± 14.8 years). Each square dot 

represents one individual. 

Source: Luc Buchet in Legoux, 2005. 



 

 

Figure 14. Distribution of individual ages at death (mean and margin of error) for a child 

population: Rouen, Seine-Maritime, N.W. France 

 

 
Key. Ubelaker’s method (1978) is used to estimate the ages of the 81 children of both sexes in 

the Saint-Jean church cemetery in Rouen. This dental indicator’s margin of error increases 

with subject age. Each square dot represents one individual. 

Source: Luc Buchet from data compiled by Véronique Gallien (INRAP/CEPAM). 

 

Other authors have attempted to combine the results from various biological criteria, hoping 

to achieve greater accuracy. But the estimate obtained is no better. The age estimated by a 

given indicator does not strictly correspond to the estimate that may be provided by another 

indicator (Figure 15). This is due partly to the fact that the organism’s response to growth 

stress (such as malnutrition or epidemic) affects bone growth and tooth development 

differently. It is also due to the use of reference populations that differ from one indicator to 

another, or even for a single indicator. 

Furthermore, not all age classes from birth to old age are always properly represented in the 

reference populations. These biases distort the results (see Box 1 in the Introduction). Use of 

such reference populations is not recommended. 

Methods for determining age from a skeleton differ for adults and juveniles. The 

anthropological analyses must be made separately, but the general principles must be 

common to the two approaches. For a set of buried subjects, the aim is to estimate either the 

probable age distribution or mean age at death by reference to one, and only one, comparison 

collection whose main biases have been “neutralised” in advance. The limitations of these 

methods are shown by the use of a reference population that is not necessarily contemporary 

with the study population, which amounts to assuming that human biological features have 

not varied over time. One solution envisaged is to use a “pre-industrial” reference population. 

Figure 15. Estimates of the age at death of a child by 4 different methods 



 

 
Key. According to the method and indicator used – dental mineralisation stage (Ubelaker; 

Buchet, Séguy); diaphyseal length (Stloukal-Hanáková; Sundick) – the age estimate of the 

same child varies over a large range (Skeleton 110, Yvoire site, Haute-Savoie, S.E. France. 

Dig: Joël Serralongue, Haute-Savoie departmental council; anthropological study: Marième 

Bouali, Luc Buchet, CEPAM, 2006). 

 

Box 3. Why not adopt for a paleodemographic study the age estimation method based on 

the sacroiliac joint? 

(Lovejoy et al.’s method, 1985b; revised by Schmitt, 2000-2005) 

We have repeatedly described the mediocre quality of bone age indicators and have also 

explained why, pending a better solution, we have opted for the closure of the cranial sutures, 

despite the criticisms that have been levelled at it. Meanwhile, considering it too risky to use 

as an indicator of age at death “a poorly understood biological phenomenon” (Schmitt, 2002), 

some anthropologists have rejected cranial closure and sought new indicators, or have 

proposed a re-interpretation of known indicators such as age-related changes to the sacroiliac 

joint. 

Upon completing their research, both the inventors (Lovejoy et al., 1985b) and the 

“renovators” (Schmitt, 2000-2005), stated that this was the long-awaited solution to the 

problem of estimating adults’ age at death: “This approach is at present the best response for 

estimating the chronological age of adult subjects from the skeleton” (Schmitt, 2005, p. 98). 

Unfortunately, although it may satisfy forensic scientists or archaeologists wishing to know 

the age at death of an individual, neither this indicator nor this method are appropriate for a 

paleodemographic study. 

Indicator 

Although the degenerative features do correlate with age, the correlation is not perfect: in 

some cases of hyperostosis (mainly in males), there are differences between the left and right 

sides of the joint; but more importantly there is observer subjectivity, even once the method 

has been simplified (“the researcher’s experience is a major factor of bias” Schmitt, 2005, p. 

93). 



Reference population 

Even after the most recent adjustments (Schmitt, 2005), problems concerning the structure of 

the reference population remain. Since the structure of the anthropological reference series 

does not apply to the study population, Aurore Schmitt attributed to her reference population 

the structure of a population taken from Ledermann’s contemporary standard tables, with a 

life expectancy at birth of 30 years. In so doing, although she intended otherwise, she applied 

to archaeological series a structure that is not appropriate for pre-industrial populations. 

A further problem with the reference sample is that it appears to be applicable to a European 

population only. That is the conclusion Schmitt came to after obtaining poor results with her 

method on an Asian population: “The use of methods elaborated on western samples is not 

appropriate for people from different geographical origins” (Schmitt, 2004, p. 4). 

Consequently one may suspect that the reference used is also inappropriate for studying 

historical populations of uncertain origin (e.g., those from the Migration Period). 

Opting for individual ages 

The choice of a probabilistic approach is commendable but the error consists in applying it to 

each individual separately rather than to a total population, because the responses this method 

furnishes for determining age at death cannot be used for a paleodemographic study: how are 

we to allocate to age classes a set of individuals whose individual estimated ages may be 20-

29 years, 20-39 years, 20-49 years, 30-59 years, etc.? 

To sum up, although the age estimation method based on the sacroiliac joint is as good as any 

other for a pathology report, it cannot be used for the purposes of paleodemography. 

 



Chapter III 

Establishing a reference population 

 
The grounding of our approach must be broad and stable, so that future research can build 

upon commonly recognized components. To that end, our work must comply with a few 

essential rules that are outlined below. 

Distinguish children from adults in a paleodemographic approach 

Since the processes of growth, for children, and of ageing, for adults, are significantly 

different, two approaches – based on a unity of method – need to be used according to the age 

group under consideration, i.e. adult or juvenile. This division is also consistent with a 

number of demographic observations, particularly the fact that variations in child and adult 

mortality are totally independent of each other. 

Establish the comparison collections on which to base the estimation of sex and age at 

death 

This is a crucial point; indeed it must precede any study. No comparison collection is 

completely neutral, and using an existing collection does not preclude the task of examining 

its components and identifying its strengths and weaknesses. 

The option of assembling a specific collection for the purposes of a study also requires certain 

precautions in order to avoid bias. 

Prefer an age estimation approach based on a single, clearly defined criterion 

Given the data now available, we prefer to put aside multi-criterion approaches, which 

admittedly appear to correlate better statistically with age, but which use a wide range of 

collections whose intrinsic qualities have rarely been verified (particularly, individual ages, 

sometimes established indirectly from biological indicators). Our work will consequently be 

based on a single criterion, osteological or dental, taken from a comparison collection whose 

ages are clearly established by civil registration data. 

1. Establishing a new reference population for adults 

1.1. Claude Masset’s reference collection 

One of the largest collections of skulls, that of Ferraz de Macedo,
51

 has been studied by 

Claude Masset. After some adaptation and the addition of skeletons of older subjects from 
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 See Box 4. 



another Portuguese collection kept at Coimbra,
52

 he established a reference collection that for 

twenty years was the basis of most anthropological and paleodemographic studies in the 

French-speaking research community. 

By convention, we shall use the term “Masset reference collection” for the set of individuals 

formed by the combination of these two collections. These are raw data observed by Maria 

Emília de Castro e Almeida and Antonio Vicente, cited by Claude Masset.
53

 We shall use 

“Masset reference population” for the modified reference collection he uses, particularly for 

attributing age at death for a set of buried adults (probability vector method; see Chapter 

IV.2.). 

1.1.1. Opting for ectocranial sutures 

Cranial sutures are probably not the best indicator for determining an individual age at death, 

but they are no worse than any other for a “comprehensive” approach. Furthermore, the 

cranial vault is an anatomical feature that is generally well preserved in an archaeological 

context, unlike the proximal end of the femur or the pubic symphysis, for example. The need 

to have a larger sample for anthropological study is an initial justification for the choice of 

sutures as an age indicator. 

Masset’s research (1982) involved observation of the external and internal cranial sutures, of 

which he clearly prefers the internal ones. However, we have decided to use the ectocranial 

sutures only as an osteological indicator of age at death, for two reasons. First, a technical 

one: excellent bone conservation can cause problems for examining the endocranial sutures, 

because the only access is the foramen magnum and observation is difficult, even with an 

endoscope, and accuracy may be affected. The other, and perhaps most important reason is 

linked to the age structure of the Masset reference collection: the ectocranial sutures were 

measured on individuals aged between 18 and 95, whereas the endocranial sutures, harder to 

reach, were only measured on the Ferraz de Macedo collection (ages from 18 to 70). Using 

the endocranial sutures amounts to ignoring the oldest subjects, so that life stops, as it were, at 

70. 

The choice of ten segments for observation has not been challenged, because correlation is 

only improved if fewer segments are used. In 1993, Danielle Soulier and Raoul Perrot 

proposed using a single segment of the coronal suture (C3). Taking Masset’s series, for 

example, a correlation of 0.44 is obtained for women (N = 521) from ten segments, and 0.31 

from C3 alone. 

Box 4. The three Portuguese reference collections 

The Ferraz de Macedo collection in Lisbon 

Dr Francisco Ferraz de Macedo originally collected some 1,000 skulls at the end of the 19th 

century, but only 849 remained in 1978, when the collection was destroyed by a fire at the 

Lisbon science faculty. Only a few are left, kept in the same place as the Bocage collection 

(see below). 

To produce his “probability vectors”, Masset used the work of Maria Emília de Castro e 

Almeida and Antonio Vicente, who had assessed suture closure on the skulls in the collection 

in 1973 and 1976. 

The skeletons were those of people buried in two Lisbon cemeteries in 1876 and exhumed 

five years later to be placed in a mass grave; their years of birth ranged from 1806 to 1858. In 

addition to their age and sex, Ferraz de Macedo noted their occupation, marital status and 

cause of death (as given at the time). 
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 Idem. 
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 Our warmest thanks to Claude Masset for making all the data available to us. 



Most of these people had modest living standards, and were therefore representative of the 

largest social categories of that age, so the entire set was reasonably consistent in this respect. 

However, the sex ratio is imbalanced, since the series comprises more female skulls (481) 

than male ones (368), and the age distribution exhibits two anomalies: a total absence of 

subjects aged over 70 and, with respect to their recorded ages, statistically significant age 

heaping. 

Until the preparation of this handbook, Masset’s thesis (1982) was the most extensive study 

of this collection. 

The Coimbra collection 

Approximately 2,300 skulls of individuals who died between 1910 and 1936 are conserved at 

the Department of Anthropology of the University of Coimbra. As in Lisbon, each skull is 

accompanied by documentary evidence of sex, age, place and year of birth, occupation, 

family status, and probable cause of death. The social origins of the individuals concerned are 

modest, as in Lisbon. Seventy skulls belong to individuals aged over 70; they were selected 

by Claude Masset to compensate for the absence of subjects of that age in the Ferraz de 

Macedo collection. 

Publications: Bocquet, 1977b; Bocquet et al., 1978; Bocquet-Appel, Xavier de Morais, 1987; 

Masset, 1982. 

The Bocage museum collection in Lisbon 

The major skeleton collection conserved in the Bocage Museum (National Museum of 

Natural History, Lisbon) is not widely known, because its collecting protocol was only 

initiated in the 1980s. It comprises 1,692 skeletons from Lisbon cemeteries and covers the 

19th and 20th centuries (1805 to 1975). 

Each skeleton is accompanied by basic documentary evidence (age at death, place of birth, 

occupation, domicile, and date and cause of death). At present this information is accessible 

for nearly half the individuals, and the remaining data are still being processed. The two sexes 

are equally represented, and age at death ranges from birth to 98 years. 

A short publication has been devoted to this collection: Cardoso, 2006. 

1.1.2. Exact age and declared age 

Rapid analysis of the distribution by sex and age of the reference collection reveals a bias 

noted but not corrected by Masset (1982). It is a common bias in historical demography, due 

to approximate declarations of age, leading to a preference for even numbers, particularly for 

women, and multiples of 5, mainly for men (Figure 16). 

Even when individuals are put in five- or ten-year age classes, this bias remains a problem. It 

is important, therefore, to correct the declared ages to come as close as possible to a 

distribution by “exact” age. Historians and anthropologists, regularly faced with this bias, 

have proposed various methods for correcting it. We have chosen the moving average, in this 

case over a five-year period,
54

 to allow for age discrepancies due to the preference for 

multiples of 5. Starting with the observed distribution for each sex separately, we calculated 

the theoretical number of individuals that each annual age class should include if there were 

no age heaping. The corrected age distribution is shown in Figure 17. 

To “correct” the reference collection accordingly, “real” rather than theoretical individuals 

had to be placed in each age class. To that end, we randomly drew n individuals
55

 aged x ± 2 
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 A three-year period was also tried, but this still exhibited artificial irregularities (in annual 

age classes). However, after placing the individuals in five-year age classes, the results 

obtained were close to those given above. 

55
 16 women and 42 men. 



years and replaced them in the target age class. All in all, the total number of men and women 

remains constant, their biological characteristics (ectocranial suture closure coefficients) are 

untouched, and only the distribution by five-year age classes is slightly modified (Figure 18) 

 

Figure 16. Pyramid of declared ages in the Masset reference collection: age heaping 

 
 

 

Figure 17. Age distribution of men and women in the Masset reference collection, after 

smoothing 

 
 

 

1.1.3. Observation of individuals aged over 60 at death 



Even corrected, the Masset reference collection is affected by another major bias, common to 

most osteological collections: the low number of older people for observation. Claude Masset 

faced this problem with the Ferraz de Macedo collection, which contained no individual over 

70, and partially evaded it by adding skeletons from the Coimbra collection. However, the 

sample size remains small and the biological variability observed among the over-60s is still 

not wide enough, in our view, to obtain a reliable model for estimating age at death based on 

cranial suture closure. Although we do not claim to have fully solved the problem, we have 

attempted to supplement the over-60 sample with individuals from other reference collections. 

Figure 18. Age distribution by five-year age class of men and women in the Masset reference 

collection: before and after correction of declared age. 

 
 

Of the various osteological collections available,
56

 we selected that of the National Museum 

of Natural History in Lisbon (Cardoso, 2006), for obvious reasons of geographical and 

genetic proximity to the population used by Masset. Particular attention was paid to the 

observation of men and women aged over 60. A total of more than 200 individuals (91 

women and 115 men) were studied
57

 and added to the 521 women and 394 men in the initial 

collection. 

This new reference population, taken from three Portuguese collections and henceforth 

denoted PReference, presents a more balanced distribution by age at death, with 612 women and 

509 men. 
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 Yann Ardagna presents a comprehensive inventory in his thesis (defended 2004, Marseille): 

“The conservation of biological archives and associated documents in biological 

anthropology. Applications for French and Hungarian anthropological collections”. 

57
 Anthropological study: Luc Buchet and Marième Bouali (October 2006). This series will be 

called the “Museum collection” when it is distinguished from those of Ferraz de Macedo and 

the University of Coimbra. 

We wish to express our warmest gratitude to Maria da Graça Ramalhinho, director of the 

Museu Nacional de História Natural (MNHN) and Hugo Cardoso, anthropologist at the 

Museu Bocage, MNHN, for their help and hospitality during our stay in Lisbon.  



1.1.4. Distribution by sex and coefficient of suture closure: different ageing processes for 

men and women? 

Although this addition of some 200 further individuals modified the age structure of the 

reference collection, it had little effect on the distribution by coefficient of suture closure 

(Figure 19), despite selection by age. This is evidence of the weak link between age and 

closure of cranial sutures: a subject may be old according to civil records and yet present 

juvenile features. Masset’s observation that there is a highly marked sexual dimorphism in the 

rate of closure of cranial sutures
58

 still holds for the supplemented sample. 

The larger sample does not, however, correct certain anomalies observed in the distribution of 

men by coefficient of suture closure, such as the low number of men at coefficient 3 or the 

prevalence of certain other coefficients (see Figure 19). We have corrected the most blatant 

bias, considering it to be due to interpretation error
59

 and not an ageing process specific to 

men, by applying to the male coefficients 2, 3 and 4 the pattern observed in the female 

sample.
60

 We excluded from the adjustment the coefficients 0 and 1, which are easy to 

interpret, like those of complete closure, unlike the intermediate values which are more prone 

to observer subjectivity. Clearly, this correction to the distribution by coefficient of suture 

closure makes no difference to the age distribution observed in the male sample. 

Figure 19. Distribution by coefficient of suture closure and sex in the Masset collection. 

 
 

This pattern of closure of the cranial sutures, occurring visibly earlier and faster for men than 

women, explains why we have chosen a model estimating age at death according to sex. 
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 This later obliteration of female sutures was noted by Mihály Lenhossék in 1917 (cited by 

Abdelhamid Grait in his biological and medical science dissertation: “Determination of age at 

death from the postcranial skeleton”, University of Lyon I, 2006, http://anthropologie-et-

paleopathologie.univ-lyon1.fr). 

59
 Since Ferraz de Macedo’s collection has been totally destroyed, the sutures can no longer 

be re-interpreted to determine with certainty whether a specific male suture closure pattern 

exists.  

60
 We looked for a distribution presenting a ratio between successive coefficients very similar 

to that observed for women (i.e. ≈ 0.62).  



Tables I to III (available at Springer Extra) give the distribution of coefficients of cranial 

suture closure by age groups and sex, i.e., the biological characteristics of the reference 

population (PReference) we have  established. 

1.1.5. Representativeness of the sample with respect to the demographic context (late 19th-

century Lisbon) 

The establishment of osteological collections follows certain rules (legal and practical, such 

as the geographical and social catchment area of the hospital in question) which may affect 

the representativeness of the sub-population formed in this way. We set out to check whether 

or not our reference population – PReference – was representative in demographic terms (age-sex 

distribution) of the population of Lisbon in the late 19th century. 

Using statistical data from the city of Lisbon
61

 for the age-sex distribution of the living 

population in 1890 and of deaths in 1889, we calculated the age distribution at death and the 

associated death distribution (Figure 20). 

The age distribution at death in the reference collection presents an inverted profile compared 

with the demographic situation in Lisbon at that time: whereas two-thirds of deaths occurred 

after age 50,
62

 our PReference collection comprises more than 50% of subjects under 50
63

 (Table 

3). This skew, which may be due to young adults dying prematurely of tuberculosis or some 

other disease in the Lisbon hospital, necessarily affects the sampling of suture patterns 

observable in this population. 

 

Figure 20. Distribution of deaths by age in the reference collection (PReference) compared with 

that of Lisbon in 1889. 
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 Source for the 1890 census: Censo da População do Reino de Portugal n
o
 1 de Dezembro 

de 1890. Volume II. Lisboa, Direcção da Estatística Geral e Comércio, 1896 (INED 

shelfmark: S2Q 1890/2). The age pyramid, established for 1 December 1890, was 

extrapolated back to 1 July 1889, the nearest date to the death of the individuals under study. 

Source for the 1889 death records: Movimento da População. Terceiro ano 1889-1890. 

Lisboa, Ministério das Finanças, Direcção-Geral da Estatística, 1892 (INED shelfmark: S3 Q 

1889-1890). 

62
 This is true for late 19th-century Lisbon, but is also more generally applicable to pre-

industrial populations. For example, the proportions of deaths before and after age 50 in 

France in 1770-1779 were 35% and 65% (based on Blayo, 1975). 

63
 In the original Masset collection, 59% of all women and 65% of men were aged under 50. 



 
 

Key: Top graph men, bottom graph women. 

 

Table 3. Deaths before and after age 50, for men and women (%): expected (Lisbon mortality 

in 1889) and observed (PReference) distributions. 

Age 

 

Expected death 

at age x, women  

Observed death 

at age x, women 

Expected death 

at age x, men 

Observed death 

at age x, men 

Age 18-49 37.7 50.2 29.1 51.1 

50 and over 62.3 49.8 70.8 48.9 

 

Consequently, the reference collection presents a greater diversity of biological characteristics 

among the under-50s than the over-50s, who are under-represented in our new sample. 

As it is, the reference population reflects the sutural patterns of a young population, not often 

observed in historical demography, except in very special cases of “disaster” mortality 

(massacre, war, violent plague-like epidemic). A reference population of this sort will tend to 

under-estimate the ages of any archaeological population to which it is applied as a yardstick. 

It therefore needs to be adjusted slightly so as to more accurately reflect the mortality of pre-

industrial populations. 

Analysis of sex distribution at death in the population of Lisbon shows that between ages 30 

and 60 men are more numerous than women. Conversely, the sex ratio
64

 in our reference 

population reveals a shortfall of deaths among young men and men in the 40-60 age group 

(Figure 21). The excess of women in the osteological population is probably due to social 

conditions in which single women (such as young immigrants, aged 20-24, or older widows 
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 Number of men per 100 women. 



with no income, aged 40-59) often had to fall back on the public hospital in case of illness or 

extreme poverty.  

Taking this approach, our reference population (PReference), taken mostly from a hospital, is not 

representative of the population of Lisbon, either in life or in death. The shortfall of men is 

particularly significant between ages 40 and 60. This skew, which it would be very hard to 

correct, may well explain the divergent suture closure patterns by sex (the small size of the 

male sample would not cover the full range of biological diversity). It is hard to correct 

because of the risk of over-weighting female biological processes while simultaneously 

masking males oness. The alternative is to leave the male sample as it is, pending further 

additions, on the understanding that the age at death estimates for buried men are, as things 

stand, slightly biased. 

 

Figure 21. Sex ratios at death in Lisbon, 1889, and in the PReference population 

 

1.2. Adjusting the reference population 

1.2.1. Extreme ages observed and division into age classes 

The minimum age in PReference is 18 years, which corresponds to the ossification of the spheno-

occipital synchondrosis,
65

 rather than to any strict biological transition between juvenile and 

adult skeletons. This borderline, based on a single observation, may well conceal a biological 

change that varies between men and women, which remains to be proven (see above). The 

oldest age observed is 95 years for women and 89 years for men. Consequently, the “90 years 

and above” age group cannot, on the basis of our evidence, be observed in the same manner 

for the two sexes, so the last age group used for the “both sexes” sample will be “85 years and 

over”. The size of the sample, and the biases previously described in declared ages, argue 

against using annual figures. On the other hand, the division into ten-year classes, proposed 

by Bocquet-Appel and Masset, significantly reduces the precision of any demographic 

calculations because it assumes that deaths are uniformly distributed across this age interval. 

The wider the interval, the more it masks any inflection points in the risk of death between 

two given ages. 

We have therefore opted for five-year classes, which are closer to demographers’ standards 

(providing convenient comparison with demographic indicators that use this interval). Since it 
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 The joint between the sphenoid and occipital bones in the skull base. 



is easier to combine groups than subdivide them, observation by ten-year classes of course 

remains possible. 

Two groups do not fit into this pattern: the 18-19-year-olds, whom we have chosen to 

separate off
66

 so as to begin observation at age 20, which facilitates calculation of mean age at 

death (one data point in our mortality models) and comparison of various age groups of the 

same amplitude. Similarly, the oldest subjects, the “85 and above” age group, do not strictly 

speaking belong to a single five-year interval: life does not end at 89 precisely. We do, 

however, assume a certain equivalence in order to include the oldest ages in our comparative 

analyses. 

1.2.2. Expected distribution by age at death in a pre-industrial population 

To avoid applying the age structure of the reference population to the archaeological 

populations under study, Masset proposed “standardising” his reference population, i.e., 

allocating the same number of individuals to each age group in proportion to its amplitude in 

years. Unfortunately, this age at death distribution does not correspond to any known 

demographic reality. Even in extreme cases, where the risk of death is the same at all ages, the 

death distribution is affected by the age pyramid of the living population (Séguy et al., 

2006a). 

Rather than measure the characteristics of various cemeteries against the yardstick of an 

unlikely death distribution by age, we prefer a reference population whose death distribution 

by age reflects the “normal” mortality of pre-industrial populations. Logically, therefore, 

PReference should comply with the death distribution by age observed in late 19th-century 

Lisbon. 

It might be thought preferable to fit the reference population to the average mortality pattern 

of pre-industrial populations (the mean values of the tables in our corpus, see Chapters VI and 

VII), but since the demography of late 19th-century Lisbon is statistically representative
67

 of 

mortality by age in pre-industrial populations (Figure 22), the choice of Lisbon does not 

introduce any bias. 

Figure 22. Age distribution of deaths for Lisbon (1889) and our Pre-industrial Standard 
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 They can always be brought back in later, either with the 20-29 age group, as 

anthropologists do, or with younger groups, as demographers do (15-19 age group). 

67
 The chi-squared test comparing the two distributions is non-significant at 2.5% level for 

both sexes combined, at 1% for men and at 1.2% for women. The observed mortality 

distribution for Lisbon does not significantly differ, therefore, from that defined by the pre-

industrial mortality standard. Female mortality in Lisbon between ages 25 and 45 is lower 

than that in the Pre-industrial Standard. In the light of the remarks we have made concerning 

the male sample, this under-estimation of female mortality is highly plausible given the biases 

in late 19th-century Lisbon’s statistical data (erroneous age declarations, under-recording of 

certain population categories in censuses, inaccuracies in ten-year age groups for counting 

annual deaths). 



 
 

To obtain the chosen distribution, the demographic characteristics of PReference had to be 

modified while maintaining its biological ones. For this reason we modified the age 

distribution at death, not by randomly redistributing individuals from one age group (as in 

Masset, 1982) but on the principle of matrix redistribution. Tables IV and V (at Springer 

Extra) describe the breakdown by age and suture closure coefficient of the reference 

population, male and female, after this modification. We shall henceforth denote it PLisbon1889. 

1.2.3. Male-female weighting (for a population of both sexes) 

The notable difference between men and women in patterns of cranial suture closure is a good 

reason for preferring separate analyses by sex. However, so that comparisons can be made 

with studies that generally use populations of both sexes combined, we propose a reference 

population to be used in these cases. 

In our reference population, the number of males (473) is lower than the number of females 

(521). To prevent this imbalance – which reflects demographic reality at certain ages –
68

 from 

applying “too many” female characteristics to the both-sexes sample, we have weighted the 

male sample to make it equal to the number of females. A multiplier of 1.101
69

 is applied to 

each cell in the contingency table for the male sample (Table IV at Springer Extra). Table VI 
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 At higher ages, women are more numerous than men. 

69
 The multiplier  = 521/473. 



(at Springer Extra) shows the new distribution obtained for the “equally weighted” male 

sample, and Table VII the consequent “both sexes” distribution. 

1.2.4. Defining stages of suture closure 

Cranial suture closure is expressed by a coefficient which may have 41 values (0-40
70

). As in 

the case of annual age classes, it is awkward to work at this level of detail because of the 

random fluctuation observed in our sample. To achieve some degree of coherence in analysis, 

it is better to divide the suture closure coefficients into sub-sets, or “suture closure stages”, to 

use Masset’s term. 

Various divisions have been proposed: seven stages (I-VII; Masset, 1982, p. 171 and 178) or 

four (0-4; Bocquet-Appel and Masset, 1995). Whereas the four stages (0-0.9; 1-1.9; 2-2.9; 3-

4), regardless of sex, appear to be designed to achieve equal divisions, Masset’s seven stages 

are governed by a more elaborate system, not spelt out by the author, and vary by sex to allow 

for the differences in suture closure between men and women (see above). In addition, they 

give disproportionate weight to the lower suture closure coefficients, since the first ten cover 

five of the seven stages proposed. 

In an attempt to reduce these biases, we have opted for a division into equally weighted 

stages; each of our five stages corresponds to around 20% of our sample subjects (see Table 

4). This division is virtually identical to the results obtained by statistical distribution analysis 

of the observations in 5 groups (k-means clustering). 
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 Each suture segment is graded from 0 to 4. Divisions of tenths or even fiftieths may be used 

to calculate the coefficient. For the sake of convenience, we have multiplied these values by 

ten. 



 

Table 4. Characteristics of the PLisbon1889 reference population 

 

Suture closure 

coefficient  
 (× 10) 

 
18-19 

 
20-24 

 
25-29 

 
30-34 

 
35-39 

 
40-44 

 
45-49 

 
50-54 

 
55-59 

 
60-64 

 
65-69 

 
70-74 

 
75-79 

 
80-84 

 
85 + 

 
Total 

Contingency table, women 

0-2 

3-9 

10-18 

19-27 

28-40 

Total 

6.2 

0.9 

0.4 

0.4 

0.0 

8 

15.7 

4.0 

1.6 

0.8 

0.8 

23 

16.6 

3.7 

2.3 

1.4 

0.0 

24 

7.0 

10.2 

0.5 

2.7 

2.7 

23 

8.4 

8.4 

3.0 

1.8 

2.4 

24 

8.7 

7.1 

4.9 

2.2 

1.1 

24 

9.8 

7.4 

4.9 

2.9 

1.0 

26 

8.2 

8.9 

6.2 

7.5 

4.1 

35 

4.7 

10.9 

7.0 

7.8 

7.8 

38 

5.1 

8.4 

11.8 

16.9 

11.8 

54 

7.6 

4.6 

13.7 

12.2 

19.8 

58 

3.8 

9.4 

20.7 

15.0 

13.2 

62 

6.2 

6.2 

10.8 

13.9 

13.9 

51 

0.9 

2.8 

5.7 

9.4 

15.1 

34 

1.1 

9.2 

7.9 

5.6 

13.3 

37 

110 

102 

101 

101 

107 

521 

Contingency table. men 

0-8 

9-15 

16-21 

22-28 

29-40 

Total 

4.9 

0.4 

0.4 

0.4 

0.0 

6 

17.9 

3.6 

0.5 

1.0 

0.0 

23 

12.2 

6.4 

2.3 

2.9 

1.2 

25 

11.7 

6.5 

4.1 

2.9 

1.8 

27 

11.6 

6.5 

5.8 

2.2 

2.9 

29 

12.8 

7.3 

4.6 

4.6 

3.7 

33 

7.4 

13.8 

5.3 

6.4 

3.2 

36 

3.5 

12.7 

8.1 

9.2 

4.6 

38 

12.4 

7.4 

9.9 

7.4 

4.9 

42 

0.0 

9.4 

9.4 

14.1 

17.2 

50 

3.9 

2.6 

11.6 

18.0 

18.0 

54 

0.0 

8.1 

8.1 

12.1 

14.8 

43 

1.1 

6.8 

7.9 

12.4 

6.8 

35 

0.0 

1.9 

3.3 

5.2 

5.6 

16 

0.0 

2.9 

4.4 

5.8 

2.9 

16 

99 

96 

86 

105 

88 

473 

Contingency table. weighted men and women 

0-4 

5-13 

14-20 

21-28 

29-40 

Total 

11.2 

1.7 

1.3 

0.4 

0.0 

15 

34.1 

10.0 

1.5 

1.9 

0.8 

48 

28.5 

10.2 

7.4 

4.1 

1.3 

52 

22.1 

13.6 

6.9 

5.5 

4.6 

53 

17.2 

21.2 

8.2 

4.4 

5.0 

56 

17.0 

21.3 

10.8 

6.1 

5.1 

60 

18.1 

17.5 

15.4 

10.1 

4.5 

66 

12.8 

19.8 

16.9 

18.9 

8.5 

77 

14.0 

24.3 

18.1 

14.8 

13.2 

84 

8.4 

15.3 

23.9 

32.4 

29.1 

109 

10.6 

13.3 

23.5 

33.5 

36.6 

117 

5.6 

23.2 

26.5 

28.4 

25.7 

109 

6.2 

17.3 

18.6 

29.1 

18.3 

90 

0.9 

5.3 

8.8 

17.1 

19.4 

52 

4.5 

8.1 

13.1 

12.5 

16.5 

55 

211 

222 

201 

219 

189 

1042 

 

 

 



 

1.3. The PLisbon1889 reference population  

This artificially reconstituted population PLisbon1889 will, therefore, be the basis for estimates of 

age at death for a set of buried adults. Table 4 shows its characteristics for men, women and 

both sexes combined, by stage and five-year age group. (The distributions by suture closure 

coefficients and age groups are given in greater detail in Tables IV to VII at Springer Extra). 

Compared with the Masset reference population (raw data, non-standardised population, 

corrected ages, five-stage division,), the PReference population reveals the biological structure of 

the population. In particular, note the striking reduction in the weight of low-coefficient 

individuals (0-2 for men, 0-8 for women) in the composition of the youngest age groups. 

Another major difference between the two populations is perceptible in the distribution of 

coefficients of cranial suture closure for men over 60 and women over 70 (before any 

adjustment of the age structure). These differences reflect the addition of some 200 extra 

subjects aged over 60 (Figure 23). However, the most significant modifications are the result 

of changes in the age structure of the PReference population that were made to obtain PLisbon1889 

(see Table VIII at Springer Extra and Figure 24). 

1.3.1. Advantages and drawbacks of the new reference population 

A reference population is never a neutral construct; great care must be exercised in 

constituting it, since its composition by sex, age and biological stage has a determining effect 

on subsequent anthropological findings. Our reference population is still imperfect due to 

possible errors of interpretation in the initial collection and the under-representation of certain 

biological features of suture closure. Our sample is still short of men (see Figure 21) and 

under-represents young male subjects whose suture closure has not or hardly begun 

(coefficient 0-1). An age distribution observed from a larger number of individuals might turn 

out to be different from the one used in this study. 

We believe that the care we have taken to ensure the representativeness of our reference 

population with respect to the “standards” of pre-industrial populations, in terms of biological 

development and health conditions, is necessary, although still open to improvement, if it is to 

be used with archaeological populations several centuries old. 

Figure 23. Distribution by suture closure stage and five-year age group of the individuals in 

the Masset reference population and our raw reference population  



 
Key. Blue: individuals in the Masset reference population (after age correction, before 

standardisation); grey: individuals in our additional sample. 

 

Figure 24. Distribution by suture closure stage and five-year age group of the individuals in 

Masset and our reference population adjusted to 1889 mortality in Lisbon (PLisbon1889) 

 



 
Key. Blue: individuals in the Masset reference population (after age correction, before 

standardisation); grey: individuals in our Lisbon 1889 population. 

 

The collections we propose as bases for anthropological analysis (PReference and PLisbon1889) 

present a number of advantages over existing collections: 

- The declared ages have been corrected by statistical methods (necessary and sufficient); 

- The addition of some 200 individuals aged 60 and above gives greater consideration to the 

suture characteristics of the elderly and provides an observed sample that is slightly better 

balanced by age group. 

- Visibly different biological processes between males and females (as far as our current 

evidence shows) mean that separate analysis by sex is to be preferred. However, for the 

study of both sexes combined, it is better to use a population in which males and females 

have been equally weighted. In our collection, where females are more numerous than 

males, not to correct would have given excessive weight to female biological 

characteristics. 

- Using five-year age groups gives greater precision to the estimates, while not ruling out a 

return to ten-year groups. 

- The suture closure stages have been defined with care to ensure that an artificial division 

does not give certain age groups greater weight in the estimates than is actually observed. 

- Rather than use an age and sex structure that does not correspond to a “traditional” 

demographic distribution (PReference), we have deliberately fitted our population to the 

mortality standards of pre-industrial populations so as to propose a reference matrix more 

appropriate for archaeological populations (PLisbon1889).
71

 This was facilitated by the 

additional sample of men and women over 60. 
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 Although it is essential to adapt a reference population to the pre-industrial model 

(PLisbon1889 and below, PMaubuisson and PAntibes1890) when using the probability vector method, 



2. Establishing a reference population for juveniles 

For children, as for adults, each method for estimating age uses a comparison collection 

specific to the age indicator observed. Within a given study it is best not to use age indicators 

that were not developed for the same reference population (or populations calibrated to be 

similar and consequently comparable), because the estimates obtained may diverge widely 

(see Chapter 2, Figure 15). 

On top of that there is a further problem: the most common methods using long bone 

measurements as age indicator propose indirect estimates in practice, without saying so 

explicitly (Sundick, 1978; Fazekas, Kosa, 1978; Alduc-Le Bagousse, 1988). These authors 

construct correlation tables of age estimates from teeth (usually with Ubelaker’s method 

[1989], with no allowance for margin of error) and the length of certain bones in a series of 

skeletons used as reference population. These tables are then used to estimate the age at death 

of juveniles for whom only post-cranial remains survive. This approach is subject to two 

biases: the variability of bone growth patterns and the poor quality of dental estimation 

methods. 

More recently (Lalys, 2002), tables have been more rigorously established from x-rays of the 

length of the ulna and the bones of the hand, but their use has been limited. 

2.1. Tooth emergence and mineralisation 

We have expressed reservations about the use of tooth emergence to estimate the age of an 

archaeological population because the extent of tooth eruption is hard to estimate on 

archaeological remains, both for taphonomic reasons – the teeth need to be in the sockets – 

and the difficulty of discerning stages from dry bone.
72

 We prefer to observe the process of 

dental mineralisation, which, in addition, is less subject to environmental constraints. 

Unlike the situation with adults, there are no well-documented historical collections of 

children’s bones. Juveniles are recorded in various collections such as those of the National 

Natural History Museum of the University of Lisbon, the Institute of Normal Anatomy of the 

Strasbourg Faculty of Medicine, the Museum of Anthropology of the University of Bologna, 

and many others (Ardagna, 2004), but in numbers too disparate to be of use for statistical 

analysis. Earlier research is sometimes mentioned in the literature, but the results are hard to 

compare with current studies. The major series studied by Eduard Mühlreiter, for example, 

published by Theodore Emile de Jonge Cohen in 1920, gives the average age for the eruption 

of permanent teeth among children in Vienna, 1870-1890, but we have no information about 

how this was interpreted or even the nature of the sample. Similarly, children’s declared ages 

are subject to the same errors as described for the adults in the Portuguese collections 

(although the range is smaller, there are preferred ages for children that cause the same 

distortions as for adults, Figure 25). Finally, all the early studies are based on observing tooth 

eruption, which we have chosen to abandon in favour of dental mineralisation.  

                                                                                                                                                         

this is no longer the case when using estimation methods based on a constant distribution of 

stages by age group (see Chapters A and B). Nevertheless, careful thought must be given to 

the way reference collections are constituted before attempting to estimate the age at death of 

a buried population. Whatever methodology is used, the quality of the estimates depends on 

the representativeness of the biological characteristics observed in the reference collection (of 

known age and sex). 

72
 Emergence is complete when the tooth breaks through the gum. 



2.2. Establishing a new comparison collection
73

 

Over the past few years, with the help of stomatologists, dental surgeons and orthodontists 

practising mainly in the Alpes-Maritimes département,
74

 we have collected a series of current 

orthopantomograms (dental panoramic radiographs) of children of known sex and age (in 

years and months). The reference sample chosen comprises 677 x-rays of children aged 2 to 

17 years.
75

 It comprises children born in southern France and North Africa.  

Figure 25. Age distribution of the sample of orthopantomograms 

 
 

This reference population is both homogeneous geographically – the Mediterranean basin – 

and heterogeneous socially and in terms of living conditions, so is well suited for representing 

a wide range of contexts. 

Although the sample is not entirely age-weighted, it does comprise a statistically acceptable 

number of children in each age class, except for the two extremes. Increasing the number of 

17-year-olds would have virtually no effect, given the extent of mineralisation observed at 

that age. On the other hand, an increase in the number of 2-year-olds might have 

repercussions for the contingency tables and the frequency matrices (see below), particularly 

if some children had a mineralisation coefficient higher than those in this sample (higher than 

4). 
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 We are very grateful for the invaluable help provided by Eve-Line Boulle and Marième 

Bouali for data entry, Magali Belaigues-Rossard, Nicolas Lannoy and Magali Sucheki for 

statistical analysis. We also warmly acknowledge Arnaud Bringé, whose initial results were 

published in 2005 and 2006, for his close collaboration on this study, (Buchet et al., 2005, 

2006). 
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 Our warmest thanks go to all those who have forwarded to us the orthopantomograms 

necessary for establishing the reference population, friends, colleagues and practitioners. In 

this last group, the following deserve special mention: Drs Kamilla-André and Terrasson 

(Cagnes-sur-Mer), Chaussy, Lachaud and Rücker (Cannes), Savoye (Le Cannet), Bougues 

(Marmande), Dossios, Favot, Jasmin, Mahler, Millet and Raybaud (Nice), and Alibert (Sophia 

Antipolis). 
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 In all, 715 dental x-rays of children aged 2 to 18 were analysed. We excluded from the 

sample the 17 individuals aged 18 to 20, in line with our biological distinction between 

juveniles and adults. A certain number of x-rays of children aged 2 to 17 were withdrawn (21 

in all), usually where there had been one or more therapeutic extractions or where the extent 

of mineralisation diverged too far from the average distribution (recording errors or 

pathology). 



2.3. Number of mineralisation coefficients 

Examination of the tooth mineralisation process begins by noting for each item or x-ray, the 

mineralisation coefficient of each tooth: maxillary and mandibular, deciduous and permanent. 

In the method we propose, the number of coefficients is restricted to seven (Figure 26) in 

order to minimise the inevitable problems of subjective interpretation that arise from more 

complex classifications (Moorrees, Fanning and Hunt, 1963a and b, proposed sixteen). 

2.4. Possible variability in tooth development 

Using contemporary x-rays to produce a reference collection applicable to pre-industrial 

populations is not a straightforward task. However, on the basis of a comparative study of a 

Roman-period and a 19th-century population
76

 which concluded that there had been no 

significant drift in the tooth mineralisation process (Saunders et al., 2000), we may assume 

that observations of contemporary teeth can be used to construct a reference population.
77

 The 

authors of that study noted that, unlike mineralisation, the timing of tooth eruption appears to 

vary over time (because of environmental factors and improvements in health). In order to 

come as close as possible to the standard for pre-industrial populations and reduce the 

influence of the reference sample on the age estimates, its age distribution will be modified to 

fit that of a population subject to pre-industrial mortality rates (see below). Major dental 

observation series, such as that from 19th-century Vienna studied by Mühlreiter, and from 

20th-century Nice published by Muller-Bolla et al. in 2006, were not used because they 

focused on tooth eruption and not mineralisation. 

Figure 26. Tooth mineralisation coefficients: example of a child aged 6 years ± 4 months 
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 The Roman series (2nd-early 3rd century AD) came from the Isola Sacra necropolis, 23 

kilometres west of Rome. It comprised some 2,000 individuals (of whom 800 children) of 

both sexes and all ages. The 19th-century series belongs to St Thomas’s Anglican Church, 

Belleville, Ontario. It comprises 1,564 skeletons, of whom 282 children under 15. Of these, 

229 were sufficiently well preserved for dental examination.  

77
 A team of dentists and biostatisticians (Parner et al., 2001) investigated any possible trend 

over time in the eruption of permanent teeth by analysing two samples of Danish 

schoolchildren from 1969 and 1982. They observed a slight but statistically significant 

increase in mean age for both sexes and all teeth (with 95% CI: 1.5 days per year for boys and 

2.6 for girls). However, the interval between the two samples was short and the public health 

conditions in the years concerned cannot be compared to those of pre-industrial populations.  



 
 

Source: photographs, CEPAM; drawings and design, Luc Buchet. 

2.5. Selection of teeth for model construction 

To allow for archaeological conditions, where teeth are often lost after death, particularly 

deciduous teeth, a number of models are proposed. All are based on observing permanent 

teeth only. 

Two of the proposed models are more appropriate for pathologists because they use all the 

teeth in a hemi-maxilla or hemi-mandible. For archaeological studies, where skeletons rarely 

have a full set of teeth, a selection has been made; three models are proposed using both the 

teeth that are most often present and those whose R
2
 is higher than 0.8. 

The first model involves the eight permanent maxillary teeth, the second the eight permanent 

mandibular teeth. The other three models use a smaller number of teeth: four permanent 

maxillary premolars or molars,
78

 four permanent mandibular premolars or molars, four 

permanent maxillary or mandibular premolars or molars. The models using a limited number 

of teeth lose in statistical precision but come closer to actual archaeological conditions of 

differential conservation (see Tables 9 and 10). 

2.6. Adapting the reference population 

As in the case of adult age estimation, certain criteria had to be met, such as a sufficient 

number of observations to account for intra-population diversity, adequate representativeness 

of the sample with respect to living (and dying) conditions for pre-industrial populations, and 

division into mineralisation stages and age groups that are statistically and demographically 

useful. 

We did not distinguish between boys and girls, because there is at present no satisfactory 

method for determining the sex of a child from its skeleton (see above). 

The stage of tooth mineralisation is calculated for each individual by adding the 

mineralisation coefficients observed on the teeth of a hemi-maxilla or hemi-mandible, 
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 Excluding the third molar, or wisdom tooth, because of the wide variation in its eruption 

and mineralisation. 



depending on the chosen model.
79

 The stages of tooth mineralisation are the biological 

parameters used to estimate age at death for buried children. 

As with the closure of cranial sutures for adults, various types of division may be envisaged 

for children’s tooth mineralisation: a division into 6, 7 or 8 stages depending on the case 

(Table 5). 

 

Table 5. Conversion of mineralisation coefficients to stages by set of teeth 

 

 

Stage 
Teeth 11-

18 or 41-
48 

 

Teeth 41-48 
 

Teeth 14-17 
 

Teeth 44-47 
Teeth 14-

17 and 
44-47 

I 4-5 4-5 1-2 1-2 2-4 

II 6-13 6-12 3-6 3-6 5-12 

III 14-16 13-17 7-9 7-8 13-17 

IV 17-21 17-22 10-12 9-11 18-22 

V 22-25 23-25 13 12-13 23-26 

VI 26-29 26-29 14-15 14-15 27-30 

VII 30-31 30-31 16 16 31-32 

VIII 32 32 – – – 

 

 

Table 6. Observed age distribution for 7 or 8 mineralisation stages 

 

Teeth 11-18 Age in years 

Coefficients 
combined 

Stage 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total 

4-5 I 9 7               16 

6-13 II  35 3
9 

34 4            112 

14-16 III    16 18 4 1          39 

17-21 IV     28 39 29 12 6        114 

22-25 V       9 37 48 29 23 6     152 

26-29 VI          14 27 28 22 14 4 3 112 

30-31 VII            10 21 34 29 13 107 

32 VIII               4 4 8 

Total  9 42 3
9 

50 50 43 39 49 54 43 50 44 43 48 37 20 660 

 

Teeth 41-48 Age in years 

Coefficients 
combined 

Stage 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total 
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 Since mineralisation occurs symmetrically (0.92 > r > 1) for permanent and deciduous 

teeth, either the left or right jaw can be used. 



4-5 I 9 4               13 

6-13 II  37 4
0 

21             98 

14-16 III    29 32 4           65 

17-21 IV     17 40 27 15 6 2 2      109 

22-25 V       12 36 44 27 17 4 4    144 

26-29 VI         6 15 33 29 21 16 3  123 

30-31 VII            9 20 31 28 16 104 

32 VIII               6 4 10 

Total  9 41 4
0 

50 49 44 39 51 56 44 52 42 45 47 37 20 666 

 

Teeth 14-17 Age in years 

Coefficients 
combined 

Stage 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total 

1-2 I 9 7               16 

3-6 
II 

 34 
3
9 

31 10            114 

7-9 III    19 32 31 8          90 

10-12 IV     9 12 27 26 17 7 4 3 1    106 

13 V       5 24 39 31 28 5 3 2   137 

14-15 VI          5 20 32 21 6   84 

16 VII            4 19 40 36 20 119 

Total  9 41 
3
9 

50 51 43 40 50 56 43 52 44 44 48 36 20 666 

 

Teeth 14-17 Age in years 

Coefficients 
combined 

Stage 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total 

1-2 I 9 9               18 

3-6 II  33 3
9 

28 5            105 

7-8 III    23 24 3           50 

9-11 IV     21 36 22 8 3 1 3      94 

12-13 V      4 17 43 50 34 26 11 5    190 

14-15 VI         3 8 24 30 23 12 5  105 

16 VII            1 17 34 32 20 104 

Total  9 42 3
9 

51 50 43 39 51 56 43 53 42 45 46 37 20 666 

 

Teeth 14-17 and 44-
47 

Age in years 



Coefficients 
combined 

Stage 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total 

2-4 I 9 7               16 

5-12 II  35 3
8 

27 4            104 

13-17 III    23 28 6 1          58 

18-22 IV     18 35 22 4         79 

23-26 V      3 17 46 51 35 28 7 4    191 

27-30 VI         3 7 24 31 19 8   92 

31-32 VII            5 21 37 35 20 118 

Total  9 42 3
8 

50 50 44 40 50 54 42 52 43 44 45 35 20 658 

 

2.6.1. Adjusting the sample to the demographic context 

In order to give the reference population the demographic characteristics of pre-industrial 

populations, we 

1) used the Lisbon 1889 data, with the following assumption concerning the division 

into groups of published ages (Table 7): 

2) assumed that deaths were not distributed evenly within each age group but 

declined from year to year (Table 8). 

The new reference population obtained is shown in Table 9. 

 

Table 7. Distribution of deaths in Lisbon in 1889 according to official statistics 

 

Age 

 

 

% deaths 
Applied to 

Lisbon 
population both 

sexes 
combined 

 

% deaths at 
2-17 yrs 

0   1 902 – 

1 0.4 737 – 

2 0.5 212 24.6 

3 0.3 144 16.7 

4 0.2 104 12.0 

5 0.4 58 6.7 

6 0.3 42 4.9 

7 0.3 34 3.9 

8 0.3 28 3.2 

9 0.3 26 3.0 

10 0.2 20 2.3 

11 0.2 19 2.2 

12 0.1 23 2.7 

13 0.1 26 3.0 



14 0.1 28 3.3 

15 0.1 28 3.3 

16 0.1 35 4.1 

17 0.1 35 4.1 

Total 2-17 yrs  862 100 

 

 

Table 8. Reconstituted distribution of child deaths by annual age classes 

 

Age class as published 
Both sexes 
combined 

% deaths  
(0-20 yrs) 

% deaths  
(2-17 yrs) 

00-01  1 902 52  

01-02  737 20  

02-05 * 459 13 52 

05-08 ** 133 4 15 

08-12 *** 93 3 11 

12-20 **** 304 8 22 

Total 0-20 yrs 3 628 100 100 

Estimate 2-17 yrs 875   

* assuming 02-05 = actual ages 2 to 4 

** assuming 05-08 = actual ages 5 to 7 

*** assuming 08-12 = actual ages 8 to 11 

**** assuming 12-20 = actual ages 13 to 20 

 

Table 9. Distribution by age and mineralisation stage according to the mortality by age 

observed in Lisbon in 1889 

 

Coefficient Stage 

Age in years 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total 

Teeth 11-18 

4-5 I 162 18               180 

6-13 II  91 79 30 3            203 

14-16 III    14 12 2 1          29 

17-21 IV     18 23 16 5 2        64 

22-25 V       5 15 14 10 8 3     55 

26-29 VI          5 10 13 11 6 3 4 52 

30-31 VII            4 11 15 21 18 69 

32 VIII               3 5 8 

Total  162 109 79 44 33 25 22 20 16 15 18 20 22 21 27 27 660 

Teeth 41-48 



4-5 I 164 11               175 

6-12 II  100 80 19             199 

13-17 III    26 21 2           49 

17-22 IV     11 24 15 6 1 1 1      59 

23-25 V       7 14 12 9 6 2 2    52 

26-29 VI         2 5 11 14 10 7 2  51 

30-31 VII            4 10 14 21 22 71 

32 VIII              1 4 5 10 

Total  164 111 80 45 32 26 21 20 15 15 18 20 22 22 27 27 666 

Teeth 14-17 

1-2 I 164 19               183 

3-6 II  92 80 28 6            206 

7-9 III    17 20 19 4 1         60 

10-12 IV     6 7 14 10 5 2 1 1 1    47 

13 V       3 10 11 11 10 2 1 1   49 

14-15 VI          2 7 15 10 3   37 

16 VII            2 9 19 27 27 84 

Total  164 111 80 45 32 26 21 20 16 15 18 20 21 23 27 27 666 

Teeth 44-47 

1-2 I 164 24               188 

3-6 II  87 80 24 3            194 

7-8 III    20 16 2           36 

9-11 IV     14 22 12 3 1 0 1      53 

12-13 V      2 9 17 14 12 9 5 3    71 

14-15 VI         0 3 8 15 11 6 4  47 

16 VII            0 8 16 24 27 76 

Total  164 111 80 44 33 26 21 20 15 15 18 21 22 22 27 27 666 

Teeth 14-17 and 44-47 

2-4 I 162 18               180 

5-12 II  91 79 24 3            197 

13-17 III    20 18 4 1          43 

18-22 IV     11 20 12 2         45 

23-26 V      2 9 18 14 12 10 3 2    70 

27-30 VI         1 3 8 14 9 4   39 



31-32 VII            2 10 18 27 27 84 

Total  162 109 79 44 32 26 22 20 15 15 18 19 21 22 27 27 658 

 

2.6.2. Division into one-year and five-year age classes 

Various divisions may be proposed, depending on the required purpose: 

- one-year age classes, to obtain a high degree of precision from the outset and to avoid 

“tweaking” the figures ex-post to find the likely distribution of deaths per year of age; 

- five-year age groups, more compatible with demographic models, enabling comparison 

with studies in historical demography or paleodemography; 

- “atypical” age groups in demographic terms, relevant to the socioeconomic practices of the 

culture under study, particularly in Ancient and Mediaeval Europe (see Chapter V. 2.3) 

The User may create more appropriate age groups if they so wish from the raw data supplied 

in Tables IX to XIII at Springer Extra and in the supplementary material available on the 

INED website. 

To conclude, the establishment of a “reasoned” reference collection to estimate child age at 

death, using as sole age indicator the extent of tooth mineralisation, has made it possible to 

develop specific instruments. With the proposed models, the non-adult population can be 

distributed by a probabilistic method similar in its principle to that used for adults, thus 

providing statistical coherence for studies of archaeological populations. 

3. Age groups as yet inaccessible 

3.1. Estimating age at death for infants 

For infants under the age of 2 or 3 years it is preferable to use other age indicators, because it 

would be very difficult to complete our reference collection from measures of tooth 

mineralisation. There is little chance of documenting the 0-2 age class because medical 

intervention on the teeth of infants is exceptional, apart from cases of major trauma for which 

access to x-rays is restricted. 

However, for infants, the problem is less a matter of improving anthropological techniques for 

determining age at death than the small number of skeletons to which they can be applied, 

since they are systematically under-represented in cemeteries. The reasons for this are 

physiological (softer bones more prone to biochemical degradation in earth (Baud and Gossi, 

1980), taphonomic (Guy and Masset, 1997) and religious/cultural (discriminatory funeral 

practices by child’s age;
80

 see Blaizot et al., 2003). 

These biases seriously hamper a direct approach to this age group, which is of importance in 

detecting trends in demographic phenomena. 

3.2. Estimating age at death for adolescents and young adults 

Another age group also raises identification problems that have not yet been fully resolved. 

Adolescents and young adults (approximate ages 15-25) belong by some biological criteria to 

the juvenile population although their way of life in pre-industrial societies placed them in the 
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 There are special places for infant graves, but archaeological digs do not always have the 

time, or luck, to reach them. 



world of adults. Although in most contemporary Western countries the “age of physical 

maturity” corresponds to “legal coming of age”, in ancient and medieval societies, the age of 

legal majority was much younger, at puberty. In anthropological terms this age is hard to 

identify because once a child’s tooth mineralisation is virtually complete, at about 12, this 

biological indicator becomes less effective (higher margin of error). 

For anthropologists, distinguishing between an adult population and a juvenile population 

(ages 18 or 25 depending on the criteria used
81

) is fairly easy. But more precise estimates of 

age at death in the 15-25 age group are harder to achieve. The methods developed for 

juveniles (tooth mineralisation stages) work up to about age 14-15 (appearance of the third 

molar); those proposed for adults (dental cementum rings or cranial suture closure) are 

appropriate for those aged 18-20 and over. If one day there is  a real scientific consensus 

concerning the margin of error for age estimated from cementum rings, the same approach 

may perhaps be applied to both adolescents and young adults. 

The techniques currently available for estimating age at death of adolescents and young adults 

do not provide a comprehensive vision of the processes that mark the end of growth. The 

currently available correlation tables based on the skeletal maturity of the post-cranium 

(fusion of proximal humeral epiphysis or distal epiphyses of the radius and ulna) do not 

provide the statistical precision we believe to be essential for a probabilistic approach to the 

age distribution at death. 

This explains why anthropologists either ignore this age group (cf. a juvenility index that 

excludes individuals aged 15-19) or combine it with adults (cf. D20+ and above and D5+, the 

denominators in the main age ratios used). But it is an important group both in social terms 

and for demographic trends: for the periods we study it was the age of “entry into adulthood”, 

as the sociologists put it. We believe that it is crucial to understand their demographic 

behaviour more fully (migration, fertility, mortality); and at all events, it is a key challenge for 

paleodemographic research in the years ahead. 
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 Average age at skeletal maturity is indicated both by the fusion of the sphenoid and 

occipital and acceleration of the process of epiphyseal closure that marks the end of growth in 

a skeleton. Various authors place the age of maturity between 18 and 20 for the skull and 20 

and 25 for the post-cranium (for example, the proximal humeral epiphysis is fused by age 25, 

like the distal epiphyses of the radius and ulna). 



Part 2 

Reconstructing demographic parameters 



 

Chapter IV 
Age at death: current approaches and methods 

 

1. General methodological principles 

After determining the age and sex of a set of exhumed individuals, the aim of the method is to 

obtain from among the various possible combinations the most likely distribution by groups 

of age at death. Whatever the archaeological population under study and whatever the age 

group, the following principles are recommended: 

- Use a reference population whose age structure is close to the standard for 

pre-industrial populations 

a) The population must be a reliable and well-documented instrument for comparison 

and should match, as far as possible, the biological standards of pre-industrial 

populations, both in their growth and ageing processes and in their exposure to the 

risk of dying at a given age. 

b) However, it should be borne in mind that not all archaeological populations have 

necessarily the same age and sex structure as the reference population and that 

they do not all have the same mortality distribution. The frequent mortality crises 

that affected past populations radically modify period age-specific mortality 

(Séguy et al., 2006a; Séguy and Signoli, 2007). 

- Maintain a probabilistic approach to age at death 

a) It is clearly established that determination of individual age at death, however useful it 

may be in pathology or an archaeological inventory, cannot be used for 

paleodemographic study. 

b) All that remains is a probabilistic approach to age. Many researchers have sought, and 

continue to seek, promising statistical methods (frequentist or Bayesian), all of which 

start from prior estimation of age at death of a set of buried individuals, immature or 

adult. 

- Seek compatibility with demographers’ tools 

The objective is to propose paleodemographic models likely to correspond to particular 

contexts, using criteria accessible from historical and archaeological data. In the current state 

of research, it is not possible to envisage a demographic study based directly upon 

archaeological data. The reason is that cemetery data have no connection with the tools 

traditionally used in demography.
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 It is therefore absolutely necessary to design new tools 

                                                 
82

 It is not possible to enter them directly into the life tables established by demographers. 



which take account of osteological constraints. It is by doing so that the French school 

diverged at an early date from the path taken by North American researchers and looked for 

innovative solutions to circumvent this obstacle. 

2. Estimation by the “probability vector” method 

2.1. Outline of the “probability vector” method
83

 (Masset, 1973, 1982, 1989) 

Claude Masset presented a statistical method known as the “probability method” to distribute 

the entire buried adult population not by summing the ages of the individual subjects but 

based on the likely distribution by age group of all the buried individuals. 

Using a reference collection in which the numbers in each age group had been artificially 

equalised, Masset established frequency matrices to connect a given biological stage (from I 

to VII) to all the age groups in which that stage is observed. These matrices include the 

probability for each skeleton of belonging to one of the seven age groups chosen, based on its 

degree of cranial suture closure. These are called “probability vectors” in French 

paleodemographic studies. 

The age indicator chosen by Masset was the degree of cranial suture closure for each 

individual, but the method can be applied to any other age indicator. His method was adapted 

by Catherine Bergot and Jean-Pierre Bocquet-Appel (1976), who used the head of the femur 

and humerus, Franziska Langenscheidt (1985) who used pubic symphysis, and Christian 

Theureau (1998), who applied it to four age indicators (endocranial suture closure, changes to 

the pubic symphysis, degree of mineralisation of the proximal ends of the femur and 

humerus), which he suggests should be used simultaneously with different weightings. The 

main results of Masset’s thesis were presented in İşcan (1989a) and Bintliff and Sbonias 

(1999). His proposed method has mainly been used by French-speaking anthropologists in 

their site studies. The first application, proposed by Christian Simon in 1982 and again in 

1987, concerned the Sézegnin cemetery (Switzerland). In 1989, Joël Blondiaux studied five 

populations in Northern Gaul, and Véronique Gallien the Saint-Denis populations in 1992. In 

1998, Luc Buchet proposed an overview of fourteen populations mainly in the French regions 

of Nord-Pas-de-Calais, Basse-Normandie and Rhône-Alpes. 
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 This method corresponds to what Daniel Courgeau in Chapter A calls the “Proportional 

Fitting Procedure (PFP)” or “ALK method” (Age Length Key), without the I for Iterative, 

because when these methods are applied in paleodemography they are not really iterative and 

need to stop after the first loop. 



Table 10. Frequency matrices with 5 stages and 15 five-year age groups (except first and last): male (equal weight), female and both sexes (equal 

weight) 
Female matrix, equal weight, 5 stages 

Suture closure 
coefficient (external 

table) (× 10) 

 

Closure stage 
 

18-19 
yrs 

 

20-24 
yrs 

 

25-29 
yrs 

 

30-34 
yrs 

 

35-39 
yrs 

 

40-44 
yrs 

 

45-49 
yrs 

 

50-54 
yrs 

 

55-59 
yrs 

 

60-64 
yrs 

 

65-69 
yrs 

 

70-74 
yrs 

 

75-79 
yrs 

 

80-84 
yrs 

 

85+ yrs 
 

Total 

0-2 

3-9 

10-18 

19-27 

28-40 

A 

 B  

C 

 D 

 E 

5.66 

0.87 

0.44 

0.44 

0.00 

14.30 

3.96 

1.59 

0.80 

0.75 

15.10 

3.62 

2.27 

1.38 

0.00 

6.32 

9.97 

0.53 

2.66 

2.50 

7.64 

8.24 

2.96 

1.79 

2.24 

7.93 

6.95 

4.84 

2.17 

1.02 

8.92 

7.22 

4.83 

2.93 

0.92 

7.49 

8.75 

6.09 

7.51 

3.85 

4.23 

10.65 

6.88 

7.71 

7.25 

4.60 

8.27 

11.64 

16.78 

11.04 

6.94 

4.49 

13.54 

12.14 

18.55 

3.42 

9.21 

20.37 

14.94 

12.30 

5.62 

6.06 

10.66 

13.83 

13.00 

0.86 

2.78 

5.58 

9.39 

14.13 

1.0 

9.0 

7.8 

5.5 

12.4 

100 

100 

100 

100 

100 

Male matrix, equal weight, 5 stages 

Suture closure 
coefficient (external 

table) (× 10) 

 

Closure stage 
 

18-19 
yrs 

 

20-24 
yrs 

 

25-29 
yrs 

 

30-34 
yrs 

 

35-39 
yrs 

 

40-44 
yrs 

 

45-49 
yrs 

 

50-54 
yrs 

 

55-59 
yrs 

 

60-64 
yrs 

 

65-69 
yrs 

 

70-74 
yrs 

 

75-79 
yrs 

 

80-84 
yrs 

 

85+ yrs 
 

Total 

0-8 

9-15 

16-21 

22-28 

29-40 

A 

 B  

C 

 D 

 E 

4.91 

0.39 

0.44 

0.36 

0.00 

18.01 

3.72 

0.60 

0.98 

0.00 

12.29 

6.66 

2.72 

2.78 

1.33 

11.82 

6.72 

4.80 

2.81 

2.01 

11.68 

6.79 

6.78 

2.08 

3.31 

12.92 

7.63 

5.36 

4.38 

4.19 

7.46 

14.33 

6.19 

6.08 

3.63 

3.48 

13.18 

9.43 

8.81 

5.26 

12.43 

7.71 

11.56 

7.09 

5.65 

0.00 

9.76 

10.96 

13.45 

19.64 

3.88 

2.68 

13.53 

17.22 

20.57 

0.00 

8.39 

9.43 

11.57 

16.89 

1.14 

7.05 

9.24 

11.88 

7.74 

0.00 

1.96 

3.85 

4.95 

6.45 

0.00 

3.03 

5.10 

5.57 

3.32 

100 

100 

100 

100 

100 

Combined male/female matrix, equal weight, 5 stages 

Suture closure 
coefficient (external 

table) (× 10) 

 

Closure stage 
 

18-19 
yrs 

 

20-24 
yrs 

 

25-29 
yrs 

 

30-34 
yrs 

 

35-39 
yrs 

 

40-44 
yrs 

 

45-49 
yrs 

 

50-54 
yrs 

 

55-59 
yrs 

 

60-64 
yrs 

 

65-69 
yrs 

 

70-74 
yrs 

 

75-79 
yrs 

 

80-84 
yrs 

 

85+ yrs  
 

Total 

0-4 

5-13 

14-20 

21-28 

29-40 

A 

 B  

C 

 D 

 E 

5.32 

0.74 

0.65 

0.19 

0.00 

16.13 

4.50 

0.76 

0.88 

0.43 

13.50 

4.58 

3.70 

1.88 

0.68 

10.47 

6.14 

3.43 

2.50 

2.45 

8.14 

9.54 

4.08 

2.00 

2.65 

8.03 

9.60 

5.38 

2.80 

2.72 

8.56 

7.90 

7.67 

4.62 

2.38 

6.07 

8.90 

8.41 

8.61 

4.51 

6.61 

10.93 

8.99 

6.74 

7.00 

3.99 

6.88 

11.91 

14.77 

15.41 

5.00 

5.99 

11.72 

15.26 

19.42 

2.67 

10.46 

13.18 

12.94 

13.61 

2.93 

7.81 

9.27 

13.29 

9.69 

0.45 

2.40 

4.37 

7.81 

10.31 

2.13 

3.63 

6.50 

5.70 

8.75 

100 

100 

100 

100 

100 
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2.2. A new age estimation for a set of buried adults 

2.2.1. Probable distribution by age group 

Following the principle of Masset’s “probability vector” method, we propose new frequency 

matrices (Tables 10 and 11) taken from the observed distribution of men and women by 

suture closure stage and selected age group (see Table 4). These matrices show for an 

individual at closure stage X the probability of belonging to each of the defined age groups 

from age 18 to “85+”. 

Several different matrices are proposed: male, female, both sexes (equal weight); five-year 

and ten-year age groups (except the first).  

 

The supplementary material available on the INED website contains the spreadsheets for 

automatically calculating the distribution of skeletons by five-year or ten-year age groups. 

Table 11. Frequency matrices with 5 stages (A, B, C, D, E) and 7 ten-year age groups (except 

first and last): male (equal weight), female and both sexes (equal weight) 

Female matrix, 5 stages 

Suture closure 
coefficient (external 

table) (× 10) 

 

Closure stage 
 

18-29 
yrs 

 

30-39 
yrs 

 

40-49 
yrs 

 

50-59 
yrs 

 

60-69 
yrs 

 

70-79 
yrs 

 

80+ yrs  
 

Total 

0-2 

3-9 

10-18 

19-27 

28-40 

A 

 B 

 C 

 D 

 E 

35.06 

8.45 

4.30 

2.62 

0.75 

13.96 

18.20 

3.48 

4.45 

4.74 

16.85 

14.17 

9.67 

5.10 

1.94 

11.72 

19.39 

12.97 

15.22 

11.10 

11.54 

12.76 

25.18 

28.92 

29.60 

9.03 

15.27 

31.03 

28.77 

25.30 

1.84 

11.75 

13.37 

14.93 

26.56 

100 

100 

100 

100 

100 

Male matrix, equal weight, 5 stages 

Suture closure 
coefficient (external 

table) (× 10) 

 

Closure stage 
 

18-29 
yrs 

 

30-39 
yrs 

 

40-49 
yrs 

 

50-59 
yrs 

 

60-69 
yrs 

 

70-79 
yrs 

 

80+ yrs  
 

Total 

0-8 

9-15 

16-21 

22-28 

29-40 

A 

 B 

 C 

 D 

 E 

35.2 

10.8 

3.8 

4.1 

1.3 

23.5 

13.5 

11.6 

4.9 

5.3 

20.4 

22.0 

11.6 

10.5 

7.8 

15.9 

20.9 

21.0 

15.9 

10.9 

3.9 

12.4 

24.5 

30.7 

40.2 

1.1 

15.4 

18.7 

23.4 

24.6 

0.0 

5.0 

9.0 

10.5 

9.8 

100 

100 

100 

100 

100 

Combined male/female matrix, equal weight, 5 stages 

Suture closure 
coefficient (external 

table) (× 10) 

 

Closure stage 
 

18-29 
yrs 

 

30-39 
yrs 

 

40-49 
yrs 

 

50-59 
yrs 

 

60-69 
yrs 

 

70-79 
yrs 

 

80+ yrs  
 

Total 

0-4 

5-13 

14-20 

21-28 

29-40 

A 

 B 

 C 

 D 

 E 

35.0 

9.8 

5.1 

3.0 

1.1 

18.6 

15.7 

7.5 

4.5 

5.1 

16.6 

17.5 

13.0 

7.4 

5.1 

12.7 

19.8 

17.4 

15.3 

11.5 

9.0 

12.9 

23.6 

30.0 

34.8 

5.6 

18.3 

22.4 

26.2 

23.3 

2.6 

6.0 

10.9 

13.5 

19.1 

100 

100 

100 

100 

100 

 

2.2.2. Mean age associated with probable distribution by age at death 

This probable distribution implies a probable mean age at death. In the present state of 

research we have no better way of calculating the mean age at death of a population of buried 

adults, although some advances are proposed in the prospective part of this book (Chapter B). 

It can, it however, be calculated from the distribution of deaths by five-year rather than ten-

year groups, which gives a slightly more precise estimate.  
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We suggest choosing the mean age at death of individuals over 20, which is one entry in our 

network of life tables. In this case, only five-year groups can be used, setting apart the 18-19 

age group. 

2.3. Estimating age at death of a sample of buried immature subjects 

2.3.1. Probable distribution by age group 

Compared with the problems encountered in determining adults’ age at death, the estimation 

of children’s age at death might appear more straightforward. In fact, the margin of error 

makes it impossible to include in any predefined age class an individual child whose age 

spans more than one class. Some authors have proposed alternative solutions: as early as 1982 

(pp. 89-90), Christian Simon suggested redistributing the children whose estimated age spans 

two age groups in line with the distributions observed in Sully Ledermann’s life tables (1969, 

Network 100, e0: 30.35 years). This idea was popularised by Pascal Sellier (1996) as the 

“principle of minimising anomalies in an archaic mortality pattern”, whereby the 10-14 age 

group is considered to be the least exposed to the risk of death. The initial assumption of 

minimum risk at ages 10-14 is justified, but when some subjects are “reintroduced” into this 

age group, the equally strong probability that they belong to another group is overlooked. 

Bocquet-Appel (2005) appeals to the statistical properties of the normal distribution and, in 

doubtful cases, defines the subject's probability of belonging to one of the two groups. This 

more rigorous method is also more tedious to apply to large series. 

We therefore considered it essential to approach age at death in probabilistic terms and to 

estimate the most probable distribution of deaths by age group in a population of buried 

children. The probability vector method, adapted to the child population, can also be used to 

estimate with greater statistical likelihood one of the estimators frequently used in 

paleodemography – the juvenility index 



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







20

145

D

D
 – by giving the most probable value for the 

numerator. 

With this improvement, the juvenility index remains a valuable indicator, albeit highly 

sensitive to the birth rate, which is unknown. 

Using the tooth mineralisation stages observed from the 675 orthopantomograms whose 

distribution is corrected by the mortality distribution of pre-industrial populations (see Table 

9), we established frequency matrices making it possible to distribute the deaths of immature 

subjects across one-year age groups (ages 2-17) or five-year groups (ages 2-4, 5-9, 10-14 and 

15-17) (Table XV at Springer Extra). 

We also calculated the frequency matrices for distributing the child population around the 

central 5-14 age group (numerator of the juvenility index) (Table XVI at Springer Extra). 

2.3.2. Other possible age groups 

In demography, age is divided in a regular, linear, but rather artificial fashion. Except for the 

first two age groups, 0-1 years and 1-4 years, generally studied separately, either one-year or 

five-year classes are used. By adopting the demographers’ age divisions, paleodemographers, 

as well as historical demographers and anthropologists, segment the lives of the populations 

they study in a way that is not necessarily the most appropriate. Although it is practical to use 

conventional age groups, and indeed necessary for comparative analysis, more specific 

behaviours may be masked. The apparent continuity of biological age suggested by 

demographers’ divisions in fact conceals numerous discontinuities (see Chapter I.2, Figure 5). 
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Analyses based on a more socio-biological age division would certainly shed new light on the 

question (see Wrigley et al., 1997). Paleodemographic observation could focus on age groups 

of special significance, both in terms of the sources and of the ancient and medieval societies 

of Western Europe. For example: 

 a 2-4 age group: the period of dietary diversification during and after weaning
84

 may cause 

gastro-intestinal disorders; 

 a 5-8 age group: end of early childhood, the child leaves the world of its mother or nurse; 

first contacts with the outside world and its risks (poor awareness of danger) and first tasks 

(helping the family). In biological terms, the immune system is established and the child is 

less susceptible to childhood diseases;  

 a 9-13 age group: end of childhood (according to the ideas of the period) and entry into the 

world of adults, both in religious terms – confirmation
85

 – and social terms (legal majority). 

It is also a period when the child may need to leave the home or family to study or work 

(risk of work accidents); 

 a 14-15 to 17-18 age group: young adults by life style, but still adolescent in bone growth 

(teeth mature around age 18 and bone growth not complete until age 25 or so). 

However, to take account of biological observations based on x-rays of subjects in the 

reference population, the proposed division needs to be slightly adjusted. Of course, this new 

division will doubtless be modified in response to future study results. 

Possible age groups 

- 2 years and below 

- 3-4 years 

- 5-7 years 

- 8-12 years 

- 13-15 years 

- 16-17 years
86

 

Using frequency matrices to estimate the distribution of deaths by age group makes it easier 

to define both their amplitude and their segmentation. 

We therefore established the various matrices corresponding to the above age groups (Table 

XVII at Springer Extra), and they were first used in an archaeological context for the Lisieux 

and Yvoire sites (Buchet and Séguy, 2008). 

The use of new age groups that better match children’s physiological development and their 

place in ancient and mediaeval societies opens the way to a better understanding of the key 

stages of children’s lives – and their survival – in historical periods, and allows finer 

interpretation of sets of archaeological skeletons. However, one unknown will always remain: 

how reliable is the study sample? Because the distribution by age at death observed in 

                                                 
84

 On the basis of isotope analyses, Estelle Herrscher (2003) estimates that the mediaeval 

children buried at Saint-Laurent, Grenoble, were weaned between ages 2.6 and 3.3 years. 

85
 Since the Middle Ages, confirmation has occurred at various ages, usually between 12 and 

14 years. 

86
 Using the age of 17 as the upper limit for the immature population makes it possible, in a 

site study, to link the results obtained with those calculated for the adult population (ages 18 

and above) with the probability vector method. 
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cemeteries also, and perhaps mainly, reflects the natural conditions of conservation of the 

bones and the care taken when the remains are removed. 

2.3.3. Mean age at death for these distributions 

As for the adult population, it is possible to calculate the mean age at death for the various age 

distributions at death cited above. However, note that unlike adults’ mean age at death, which 

represents the average years of life of those who survived the rigours of childhood, the mean 

age at death calculated for the child population corresponds to the average life of children 

who fell victim to those same rigours. Demographically speaking, the two indicators are not 

equivalent. 

The mean age at death of children dying between ages 2 and 17 is calculated from the death 

distribution by one-year rather than five-year age classes (as is the mean age of children dying 

between ages 5 and 14, which we intended to include in the mortality models. See below.). 

2.3.4. Conclusion 

A way had to be found for paleodemographers to avoid the pitfalls of either overlooking the 

margin of error by wrongly supposing that the positive and negative errors cancel out, or of 

proposing an arbitrary redistribution of individuals, particularly the immature, whose 

estimated age overlaps two classes. The probabilistic approach we have adopted avoids the 

biases linked to the determination of individual ages. 

The methods proposed offer enhanced precision while evading a statistical difficulty; they 

also have the major advantage of harmonising the paleodemographic techniques used for 

adults and the immature. Even if the biological indicators are different, the methods of 

analysis now use the same concepts: probable distribution of deaths by age group and 

calculation of the mean age at death for that distribution. 

By focusing on observation by age class – one-year for children and five-years for adults
87

 – 

and subdividing the degrees of growth and biological maturation, our method further 

improves precision. This gives researchers the opportunity to propose other, larger, divisions 

of biological stages or age groups. 

However, the process of creating an “ideal” reference population is far from over. The variety 

among its individuals (growth and ageing processes, resistance to stress and infection) 

requires a more complex approach than the deductive one adopted here (if the hypothesis is 

true, the result deduced from it is necessarily also true). The nature of the data we possess 

should guide us towards a Bayesian approach in which the initial assumptions, expressed as 

prior probability distributions, are compared with the observed data to provide posterior 

probability distributions, which represent our knowledge once the observations have been 

made. 

2.4. Adaptations to particular contexts 

                                                 
87

 Using one-year age classes for adults whose ages cover 77 years (from ages 18 to 94) 

would have given only a dozen individuals on average per age class. Together with the fine 

detail of the biological observations, segmented into 41 suture closure coefficients, this would 

have caused an unacceptable fragmentation of the data. 
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Our earlier work
88

 showed that when the age structure of the population using the cemetery 

(burying population) was known from records, the frequency matrix could be adjusted so that 

it kept the biological (suture) characteristics of the initial reference population and its age 

distribution complied with the mortality distribution relevant to the site under study, applying 

the principle of matrix redistribution. 

Using, where possible, the age structure of the mother population makes it possible to avoid 

the random variations of the paleodemographic sample, since these are all contained in the 

initial structure. 

The pre-industrial mortality model may also be inappropriate in certain contexts, such as the 

study of a socially advantaged population (like the nuns of the Royal Abbey of Maubuisson, 

see Chapter X.2) or an epidemic of plague that decimates a population with no distinction of 

age. In such cases, it is better to adopt the model closest to the actual experience of these 

populations, on condition that the lifestyle of the archaeological population is itself close to 

that of the historical population taken as a reference.
89

 

At this stage in research, three mortality models applicable to paleodemographic contexts
90

 

are available: for a particularly advantaged female population (like the Maubuisson nuns), for 

a population exposed to an epidemic or other disaster that strikes without distinction of age or 

sex (like that observed in Martigues during the 1720-1721 plague), and for a port city with a 

large number of young adult immigrants, as in Antibes (see corresponding age at death 

distributions in Table XVIII at Springer Extra). 

One of the aims of current research is to pursue the development of these models and extend 

the scope of their application. Whatever method of estimation is used (vector or frequentist), 

the more demographic information is available about the population under study, the more 

accurate and reliable will be the estimated age distribution of deaths. 

3. “Estimator” method 

3.1. Outline of the “estimator” method (Bocquet-Appel, Masset, 1977, 1996) 

This was the first response provided by French paleodemographers to the problems of 

individual ages, via a new index providing demographic information on the buried 

population. 

Bocquet-Appel and Masset noticed that the juvenility index could be obtained from cemetery 

data, with a slight adaptation to allow for the under-recording of children under 5 in most 

cemeteries. They proposed, therefore, to define the paleodemographic juvenility index as the 

ratio of children aged 5-14 to “adults” in the sense of all individuals aged over 20 years 
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, often abbreviated as JI. 

To avoid imposing on archaeological populations a mortality model marked by contemporary 

factors (see Chapter V), the authors took care to select a set of life tables corresponding to 

specific characteristics observed in populations with traditional demographic patterns: a 
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 The first applications concerned archaeological sites recent enough for us to have accurate 

demographic information on the mother population (Buchet and Séguy, 1999, 2003; Buchet, 

Séguy et al., 2003; Signoli et al., 2005). 

89
 Chapter B also shows how specific situations can be simply and effectively taken into 

account by the estimation method it proposes. 

90
 In the sense of proven demographic situations that can be re-used in similar contexts. 
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juvenility index above or equal to 0.100 and a ratio of more than 2 between deceased 

individuals aged 5-9 and those aged 10-14. After removing the tables containing blatant 

anomalies, the authors had a sample of 40 tables,
91

 from Geneva in 1625 to Nicaragua in 

1940, corresponding to populations with mainly agricultural lifestyles and little access to 

modern medicine. 

On the basis of these tables they established statistical correlations between the juvenility 

index and certain demographic parameters: life expectancy at birth, infant probability of 

dying and 0-5 mortality rate. These regressions, known as paleodemographic estimators, were 

published in 1977, and later corrected to allow for the regression margin of error (Masset, 

Parzysz, 1958). 

3.1.1. Advantages and limitations of the “estimators” 

These “estimators” take into account specific features of the mortality of pre-industrial 

populations and are based on indicators directly related to osteological data. The juvenility 

index can be calculated quite simply and used to fill the gaps in the archaeological record and 

provide an estimate of the number of children under 5, rarely found in excavated cemeteries. 

In this sense, the estimators are a valuable tool. French-speaking paleodemographers saw this 

and were quick to adopt it, but always with a critical eye. 

A number of difficulties in using the estimators were soon reported (Sauter and Simon, 1980; 

Bocquet-Appel and Masset, 1982-1996; Masset and Parzysz, 1985; Murail and Sellier, 1995), 

notably regarding the number of deceased individuals. First, we can never be sure that no 

adult or child skeleton is missing from the excavation or the anthropological examination. 

Second, the definition of the 5-14 age class raises two problems: not only are 5-14-year-olds 

not always well represented in cemeteries, but their attribution to a particular class is difficult 

in the case of those near to the age limits because of the margin of error (e.g. 5 years +/- 9 

months).
92

 It is also hard to detect
93

 and interpret growth rates; the number of children dying 

at ages 5-14 is highly sensitive to variations in population growth and a high juvenility index 

may be due either to a stationary population with high mortality (and low life expectancy at 

birth) or to an expanding population. 

3.1.2. Other proposed indicators 
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 Half the tables before the 20th century and some more contemporary ones concern 

countries that had not yet begun their demographic and public health transition. The sample 

was extended to 45 tables in 2002 (Bocquet-Appel, 2002). 

92
 The problem can be solved by applying the properties of a normal distribution: starting 

from estimated age and its standard deviation,  many software packages can calculate the 

likelihood of belonging to one age class or the other. 

93
 Bocquet-Appel and Masset propose a relationship based on the juvenility index 
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and the senility index 
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. Unfortunately, the latter is hard to define by anthropological 

analysis. Since there are currently no criteria for assessing the growth rate of buried 

populations or for distinguishing its sign, only assumptions can be made, which is why the 

authors proposed regressions for various annual growth rates. 



86 

 

The estimator method was well received by North American paleodemographers, who looked 

for other ratios of deceased individuals, either to find fertility parameters (Buikstra et al., 

1986) or to obtain a comparative indicator. Mary Jackes (1986, 1988, cited by Konigsberg et 

al., 1989) proposed using the mean of three mortality rates
94

 from ages 5 to 20 (5q5; 5q10; 5q15; 

denoted MCM: Mean Childhood Mortality) to compare results from one site to another. This 

index correlates closely with the juvenility index and provides further information, but still 

exhibits the same shortcomings: it is highly sensitive to the population growth rate and the 

random fluctuations of small samples. 

3.2. “Revised estimators” (Bocquet-Appel, Masset, 1996; Bocquet-Appel, 2002) 

Conscious of the methodological limitations of estimators, the method’s authors suggested 

adding another indicator to the juvenility index: adult mean age at death, while continuing to 

take account of the population growth rate (Bocquet-Appel, Masset, 1996). They also looked 

for a new way to estimate the age structure of the buried population independently of its 

initial distribution, generally unknown, and thus to obtain an unbiased measure of the mean 

age at death of a set of adults. 

3.2.1. An attempt to adapt the “IPFP” method 

They settled on a mathematical method (Iterative Proportional Fitting Procedure, IPFP
95

) 

which requires a frequency matrix correlating biological stages of ageing and age groups. 

Their idea was to estimate the most probable distribution of age at death after successive 

iterations. However, because of the numerous empty age classes produced by this method (see 

Chapter A), they preferred to stick with the calculation of mean age at death even though its 

manner of estimation was methodologically false. 

In 1996, Bocquet-Appel and Masset published the regression equations linking their 

anthropological parameters (adult mean age at death and juvenility index
96

) to such 

demographic indicators as life expectancy at birth, life expectancy at age 20, infant 

probability of dying, juvenile probability of dying, population growth rate, taken from a 

sample of 45 life tables. These regressions can only provide coherent paleodemographic 

information if the estimator a20 (mean adult age at death) is correctly calculated. This point is 

made in Lyle W. Konigsberg and Susan R. Frankenberg’s criticism (2002) of this method. 

For our part, we have adapted the calculation program by restricting the number of iterations 

to one, as imposed by the limits of the method . These more reliable results have been tested 

for various archaeological sites (Buchet et al., 2004, 2006b). 

3.2.2. A new indicator: P5-19 
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 Calculated like Halley’s table by considering all individuals deceased after age x + a to be 

survivors at age x. Thus 5q5  represents the ratio 
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95
 Although this name does not correspond to the mathematical method used (see Chapter A). 

96
 Adult mean age at death correlates weakly with the earliest probabilities of death, unlike the 

juvenility index. Combining two age indicators that contain different information provides a 

better estimate of demographic parameters. 
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More recently, Bocquet-Appel (Bocquet-Appel, 2002; Bocquet-Appel and Bacro, 2008) has 

proposed a new indicator, which he denotes 15P5, namely, deaths at ages 5-19
97

 divided by 

deaths at age 5:  

Compared with the juvenility index, which does not include deaths between 15 and 19, this 

new indicator has the advantage of being a continuous variable. It avoids the difficulty of the 

cut-off point at age 14, which is hard to identify biologically (whereas the mature population, 

around ages 18-19, is easier for anthropologists to identify). Like the juvenility index or 

Jackes’s Mean Childhood Mortality, it leaves out the youngest subjects, for whom 

archaeological observation is often incomplete. 

However, as an input to mortality models (see Chapter VII.2), P5-19 does not appear to 

provide better estimates than the juvenility index. 

3.3. Brainstorming 

Paleodemographers were long at odds over the matter of individual ages, but the debate has 

now shifted to the question of how to interpret the matrix allocating the reference population 

to biological stages and age groups, a matrix used to estimate the age at death of an 

archaeological population as a whole. Either we consider the distribution of age groups by 

suture closure stages (probability vector method) or we consider the distribution of stages by 

age group, following the principle first stated by Masset in 1982 (with his Approx program, 

written with Bocquet-Appel), and by Konigsberg and Frankenberg in 1992. In Chapter A of 

the prospective section of this book, Daniel Courgeau provides a critical overview of these 

two approaches, and then in Chapter B, with Henri Caussinus, explores the possibilities of the 

second proposal. 

The methodological advances suggested by Courgeau and Caussinus do not challenge either 

the principle or the choice of paleodemographic indicators. To obtain a more accurate picture 

of the distributions by age at death of pre-industrial populations, we carried out a specific 

study of this question. In this way, paleodemographers will have the mortality models best 

suited to the demographic contexts of their historical populations. 
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 We prefer to denote it P5-19 to avoid any confusion with the probability of survival at ages 

5-19. 
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Chapter V 

Current demographic models 

The purpose of paleodemographic analysis is to understand the population as it was, within a 

given socio-environmental context, where the individuals it comprised formed a dynamic 

group marked by births, deaths and sometimes migrations, and when all we have, at best, is 

the bones of those who died. 

This is no easy task, because most of these demographic measurements are inaccessible to 

paleodemographers, who, with few exceptions, have no way of knowing the sex and age 

distribution of the population studied. Nor can they usually calculate the probabilities of 

dying or life expectancy at birth, which are the standard input parameters for life tables, 

without making assumptions about the completeness of the sample. This is because, for the 

biological reasons we discuss above, the numerator (how many people died between ages x 

and x+a) always has a margin of error that affects the calculations, especially for adults; and, 

for archaeological reasons, we can never be sure that we have all the components of the 

denominator (those present at age x). Paleodemographers are thus forced to make assumptions 

to underpin their analyses. 

1. Review of basic hypotheses in paleodemography 

Whatever the conditions of the site, whether a dig is partial or exhaustive, any attempt to go 

beyond determining the sex and age at death of a set of exhumed skeletons requires accepting 

the following assumptions: 

 the relationship observed in our reference populations between a biological indicator of age 

and membership of a given age group is constant over time and space (biological 

uniformity hypothesis) and independent of the size of the observed sample; 

 the paleodemographic sample, i.e. the set of individuals whose sex has been determined 

and whose biological indicator of age has been measured, is representative of the entire 

population buried in this place (in other words, all age groups are properly represented); 
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 there are close biological, socioeconomic, health and demographic links between the 

exhumed population and the buried population. 

These assumptions are necessary if we are to use equations (population models) that relate a 

population structure by sex and age to demographic behaviours that depend on age (fertility, 

migration, mortality). The deaths by age, or age group, observed by paleodemographers 

directly result from interactions between the structure of a population and its vital parameters. 

2. Population models 

The demographer Alfred J. Lotka (1934, 1939) proposed a theoretical model to connect 

various components of demographic analysis. He showed that, whatever its initial age 

structure, a closed population – with no migration – exposed indefinitely to constant fertility 

and mortality, tends towards a constant age structure and constant growth rate. This is the 

concept of the stable population, also called Malthusian population, referring to the theory of 

the Reverend Thomas Malthus, who had foreshadowed this idea one and half centuries 

earlier. 

Using these established mathematical relationships, it is sufficient to know one or two 

parameters to estimate any missing, or biased, demographic variables. These models led to the 

emergence of a new discipline, demographic projection, which is making steady progress 

thanks to new developments in mathematics, statistics and information technology. 

These population models are also of great interest to paleodemographers, who can address the 

dynamics of archaeological populations via the observed distribution of ages at death. But the 

conclusions they reach will vary widely, depending on their initial hypotheses and the degree 

of complexity attributed to the demographic phenomena. 

2.1. The stable population concept in paleodemography 

Since Gyula Acsádi and János Nemeskéri in 1970, the hypothesis of a stable population with 

zero growth, known as a stationary population, has been accepted by most 

paleodemographers, who consider that over long periods of use of a burial ground 

(generations or even centuries), the traditional mechanisms regulating population will have 

maintained a growth rate close to zero, reflecting a balance between births and deaths 

(Dupâquier, 1972; Bideau, 1983). In such a situation, not only is the age structure constant, 

but so are population size and numbers of births and deaths. A population of this sort is 

governed entirely by the law of mortality. For paleodemographers, this means that the age-sex 

distribution of the buried population is identical to that of the structure of the living 

population. It is then a simple matter to calculate the various demographic parameters that 

correspond to the theoretical population found in the life table.  

In reality, a hypothesis of this sort is hard to defend, because it bears little relation to the 

living conditions of pre-industrial populations, which were regularly subject to mortality 

crises that strained their ability to recover. The dynamic model of moderate growth, 

occasionally disturbed by mortality crises, as proposed by Jean-Noël Biraben (1969, 1979) 

and modelled by John Komlos and Sergey Nefedov (2002), most certainly comes closer to the 

realities of pre-industrial demographics. Results are seriously biased if a population is 

considered as stationary when in fact it is not. 

Demographers were quick to (re)introduce the notion of population growth into their models. 

Ansley J. Coale and Paul Demeny in 1966 (followed by Coale et al., in 1983) proposed an 

extensive set of stable populations corresponding to various levels and structures of mortality 

and various fertility behaviours (see below). Paleodemographers (Bennett, 1973; Weiss, 1973; 

Bocquet-Appel and Masset, 1977; Valkovics, 1982; Sattenfiel and Harpending, 1983; 
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Johannson and Horowitz, 1986; Henneberg and Steyn, 1994; Bocquet-Appel and Masset, 

1996) have also turned to stable populations, even if the estimation of a growth rate, whether 

positive or negative, from reliable osteological indicators
98

 is as yet an unresolved problem. 

It must not be forgotten, however, that stable populations are also virtual, since growth rates 

are seldom constant for long enough to allow a population to achieve a “stable” form. The 

theory of stable populations (Bourgeois-Pichat, 1966) reaches its limits in the case of small 

human groups (several hundred individuals), where random fluctuations distort the 

conclusions. The same is true when the chronological sequence observed is too short (a few 

decades): the population dynamics are subject to too many short-term variations and cannot 

settle to a “stable” pattern. 

2.2. Semi-stable and quasi-stable populations 

As a result, the concepts of semi-stable and quasi-stable population proposed by Jean 

Bourgeois-Pichat (1990, 1994) may well be of use in paleodemography. 

A semi-stable population is one which, at any given time, coincides with the stable population 

that corresponds to the indicated fertility and mortality parameters. Once its mortality and 

fertility have been determined, a semi-stable population immediately achieves a stable state, 

whereas, by the same hypothesis, a stable population takes some time to do so. The necessary 

condition here is that the population maintain a constant age structure over time. Bourgeois-

Pichat (1990, p. 823) observed that the age structure of populations in developing countries 

varied little, although their growth parameters (fertility, mortality) were not constant, and 

proposed applying the formulae established for stable populations to these real populations. 

The same concept can be applied to theoretical populations corresponding to mortality 

models: a quasi-stable population is defined by a constant fertility function and mortality that 

varies within a set of model tables. According to Bourgeois-Pichat (1994, p. 170), the set of 

stable populations calculated from model life tables corresponds very closely to the various 

stages of the quasi-stable population associated with this set. 

Furthermore, Bourgeois-Pichat (1990, p. 831) adapted the system of semi-stable populations 

to the imperfect data from developing countries (frequent biases are inaccurate age 

declaration and underestimated number of children). Many observed populations do develop 

in a manner close to the model of semi-stable populations, especially when fertility varies 

little. 

If duration is replaced by the point in time t, these population models make it possible to use 

the properties of stable populations in paleodemography and are able to accept short-term 

variations. 

2.3. Migration 

The previous models assume that the populations are closed, with no inward or outward 

migration. Some demographers (Preston and Coale, 1982) have also developed models that 

take account of the age-dependent migration function. 

                                                 
98

 Some authors have suggested tracking changes in the age distribution of deaths in order to 

measure the growth rate (Valkovics, 1982); others (Longacre, 1976; Cohen, 1977) have based 

their calculations on population estimates from various periods, but their results are not robust 

enough to serve as a grounding for paleodemographic hypotheses.  

At present, most studies compare the distribution of ages at death obtained for a stationary 

population (r = 0) with that resulting from a non-zero growth rate, either chosen arbitrarily or 

estimated (see examples in Chapter X). 
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The age structure of an open population is determined by the numerical growth rate of each of 

its age groups at a given point in time (natural increase and net migration). Samuel H. Preston 

and Ansley J. Coale (1982, p. 253) provide mathematical equations that relate the age 

structure of a population to its various vital parameters under the various population models 

proposed (stationary, stable, open). 

Although these models are more complex to handle, they are not without interest in 

paleodemography. Given the historical facts, we cannot ignore migration. 

3. Various mortality regimes  

To monitor developments in population health, it was the custom for many years, and remains 

so in some cases, to focus primarily on mortality measures (mainly using general indicators 

such as mean age at death and life expectancy at birth). However, the age distribution of the 

deceased is the result of both the age structure of the living population (shaped by fertility, 

mortality and migration, if any) and the mortality law. 

This focus on mortality is partly due to the study material itself, i.e. the remains of the 

deceased, and also to the appeal of model life tables, useful tools for “getting the dead to 

talk”, although it is sometimes forgotten that they also include the “fertility” dimension (see 

Coale and Demeny’s models). Model life tables reveal the link between an observed 

distribution by age at death and the vital parameters of the associated theoretical population, if 

we assume an underlying population model.  

Life tables have been part of the demographer’s toolkit since the 18th century, when the first 

“political arithmeticians” (Graunt, 1662; Halley, 1693) established the relationship between 

age and the probability of dying. At first, these calculations of mortality were mainly used by 

actuaries, but they gradually drew the attention of demographers, who established the figures 

and calculation methods, and laid down rules of interpretation.
99

 

3.1. Model life tables 

A model table is a mathematical model for estimating a level of mortality at age x, the 

unknown, from one or two known parameters in the observed table, by using observations 

taken from other populations at a given place and date. 

Most model tables available are constructed from data observed in developed or developing 

countries, and on regression methods correlating one or more mortality indicators with the 

age-specific probability of dying. For a given value of the input parameter (for example, qx, or 

e0), the model table can be used to obtain the probable timing of mortality as it emerges from 

observations taken from a set of existing life tables. All model life tables assume a close link 

between mortality and age. 

Model tables were developed for two purposes: to fill gaps in the demographic record of 

mortality by sex and age, and to calculate demographic forecasts. Various estimation 

formulae have been proposed, using variable inputs, sample reference tables generally based 

on contemporary observations, and mathematical formulae both simple and complex. 

3.2. Main life tables used by demographers
100

 

3.2.1. United Nations life tables  

                                                 
99

 For example, the role of causes of death in variations in mortality. 

100
 For a detailed presentation of the various mortality models, see Bourgeois-Pichat, 1994, 

pp. 41-86. 
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The first life tables constructed for the purpose of demographic observation were the UN 

tables (1955, 1956), which set out to estimate mortality from the infant probability of dying 

(1q0), on the assumption that there was a relation between two successive probabilities. These 

tables were based on data from developed countries and were criticised (Gabriel and Ronan, 

1985) for their chosen input (one of the least reliable probabilities) and the calculation method 

used (biased by estimating a linked succession of probabilities). Their principle was 

nonetheless applied in work by Coale and Demeny (1966, 1983), Ledermann (1969), Brass 

(1971), the OECD (1980) and the United Nations Population Division (1982). 

3.2.2. Coale and Demeny’s models 

Coale and Demeny’s tables (1966, extended and improved in 1983 with the help of Barbara 

Vaughan) differed from the earlier ones by recording regional differences in mortality (four 

regional models
101

 corresponding roughly to geographical groupings, covering only the 

developed countries, i.e. European and of European settlement). They also used a more 

complex form of calculation and input into the models was by life expectancy at birth.
102

 

These models were a response to the two main objections made to the UN tables (a single 

mortality regime and regressions calculated from the infant probability of dying) and also had 

the advantage of being a two-parameter system: one parameter is the regional model chosen 

(empirical choice of mortality structure) and the other the input into the model (choice of a 

level of mortality). However, in practice, users generally take the West model (Coale and 

Demeny’s general pattern model) in the absence of any closer knowledge of the mortality to 

be estimated. 

These models require no calculation: all the table parameters are given, including the 

associated stable populations (which may explain their success). They have, however, been 

criticised on two points: first, the preponderant weight of “European” tables, which makes 

them ill-suited to certain regions in the world,
103

 and second, the input into the tables (e0) is 

not the index used to construct the tables (e10), causing a bias in the calculation of the 

probability of dying. 

3.2.3. Ledermann’s life tables 

                                                 
101

 The East family (Austria, Czechoslovakia, Germany, Hungary, Northern and Central Italy, 

Poland: 31 tables) is characterised by high infant mortality and high mortality at ages 50+. 

The North family (Iceland, Norway, Sweden: 9 tables) has low infant mortality and low 

mortality at ages 50+. The South family (Southern Italy and Sicily, Spain, Portugal: 22 tables) 

has high under-5 mortality, low mortality at ages 40-60 and high  mortality at ages 65+. The 

West family (130 tables from the other 22 countries, mainly in Europe, plus Australia and 

New Zealand, Canada and the United States, Israel, Japan, Taiwan and the white population 

of South Africa) comes close to the general mortality model observed in the preliminary 

phase. 

102
 Life expectancy at birth: a general mortality index measuring the mean number of years a 

newborn would live if exposed throughout its life to the mortality conditions observed in its 

year of birth. 

103
 In the 1983 revision, Coale, Demeny and Vaughan took account of this objection and 

included some tables for Africa. In 1976, Samuel H. Preston had already proposed 

introducing a fifth “non-Western” pattern based on life tables from Latin America. 
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Using principal component analysis to determine the most useful indicators for establishing 

model life tables (Ledermann, Bréas, 1959), Sully Ledermann proposed a series of sets of 

model tables in 1969 (seven single entry and three dual entry), based on the observations from 

157 tables which were largely those used to construct the UN tables. 

Ledermann’s life tables make it possible to approach mortality without the biases caused by 

the method used to calculate the UN life tables, and avoid the need for a specific input, 

contrary to the UN and Coale and Demeny tables. For each of the proposed inputs, they also 

provide estimates of those inputs (so that the user can calculate the life table associated with 

any value of the input index) and 95% variance limits for age-specific probabilities of dying. 

A few quibbles have been raised: the fact that calculation by successive regressions causes a 

wider margin of error at the end of the chain (as errors are accumulated at each probability) is 

partly outweighed by the possibility of using the set closest to the initial data. Ledermann’s 

tables do not allow for the possibility of differing mortality structures, as do Coale and 

Demeny’s proposed regional models. 

3.2.4. Brass’ logit model 

The logit model used by William Brass (Brass and Coale, 1968) is not based on a set of 

observed tables but on a relationship that can be used to construct a life table for a given 

population from a known table taken as a reference table (also known as a standard). His 

method is based on the idea that the ratio of probabilities of dying between two tables will 

continually rise or fall with age (Pressat, 1985). This means that a table defined by its 

survivors at age x can be related to the survivors at the same age in a reference table by a 

linear regression in which the constant determines the level of mortality and the intercept the 

relationship between child mortality and adult mortality (see Chapter VIII). 

The importance of the choice of reference table was pointed out by Brass, among others, in 

1971, and he proposed a “European” standard, close to the UN and Ledermann model tables 

and Coale and Demeny’s West model; and in 1975, an African standard to adjust the data 

from countries where child mortality is still high. 

The main weakness of this method – inaccurate estimation of the proportion of deceased at 

high ages – was corrected by Douglas C. Ewbank et al. (1983), who proposed introducing two 

further parameters,  and , for the impact on the youngest and oldest age groups. 

3.2.5. Life tables for developing countries  

Returning to the tradition of life tables, the OECD (1980)
104

 and UN (1982)
105

 set out to 

compile a set of reliable mortality tables for developing countries, so that models could be 

developed for places where mortality was still high. 

The methods they used were inspired by the work of Coale, Demeny and Ledermann: 

identification of sub-groups (in the UN tables), principal component analysis, regressions of 

logarithms or logits of probabilities of dying, publication of tables ranked by life expectancy 

at birth, publication of associated stable populations. 

                                                 
104

 The OECD used a corpus of 104 life tables from developing countries, divided into four 

groups by mortality by age (the fifth region was an aggregate of the four). For each group the 

OECD also published a standard table. However, the poor quality of the input data limits the 

validity of these model tables. 

105
 The UN only used 36 tables from 22 developing countries in Latin America, Asia and 

Africa, also divided into four “geographical” regimes and a  general mortality pattern. But 

what they gained in terms of quality they perhaps lost in terms of representativeness. 
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3.3. Main mortality models used by paleodemographers 

3.3.1. Traditional mortality models 

In the 1970s, the models established by Acsádi and Nemeskéri (1970) and Weiss (1973), 

among others, were popular among researchers. But because these tables were directly based 

on archaeo-anthropological data (determination of individual sex and age of exhumed 

skeletons) and ethnological data where age is not a reliable variable either, they contained 

intrinsic errors. Some researchers still continue to construct them or use those of Weiss 

(Lovejoy et al., 1985; Corruccini et al., 1989; Alekseeva and Buzhilova, 1996, 1997; Drusini 

et al., 2001; Budnik et al., 2004). 

Others have thought it more prudent to use contemporary life tables, such as those of Coale 

and Demeny, Ledermann and Brass’ logits (1971, European standard)
106

 to address the 

fertility of buried populations or correct the biases in the anthropological sample, although 

these tables have long been criticised for their inability to reflect the demographic features of 

pre-industrial populations. Renée Pennington (1996) more wisely preferred to use the African 

standard (Brass, 1975) to model the demographic consequences of even a slight reduction in 

early childhood mortality in the Neolithic period. 

While Masset and Bocquet-Appel’s paleodemographic estimators include the mortality 

features of pre-industrial populations and use indicators directly related to osteological data, 

they do not provide all the life table parameters. Some authors (Sellier, 1996, Guillon, 1998; 

Castex, 2005; Castex et al., 2005; Bizot et al., 2005; Crubézy et al., 2006) have consequently 

combined the paleodemographic estimators with Ledermann’s model tables in order to 

reconstruct the entire mortality curve, in total contradiction with their initial hypothesis of a 

mortality by age specific to pre-industrial populations. 

With the improvement in survey data quality, interest in these “traditional” mortality models, 

constructed from a large number of observations for predictive purposes, has waned in recent 

years. The quality of current survey data has not only rendered indirect estimation methods 

less useful but has also made it possible to develop analysis techniques based on individuals. 

This shift is also perceptible in paleodemography. 

3.3.2. Parametric models 

William Siler’s mathematic model uses the “hazard function”, based on the idea of 

exponential increase (or decrease) in mortality. He used it first for animal populations (Siler, 

1979) and then successfully applied it to human populations in 1983.
107

 By adding a fourth 

parameter to the Gompertz-Makeham model, Siler achieved a much better fit for the mortality 

of pre-industrial populations, where the probability of dying was extremely high in infancy 

and rapidly declined thereafter. 

This model was applied by Timothy B. Gage to non-human primates (Gage and Dyke, 1986; 

Gage, 1998) and in anthropological demography (Gage, 1988, 1989, 1990; Gage and Mode, 

                                                 
106

 To our knowledge, the life models for developing countries (UN, 1982; OECD, 1980) 

have not been used in paleodemography, either due to unawareness of their potential utility, 

or because researchers consider that the causes of death among developing country 

populations are too remote from the health conditions of pre-industrial populations. 

107
 Mortality by age displays very similar patterns for all mammals. This observation has 

made it possible to apply to human populations a mathematical model originally designed for 

primates (Siler, 1983). 
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1993). Kathleen A. O’Connor (1995, 1997) was the first to then apply Gage’s work to 

paleodemography. 

Box 5 gives a more detailed presentation of the various parametric models. The interested 

reader may also consult the general description by James W. Wood et al. (1992a). 
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Box 5. The main probability distribution specifications of mortality models in 

paleodemography 

Daniel Courgeau 

In demographic event history analysis, a certain number of time functions are used to specify 

the mortality of a population, or indeed the occurrence of any other phenomenon, often called 

failure. For more details see Event history analysis in demography (Courgeau, Lelièvre, 

1992). 

1. Main functions used 

An individual’s failure time is taken to be a random variable T, greater than or equal to zero, 

whose distribution is to be examined. This may be specified in various ways, three of which 

are presented here. 

The survivor function, for mortality, is the probability that failure time T will be later than or 

equal to a given date t: 

S(t) = P(T ≥ t) 

The probability density function is then the limit when dt  0 of the probability that time T 

falls within [t, t + dt] divided by dt: 
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   

dt
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The hazard function specifies the instantaneous rate of failure conditional upon survival to 

time t:  
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For paleodemographic estimates, the probability density function f (t) is used mainly for 

continuous time models, and differences between survival functions for discrete time models. 

2. Main models 

Only a few models are used here for mortality. They depend on the type of mortality under 

study. 

a. Gompertz model 

This model was published in 1825 to characterise the mortality of adults, which increases 

exponentially with age. Its hazard function is expressed by: 

   tth  exp . 

The corresponding probability density function is  

    tettf   1exp , 

and the survivor function 

    tettS   1exp . 

The probability of dying between ages t1 and t2 is measured by the difference 

S(t1) – S(t2). 

b. Gompertz-Makeham model 

This was proposed in 1860 to take account of accidental deaths, which are independent of 

age. It also applies to adults. Its hazard function is expressed 

   tth  exp1  . 

Its probability density function is 

       tetttf   1expexp 11  
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and survivor function 

    tettS   1exp 1 . 

c. Siler model 

This was proposed in 1979 for mortality at all ages. Its hazard function is expressed 

  tt
eeth 21

2211

  


. 

Its probability density function is 

        tttt
eteeetf 2121 11exp 212211

  
  

and survivor function 

      tt
etetS 21 11exp 21

  


. 

d. Weibull model 

This was proposed in 1951 and has been used by various authors in paleodemography to 

model adult mortality with a parameter  > 1. Its hazard function is expressed by: 

    1



 tth . 

Its probability density function is 

      
 tttf 


exp

1  

and survivor function 

    ttS  exp . 

However, although the  hazard function does increase with age, it increases more slowly than 

with the Gompertz model. 

 

3.3.3. Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE, see Box 8, Chapter A) has a long history but has 

only been used in paleodemography in recent years, in association with the use of event-

history models. This began with Richard R. Paine (1989) who attempted to find the best fit 

between the distribution of ages at death established from skeletons
108

 and the theoretical 

distribution associated with life tables (in particular, Coale and Demeny’s). Other applications 

followed in order to determine the demographic parameters resulting from this corrected 

distribution of ages at death (Konigsberg and Frankenberg, 1992; Siven, 1991a and b; Skytthe 

and Boldsen, 1993). But on top of the problems already mentioned in determining individual 

age at death, others arise from the use of a possibly imperfect mortality model. 

Work by James W. Wood et al. (1992a) to measure populations’ health conditions drew 

attention to the problem of non-stationary populations and to two less familiar biases, those of 

selective mortality and population heterogeneity. Population heterogeneity is a well-known 

phenomenon in demography (Vaupel et al., 1979) and mortality analysis now usually takes 

account of the resistance or susceptibility to death and disease of each individual in the 

population under study. These considerations enabled Wood et al. (2001, 2002) to propose a 

“latent trait method” for estimating the distribution of ages at death, taking account of the 

non-stationary and heterogeneous nature of the population, but at the cost of quite complex 

equations. 

3.3.4. Other models for estimating distribution of ages at death 

                                                 
108

 I.e. the individual ages estimated from osteological remains. 
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In recent years, other mathematical models have been proposed for reconstructing the age-sex 

structure of a buried population, taking account of the probabilistic constraints of age 

determination (Müller et al., 2001; Love and Müller, 2002), and for testing the validity of 

their paleodemographic results by comparing the distribution by age of buried populations not 

with stable populations but rather with populations characterised by variable fertility and 

mortality rates (Bonneuil, 2005). 

More recently still, some researchers have examined the specific features of the mortality of 

pre-industrial populations (Forfar, 2006; Luy, Wittwer-Backofen, 2005, 2008; Séguy et al., 

2006b, 2008), distinguishing mortality during “normal” periods with that of demographic 

crises (Bocquet-Appel and Bacro, 2008). 

4. Should population dynamics be modelled by fertility or by 

mortality? 

To monitor human health over time, it was long the practice, and sometimes still is, to focus 

on mortality, mainly via the average indicators of mean age at death and life expectancy at 

birth. In the 1970s, as the global population surged, researchers began to consider that fertility 

had a much stronger impact than mortality on the population pyramid, and hence on the 

number of people liable to die between two ages.
109

 

These two ways of addressing population dynamics can be identified in the work of 

paleodemographers. For example, Robert McCaa, Mary Jackes and Jean-Pierre Bocquet-

Appel start from a certain level of fertility, defined by the growth rate of their population, to 

determine the distribution of ages at death that results from a mortality regime fixed in 

advance.  

For our part, we prefer to consider that the old demographic regime did not enable 

populations to achieve very high growth rates over the long term. This was because their high 

fertility was quickly outweighed not only by high “normal” infant and child mortality rates 

but also by recurrent and sometimes severe mortality crises. Although age-specific fertility 

rates lie within fairly stable limits from one year to the next, age-specific mortality rates can 

vary considerably in terms of both intensity and of the most severely affected age groups.
110

 

Under these conditions, pre-industrial populations could only respond through weaker social 

control of marriage (and associated births) and the survival reflex whereby couples replaced 

children who had died young. Equally, short-term episodes of rapid demographic increase or 

decline should not be overlooked.  

                                                 
109

 The idea is that fertility affects the number of births in a year and contributes to widening 

or narrowing the base of the population pyramid, gradually altering its profile over time. 

Conversely, mortality, which affects all ages in roughly the same way from one year to the 

next (except for demographic crises), has a more moderate effect on population structure. 

110
 Only non-selective epidemics, such as plague, have little or no effect on the age-sex 

structure of the surviving population (Séguy et al., 2006b). 
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Chapter VI 

Finding the right models for pre-industrial populations 

Contemporary model tables, or mathematical models based on current conditions, are not, in 

our view, the best tools for describing pre-transitional human behaviour. The theory of 

demographic transition (Landry, 1934; Davis, 1945; Notestein, 1945; Chesnais, 1986) 

described this shift from a traditional regime, in which high fertility and mortality were 

roughly balanced, to one of low birth and death rates. Depending on time and place, this shift 

has taken from a few years to a couple of centuries. It is a consequence of social and 

economic development, and progress in public health and medicine that improve children's 

chances of survival. Lower infant and child mortality leads to a reduction in the birth rate.
111

 

The time lag between the two events (lower mortality generally precedes lower fertility) 

produces a population boom throughout the transition period, until equilibrium is restored 

between births and deaths. Lower fertility and mortality cause both bottom-up population 

ageing (as the base of the age pyramid narrows) and top-down ageing (as people live longer). 

This theory invalidates the hypothesis of a continuity of demographic behaviour from pre-

historic times to the present which underpins the use of contemporary models to study 

populations of the past. 

Specific models must therefore be developed for pre-industrial populations, along the lines of 

Jean-Pierre Bocquet-Appel and Claude Masset’s “estimators”. The aims are three-fold: 

- to use a sufficiently large corpus of life tables statistically representative of mortality 

among pre-industrial populations; 

- to propose inputs easily accessible from historical or osteological sources; 

- to take account of the growth rate, either positive or negative, of the population. 

1. Constraints to be included in the models 

1.1. A mortality pattern specific to pre-industrial populations 

                                                 
111

 Whether mortality reduction precedes or follows fertility decline is still subject to 

discussion. In some cases, it appears that they have been simultaneous or even reversed 

(Coale and Watkins, 1986). 
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Whatever their lifestyles or the latitudes where they live, most populations that have not 

started their demographic transition present very high rates of fertility and child mortality. 

Their pattern of mortality by age differs noticeably from what is now observed in developed 

countries (Figures 27 and 28): the risk of dying is very high during the first years of life, 

declines after age 5 and gradually rises again after age 20. This means a low life expectancy at 

birth, very similar to life expectancy at age 20. 

The specific features and variability of the demographic behaviour of European populations 

from Antiquity to the Middle Ages are largely unknown. Consequently, by using as wide a 

basis as possible for our models we can claim a certain universality, even though we must 

accept a wider margin of error. 

Figure 27. Risk of dying at a given age in France, 1740-2005 (both sexes) 

 

 
 

Sources: Yves Blayo, 1975; France Meslé, Jacques Vallin, 2001. 

 

Figure 28. Distribution of age at death in France, 1740 and 1995, according to population 

structure and mortality distribution 
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Key. Top, observed distribution (i.e. corresponding to the 1750 and 1995 population 

pyramids); bottom, distribution of deaths if the mortality by age of 1740-1749 had applied to 

France in 1995 (cf. Figure 27) 

1.2. Models constructed from inputs accessible to paleodemographers 

We have already pointed out that, unlike historical demography based on pre-statistical 

written evidence, osteological data, because of the margin of uncertainty associated with 

biological evidence, cannot easily be used to calculate probabilities of dying. It is crucial, 

therefore, to provide specific inputs for mortality models intended for paleodemographers. 

For the models to work properly, these inputs must be the variables on which the linear 

regressions are established. 

Certain archaeological constants (such as the virtually systematic under-representation of 

children under 5 in burial grounds), the various ways of determining age (different for 

children and adults) and the clear segmentation of the mortality curve between children and 
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adults,
112

 all make it necessary to use variables representative of these two age groups. 

Variables must be chosen that provide information separately about the under-20s
113

 

(excluding ages ages 0-4 because of their under-representation) and adults (over-20s or over-

18s depending on the age indicators used). 

1.3. Margin of error and paleodemographic sample size: two variables to consider 

The results proposed must take account of both the quality of the estimates, as measured by 

the residual standard deviation, and the size of the paleodemographic sample. The margin of 

error of the models is generally minor, but the small size of some paleodemographic samples, 

which must be considered, may affect the expected results. 

1.4. Growth rate is difficult to measure, but cannot be ignored 

As we saw in the previous chapter, the hypothesis of a zero-growth (so-called “stationary”) 

population was long accepted by paleodemographers for the reason that over the long periods 

of burial ground use (several generations, even centuries), the regulation mechanisms of 

traditional populations must have maintained a growth rate close to zero, reflecting the 

balance between births and deaths. 

However, recent findings in historical demography have undermined this hypothesis: the 

image of a population where moderate growth is occasionally upset by crises of excess 

mortality surely comes closer to the realities of the traditional demographic regime (high 

mortality and high fertility). 

The stable population hypothesis is based on the idea of natural growth due solely to the 

balance between births and deaths; it assumes a total lack of migration (closed population 

hypothesis). However, in the past as in the present, population dynamics are partly due to 

migration (inward and outward), which reinforces or counteracts the effects of natural 

increase. These movements must therefore be taken into account, even if measuring them 

from reliable osteological or archaeological evidence will raise some problems of its own. 

2. Modelling
114

 

2.1. Collecting the sample of observed tables 
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 Research has shown that child and adult mortality in the past could vary independently and 

that the higher the general rate of mortality the weaker the correlation between the adult and 

child rates (Woods, 1993; Wrigley, Schofield et al., 1997). 

113
 Anthropologically speaking, maturity begins at around age 18 (see above). 

Demographically, we could have taken that threshold if we had been working with one-year 

age groups. Given the unreliability of pre-statistical data, we have preferred to work with five-

year age groups, and set the transition point between immature and mature according to the 

age groups adopted (15-19 and 20-24 years). 

114
 This work was aided by Stéphane Renard, for data entry, and, at various stages of the 

statistical study, by Magali Belaigues-Rossard, Luc di Benedetto, Paul Bermier, Bertrand 

Buffière, Annie Carré, Nadège Couvert, Benoît Haudidier and Carole Perraut, on short-term 

contracts at INED. Our thanks for all their help. We also wish to warmly acknowledge the 

work of Arnaud Bringé who oversaw and guided all the stages in this lengthy research 

project. 



103 

 

Starting from an initial corpus of about a thousand tables taken from statistical yearbooks and 

demographic publications up to 1997, we compiled a purposive sample of 292 life tables
115

 

corresponding to populations presenting the features defined for pre-industrial populations in 

terms of lifestyles (farming populations, little urbanisation, no modern medical care) and 

mortality (high infant and child mortality).  

Data presentation was harmonised, some probabilities (generally for the oldest age groups) 

had to be estimated, and the tables were tested to detect and eliminate those containing 

inconsistencies. The sample of selected tables then underwent statistical analysis
116

 in order to 

group tables with similar characteristics in terms of both level and structure of mortality, and 

for differential male/female mortality. The results of these analyses were used to individualise 

the corpus of tables to be chosen for the modelling: 167 “both sexes” tables,
117

 139 “female” 

tables and 147 “male” (the selected tables are listed in Table XIX at Springer Extra). The 

mean pattern in this sample of tables (Figure 29) is noticeably different from those of existing 

models.
118

 It comes closer to the values of the African standard (Brass, 1975) than those of 

Bocquet-Appel and Masset (1977) or Ledermann (1969). 

2.2. Choice of mathematical model 

With this sample, a large number of linear regressions were run, relating a given parameter to 

all the estimated probabilities of dying. Two mathematical models were used: the logarithmic 

model (described in Chapter VII) and the logistical model (Chapter VIII). 

The two models were used to estimate levels of mortality at various ages x, by reference to 

data observed at other times and places (i.e. the 167 reference tables). They involve accepting 

                                                 
115

 The “both sexes” sample comprises 292 life tables, the “male” sample 290 and the 

“female” sample 286. 

116
 Two main methods were used: random k-means clustering and automatic table 

classification. These discriminant analyses were based on a series of indicators specially 

defined to characterise the “oldest” life tables: discriminating variables chosen to measure 

changes in mortality structure:  
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117
 The sample comprises historical tables from industrialised countries (17th to 19th 

centuries) and contemporary tables from developing countries (end-19th to 20th centuries), all 

selected according to the level of the demographic indicators cited above. No sub-group 

stands out: the average level of mortality in the developing countries is significantly very 

close to that observed in the historical tables of the industrialised countries (Student’s T-test: 

T = 0.023, significance level: 0.05) except for three probability values (4q1, 5q5, 5q65). The 

same holds for mortality structure: no significant difference emerges between the two 

samples, except for three probability values (4q1, 5q5, 5q65). 

118
 Not all Coale and Demeny’s source tables have been published, so they could not be 

included in this comparison. 
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the hypothesis that all the populations to which these models are applied pertain to pre-

industrial mortality patterns. 

 

Figure 29. Mortality regimes underlying various models 

 
 

2.3. Choice of entry parameters 

Since the preceding value and following value methods cannot be used with 

paleodemographic data, only entry parameters compatible with reliable osteological indicators 

were chosen, such as: 

 juvenility index 
1410

95




D

D
JI  denoted “JI”  

 Bocquet-Appel (2002)’s proposed ratio 



20

195

D

D
P , “P” 

 mean adult age at death
119

 “a20” 

 mean age of children deceased between ages 5 and 14
120

 “a5-14” 

Care must be taken to ensure that the paleodemographic variable estimated from osteological 

indicators and used to enter the model is not considered as strictly identical to the 

demographic variable calculated from life table data and used for various regressions, 

although we cannot measure the discrepancy (except for special cases: Signoli, Séguy, 

Buchet, 2005). 

By convention, we shall call the paleodemographic variable “estimated JI”, “estimated P” or 

“estimated a20”. 

2.4. Including the population growth rate 

                                                 
119

 Method for calculating this variable in the tables: [(22.5  d20-24) + (27.5  d25-29) + (32.5  

d30-34) + (37.5  d35-39) + (42.5  d40-44) + (47.5  d45-49) + (52.5  d50-54) + (57.5  d60-64) + 

(62.5  d65-69) + (67.5  d70-74) + (72.5  d75-79) + (77.5  d80-84) + (88  d80-)]/d20- 

Method for calculating this variable for the osteological series: see Chapter V. 

120
 Method for calculating this variable in the tables: [(7.5d5-9) + (12.5d10-14)]/d5-14 

Method for calculating this variable for the osteological series: see Chapter V. 
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In the absence of sufficient data to provide sub-samples for various growth rates, we 

artificially created the stable populations associated with each of the tables in our samples.
121

 

For that purpose, we calculated the distribution of death by age (and survivors by age) from 

the mortality distribution of the observed population and a growth rate lying within an 

interval of –3% and +3%, by 0.25% increments,
122

 making 25 values including zero. 

In practice, the range of demographic situations affecting pre-industrial populations was much 

narrower,
123

 with the exception of mortality crises and the subsequent periods of recovery – or 

continued depression. In these special but recurring cases, the population losses might also 

exceed, even substantially, the limits set here. 

We thus have a wide range of stable populations that enable us to measure the relationship 

between the various demographic parameters, mortality distribution and age structure of the 

population. Figure 30 illustrates the variations in distribution of age at death that result from a 

fixed mortality distribution and variable growth rates, and Figure 31 the ensuing 

modifications in population structure. 

2.5. Quality and presentation of the models 

To obtain the best model, we analysed the studentised residuals and the adjusted R
2
 value of 

each regression before excluding outlying tables. The exclusion procedure complies with 

fixed rules that limit operator subjectivity and enable the program to be re-run (see Chapter 

VII, note 2). The significance level of the model’s parameters was also tested automatically in 

order to retain only those whose p-value was lower than 0.005. 

Each estimate comes with the value of the residual standard deviation and adjusted R
2
; both of 

these can be use to assess the quality of the proposed model. 

There are models for each sex and both sexes combined to allow for difficulties in 

determining the sex of children. Due to the number of models proposed (75 per parameter), 

we can give only an overview here for various values of r, but the reader may consult the 

source documents (in the Tables available at at Springer Extra). 

Figure 30. Distribution of age at death for various values of r 

 

                                                 
121

 However, the growth rates of the populations for which we have life tables were not 

always specified in the publications. By convention, we have considered that their growth 

rates were very low, and have constructed our stable populations on that assumption. 

122
 In this way we obtain a network of 24 stable populations associated with each table in our 

sample (namely 167 x 24 = 4,008 tables for the “both sexes” sample; 147x24=3,528 tables for 

our “male” sample and 139x4=3,336 tables for the “female” sample). 

123
 Under the old demographic regime, long-term population growth was hindered not only by 

high mortality (particularly among infants and children) but also by frequent mortality crises 

(see above). In such situations, growth rates of 2.5% or 3%, as seen in contemporary 

observations (Pison, 2007) are hardly plausible in the long term. For example, Bocquet-Appel 

and Masset (1977) proposed ten growth rates (plus and minus 2%; 1%; 0.5%; 0.2%; 0.1%); 

Henneberg and Steyn (1994) proposed growth rates in increments of 0.5 from –1% to +5%; 

and Bocquet-Appel and Masset (1996) used growth rates from –2.5% to +2.5% by increments 

of 0.25. 
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N.B. The example is taken from the mean table of the “ both sexes combined” pre-industrial 

standard. 

 

Figure 31. Distribution of survivors by age for various values of r 

 

 
 

N.B. The example is taken from the mean table of the “both sexes combined” pre-industrial 

standard. 
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Chapter VII 

Model tables for pre-industrial populations
124

 

1. Logarithmic model 

This model relates the logarithm of probabilities of dying to a given variable expressed either 

as a logarithm or a pure number. Estimation by the successive probability method uses the 

model proposed by Sully Ledermann (1969). The method consists of constructing a series of 

regression equations relating each probability to the preceding probability (or the following 

one, for inverse regressions). In this way it avoids the bias due to chain estimation, because 

the entry value can only be used for reliable estimation of the immediately following value, 

and the correlation rapidly weakens for later values. 

This principle has been adapted to paleodemographic data, with equations relating the log 

probabilities of dying to a given paleodemographic indicator (X) expressed as a pure number 

or its logarithm. The mathematical model is of the following form: 

logaq(x+a) = a0+a1X+   (±2) 

or  

logaq(x+a) = a0+a1logX+   (±2) 

where  is a white Gaussian noise (or stochastic error). 

1.1. Preliminary hypotheses for the multiple linear regression 

To model the demographic parameters associated with a fixed mortality distribution and 

chosen growth rate, the simplest solution would have been a multiple linear regression of the 

following type: 

logaq(x) = a0+a1X+a2r+ 

where X is the paleodemographic variable, r the growth rate and  white Gaussian noise. 

However, the collinearity that affects the equation variables (Table 22), since X is calculated 

as a function of r, would make such a model unstable. It was preferable, therefore, to propose 

models for each chosen value of r, operating independently from each other. 

This network of model tables makes it possible to start from one or more paleodemographic 

variables and estimate part or all of the life table for each chosen value of r. This amounts to 

                                                 
124

 The first results of this work were published in 2006 and 2008 with help from Magali 

Belaigues-Rossard, Paul Bermier, Nadège Couvert, Carole Perraut and Arnaud Bringé (Séguy 

et al., 2006b, 2008). Here we present the final version of the mortality models for 

paleodemographers, and a presentation currently in preparation will include variables of use 

to historical demographers. 
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having a panel of stable populations – or quasi-stable if we assume that the stable state is 

achieved instantaneously – associated with each of the observed mortality distributions. 

Table 12. Correlation between inputs and growth rate 

Variable a5-14 a20+ JI log JI P log P 

Growth rate –0.322 –0.852 0.762 0.881 0.86 0.898 

 

Figure 32. Observed distributions of the value and logarithm of the probability of dying q50 

 
Key. Left, the distribution of the probability of dying at ages 50-54 (qq50) in the chosen sample 

of tables is approximately log-normal; right, the distribution of the logarithm of this 

probability (log 5q50) is approximately normal. 

 

1.2. Preliminary hypotheses for the simple linear regression 

For the model to operate properly, certain initial hypotheses need to be validated (Poulain, 

1981, pp. 69-71): 

In the regression  

logaq(x+a) = a0+a1X+ 

where logaq(x+a) is the dependant variable, X the explanatory variable, a0 and a1 the parameters 

of the model, and  the stochastic error, 

- the variables X and logaq(x+a) must be observed without measurement error; 

- the relations between X and logaq(x+a) must be linear (linearity hypothesis, cf. Figure 32); 

- the distribution of the error term  is normal (residual normality hypothesis): 

- the error term  must have a zero mean and constant variance with respect to each of the 

variables logaq(x+a) and X (homoscedasticity hypothesis); 

- these same values of  must be independent of each other (zero covariance); 

- no spatial or temporal auto-correlation. 

All of these conditions have been verified for the model presented below, using a software 

procedure of preliminary variable analysis, automatic exclusion of outlying tables and quality 

controls of the proposed models
125

. 

                                                 
125

 The exclusion of outlying tables is not based on a simple visual examination of the values 

of the studentised residuals, an inevitable source of error, but on a program that guarantees 

rigorous selection. Outlying observations are analysed via Residual Student with constraints 
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1.3. Quality of proposed regressions 

For all the proposed regressions 

- the p-values associated with the parameter estimates are all very low (approximately 10
-17

), 

showing that each of the estimated parameters is significantly non-zero; 

- the adjusted correlation coefficients (R
2
) are of good quality. We chose the 0.8 threshold for 

our models. Where the regressions have an R
2
 below that threshold, they are greyed out to 

signal lower reliability for the estimate (e.g. in Table 24). All the regressions for each 

indicator, including those we did not choose because of their poor R
2
, are available in the 

supplementary material on the INED website ); 

- the estimated standard deviation of each model is acceptable. It can be used to calculate 

relatively precise confidence intervals for the probabilities estimated by the models. 

2. Estimating of probabilities from paleodemographic variables 

2.1. Juvenility Index (JI) and indicator P 

The linear regression uses the logarithm of these variables, whose distribution is 

approximately log-normal. The models are  

logaq(x+a) = a0+a1X+    (±2) 

and 

logaq(x+a) = a0+a1logP   (±2) 

with 




20

145

D

D
JI  and 




5

195

D

D
P .These indicators vary noticeably as a function of the growth rate 

(Figure 33). 

For a set growth rate, the two indicators correlate well, particularly with the logarithms
126

 of 

the early probabilities 1q0 to 5q10 (see Table 12)
127

. 

However, whatever the value of r, the juvenility index provides a better quality of estimate for 

the first three probabilities than indicator P; conversely, indicator P markedly improves the 

estimate for 5q10, as long as the population is growing (r≥0). The estimate for 4q1 is still very 

poor with indicator P (R
2
≤0.8, whatever the growth rate considered). It is better to use the 

juvenility index, where R
2
 is always greater than 0.8 (Tables 13 and 14). 

Figure 33. Estimation of 5q5 as a function of the growth rate for a juvenility index of 0.127 

                                                                                                                                                         

fixed as a function of the value of R
2
, a measure of model quality. The greater R

2
, the weaker 

the constraints on Residual Student, so that the model quality takes account of data 

uncertainty , which becomes an increasingly important factor as the model is refined. The 

significance tests of the model’s parameters are also based on an automatic program that tests 

the p-value associated with each of these coefficients so that only models with a p-value 

below 0.05 are retained. A further constraint has been added to the model: a non-zero constant 

to ensure comparability between models. 

126
 Use of logarithms is justified by the log-normal distribution of values for the juvenility 

index. 

127
 Since anthropological determination of sex is still a difficult task, we present here only a 

sample of the modelling done on the “both sexes” sample. All the regressions are available in 

the additional material on the INED website. 
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Although the two indicators correlate less well with adult mortality, they can be used to 

estimate some age-specific probabilities of dying, as long as a lower regression quality is 

accepted (R
2
≥0.78) and preference is given to a situation of population decline (r≤–0.015). 

Under these conditions, indicator P will estimate 5q40, 5q45, 5q50 and even 5q30 in extreme cases 

(Table 13). The juvenility index, on the other hand, can be used to estimate 5q30 when r≤–

0.0025 (Table XX at Springer Extra). 

However, along with the quality of the estimator as a demographic variable (i.e., calculated 

from the parameters of the observed life tables), consideration must also be given to the 

paleodemographic indicator taken from anthropological observation. 

The indicator “estimated P” has two advantages over the juvenility index, which has been 

variously criticised (see Chapter IV): it is easier to observe (the maturity threshold is more 

accurately determined anthropologically) and it covers all the ages in the exhumed population 

above 5 years. It remains to be verified from historically documented series whether these 

advantages justify opting for “estimated P” instead of “estimated JI”. 

2.2. Mean age of deceased children aged 5 to 14 – a5-14 (both sexes) 

We looked for a paleodemographic indicator that would not reproduce the failings of the 

juvenility index (particularly the archaeological inventory of 5-14-year-olds). The mean age 

of children dying at ages 5-14 is a data point accessible to anthropologists (Buchet et al., 

2006b, and this book). 

Since the distribution of a5-14 values is approximately log-normal, the linear regression 

introduces the logarithm of the variable as follows 

logaq(x+a) = a0+a1loga5-14   (±2).  

However, this indicator does not display a close linear correlation with the population growth 

rate, because dispersion is too high. It produces low correlations with infant and child 

probabilities of dying (0.41 for 1q0; 0.68 for 4q1; 0.75 for 5q5, both sexes
128

) and there is no 

correlation with the other probabilities of dying. 

Table 13. Estimation model for parameter JI. Both sexes combined. for various values of r 

                                                 
128

 For women, the only possible estimate is for 5q5 (with R
2
=0.71); for men, no satisfactory 

correlation can be found between this indicator and any of the 18 probabilities of dying (with 

R
2
≥0.68). 
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Log aqx Explanatory variable a0 a1 
Adjusted 

R² 
 Log aqx Final number of tables

*
 Value of r 

Log 1q0 Log IJ –  0.335 0.441 0.823 0.042 129 +  0. 010 

Log 1q4 Log IJ –   0.365 0.573 0.808 0.054 128  

Log 5q5 Log IJ –   0.387 1.065 0.979 0.030 163  

Log 5q10 Log IJ –   0.879 0.787 0.886 0.054 163  

 
Log 1q0 Log IJ –   0.318 0.437 0.822 0.042 129 +  0. 0075 

Log 1q4 Log IJ –   0.327 0.580 0.803 0.056 131  

Log 5q5 Log IJ –   0.346 1.052 0.977 0.032 164  

Log 5q10 Log IJ –   0.846 0.780 0.895 0.052 162  

 
Log 1q0 Log IJ –   0.310 0.423 0.808 0.042 129 +  0. 0050 

Log 1q4 Log IJ –   0.316 0.565 0.804 0.055 129  

Log 5q5 Log IJ –   0.304 1.043 0.974 0.034 165  

Log 5q10 Log IJ –   0.811 0.777 0.904 0.050 161  

 
Log 1q0 Log IJ –   0.285 0.427 0.810 0.043 131 +  0. 0025 

Log 1q4 Log IJ –   0.294 0.557 0.801 0.055 129  

Log 5q5 Log IJ –   0.264 1.029 0.970 0.036 166  

Log 5q10 Log IJ –   0.779 0.770 0.901 0.051 163  

 
Log 1q0 Log IJ –   0.269 0.422 0.809 0.043 131 0.0000 

Log 1q4 Log IJ –   0.300 0.530 0.807 0.052 124  

Log 5q5 Log IJ –   0.224 1.017 0.967 0.037 166  

Log 5q10 Log IJ –   0.747 0.761 0.910 0.048 162  

 
Log 1q0 Log IJ –   0.252 0.416 0.807 0.043 131 –  0. 0025 

Log 1q4 Log IJ –   0.272 0.529 0.804 0.053 125  

Log 5q5 Log IJ –   0.185 1.004 0.964 0.039 166  

Log 5q10 Log IJ –   0.714 0.754 0.914 0.047 162  

 
Log 1q0 Log IJ –   0.243 0.403 0.818 0.040 126 –  0. 0050 

Log 1q4 Log IJ –   0.263 0.513 0.805 0.052 123  

Log 5q5 Log IJ –   0.146 0.991 0.961 0.041 166  

Log 5q10 Log IJ –   0.679 0.750 0.922 0.045 161  

 
Log 1q0 Log IJ –   0.229 0.398 0.810 0.041 127 –  0. 0075 
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Log 1q4 Log IJ –   0.245 0.505 0.801 0.052 123  

Log 5q5 Log IJ –   0.107 0.978 0.957 0.043 166  

Log 5q10 Log IJ –   0.646 0.744 0.929 0.043 160  

 
Log 1q0 Log IJ –   0.211 0.394 0.825 0.040 124 –  0. 0100 

Log 1q4 Log IJ –   0.227 0.497 0.799 0.053 123  

Log 5q5 Log IJ –   0.070 0.965 0.953 0.045 166  

Log 5q10 Log IJ –   0.614 0.736 0.931 0.042 160  

*Final number of life tables used to construct the model. 

 

Table 14. Estimate model for parameter P. Both sexes combined. for various values of r 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number of 
tables

*
 

Value of r 

Log 1q0 Log P –  0.2106 0.6369 0.808 0.044 127 +  0. 0100 

Log 1q4 Log P –  0.2686 0.7478 0.763 0.057 120  

Log 5q5 Log P –  0.1391 1.4785 0.908 0.063 162  

Log 5q10 Log P –  0.6406 1.1641 0.909 0.048 162  

Log 5q30 Log P -0.9081 0.4676 0.806 0.030 93  

 
Log 1q0 Log P –  0. 1926 0.6269 0.817 0.043 125 +  0. 0075 

Log 1q4 Log P –  0. 2598 0.7236 0.759 0.057 120  

Log 5q5 Log P –  0. 1193 1.4319 0.906 0.064 161  

Log 5q10 Log P –  0. 6221 1.1318 0.912 0.047 162  

Log 5q30 Log P –  0. 8942 0.4621 0.808 0.030 94  

 
Log 1q0 Log P –  0. 0155 0.5727 0.762 0.046 130 +  0. 0050 

Log 1q4 Log P –  0. 1846 0.6080 0.808 0.044 126  

Log 5q5 Log P –  0. 2511 0.7003 0.754 0.058 120  

Log 5q10 Log P –  0. 0997 1. 3869 0. 903 0. 065 160  

 
Log 1q0 Log P –  0. 1863 0. 5760 0. 805 0. 042 123 +  0. 0025 

Log 1q4 Log P –  0. 2712 0. 6506 0. 708 0. 062 125  

Log 5q5 Log P –  0. 0801 1. 3438 0. 900 0. 066 159  

Log 5q10 Log P –  0. 5994 1. 0541 0. 914 0. 047 163  

 
Log 1q0 Log P –  0. 1799 0. 5559 0. 805 0. 042 122 0. 0000 

Log 1q4 Log P –  0. 2132 0. 6739 0. 641 0. 076 141  
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Log 5q5 Log P –  0. 0607 1. 3033 0. 893 0. 068 159  

Log 5q10 Log P –  0. 5801 1. 0266 0. 915 0. 047 163  

 
Log 1q0 Log P –  0.1818 0.5314 0.776 0.045 127 –  0. 0025 

Log 1q4 Log P –  0.2044 0.6527 0.635 0.077 141  

Log 5q5 Log P –  0.0411 1.2647 0.886 0.070 159  

Log 5q10 Log P –  0.5606 1.0001 0.915 0.047 163  

 
Log 1q0 Log P –  0.1661 0.5195 0.800 0.043 122 –  0. 0050 

Log 1q4 Log P –  0.2589 0.5839 0.649 0.069 131  

Log 5q5 Log P –  0.0214 1.2279 0.878 0.072 159  

Log 5q10 Log P –  0.5411 0.9748 0.914 0.047 163  

 
Log 1q0 Log P –  0.1648 0.4969 0.800 0.042 120 –    0.0075 

Log 1q4 Log P –  0.2507 0.5663 0.643 0.069 131  

Log 5q5 Log P –  0.0015 1.1928 0.870 0.075 159  

Log 5q9 Log P –  0.5214 0.9505 0.913 0.047 163  

Log 5q50 Log P –  0.2891 0.6054 0.812 0.045 121  

 
Log 1q0 Log P –  0.1811 0.4699 0.720 0.050 133 –    0.0100 

Log 1q4 Log P –  0.2424 0.5496 0.636 0.070 131  

Log 5q5 Log P 0.0209 1.1625 0.859 0.078 160  

Log 5q10 Log P –  0.5015 0.9273 0.911 0.048 163  

Log 5q50 Log P –  0.3045 0.5681 0.802 0.046 124  

Note : The threshold chosen for the models is 0.8. The blue regressions have an R² below this threshold. so the estimates are less reliable (this 
convention holds for the following tables). 

 

 

The variable a5-14 is consequently not a very useful parameter for modelling the mortality of 

buried populations (Table 15): composite indicators like JI and P are greatly to be preferred. 

2.3. Mean adult age at death (a20) 

This variable is a composite indicator of adult mortality that is ill-suited for describing the 

variety of situations throughout this major part of life. However, in the current state of 

research it is the only relatively reliable paleodemographic indicator at our disposal (although 

its method of calculation from a probable distribution by age group involves some 

variability). 

Given the dispersion of a20 values (as calculated for each of our reference tables), the linear 

regression can be based directly on the value of the variable. Its form is 

logaq(x+a) = a0 + a1 +a20   (±2). 
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Mean adult age at death (a20) correlates well with adult and childhood probabilities of dying 

for the various chosen values of r. It has reasonable explanatory power for the probabilities of 

dying from 5q10 to 5q65, although regression quality noticeably declines for the last two 

probabilities (5q70 and 5q75), which should be estimated in some other way (see below). The 

infant and childhood probabilities of dying (1q0, 4q1, 5q5) generally correlate poorly with mean 

adult age at death and are therefore not given in Tables XXI to XXIII (at Springer Extra). The 

5q5 estimate has a satisfactory R
2
, if r is positive, but the quality of fit is countered by a very 

high standard deviation. It remains difficult to estimate 5q15 for any value of r: to optimise the 

model a significant number of outlying tables need to be excluded. At present, we have no 

other osteological indicator to replace one of the three variables presented here for estimating 

5q15 (research is underway).  

Table 15. Paleodemographic estimation model – parameter a5-14,  – both sexes combined, for 

various values of r 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number of 
tables

*
 

Value of r 

Log 1q4 a5-14 2.1425 –  0.3277 0.68 0.0611 117 –  0.0075 

Log 5q5 a5-14 3.4949 –  0.5225 0.75 0.0863 130 –  0.0075 

Log 1q4 a5-14 2.1475 –  0.3287 0.68 0.0611 117 –  0.0050  

Log 5q5 a5-14 3.5037 –  0.5242 0.75 0.0863 130 –  0.0050 

Log 1q4 a5-14 2.1527 –  0.3298 0.68 0.0611 117 –  0.0025 

Log 5q5 a5-14 3.5128 –  0.5260 0.75 0.0863 130 –  0.0025 

Log 1q4 a5-14 2.1581 –  0.3309 0.68 0.0611 117 0.0000 

Log 5q5 a5-14 3.5223 –  0.5278 0.75 0.0863 130 0.0000 

Log 1q4 a5-14 2.1637 –  0.3320 0.68 0.0611 117 0.0025 

Log 5q5 a5-14 3.5321 –  0.5297 0.75 0.0862 130 0.0025 

Log 1q4 a5-14 2.1695 –  0.3331 0.68 0.0611 117 0.0050 

Log 5q5 a5-14 3.5423 –  0.5316 0.75 0.0862 130 0.0050 

Log 1q4 a5-14 2.1755 –  0.3343 0.68 0.0611 117 0.0075 

Log 5q5 a5-14 3.5528 –  0.5335 0.75 0.0862 130 0.0075 

Log 1q4 a5-14 2.1817 –  0.3355 0.68 0.0611 117 0.0100 

Log 5q5 a5-14 3.5636 –  0.5355 0.75 0.0862 130 0.0100 

 

 

3. Regressions from probabilities of dying 

These models with paleodemographic input parameters do not always provide access to all 

the 18 probabilities. To avoid this bias, while remaining within the same mortality regime and 

mathematical model, we suggest filling in the missing estimates by using our regressions 

based on the relationship between probabilities of dying. These models are of more particular 

interest to historical demographers, whose sources can be used, subject to certain 

assumptions, to calculate probabilities of dying by sex and age. The models can usefully 

operate as supplements to the “paleodemographic” models where regression quality declines 

(as in the examples given above). Since the probabilities have a roughly log-normal 

distribution, the regressions are run on the logarithms of the probability values. 
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For estimation from the preceding probability, the model is as follows: 

logaq(x+a) = a0 + a1logaqx   (±2). 

And from the following probability: 

logaq(x) = a0 + a1logaq(x+a)   (±2). 

with aqx being the probability of an individual aged x dying in the age interval (x, x+a), and  

the residual standard deviation. 

3.1. Regressions from the preceding probability 

The method consists of constructing a series of regression equations linking each probability 

to the preceding one. This avoids the problem of bias in chain estimation: the input 

probability can only be used to provide an acceptable estimate of the immediately following 

one; the correlation rapidly declines for later probabilities. This model has the advantage of 

providing access to any probability in the life table. It is sufficient to know the probability of 

dying between two ages. It cannot be directly used with paleodemographic indicators, but 

serves to fill in the missing estimates, especially for higher ages. This estimate is independent 

of the population growth rate because it is based on the relationship between two successive 

probabilities (“r=0” in the “value of r” column in the following tables). 

The preceding probability provides very acceptable adult probabilities of dying (after age 20, 

whether for both sexes or each sex separately). The estimation of childhood probabilities of 

dying (4q1 and 5q5; and also 5q15 for both sexes, and 5q10 for the female model) remains a 

difficult task. The quality of the model (R
2
<0.8, see blue lines in Tables 16-18) is affected by 

the extreme diversity of observed situations. For these ages, it is better to estimate 

probabilities of dying either from more specific parameters (see above) or from the following 

probability. 

3.2. Regressions from the following probability 

The preceding probability method cannot, by definition, provide a fit for the first one, 1q0. The 

infant probability of dying needs to be estimated from the following probability or 

probabilities (4q1 or 5q5), bearing in mind that the best estimates come from 5q5 rather than 4q1 

because 4q1 displays considerable variability and its values may be higher than those of 1q0.
129

 

 

Table 16. Model for estimation by preceding probability, both sexes combined 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number of 
tables

*
 

Value of r 

Log 1q4 Log 1q0 – 0.116 1.039 0.74 0.0733 148 

0 

Log 5q5 Log 1q4 – 0.397 1.092 0.75 0.0976 147 

Log 5q10 Log 5q5 – 0.685 0.673 0.81 0.0663 158 

Log 5q15 Log 5q10 – 0.536 0.595 0.69 0.0686 137 

Log 5q20 Log 5q15 – 0.136 0.829 0.86 0.0482 154 

                                                 
129

 If 1q0   4q1: the results obtained for the model parameters come very close to those found 

in the general model. They are only slightly better. If 1q0   4q: the model is more precise 

(according to the data at our disposal). but must be treated with precaution because it is based 

on a smaller number of tables (N=11). 
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Log 5q25 Log 5q20 0.007 0.971 0.90 0.0422 157 

Log 5q30 Log 5q25 – 0.087 0.894 0.90 0.0396 157 

Log 5q35 Log 5q30 – 0.055 0.913 0.91 0.0381 155 

Log 5q40 Log 5q35 – 0.035 0.911 0.89 0.0390 154 

Log 5q45 Log 5q40 – 0.004 0.931 0.91 0.0358 154 

Log 5q50 Log 5q45 – 0.008 0.898 0.92 0.0317 155 

Log 5q55 Log 5q50 0.017 0.893 0.92 0.0316 153 

Log 5q60 Log 5q55 – 0.084 0.741 0.91 0.0243 152 

Log 5q65 Log 5q60 0.000 0.810 0.90 0.0241 144 

Log 5q70 Log 5q65 – 0.014 0.729 0.81 0.0268 156 

Log 5q75 Log 5q70 0.029 0.790 0.83 0.0209 143 

* Number of life tables used to construct the model. 

 

 

Table 17. Model for estimation by preceding probability, female 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number of 
tables

*
 

Value of r 

Log 1q4 Log 1q0 – 0.289 0.777 0.57 0.0735 121 

0 

Log 5q5 Log 1q4 – 0.329 1.136 0.66 0.1169 127 

Log 5q10 Log 5q5 – 0.676 0.663 0.77 0.0742 120 

Log 5q15 Log 5q10 – 0.319 0.741 0.80 0.0615 118 

Log 5q20 Log 5q15 – 0.010 0.922 0.91 0.0392 127 

Log 5q25 Log 5q20 – 0.017 0.948 0.92 0.0387 132 

Log 5q30 Log 5q25 – 0.055 0.916 0.92 0.0362 130 

Log 5q35 Log 5q30 – 0.030 0.940 0.90 0.0405 135 

Log 5q40 Log 5q35 – 0.056 0.913 0.92 0.0352 131 

Log 5q45 Log 5q40 0.026 0.980 0.93 0.0334 130 

Log 5q50 Log 5q45 – 0.046 0.871 0.94 0.0283 127 

Log 5q55 Log 5q50 -0.028 0.852 0.93 0.0293 128 

Log 5q60 Log 5q55 – 0.024 0.808 0.93 0.0240 127 

Log 5q65 Log 5q60 0.025 0.842 0.93 0.0222 124 

Log 5q70 Log 5q65 0.004 0.754 0.84 0.0266 133 

Log 5q75 Log 5q70 0.045 0.814 0.91 0.0162 118 

 

 

Table 18. Model for estimation  by preceding probability, male 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number of 
tables

*
 

Value of r 

Log 1q4 Log 1q0 – 0.218 0.935 0.74 0.0685 121 
0 

Log 5q5 Log 1q4 – 0.338 1.149 0.67 0.1340 141 
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Log 5q10 Log 5q5 – 0.575 0.763 0.90 0.0593 132 

Log 5q15 Log 5q10 – 0.562 0.579 0.81 0.0545 116 

Log 5q20 Log 5q15 – 0.024 0.889 0.90 0.0423 138 

Log 5q25 Log 5q20   0.050 1.010 0.88 0.0483 139 

Log 5q30 Log 5q25 – 0.033 0.942 0.91 0.0406 143 

Log 5q35 Log 5q30   0.015 0.965 0.92 0.0383 144 

Log 5q40 Log 5q35   0.011 0.933 0.93 0.0335 136 

Log 5q45 Log 5q40   0.016 0.928 0.94 0.0290 140 

Log 5q50 Log 5q45 – 0.030 0.870 0.93 0.0296 143 

Log 5q55 Log 5q50 – 0.002 0.874 0.93 0.0265 138 

Log 5q60 Log 5q55 – 0.038 0.792 0.94 0.0218 134 

Log 5q65 Log 5q60   0.002 0.810 0.92 0.0201 135 

Log 5q70 Log 5q65 – 0.020 0.710 0.91 0.0162 130 

Log 5q75 Log 5q70   0.031 0.785 0.84 0.0187 127 

 

 

The model for estimation of 1q0 is thus expressed 

log1q0 = a0 + a1log5q5 +  

and for 4q1 

log4q1 = a0 + a1log5q5 +   

The modelling has been done for both sexes combined and each sex separately, but only the 

“both sexes” estimate is relevant in paleodemography (save in exceptional cases). For the 

female model, note that the 4q1 estimate is of poor quality. This may be due to lower data 

quality or to the extreme variety of situations. The following tables (Tables 19-21) also 

provide the 5q5 estimate, based on the following probability 5q10, using the same estimation 

model as before: 

log5q5 = a0 + a1log5q10 +  

Compared with the preceding probability method, this model improves the estimates for the 

first two probabilities, but does not achieve the expected level of quality (R
2
>0.9), so we 

turned to specific inputs, particularly the juvenility index (see below) to fit mortality at young 

ages. 

 

Table 19. Model for estimation by following probability, both sexes combined 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number 
of tables

*
 

Value of r 

Log 1q0 Log 5q5 – 0.183 0.407 0.808 0.043 128 0 

Log 1q4 Log 5q5 – 0.142 0.547 0.802 0.057 134  

Log 5q5 Log 5q10 0.485 1.140 0.850 0.099 125  

 

Table 20. Model for estimation by following probability, males 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number 
of tables

*
 

Value of r 

Log 1q0 Log 5q5 – 0.158 0.411 0.812 0.048 117 0 
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Log 1q4 Log 5q5 – 0.292 0.447 0.805 0.051 105  

Log 5q5 Log 5q10 0.540 1.170 0.900 0.074 131  

 

Table 21. Model for estimation by following probability, females 

 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number 
of tables

*
 

Value of r 

Log 1q0 Log 5q5 – 0.158 0.411 0.812 0.048 117 0 

Log 1q4 Log 5q5 – 0.292 0.447 0.805 0.051 105  

Log 5q5 Log 5q10 0.540 1.170 0.900 0.074 131  

 

4. Multi-input models 

As we have seen, single inputs only provide information about certain segments of the curve, 

certain age groups. A dual-input model would cover a wider field, provided that the 

explanatory variables were not collinear. However, the variables chosen for 

paleodemographic models cross-correlate strongly (correlation coefficient greater than 0.70), 

which would make any model unstable (Table 22). The only variable that could be associated 

with the others is a5-14, which, as we have seen, is ineffective for estimating mortality. Dual-

input models cannot therefore be used with the inputs we have specifically defined for the 

paleodemographic approach. 

We can avoid the problem by proposing the series of regressions that “best” estimates the 

mortality of buried populations from ages 0 to 80 plus. If for each probability of dying we 

take the input with the best adjusted R
2
 and smallest standard deviation, it is possible to define 

the “best” paleodemographic model for a given value of population growth rate (Tables 

XXIV-XXVI  at Springer Extra and supplementary material on INED website). 

For example, the first probability (1q0) can be estimated from the various paleodemographic 

indicators proposed (see above), but since JI fits best – countered by a slightly greater 

standard deviation – it will be preferred for the both sexes models, whatever the population 

growth rate. In the separate sex models we propose, although determining the sex of buried 

infants remains a problem, indicator P sometimes provides a better estimate than the 

juvenility index (Tables XXV and XXVI at Springer Extra). However, the differences are 

minor: slight improvements in the second decimal place for R
2
 and standard deviation, and a 

larger number of tables contributing to the estimation, may swing the balance towards 

indicator P. The difference between the two estimates remains slight and one may decide, for 

convenience’ sake, to estimate the four probabilities of dying at ages 0-14 from the juvenility 

index.
130

 

Table 22. Cross-correlation of the various inputs (both sexes combined and all values of r) 

Variables a5-14 a5-14 JI Log JI P Log P 

                                                 
130

 This remark is based solely on demographically observed data, without consideration for 

biases that may affect the method of calculating these indicators from osteological data. 
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a5-14 1.000 0.305 – 0.342 – 0.441 – 0.259 – 0.323 

a5-14  1.000 – 0.793 – 0.755 – 0.889 – 0.808 

IJ    1.000 0.915 0.968 0.975 

Log IJ      1.000 0.926 0.887 

P        1.000 0.530 

Log P          1.000 

 

A further probability – 5q70  – is difficult to determine from paleodemographic variables. This 

is due partly to the quality of the observed life tables (the final probabilities may have been 

extrapolated when the source tables stopped at age 70), and partly to the capability of the 

composite index used (mean age at death for the over-20s) to account for mortality at 

advanced ages. The best estimate is never that provided by models with specific inputs but 

rather one based on the relationship between two successive probabilities. To estimate 

mortality after age 70, it is preferable to use the model based on the preceding probability and 

one or both of the variables 5q65 and 5q70,
131

 independently of the population growth rate 

chosen (the influence of the growth rate on the relationship between two successive 

probabilities is negligible: the value of the preceding probability is the determining 

parameter). In some cases the variable a20 can be used to provide a direct estimate of the final 

probability of dying. 

Some persistent difficulties in the estimation of certain probabilities must be pointed out, 

particularly for the female probability of dying at ages 1-4 (1q4) where r≤0, and the “both 

sexes” probability of dying ages 15-19 (5q15) where r≤0.05 (blue lines in Tables XXIV and 

XXV at Springer Extra). Although the first difficulty has few consequences for 

paleodemography, where children are generally not differentiated by sex, the second is more 

problematic. In both cases these difficulties are probably due to breaks in the mortality curve 

at key ages, which are partly concealed under the age-group approach. In the current state of 

source evidence, this bias cannot easily be corrected.  

5. Models with migration 

It is no easy task to identify migrants within a group (see Chapter I.4), although it can be 

done. This is why we set out to include in our models the possibility of inward or outward 

migration by sex and age. 

As in the case of population growth, it is not (as yet) possible to determine a precise migration 

rate by age from osteological data. We propose various models, which can be modulated 

according to the assumptions suggested by historical and archaeological context. Constructing 

paleodemographic models that include migration in the same way as population growth or 

varying health conditions is made easier by the fact that our regression equations operate 

independently of each other. It is easy to combine them to obtain the entire mortality curve 

and the demographic components of the theoretical population associated with it. 

These calculations are based on using an instantaneous growth or migration rate , i.e. a 

growth rate established for the entire period considered, by the formula 

                                                 
131

 Using an estimated probability introduces a slight bias. However, this chain estimation is 

restricted to the immediately preceding probability and is unlikely to distort the construction 

of a life table up to age 80 and over. 
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   
n

PtPtn 0loglog 
  

where Pt0 is the burial ground population at the start of the period; Ptn the population at the 

end of the period; and n the length of the period. 

We give two examples here: one concerning the emigration of young men and women (aged 

15-35) and the other the immigration of men only at a later age (aged 40-50). The first relates 

to temporary or permanent population movements during the great clearances in France in the 

11
th

 and 12
th

 centuries; and the other to the policy of granting land to Roman army veterans 

sent out to newly conquered provinces. 

To use these models we must assume that the migration occurs over relatively short periods of 

time,
132

 otherwise the population pyramid will gradually evolve, and at some point, if the 

growth or decline affects all age classes, the population will tend towards a stable state. 

However, Thomas J. Espenshade et al. (1982) do show that if the annual number of migrants 

and their age distribution remain constant over time and the fertility of immigrant women 

remains below replacement level, then in the long term the population tends towards a 

stationary form. 

5.1. Models for emigration of young adults of both sexes 

In the examples given below (Tables 23 and 24), we assume that the initial population had a 

very moderate growth rate (r=0.0025) and that twice as many young men as young women 

emigrated. Any other parameters can naturally be proposed. 

5.2. Models for immigration of mature men 

In this example, we use the same assumption of r=0.0025 in the host population and assume a 

male immigration rate of 0.0075 in the 40-49 age class. The equations for reconstructing the 

life table associated with these parameters are given I n Table 25. 

 

 

Table 23. Model for young adult migration, female 

Log aqx 
Explanatory 

variable 
a0 a1 

Adjusted 
R² 

 Log aqx 
Final 

number of 
tables

*
 

Remarks Value of r 

Log 1q0 Log IJ –  0.2673 0.4676 0.846 0.039 109 or Log P 

+  0.0025 

Log 1q4 Log IJ –  0.5384 0.3325 0.757 0.037 87 or Log P 

Log 5q5 Log IJ –  0.2488 1.0559 0.948 0.048 138  

Log 5q10 Log P –  0.5948 1.0364 0.905 0.049 127 or Log IJ 

Log 5q15 a20 0.3483 –  0.0290 0.816 0.055 114  

–  0.0050 

Log 5q20 Log 5q15 –  0.0103 0.9219 0.914 0.039 127  

Log 5q25 a20 0.5626 –  0.0298 0.825 0.057 125  

Log 5q30 a20 0.6295 –  0.0301 0.875 0.046 130  

                                                 
132

 It is always possible to attribute a growth rate to the youngest age classes, if it is 

considered that adult migration had a short-term effect on births. 
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Log 5q35 a20 0.5606 –  0.0304 0.933 0.032 136  

+  0.0025 

Log 5q40 a20 0.5394 –  0.0292 0.909 0.037 132  

Log 5q45 a20 0.6800 –  0.0308 0.921 0.035 131  

Log 5q50 a20 0.5708 –  0.0272 0.892 0.038 129  

Log 5q55 a20 0.4988 –  0.0239 0.871 0.037 124  

Log 5q60 a20 0.3785 –  0.0193 0.816 0.038 121  

Log 5q65 a20 0.3192 –  0.0159 0.815 0.031 113  

Log 5q70 Log 5q65 0.0037 0.7536 0.844 0.027 133  

Log 5q75 a20 0.2382 –  0.0097 0.834 0.018 84  

* Final number of life tables used to construct the model. 

 

 

 

 

Table 24. Model for young adult migration, male 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number 
of tables 

Remarks Value of r 

Log 1q0 Log IJ –  0.2645 0.4247 0.813 0.048 118 or Log P 

+  0.0025 

Log 1q4 Log IJ –  0.3893 0.4709 0.808 0.052 110  

Log 5q5 Log IJ –  0.2554 1.0380 0.973 0.039 146  

Log 5q10 Log IJ –  0.7601 0.7868 0.905 0.058 146 or Log P 

Log 5q15 a20 0.1920 –  0.0275 0.834 0.048 114  

–  0.0100 

Log 5q20 a20 0.0424 –  0.0227 0.812 0.043 113  

Log 5q25 a20 0.5106 –  0.0299 0.824 0.054 134  

Log 5q30 a20 0.6175 –  0.0310 0.896 0.042 134  

Log 5q35 a20 0.6742 –  0.0331 0.931 0.035 141  

+  0.0025 

Log 5q40 a20 0.7996 –  0.0337 0.931 0.034 142  

Log 5q45 a20 0.7442 –  0.0310 0.903 0.039 144  

Log 5q50 a20 0.6620 –  0.0278 0.907 0.034 136  

Log 5q55 a20 0.6055 –  0.0248 0.869 0.037 131  

Log 5q60 a20 0.4102 –  0.0192 0.811 0.034 135  

Log 5q65 a20 0.3089 –  0.0151 0.820 0.027 108  

Log 5q70 Log 5q65 –  0.0199 0.7100 0.911 0.016 130  

Log 5q75 Log 5q70 0.0308 0.7853 0.840 0.019 127  
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Note: The value of “estimated a20” reflects the mortality of both native-borns and migrants. 

Even with an identical risk of dying in the age group affected by the migration – here ages 15-

35 – the number of deaths observed in that age group will be modified. It will be higher than 

for a closed population with no immigration (or lower with no emigration). The resulting 

mean adult age at death is also affected by the number of migrants. 

 

Table 25. Model for mature adult migration, male 

Log aqx 
Explanatory 

variable 
a0 a1 Adjusted R²  Log aqx 

Final number 
of tables 

Remarks Value of r 

Log 1q0 Log IJ –  0.2645 0.4247 0.813 0.048 118  

+  0.0025 

Log 1q4 Log IJ –  0.3893 0.4709 0.808 0.052 110  

Log 5q5 Log IJ –  0.2554 1.0380 0.973 0.039 146  

Log 5q10 Log IJ –  0.7601 0.7868 0.905 0.058 146  

Log 5q15 a20 0.0757 –  0.0274 0.832 0.048 119  

Log 5q20 a20 0.0952 –  0.0253 0.815 0.046 121  

Log 5q25 a20 0.4856 –  0.0316 0.871 0.046 134  

Log 5q30 a20 0.6350 –  0.0335 0.902 0.042 143  

Log 5q35 a20 0.6742 –  0.0331 0.931 0.035 141  

Log 5q40 a20 0.7833 –  0.0344 0.930 0.034 142  
+  0.0075 

Log 5q45 a20 0.6943 –  0.0310 0.909 0.037 139  

Log 5q50 a20 0.6620 –  0.0278 0.907 0.034 136  

+  0.0025 

Log 5q55 a20 0.6055 –  0.0248 0.869 0.037 131  

Log 5q60 a20 0.4102 –  0.0192 0.811 0.034 135  

Log 5q65 a20 0.3089 –  0.0151 0.820 0.027 108  

Log 5q70 Log 5q65 –  0.0199 0.7100 0.911 0.016 130  

Log 5q75 Log 5q70 0.0308 0.7853 0.840 0.019 127   

 

 

6. Conclusions and recommendations 

These models, like existing life tables, can be used to reliably reconstruct the mortality of 

populations for which we have only fragmentary information.  The best observations can be 

used to deduce the missing data and reconstruct the full mortality curve. 

Using the properties of stable populations, of which stationary populations are a special case, 

it is easy to find the main demographic characteristics of the theoretical population associated 

with the calculated table. 

Compared with the mortality models generally used by paleodemographers (see Chapter V), 

our work has a number of advantages: 
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 The fact that all the observed tables belong to the set of populations that had not yet begun 

their demographic transition brings our models closer to the characteristic mortality pattern 

of pre-industrial populations. There is no need to speculate about a “mean” fertility rate or a 

general mortality regime (e.g. Coale and Demeny’s West model) to approximate the 

mortality of archaeological populations; 

 Compared with contemporary mortality models, our regressions are established on 

variables directly accessible from osteological data. It is unnecessary to calculate unlikely 

probabilities of dying in order to use our models in paleodemographic study; 

 Compared with the life tables proposed by Bocquet-Appel and Masset, our regressions are 

based on an extensive corpus of life tables statistically representative of pre-industrial 

populations. A large number of tables are used in each regression, considerably reducing 

the margin of error associated with each estimate. 

Like other models, ours include growth assumptions to capture the dynamics of 

archaeological populations. Given the difficulty of collating a large enough number of tables 

observed under various growth regimes, we had to work with the stable populations 

associated with each of the 167 observed tables. This method of construction makes it 

impossible to enter  the growth rate directly into the regression linking the paleodemographic 

variable to the logarithm of the probability of dying. For that reason, the end user will have to 

choose for each regression a given growth rate of between +3% and –3%. In addition to the 

rigorous nature of the calculation, this system has the advantage of flexibility. 

Not least, our models have the advantage of specifying the quality of each regression, thereby 

enabling users to choose the best indicator or mathematical model (see Chapter VIII). 

The pre-conditions for using our models are those that also apply to contemporary model 

tables: the mortality of the region under study must correspond to that of the chosen model. In 

other words, use of our models involves accepting the assumption that the mortality of 

archaeological populations was very similar to that observed for pre-industrial populations. In 

addition, the mortality under study must not concern a period that includes accidental events 

with severe demographic consequences (war, famine, epidemic). 

Box 6. Annual and instantaneous growth rate 

Daniel Courgeau 

First we assume that the growth rate remains constant throughout the period under 

consideration. 

Let P(t0) be the initial population at time t0 and P(tn) that population at time tn. 

Let us suppose we are working on an annual basis. The annual growth rate r is defined by the 

formula 

P(t1) = (1+r)P(t0). 

so that after n years we have 

P(tn) = (1+r)
n
P(t0). 

This means that a population of 1,000 individuals with an annual growth rate of 0.016 will 

grow in 100 years to 4,891. 

If we work with continuous time, the instantaneous growth rate  is defined by the formula 

dP(t) = P(t)dt 

or more simply 

 
 


dttP

tdP
 

showing that the derivative of the natural logarithm of P(t) is constant and equal to ρ, and that 

therefore this logarithm is proportional to the time, or more simply that 
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    n

n etPtP 
0 . 

This means that the same population as above with an instantaneous growth rate of 0.016 will 

grow in 100 years to 4,953 individuals. The difference is not great but with higher rates it can 

become quite large. 

The relationship between the two rates for the same initial and final observed populations is 

1 + r = e

. 

In paleodemography, we work not on populations but on deaths, and further assumptions are 

needed. If these populations have an invariable mortality and age structure throughout the 

period under consideration, then the deaths observed in year t, D(t) can be expressed as a 

function of the annual growth rate r, of the death rate m, which remains constant, and of the 

population P(t): 

D(tn) = d  P(tn) = d  P(t0)  (1+r)
n
 

and 

D(t0) = d  P(t0). 

It follows from the preceding relationship between r and  that 

 
 











0

ln
1

tD

tD

n

n . 

(The reader will find applications to archaeological examples at the end of this book.) 
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Chapter VIII 

Definition and exploration of a pre-industrial standard
133

 

The idea that the probability of dying at a certain age could be estimated from an observed 

probability at another age in the same population gave rise to a long tradition of model life 

tables
134

 (see Chapter VII) which have gradually been refined to take better account of the 

most relevant parts of the curve and the best-fitting variables. 

The idea that two life tables could be linked by a linear regression, taking account of the logits 

of the cumulative probabilities, opened the way to the use of relational models. These are 

more flexible and provide a means to circumvent some of the difficulties encountered in 

estimating certain probabilities, particularly at key points on the mortality curve. We therefore 

decided to use the properties of the logit model proposed by William Brass (Brass and Coale, 

1968) for application to pre-industrial populations. 

By adapting to demography a method developed for medical experiments on animals, Brass 

(1971) demonstrated a linear relation between the logit of survivors of age x in a life table and 

the logit of survivors of age x in any other life table. This relation makes it possible to 

construct any life table from two parameters in any known table, and also, by taking a table as 

reference and varying the parameters  and  of the linear regression, to produce a large 

number of theoretical tables that can be used to explore potential situations. 

Brass’s model, initially designed to track changes in the mortality of Western populations, 

was rapidly adapted to other standards (André Lambert, 1973, for Latin America; Brass, 

1975, for African populations) as a means to adjust the data from other countries where 

statistics might be deficient or prone to error. 

                                                 
133

 This work owes much to the initial approaches of Magali Belaigues-Rossard in 1999-2000. 

We are also grateful to Brahim Ahmedou for writing a macro for automatically generating 

new tables and to Arnaud Bringé for the statistical validation. 

134
 After Frank W. Notestein’s pioneering work in 1944 (cited by Josianne Duchêne, 1999, p. 

155), the first set of model tables was that proposed by the UN (1955, 1956), which started 

from the statistical link between two successive probabilities and estimated the entire 

mortality curve from one indicator (in this case, the infant probability of dying). 
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Like the model tables based on the observation of a large number of data, the prime purpose 

of relational models was to study populations for whom the demographic data were too 

biased. Although over the last fifteen or so years, improvements in civil registration and 

census data in developing countries have reduced the need for these tools in contemporary 

demography, the same is not true for paleodemography. The data from cemeteries and burial 

grounds are irremediably incomplete and biased, albeit in highly variable proportions. The 

development of relational models that can be used for pre-industrial populations is still an 

ongoing task and the search for the most “meaningful” demographic indicators just as 

essential. 

1. The Brass method 

This is based on the observation of the risk of dying between birth and a given age. It is used 

to deduce the parameters of one life table from any other by simple linear regression of the 

logits of cumulative probabilities for a given age in both tables. 

The equation is 

logit xq0 = α + β logit xq0' 

xq0: the probability of dying before age x in the observed table
135

 

xq0': the probability of dying before age x in the reference table  

with logit xq0 =  0.5 * 



ln x q0

1x q0









 

following the relationship defined by Brass (1971, pp. 73-74)
136

 

This model can be used to measure the difference in level () and gradient () between two 

tables: 

 parameter  measures the distance between the survival curves, i.e., the differences in the 

levels of mortality. If >0, the level of mortality in the observed table is higher than that in 

the reference table (the greater , the lower the expectancy of life at birth); if <0, the level 

of mortality in the observed table is lower than that in the reference table; 

 parameter  represents the age structure of mortality, the relationship between the mortality 

of the young and that of adults. If  > 1, mortality increases faster with age in the observed 

table than in the reference table; conversely, if 0< < 1, youth mortality is higher in the 

observed table than in the reference table. The greater , the higher the proportion of 

survivors before median age at death in the reference table, and conversely after median 

age. 

                                                 
135

 The various xq0 are calculated as follows: 

5q0 is obtained from 1q0 and 4q1, such that 5q0 = 1q0 + 4q1 – (1q0  4q1) 

10q0 is obtained from 5q0 and 5q5 such that 10q0 = 5q0 + 5q5 – (5q0  5q5) 

15q0 is obtained from 10q0 and 5q10 such that 15q0 = 10q0 + 5q10 – (10q0  5q10) etc. 

136
 Brass introduces a fixed constant into the usual transformation: 

logit xq0 = 



ln x q0

1x q0









 = 



ln
1 lx

lx









 

This fixed constant is intended to counterbalance the weight of the logarithmic transformation 

of the lx (probabilities of surviving from birth to age x). The two terms in the equation are 

both very small when x = 0 and lx = 1. On the logit scale this amounts to modifying parameter 

 (which is given a constant c = 2) and leaving parameter  unchanged. 
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The model proposed by Brass (Brass and Coale, 1968; Brass, 1971, 1975) is not therefore 

based on a set of model tables but on the linear relationships between a life table taken as 

reference (also called standard) and an observed life table. The linear regressions obtained 

between the logits of the xq0 probabilities in the reference table and those in the observed table 

are used to fit the latter’s data to the standard. However, a model does not operate solely as a 

way of comparing two life tables, but can also be used to reconstruct missing values in the 

observed population, starting from the xq0' logits in the reference life table. The linear 

regression establishes the distance of each xq0 from the probability of dying at the same age in 

the reference table. 

Unlike the model tables constructed on the previous model 

logaqx+a = a0 + a1logaqx 

(see Chapter VII), which could only be constructed from the complete series of probabilities 

of dying in the observed tables, The Brass method merely requires knowledge of at least two 

probabilities between ages 0 and x. All the others are deduced by assuming logit linearity. It is 

also more flexible to use under “normal” conditions, because the model can be entered from 

any probability of dying, unlike the model tables proposed in the previous chapter where the 

user is constrained by entry parameters fixed in advance. However, the constraints of osteo-

archaeological data considerably restrict the possibilities of using it in this way. 

2. Necessary adaptations for paleodemographic data 

As outlined above, the Brass method is not directly applicable to our data because first, 

estimation of probabilities of dying is still problematic, and second, the mortality regime 

adopted by Brass does not correspond to what we have observed for average pre-industrial 

populations. 

We therefore needed to adapt the model  to our data, and, first of all, to define the table to 

serve as reference table, because the Brass method requires that we remain close to the 

defined standard, so that the proposed variations for parameters  and  do not fall outside 

certain intervals (generally set between –1.5 and 1 for  and between 0.5 and 1.5 for , see 

below). 

To stay as close as possible to the mortality regime of pre-industrial populations, we chose the 

mean of all the life tables selected in each of our three samples (male, female and both sexes 

combined) . By convention, this mean mortality regime is called the “pre-industrial standard”. 

Taking the mean table seemed to us a better compromise than selecting from among the 

hundred or so tables in the sample the one that came closest to the observed mean (as was 

done by Brass, 1971, 1975). 

Compared with the African standard, the pre-industrial standard presents significant 

differences, both in terms of mortality levels (mainly that of under-5s and, to a lesser extent 

because of the scale of values, the 15-60 age group; after age 60, the two curves converge) 

and of the increase in risk with age (note that the excess accidental mortality among young 

adults visible on the African standard does not occur in the pre-industrial standard) (Table 

26). The African standard comes closer to the characteristics of contemporary mortality 

despite the still extremely high levels of infant and child mortality. A further difference is the 

much higher median age at death (50.96 years versus 38.43 years for our reference table for 

the two sexes combined). 
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Table 26. Parameters of the “pre-industrial standard” life table and values of the associated entries: both sexes combined, male, female 

Pre-industrial 
standard  

Both sexes combined Male Female 

Age groups Qx 
Standard 

deviation of Qx 

or of variable 

Dx Sx Ex Qx 
Standard 

deviation of Qx 

or of variable 

Dx Sx Ex Qx 
Standard 

deviation of Qx 

or of variable 

Dx Sx Ex 

0-1 0.200 0.057 200 1000 34.34 0.203 0.056 203 1000 34.24 0.189 0.047 189 1000 34.98 

1-4 0.150 0.058 119 800 41.77 0.142 0.051 114 797 41.86 0.149 0.049 121 811 42.02 

5-9 0.052 0.025 35 681 46.93 0.050 0.025 34 683 46.63 0.053 0.025 37 690 47.20 

10-14 0.029 0.013 19 646 44.35 0.028 0.012 18 649 43.97 0.031 0.013 20 653 44.72 

15-19 0.038 0.014 24 627 40.58 0.035 0.013 23 631 40.17 0.039 0.016 24 633 41.05 

20-24 0.049 0.016 29 603 37.09 0.049 0.016 29 608 36.56 0.048 0.017 30 609 37.62 

25-29 0.054 0.018 31 574 33.85 0.053 0.019 31 579 33.31 0.055 0.019 32 579 34.40 

30-34 0.060 0.020 32 543 30.64 0.058 0.020 32 548 30.03 0.062 0.020 33 547 31.26 

35-39 0.068 0.022 35 511 27.43 0.066 0.023 34 516 26.72 0.067 0.021 35 514 28.14 

40-44 0.079 0.024 37 476 24.24 0.082 0.027 39 482 23.45 0.075 0.023 36 479 25.00 

45-49 0.093 0.027 41 439 21.09 0.102 0.032 46 443 20.31 0.084 0.027 37 443 21.81 

50-54 0.115 0.032 46 398 18.00 0.127 0.036 50 397 17.33 0.105 0.033 43 406 18.58 

55-59 0.152 0.042 53 352 15.02 0.165 0.043 57 347 14.48 0.139 0.039 50 363 15.47 

60-64 0.202 0.042 61 299 12.26 0.217 0.046 64 290 11.84 0.191 0.045 60 313 12.57 

65-69 0.275 0.049 66 238 9.74 0.291 0.052 66 227 9.44 0.266 0.053 67 253 9.94 

70-74 0.381 0.057 66 172 7.49 0.394 0.054 63 161 7.29 0.369 0.057 69 186 7.63 

75-79 0.492 0.063 53 107 5.57 0.516 0.063 50 97 5.41 0.484 0.068 57 117 5.64 

80 -84 0.657 0.138 36 54 3.55 0.664 0.109 31 47 3.51 0.655 0.131 40 60 3.58 
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85 +   18 0    16 0    20 0  

JI 0.089 0.0466  0.087 0.0438  0.093 0.0444  
a 20 + 57.49 3.7340 56.90 3.8232 58.06 3.9395 

P  0.114 0.0413 0.110 0.0411 0.118 0.0421 
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Figures 35, 36, 37. Pre-industrial standard: probability of dying by age 

 

 
 

 
 

 
Key: mean value and minimum and maximum values with a 95% confidence interval. 

 

 

3. Pre-industrial standard 

3.1. Characteristics 
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The pre-industrial standard is defined by the mean value (with standard deviation) of 

probabilities of dying by age, observed in each of the life table samples selected previously. 

For example, the mean of the 167 tables for both sexes combined is the pre-industrial 

standard, both sexes combined (Figure 35); the mean of the 147 male tables is the pre-

industrial standard for males (Figure 36); and the mean of the 139 female tables the pre-

industrial standard for females (Figure 37). The distributions of deaths by age (mean and 

standard deviation) associated with each observed life table are shown in Figures 38, 39 and 

40. 

Next, we calculated the parameters of the life tables associated with each of these three pre-

industrial standards (Table 26). 

3.2. Differential mortality 

For all the observed tables, the gender differential in mortality is not greatly marked (less than 

5% in the risk of dying in each age group), except for a slight male excess mortality at ages 

45- 65, where it may be as high as 10% (Figure 38). 

After specifying the characteristics of the mean table for each sample (both sexes, male and 

female), details must now be given for the variables necessary for the model, i.e. the series of 

values for xq0 and associated logits (Table 27). 

A further point to be borne in mind is the number of parameters deemed necessary for our 

relational model. Demographers soon realised that the complexity of mortality variations, 

both in level and in age-at-death structure was poorly represented by a linear regression on 

logits. Consequently some researchers propose “distorting” the mortality regime in the lowest 

and highest age groups by introducing two further parameters in order to better reflect current 

changes in mortality (Zaba, 1979; Mitra, 1983; Ewbank et al., 1983; Murray et al., 2003). 

Douglas Ewbank et al. (1983) propose a model
137

 in which the parameters  and  measure 

the gradient of the mortality curve and specify its impact on the lowest and highest age 

groups.
138

 

Introducing these two parameters makes it possible to distinguish more clearly between 

populations whose levels of mortality are similar but where differences are particularly 

marked in the lowest and highest age groups.  The Brass method becomes considerably more 

complex to apply, however. It is very hard to estimate the value of these parameters in the 

mortality regime of pre-industrial populations, and even more complicated to make the model 

work subsequently, whatever its theoretical interest, because we do not have enough reliable, 

precise data about those lowest and highest age groups. 

                                                 
137

 The equation they propose is 

logit xq0 =  +  * T(, ), with T such that 

if xq0 ≥ 0.5, T(, ) = 



x q 0

1x q 0











k

1

2
, and if xq0 < 0.5, T(, ) = 



x q 0

1x q 0











k

1

2
. 

138
 Parameter  measures mortality at ages 0-5 relative to mortality at around age 35. If >0, 

the number of survivors falls more sharply in the youngest age groups in the observed table 

than in the reference table; and vice versa, if <0. In the youngest age groups, therefore, the 

survival curve is determined by  and . Parameter  measures the mortality of the 70-74 age 

group compared with the 60-64 age group. If  >0, the number of survivors in the oldest age 

groups declines more gradually in the observed table; and vice versa, if <0.  
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 In this initial application of the Brass method to pre-industrial populations, we see no need to 

operate a model that is over-complex, with additional components based on the least robust 

segments of the observed mortality curves. It is preferable to take as a standard a mortality 

regime as close as possible to the conditions of life (and death) of archaeological populations, 

thereby significantly reducing any disparities between estimation and observation. 

The work presented below therefore uses the linear progression proposed by Brass. 

4. Establishing model tables with the Brass method 

For reasons linked to the nature of our sources, we cannot use the Brass method to fit and 

smooth a mortality curve taken from osteological data by means of our reference table. But 

we can establish a series of model tables whose parameters are the various paleodemographic 

indicators previously chosen: the juvenility index, mean age at death of the over-20s and the 

proportion of 5-14-year-olds in the population. Compared with the model tables proposed in 

the previous chapter, the estimates of deaths at key ages (0-5; 15-19 and 20-24; after 70) will 

follow from the properties of the logits of the cumulative probabilities. 

 

Figure 38. Pre-industrial standard: comparison of probabilities of dying by age and sex 

 
 

 

Table 27. Parameters of the reference table, both sexes combined, and probabilities of dying 

of the African standard 

Pre-industrial standard  
(mean of the 167 tables of the sample  

both sexes combined) 

African 
Standard 

s0 1 000 d(0,1) 200 1q0 0.200 0.150 

s1 800 d(1,5) 120 4q1 0.150 0.095 

s5 681 d(5,10) 35 5q5 0.052 0.025 

s10 645 d(10,15) 18 5q10 0.029 0.019 

s15 627 d(15,20) 24 5q15 0.038 0.031 

s20 603 d(20,25) 29 5q20 0.049 0.043 

s25 574 d(25,30) 31 5q25 0.054 0.044 

s30 543 d(30,35) 32 5q30 0.060 0.046 

s35 510 d(35,40) 35 5q35 0.068 0.052 
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s40 476 d(40,45) 37 5q40 0.079 0.062 

s45 438 d(45,50) 41 5q45 0.093 0.078 

s50 397 d(50,55) 46 5q50 0.115 0.100 

s55 352 d(55,60) 53 5q55 0.152 0.137 

s60 298 d(60,65) 60 5q60 0.202 0.187 

s65 238 d(65,70) 66 5q65 0.275 0.261 

s70 173 d(70,75) 66 5q70 0.381 0.361 

s75 107 d(75,80) 53 5q75 0.492 0.493 

s80 54 d(80,85) 36 5q80 0.657 0.636 

s85 19 d(85 +) 19 5q85  0.786 

 

 

Table 28. Parameters of the “male”, “female” and “both sexes” reference tables (pre-industrial 

standards) 

5qx F M Both 

sexes 
5q0 F M Both 

sexes 
Logit 

xq0 
F M Both 

sexes 

5q0 0.310 0.317 0.319 5q0 0.310 0.317 0.319 5q0 –0.400 –0.385 –0.378 

5q5 0.053 0.050 0.052 10q0 0.347 0.351 0.355 10q0 –0.317 –0.307 –0.299 

5q10 0.031 0.028 0.029 15q0 0.367 0.369 0.373 15q0 –0.273 –0.268 –0.259 

5q15 0.039 0.035 0.038 20q0 0.391 0.392 0.397 20q0 –0.221 –0.220 –0.209 

5q20 0.048 0.049 0.049 25q0 0.421 0.421 0.426 25q0 –0.160 –0.158 –0.148 

5q25 0.055 0.053 0.054 30q0 0.453 0.452 0.457 30q0 –0.095 –0.096 –0.086 

5q30 0.062 0.058 0.060 35q0 0.486 0.484 0.490 35q0 –0.027 –0.032 –0.020 

5q35 0.067 0.066 0.068 40q0 0.521 0.518 0.524 40q0 0.042 0.036 0.049 

5q40 0.075 0.082 0.079 45q0 0.557 0.557 0.562 45q0 0.114 0.115 0.124 

5q45 0.084 0.102 0.093 50q0 0.594 0.603 0.603 50q0 0.190 0.208 0.208 

5q50 0.105 0.127 0.115 55q0 0.637 0.653 0.648 55q0 0.280 0.316 0.306 

5q55 0.139 0.165 0.152 60q0 0.687 0.710 0.702 60q0 0.394 0.448 0.428 

5q60 0.191 0.217 0.202 65q0 0.747 0.773 0.762 65q0 0.541 0.613 0.582 

5q65 0.266 0.291 0.275 70q0 0.814 0.839 0.827 70q0 0.738 0.826 0.784 

5q70 0.369 0.394 0.381 75q0 0.883 0.903 0.893 75q0 1.010 1.113 1.062 

5q75 0.484 0.516 0.492 80q0 0.940 0.953 0.946 80q0 1.372 1.503 1.429 

5q80 0.655 0.664 0.657 85q0 0.979 0.984 0.981 85q0 1.924 2.064 1.982 

 

 

4.1. Construction method 

The following life tables were constructed from the pre-industrial standard as defined above, 

by varying the values of the model’s two parameters (, mortality level and , mortality 

gradient). It is not possible to assume just any value of  or any value of , and even less to 

combine them indiscriminately. The range of possible values is relatively narrow and needs to 

be determined. 

For Brass (1971), the European Standard can be taken as a summary of the mortality patterns 

observed in Europe (consequently close to the model tables of the UN and Coale and 

Demeny’s West model), as long as the parameters of the equation lie within the following 

limits: 0.6≤≤1.6 and –2≤≤0.5. He sets slightly different limits for the African Standard, 

adapted to the populations of developing countries where child mortality is still fairly high; 

Brass (1975) proposes adjusting the tables by varying parameters  and  between +0.8 and –

0.8, and +0.7 and +1.4, respectively. 
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A more recent study (Sergei Vassin, 1994) tends to place European mortality before the 

epidemiological transition
139

 within narrower limits, both for level of mortality and its 

structure (shape of curve). He starts from the idea that, in a stable population, mortality must 

never be so high as to prevent population replacement. This exercises a double constraint: 

infant mortality must not exceed certain limits (which he sets at a maximum of 450 per 1,000 

and an almost contemporary minimum of 3 per 1,000); and mortality in the oldest age groups 

must also fall within a narrow interval (100 per 1,000 and 650 per 1,000). These constraints 

are associated with fairly wide thresholds,
140

 which are reduced if one assumes a life 

expectancy at birth of between 25 and 65 years (0.75≤≤1.25 and –1.5≤≤0.1), and even 

more so if one takes a value below 30 years for life expectancy at birth. The thresholds of the 

two parameters are then -1.5≤≤–1 and 0.75≤≤1.1 (Vassin, 1994, Figure 11, p. 63). 

These thresholds, based on a contemporary standard (European Standard), need to be adapted 

for pre-transitional populations. The fact that our standard comes close to the object of our 

study, together with the observation of a life expectancy at birth more often between 30 and 

40 years in our tables, is a strong reason to look directly for the thresholds within which our 

standard can plausibly vary. 

To define these, we began by setting =0 to examine the effect of parameter  alone on the 

mortality curve (Figures 39 and 41), and then, conversely, we set =1 to see the impact of  

(Figures 40 and 42), varying their values by increments of 0.1. We defined the interval of 

variation for parameters  and  on the basis of the extreme values that two probabilities of 

dying could take, reflecting their respective influence: 5q0 and 20q40. These values are those 

observed in our source tables,
141

 some of which are summarized in Table 29. 

Figure 39. Variation of the mortality curve under the influence of  alone (infant and child 

mortality) 

 

                                                 
139

 As defined by Abdel Omran (1971), the epidemiological transition comprises three 

successive sequences: the first, which he calls the “age of pestilence and famine”, is 

characterized by high mortality and a life expectancy at birth of 20-40 years. The “age of 

receding pandemics”, is marked by a regular decline in mortality and a gain in length of life 

(life expectancy at birth close to 50 years) enabling the population to enter a growth phase. 

The current third phase of “degenerative and man-made diseases” sees the emergence of new 

diseases and of pathologies related to population ageing. As child mortality falls and length of 

life increases, the shape of the mortality curve changes from one phase to the next. 

140
 0.5 ≤  ≤ 1.5 and –1.5≤  ≤ 1. 

141
 The minimum and maximum values are sometimes outliers, particularly for 5q0, for which 

we preferred to use the thresholds of 0.175 and 0.574. 
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Figure 40. Variation of the mortality curve under the influence of  alone (mortality before 

and after median age: 38.4 years) 

 
 

 

 

Figure 41. Variation in survivors by age under the influence of  alone (with S0=1,000) 
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Figure 42. Variation in survivors by age under the influence of  alone (with S0=1,000). 

 
 

Table 29. Statistical observations of child (5q0) and adult (20q40) probabilities of dying 

  Both sexes  Females Males 

5q0 Minimum 0.1280 0.1199 0.1138 

 Mean 0.3169 0.3084 0.3147 

 Maximum 0.6072 0.4628 0.4900 

 Median 0.2979 0.3024 0.3147 

 Standard 
deviation 

0.0866 0.0716 0.0808 

20q40 Minimum 0.2483 0.2154 0.2730 

 Mean 0.3689 0.3432 0.3886 

 Maximum 0.5903 0.5813 0.6348 

 Median 0.3496 0.3208 0.3673 
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 Standard 
deviation 

0.0063 0.0814 0.0876 

Key. The mean value corresponds to the pre-industrial standard. 

 

 

 

Figure 43. Curves of survivors by age associated with various combinations of values defined 

for model parameters  and  (– 0.3 <  < + 0.5 and 0.8 <  <1.5) 

 
 

Source: Tables XXIX and XXX at Springer Extra. 

 

The analysis shows that for values of 5q0 and 20q40 between the upper and lower limits defined 

in Table 29, the values of  must lie between –0.3 and +0.5, and of  between 0.8 and 1.5. 

The next stage was to combine the various values of  and , within the intervals previously 

defined, to construct a set of tables within the fairly wide spectrum of pre-industrial mortality. 

However, some combinations of values must be excluded if all the probabilities obtained in 

this way are to remain within the upper and lower limits observed in our source tables (Table 

29), notably the value 0.8, or even 0.9, for  when parameter  is negative; and the value 1.6, 

or even 1.5, for  when parameter  is positive. Ultimately, the only values chosen for  lie 

within a narrower interval than before (between 0.8-0.9 and 1.4-1.5), for values of  between  

–0.3 and +0.5. The life tables associated with this combination of values (Tables XXVII and 

XXVIII at Springer Extra) all vary in parallel to the reference table. The levels of mortality 

differ but the pattern of mortality by age remains the same. Figure 43 illustrates this principle 

via the number of survivors by age. 

4.2. Panels of proposed life tables (both sexes combined) 

A set of 95 tables for both sexes combined
142

 was created by applying the linear regression 

between the logits of the xq0 of the reference table (pre-industrial standard) and those of the 
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 It will be recalled that the paleodemographic indicators constructed on the juvenile 

segment can only be used with the “both sexes” models, because of the extreme difficulty of 

determining a child’s sex with current techniques (see Chapter III). “Male” and “female” 

models may, however, be of use with the input “mean adult age at death”. These will be 

provided later. 
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tables generated by introducing for each cumulative probability a given value of parameter  

and of parameter , within the intervals described above, varying by increments of 0.1 for  

and 0.05 for . 

logit xq0 =  +   logit xq0' 

with xq0 as the calculated probability and xq0' the probability from the reference table. 

To return to xq0 (x) values from the logit xq0 (y) estimates, the formula is 



xq0 
1

1e 2y   

Finally, to reconstruct the entire life table, the aqx values corresponding to the xq0 had to be 

recalculated using the formula 



5qx 
x5q0x q0

1x q0

. 

This yields the succession of probabilities 5q0, 5q5, 5q10, 5q15, … up to 5q80. 

It only remains to calculate the various parameters associated with each of the tables 

(survivors by age, deaths by age) and the values of the juvenility index, indicator P5-19 and 

mean adult age at death (Tables XXXI and XXXII at Springer Extra). 
We obtain a fairly large set of plausible life tables for the mortality regime of pre-industrial 

populations. The small size of the chosen increments tends to increase the similarity between 

tables. We could have kept only half of them, or even one-third, but we preferred to maintain 

a finely grained distribution to optimise entry into these model tables from paleodemographic 

indicators. 

We have only kept for these models the tables whose probabilities lie strictly within the 

interval of values observed in the source tables (Table 30). The paleodemographic indicators 

associated with this set of tables also vary within the interval of observed values ( Table 

XXXII at Springer Extra). 

 

Table 30. Values of paleodemographic indicators as estimated in the 96 life tables and 

observed in the 167 source tables 

 
Values estimated in model tables Values observed in source tables 

Minimum Maximum Minimum Maximum 

IJ 0.059 0.197 0.034 0.245 

P5-19 0.08 0.218 0.052 0.238 

a20 48.16 61.28 48.14 63.03 

 

Remarks and limitations on use 

The regular variation of the  and  coefficients makes it possible to provide a finely grained 

set of model tables. However, the paleodemographic indicators cannot necessarily provide 

greater certainty, because the data upon which they are based are themselves only probable. 

In most cases, two combinations of  and  do not give two identical values for the various 

parameters associated with the table (probabilities of dying, survivors or deaths by age, 

juvenility index, indicator P, mean adult age at death). However, caution is advised where the 

quantitative similarity of certain indicators may conceal notable differences in the mortality 

patterns they reflect. When the user has only one entry parameter, assumptions need to be 

made concerning the mortality of the under-5s and of adults as measured by minute variations 

in parameters  and  (it will be recalled that the greater , the higher child mortality). When 

there are two paleodemographic indicators, the value of the second one should guide the 

choice of life table. 
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We provide a graphical illustration below for each of the chosen paleodemographic indicators 

(Figures 44 to 46). For example, for a juvenility index of 0.071 (Figure 44), the mean adult 

age at death differs noticeably from one level of mortality to another (similarly for indicator 

P, see Figure 46). With “mean adult age at death” (Figure 45), an identical value is also 

counterbalanced by a different value of the juvenility index or P. An example of 

archaeological application is given for the Frénouville site (4th century AD) in Chapter X-1. 

4.3. Atypical life tables 

The paleodemographic indicators provided by the life tables calculated above may be quite 

far removed from those obtained from osteological data. The juvenility index (JI) or indicator 

P may reach values that the model as defined above does not cover. Consequently we have 

varied parameters  and  without considering the constraints imposed by the observed life 

tables, so that the values of JI and P are higher than the thresholds previously obtained 

(Tables XXXIII and XXXIV at Springer Extra). We have done the same with mean adult age 

at death (Table XXXV at Springer Extra). 

 

 

Figures 44, 45, 46. Age distributions of deaths (left) and mortality curves (right) for two 

values close to… 
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The modelling procedure shows that high values for the juvenility index and indicator P are 

associated with much higher mortality levels than those observed in our tables, at all ages 

(Figures 47 and 48). Use of these atypical models is therefore based on the assumption of a 

mortality structure that has not as yet been observed. This anomaly should suggest a bias in 

the osteological data (such as a shortfall in adult skeletons). Otherwise, it would have to be 

admitted that the mortality of archaeological populations differs substantially from that of pre-

industrial populations observed at various times and on various continents. This mortality 

structure, with extremely high infant and early childhood mortality (50% to 60% dying before 

the age of 5) and extremely high adult mortality, makes population replacement almost 

impossible. Such situations can only have occurred over an extremely short period of excess 

mortality or high immigration. If there is no archaeological evidence for these exceptions and 

the site under study presents a long and uninterrupted chronological sequence, then the 

possibility of bias in burial practices needs to be considered. 

The problem is less clearly marked for high values of mean adult age at death (Figure 49), 

which tend to imply rather a much lower mortality at all ages than is observed. Some caution 

would appear to be required nevertheless in any conclusions. 

Figure 47. Probabilities of dying by age associated with various combinations of model 

parameters  and , such that the juvenility index exceeds 0.245. 
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Figure 48. Probabilities of dying by age associated with various combinations of model 

parameters  and , such that indicator P exceeds 0.240. 

 
 

Key to Figures 47 and 48. The series of probabilities all lie outside the limits of the Pre-

industrial Standard, with a 95% confidence interval. 

 

Figure 49. Probabilities of dying by age associated with various combinations of model 

parameters  and , such that mean adult age at death exceeds 63 years. 

 
 

Key. Probabilities of dying by age associated with various combinations of model parameters 

 and , such that mean adult age at death exceeds 63 years. 

 

5. Conclusions 

The estimation of probabilities of dying in the youngest age groups varies considerably 

because of the wide distribution of observed values. Previous models, based on a linear 

regression between the logarithms of the probabilities and the paleodemographic indicators, 

were of poor quality for the early ages. Life tables constructed by the logit method, albeit 

based on the same sample of tables, are much more reliable because the chosen value is the 

mean of the probabilities, which excludes the extreme cases that impaired the quality of the 
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others. This relational model is one of the best ways of studying infant and child mortality. 

While using the mortality regime predefined for pre-industrial populations, a vast number of 

virtually possible situations can be observed with a clear awareness of the underlying 

assumptions. 

Nevertheless, we must not overlook the unstable nature, in time and space, of mortality 

between 0 and 5 years. A number of patterns are possible, and probability ratios (in particular) 

may be reversed. In this sense, the infant and child mortality of pre-industrial populations is 

as erratic as that observed in developing countries and would probably require that further 

parameters be defined. Indeed, the consequences of these variations, however minute, should 

not be underestimated. A slight improvement in living conditions for children aged 0-5 may 

have major demographic consequences (particularly on population growth). Similarly and 

conversely, the infant diseases that regularly wiped out one-quarter or one-third of this age 

group had a profound impact on population dynamics. 



143 

 

Chapter IX 

Final overview 

An archaeological excavation has delivered a set of skeletons. What conditions must be met if 

we wish to use this set of skeletons in a demographic study? And if these condition are met, 

what options should be chosen and what are the basic stages in the process?
143

 

1. Assessing the usefulness of the study 

Before beginning any paleodemographic study, the first stage is to define the research topics, 

considering the state of both the biological sources (conservation of the skeletons) and of the 

archaeological sources (quality of written evidence about the set). This choice can only be 

made after long, close cooperation between the various researchers involved and after 

examining the archaeological, anthropological and paleodemographic arguments, not 

forgetting the historical dimension. 

To make up for the biases and gaps inherent in osteological data, paleodemographers must 

address numerous difficulties relating to the excavation (quality of recovery), choice of 

sample (what group is it representative of?), state of skeletons (differential conservation), 

inaccuracies in anthropological methods (particularly in estimating age and sex) and choice of 

a demographic model (to fit the characteristics of the set under study). 

The larger the volume of documentary evidence for the archaeological and historical 

background of the skeletons, the greater the chances of carrying out a comprehensive and 

precise demographic study. This truism can be stated more bluntly: don’t expect exceptional 

results if the historical and archaeological background is poorly understood. If over-wide 

chronological margins are chosen, with intervals of a century, for example, much of the 

information will remain undetectable. The study of a population taken from a cemetery used 

for two centuries where the graves are not accurately dated can only give an “average” image 

of that population’s demographic characteristics over the entire period, with the risk that the 

average is an artificial one that does not reflect any historical reality. Short phases of 

migration or population decline, for example, will be impossible to identify. 

Things are quite different where the topo-chronology established by archaeologists allows the 

sample to be divided into clearly identified phases, down to the quarter-century. In that case it 

is possible to reconstruct the demography of these populations in dynamic terms, tracking its 

                                                 
143

 The purpose of the methods proposed in this handbook is to reveal the major demographic 

characteristics of a buried population on the basis of a single source: the exhumed remains of 

human bones. Studies of the size of populations in a given territory using other types of data, 

such as buildings, pottery and food remains are quite another matter, and they are not covered 

here. 
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changes in response to births and deaths, and even migrations, and to identify any growth 

phases. 

2. Sample representativeness 

The existence of easy-to-use demographic tools should not obscure the fact that a 

paleodemographic estimate is only of value for the sample under study (does it represent the 

population it is taken from, the buried population, or does it only reflect itself?). 

2.1. Importance of sample size 

The reliability of the final study results closely depends on the representativeness of the 

sample. Not every set can be used for a paleodemographic study. Remember that even in 

exceptional archaeological circumstances one can never be sure that a set of exhumed 

skeletons is significantly representative of the buried population, let alone the living one. 

Sample representativeness must be considered on several levels prior to any study. 

2.1.1. On the scale of the burial ground 

Because of the variability of individual characteristics, it is difficult to extract useful 

information from a very small number of skeletons, be this due to poor bone conservation or 

to a small dig area. There is no rule for setting a threshold and the archaeological background 

must also be taken into account; the fact that skeletons are few in number will not have the 

same import if they are found in an isolated  enclosed space or if they come from a small 

sector of a large burial ground. Common sense should prevail, together, of course, with 

discussion among colleagues. When conclusions are later drawn from the study, it is 

important to consider the limitations imposed by the sample size. 

2.1.2. On the scale of the region 

For an accurate understanding of the demographic history of a region, one would need to 

study all the cemeteries used by the inhabitants of that region (including outside their 

territory: emigration, war, etc.). This is clearly impossible; there will be less than a score of 

cemeteries at best, and their excavation will rarely have been exhaustive. 

The conclusions reached in that case form just part of a larger picture and their value partly 

depends on the representativeness of the sites included. Failure to bear that in mind can lead 

to considerable errors of interpretation. Comparing mortality curves calculated from different 

series might cause an incautious paleodemographer to deduce major variations in mortality 

from one site to another, or one period to another, when the observed differences are merely 

the effect of random variations in samples comprising too few skeletons. 

The plausibility of assumptions thus closely depends not only on the method used but also on 

the numbers analysed. This is why it is important to specify the statistical limitations of the 

results obtained. Variance in estimates of mortality rates can be calculated to take account of 

random variations affecting samples comprising too few skeletons. 

2.2. Population structure 

In addition to the number of skeletons, the structure of the “burying” population, the people 

who used the cemetery to bury members of their group, has a strong influence on the age 

distribution of deaths. In the standard example of a partially excavated cemetery, the exhumed 

skeletons are only a sub-set of the buried population, not necessarily representative, because 
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the age, sex or social background of an individual may have played a part in the choice of 

their grave. Selective burial practices may apply to one component of the population 

(children, foreigners, outsiders, etc.) or to all the deceased in one group, as in the case of 

military cemeteries or those of religious communities. However, selection occurs not only at 

the time of burial; it also operates beforehand, in the formation of the group from which those 

who did not survive can be observed. In this particular group, this “burying population”, will 

necessarily have an age-sex distribution of deaths different from that of a parish graveyard. 

The cemeteries belonging to hospices and hospitals are a good illustration: the buried 

population taken from a group of sick people is necessarily different from that of a village 

graveyard. 

Before any paleodemographic analysis, it is therefore important to determine whether all 

components of the population appear to be correctly represented (sex ratio, age structure, 

grave goods, etc.) or, failing that, to identify from historical and archaeological 

documentation the rules of selection before or at the time of burial. 

However, a study should not be abandoned on the grounds that the sample is the result of a 

selection and is not “natural”. The information that may emerge can be of great historical 

value (as is the case for “catastrophe cemeteries”) and one should resist the temptation to 

“standardise” the available sample to make it a “natural” population, when its specific 

features may be its most interesting characteristic. 

3. Basic anthropological data: a pragmatic choice of methods 

Once the historical and qualitative outlines of the population available for study have been 

specified, anthropologists/paleodemographers must collect from each skeleton the biometric 

data required to estimate its sex and age at death, two fundamental parameters for 

paleodemography. 

3.1. Determining sex 

Sex determination does not present any real methodological problems in the case of adult 

subjects, and only a desire for the smallest margin of error justifies preference for one method 

over another. The hip bone (os coxae) is favoured, with some justification, by many 

anthropologists. However, because of its fragility, it is often seriously damaged in 

archaeological excavations, and in the absence of the hip bone, it is possible to use cranial or 

post-cranial features to determine the sex of skeletons with a respectable success rate, 

sometimes as good as for the hip bone. 

On the other hand, determining the sex of a child presents problems that are as yet only 

partially resolved. When it is impossible to distinguish the proportions of males and females 

among juveniles with an acceptable margin of error, it is preferable to work on data for both 

sexes combined (except, naturally, for the special cases of cemeteries of nuns or soldiers).  

For the choice of methods for determining the sex of adults, see Chapter II-1.1. 

3.2. Estimating the age at death of a skeleton 

This naturally poses a number of technical problems for which there is an abundant literature 

and a variety of solutions, some more useful than others. However, age determination is not 

an end in itself for the paleodemographic approach. The information collected from the 

skeleton is not merely intended to complete the columns of bio-archaeological factsheets, but 

rather to enable paleodemographers to discern the behaviours of a set of individuals. For that 

purpose, the data, skeleton by skeleton, must be analysed using a comprehensive approach. 
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3.2.1. The difficult task of choosing a biological age indicator 

Despite a century of scientific debate, anthropologists and paleodemographers still fail to 

agree on the best indicator. In fact, there is no satisfactory osteological age indicator and, 

despite affirmations to the contrary, none of the currently known indicators display a 

sufficient statistical correlation with chronological age to be considered as expressing a 

subject’s true age. Whatever option is chosen, the ages obtained can never be directly used for 

a paleodemographic approach. This observation applies to both juveniles and adults, even 

though for children, who are growing, the criteria used are more stable than for adults, whose 

skeletons bear the marks of biological ageing in ways that differ from one individual to 

another. 

For adults, after reviewing the various indicators proposed and critically analysing the 

associated reference populations, we chose to take the cranial suture closure ? as indicator, 

despite the many criticisms levelled at it. Its failings are known – and clearly identified in the 

many studies devoted to it – but also its advantages. The very process of identifying these 

failings has made it possible to propose correctives and adaptations that have made suture 

closure into a clearly understood tool, unlike other indicators, most of which have not been 

sufficiently tested and require improvement. Indeed, some indicators will no doubt fall out of 

fashion once exposed to the arguments of critical analysis. 

Consequently, although cranial suture closure does not give good results as an indicator of 

individual age, it is of great interest for a “collective” approach to age at death. However, this 

choice is not final, and merely expresses the state of paleodemographic research at a 

particular point in time. Tooth cementum analysis (TCA) is promising, but still requires 

substantial refinement. 

The methods presented in this handbook were designed to adapt easily to the emergence of 

new indicators. 

Adult subjects – Recommended age indicator: cranial sutures closure (see Chapter II-2.2). 

For juveniles, we propose a new method for interpreting mineralisation that is both easy to 

use and statistically rigorous. Among existing methods, those that are statistically satisfactory 

are generally complex to apply, while the simplest to use are lacking in statistical rigour. 

Juveniles – Recommended age indicator: dental mineralisation (see Chapter II-2.1). 

3.2.2. A single-criterion approach to age 

For adults and for children, we have preferred an approach to age based on a single biological 

criterion, clearly defined from a high-quality reference collection. The value of the reference 

population (reliable age data, and quantifiable and reproducible anthropological observations) 

is a determining factor for a paleodemographic study. 

In the current state of research, we have chosen to use a single biological criterion, whether 

osteological or dental, taken from a comparison population whose ages are clearly established 

from civil records and whose biological characteristics have been measured using well-

defined protocols. While multi-criterion approaches produce better correlations with 

individual ages, they are subject to major statistical biases because they use collections of 

varying size in various places that have seldom been critically examined (see Chapter II-2.2). 

In general terms, care must be taken to avoid using age indicators for a single study that have 

not been developed from a single reference population, because the estimates obtained may 

well diverge considerably. The challenge for the years ahead will be to establish comparison 

collections that are properly documented and meet the highest statistical standards.  

4. Estimating age at death for a buried population 
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4.1. Why shift from individual ages to collective age? 

Whichever the indicator or method chosen, no estimate of age, for adults or juveniles, can be 

expressed without a margin of error, so it is extremely difficult, indeed hazardous, to envisage 

a demographic approach based on a series of individual age estimates subject to this 

inconvenient uncertainty. Nor should we give in to the temptation (as so many 

paleodemographers have done!) of “turning a blind eye” to this margin of error, and using the 

observed averages to propose reconstituted patterns that may well be attractive but are always 

controversial. 

Nor can the solution be to determine wider age categories (“young”, “mature”, etc.). The risk 

of allocating an individual to one category rather than another is just as high; furthermore, the 

use of wide categories causes a loss of information and the subjective nature of the 

observation make it irreproducible and thus limits any comparison between sites (see Chapter 

II-3). 

The solutions available to paleodemographers
144

 all consist in adopting a comprehensive, 

probabilistic approach to cover all the observations made on the skeletons so as to obtain a 

“probable distribution” by age group (one-year, five-year, ten-year or other), while taking 

care to separate adults from juveniles. 

By using a “reasoned” reference collection to estimate children’s age at death (see Chapter 

III-2) from a single age indicator – the extent of tooth mineralisation – the same methodology 

can be adopted for non-adults as for adults (see Chapter III-1). 

4.2. Maintaining a probabilistic approach to age 

Given the poor correlation between chronological age and any biological age indicator, it is 

important to maintain a probabilistic approach to estimating the age at death of a skeleton, 

whether for the group as a whole or for each individual parameter (see Chapter II-3). Using 

probabilistic methods requires a change of perspective. The results obtained are no longer 

unique but one plausible solution among many. 

4.3. Use of a pre-industrial reference standard 

To minimise the risks of a possible biological drift in age indicators, especially those for 

adults, the solution adopted in this handbook is to create reference populations – one for 

juveniles, one for adults – that come as close as possible to the standards for pre-industrial 

populations (see Chapter III). 

And, rather than depend on a uniform age-sex structure that would not correspond to 

“normal” situations, we decided to start from the age distribution at death observed in largely 

rural populations with little or no access to modern medicine, before, or shortly after, the start 

of their demographic transition. 

These reference populations are the single and constant reference for determination of age at 

death. Once the biological characteristics have been properly established (as far as they can 

be), they remain invariable and only the age structure may be modified by the characteristics 

of each site. 

5. New paleodemographic tools 
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 Unlike forensic scientists, who seek to estimate the age of an isolated individual. 
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The basis of our approach needs to be sufficiently broad and stable for our future research to 

be built on generally accepted components. Our purpose is also to harmonise 

paleodemographic techniques, whether for adults or juveniles. Even if the biological 

indicators differ, the analysis methods will use the same concepts: probable distribution of 

deaths by age group and calculation of the mean age at death associated with that distribution. 

The existence of visibly differing biological processes (as far as our current evidence shows) 

between adult men and women is a reason for preferring separate analyses by sex. Similarly, 

where sample size allows, it is better to work with five-year age groups, which minimises 

information loss, provided that statistical precision is not compromised; it is always easier to 

aggregate data back into ten-year age groups than the reverse. 

These principles cannot always be applied to anthropological series and 

anthropologists/paleodemographers must assess each situation individually. 

5.1. The revised “PFP”
145

 method (probability vectors) 

This method was proposed by Claude Masset in 1982 to calculate the probable distribution by 

age-at-death classes of a buried population on the basis of the relationships between 

biological indicators and chronological age observed in the reference population. Since the 

baseline is constant, as long as care is taken with the statistics, this method can be used to 

compare cemetery populations separated by time and space. It also provides limited but 

reliable evidence concerning the demography of buried populations. 

This approach is adopted separately for juveniles and adults. 

- The new vectors for adults: see Chapter IV-2.2. 

- The new vectors for juveniles: see Chapter IV-2.3. 

In some cases, this method can reflect demographic features specific to the site under study. 

For that purpose, a frequency (probability vector) matrix is needed that fits the demographic 

context of the population whose skeletons have been exhumed. Since early experiments gave 

useful results (see Chapter X-2.1 and Chapter X-2.2), it is possible to use “paleodemographic 

models” (i.e., matrices integrating these specific factors, such as more comfortable living 

conditions and standards, mass immigration, major epidemics) that may be preferred where 

the documentation associated with the skeletons so permits. 

- Adapted vectors (paleodemographic models): see Chapter IV-2.4. 

The PFP method has its limitations, however. In Chapter A of the prospective section, Daniel 

Courgeau discusses and challenges it, and then in Chapter B, with Henri Caussinus, proposes 

a new approach based on the principles defined in the Rostock Manifesto. Since these 

principles, stated by Robert D. Hoppa and James W. Vaupel in 2002, have yet to be 

demonstrated, this proposal remains of prospective value only. 

5.2. New life tables for paleodemographers 

Where possible, a paleodemographic study aims to go beyond the mere production of 

inventory factsheets or the calculation of probable distributions by age-at-death groups. Its 

purpose is to reconstruct the population using a dynamic approach, taking account of natural 

balance (births and deaths) and even migration. This exercise is difficult, however, because 

most of the indicators habitually used in demography are unavailable to paleodemographers, 

who are obliged to construct their own! 
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 The IPFP (Iterative Proportional Fitting Procedure) method as used in paleodemography 

does not actually require any iteration. It could therefore be called the PFP method, but it is 

better known as “probability vector method” (see Chapter IV-2). 
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Here too, the approach should be guided by a few basic principles. For example, the 

relationship established, via one or more paleodemographic indicators, between osteological 

data and demographic tools must be as direct as possible and not require a succession of 

estimates. 

The mortality model used must be compatible with the demography of pre-industrial 

populations. Like the life tables for contemporary populations, it must be able to reliably 

reconstruct the complete mortality curve of populations for which we have only fragmentary 

information.  Using a set of mathematical properties that link the demographic parameters, it 

then becomes easy to access the demographic characteristics of the theoretical population 

associated with the calculated table (life expectancy at age x, probability of dying, number of 

deceased and number of survivors by age). Although more complex to use, we have opted for 

the theoretical model of stable populations, of which stationary populations are only a special 

case. 

All our work is thus based on life tables specially developed for pre-industrial populations, 

with inputs directly accessible from osteological data. These inputs, also called “estimators”, 

are mainly those proposed by Bocquet-Appel and Masset: mean adult (over 20) age at death, 

juvenility index (JI) and proportion aged 5-19 in the over-5 population (P5-19). 

The two mortality models presented in the handbook are not entirely equivalent. The first – 

the “Power” model – can be used to fit mortality to observed data, by specifying the quality of 

the regression. It can also take account of possible (positive or negative) variations in 

population growth. 

The other – the “Logit” model – is better suited for measuring the variations caused by 

changes in the mortality of children or adults. It is more flexible, but does require some care 

to avoid overstepping the bounds of the demographically possible. Since it does not capture 

the effects of population growth rate on paleodemographic indicators, we recommend that it 

be used in cases where growth is slow (according to archaeological or historical evidence), or 

for very short chronological sequences. 

- “Power” model: see Chapter VII. 

- “Logit” model: see Chapter VIII. 

Naturally, the use of these mortality models is not essential for all paleodemographic studies. 

These tools are only of value if they correspond to the osteological data and the 

archaeological purpose, and are used appropriately. 

- Examples of application to juveniles: see Chapter X-1.1. 

- Examples of application to adult subjects: see Chapter X-1.2. 

This does not mean that paleodemographic research is complete, for a new method for 

estimating age at death, currently being developed (see Chapter A) will soon propose a 

different approach. For the time being, the examples of archaeological applications presented 

in the next chapter are based on the principles we have outlined here.
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Box 7. How to use mortality models 

Like Ledermann’s or Coale and Demeny’s tables, our mortality models have been developed 

to measure and correct the anomalies observed in certain poorly known population structures. 

Their value for paleodemographers arises from the fact that no adjustment of variables is 

required for the transition from osteological data to the demographic tool, and that they most 

accurately reflect  mortality by age and sex of populations that have not begun their 

demographic transition. They are consequently the perfect tool for paleodemographers, on the 

strict condition that they are used properly. 

Estimating bias in osteological series 

Our mortality models are essential tools for detecting any anomalies in the age-sex 

distribution of deaths of a buried population.
(a)

 To apply them properly, it is important to use 

not of all the observed age classes, but solely those that archaeologists and anthropologists 

consider to be the most reliable on the basis of their separate observations. As soon as a bias 

is suspected, it must be excluded from the observation so that it can be measured. Including 

under-estimated data in the calculation distorts the entire mortality curve and invalidates any 

comparison with a model curve. 

So, starting from incomplete or highly specific data, it is possible to answer questions about 

how the deceased were “recruited” (Masset, 1987) for a given burial ground, and to estimate 

the resulting biases or anomalies, particularly the shortfall of children under 5, on condition 

that the above methodological error, only too frequent, is avoided. 

Detecting  crisis mortality? 

In general, the mortality models are only applicable to normal mortality patterns. This is 

because they reflect the mortality by age habitually observed in a given population. This 

“normality” is the essential precondition for their use in prospective studies: if the study 

population behaves like the one defined by the model, then one or other vital parameter can 

be estimated by reference to the defined model. Consequently these models cannot capture the 

impact of mortality crises (due to epidemics, war or famine) that regularly afflicted 

populations under the old demographic regime. For that purpose, it is better to turn to models 

of population dynamics. 

Can our models taken from the “normal” mortality of pre-industrial populations be used to 

detect/test the more “selective” mortality occurring during the demographic crises well known 

to historical demographers? Perhaps they can. But on the understanding, once again, that two 

static factors are involved in the constitution of osteological series: the age-sex composition 

of the population exposed to the mortality law at that point in time,
(b)

 and the risk of dying 

between two ages (normal mortality distribution or crisis mortality). There is also a dynamic 

factor: the growth or decline of the study population. The combined influence of these three 

elements makes it extremely difficult, in our view, to detect mortality crises from osteological 

data alone. A surplus of infant skeletons might mean either burial practices or conservation 

conditions that reflect the “normal death toll” for this age group, or population growth (by 

family immigration) and/or a higher birth rate,
(c)

 or an excess of deaths in this age group. 

Mortality crises occur in regular cycles, and the appearance of childhood diseases, primarily 

the killer smallpox, follows well-attested patterns. Unless the chronological sequence under 

study is highly targeted and focuses on the crisis years themselves, it will be hard to obtain 

anything other than an image of “average” mortality, i.e. the equilibrium between years of 

excess mortality and years of recovery in life expectancy. 

Naturally, these mortality models are not useful for all paleodemographic studies. Such tools 

are only of value if they correspond to the osteological data and the archaeological purpose 

involved. 
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(a)
 This research area, the detection of anomalies in age and sex parameters and their 

interpretation in biocultural terms, is mainly pursued by Pascal Sellier (1996) and Dominique 

Castex (2005, 2007) and their doctoral students. 
(b) 

This is an important point. It is not the living population as a whole that serves as a basis, 

but the sub-population directly exposed to the epidemic or the atypical mortality distribution. 

Depending on context, the two notions may or may not overlap. 
(c)

Under health conditions that vary little, any increase in the birth rate leads inevitably to an 

increase in infant and child mortality. 
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Chapter X 

Examples of archaeological applications 

The new “tools” proposed in this handbook make it possible to re-examine the demographic 

approach to buried populations and to address some of the recurrent questions of 

paleodemography, such as the problem of estimating the proportion of under-20s, and not 

least, of the 0-4 age group, generally under-represented or non-existent in historic burial 

grounds. Similarly, intra-site demographic developments can be explored, since hypotheses of 

population growth or decline can now be integrated into the choice of models. 

New research topics can also be addressed: dynamic approaches, modelling of demographic 

behaviours, regional variations, impact of migration and demographic crises. To illustrate 

these various approaches, we present four case studies. These mainly involve sites where the 

research question has required us to adjust our tools, to propose innovative approaches, and 

refine the proposed study protocol. The analysis of these sites is not necessarily complete nor 

is the discussion closed (see Chapter B): in this chapter the aim is primarily to illustrate some 

current thinking in paleodemography that may be of interest to historians, archaeologists and 

even demographers. 

The chosen examples are classic cases,  and have been divided into two groups. The first 

comprises sites where only biological data are available, namely two burial grounds from Late 

Antiquity, one rural and one urban, that have been comprehensively excavated and covered 

by thorough historical, archaeological and anthropological studies (Frénouville and Lisieux); 

the second comprises two sites with extensive written documentation that provide information 

on the demographic behaviour of the exhumed populations. Each belongs to a specific 

context, one a burial ground of the Modern period for an exclusively female population 

(Royal Abbey of Maubuisson); and the other, an urban cemetery of the contemporary period 

(Antibes). All these sites are comparable because they have been studied using the same 

methods:
146

 same biological age indicators, same reference populations, and same methods 

for estimating age at death. 

1. Sites for which only biological sources are available 

                                                 
146

 We use the PFP method, under its first definition (see Chapter A), starting from the age 

distribution within a given stage. The fitting process therefore requires no iteration. The 

reference population used is fixed in geographical and chronological terms (19th century 

Portugal, but representative of pre-industrial populations). 
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In these first two examples, the demographic parameters are estimated for populations of 

skeletons for which there are no documents that could be used to give an alternative 

assessment of demographic behaviours. Since each population has its own biases, the research 

questions are different, as are the tools used. For archaeological reasons, the smallest feasible 

dating unit may be the century, whereas in other rare cases the models take account of 

variations in growth rate that permit accurate dating of the archaeological context and thus a 

relative chronology by quarter-century, i.e. the approximate span of a generation. 

1.1. Frénouville rural cemetery (Calvados, N.W. France, 4th century AD sector). 

1.1.1. Research question: estimating the proportion of subjects in the under-20 and 0-4 age 

groups 

Archaeologists and anthropologists generally observe that the skeletons of young children are 

under-represented in burial grounds, and thus conclude that their paleodemographic sample is 

severely skewed. However, the extent of this under-representation deserves some discussion, 

because it depends so heavily on the demographic assumptions made. 

The model life tables proposed in this book, particularly those based on the logit method, can 

be used to estimate the expected proportion of the population aged under 20 or under 5, given 

the conditions of mortality and growth previously defined as those of the population under 

study. 

1.1.2. Archaeological and anthropological sources 

The Frénouville burial ground
147

 (site name “Le Drouly”, Calvados) lies in open fields and 

covers roughly one hectare. Some 650 tombs have been found, dating from the end of the 3rd 

century to the end of the 7th century. This long use of the site is marked by a radical change 

in tomb orientation in the 5th century: the Late Empire tombs are oriented north-south, while 

those of the Merovingian period lie east-west. In both areas, the general layout is a cemetery 

in rows, sometimes broken by removal of stones for reuse. The present analysis concerns the 

first phase of cemetery use, namely the 163 graves of the Gallo-Roman period (late 3rd to late 

5th centuries). Of these, 130 contained skeletons of older adolescents (ages 15-17 years) and 

adults (18 years and above), of which 58 were of known age and sex, and 11 of known age. A 

further 33 graves contained children whose skeletons were not preserved; from the size of the 

empty graves, they were probably children aged under 10 years in 26 cases
148

 and adolescents 

aged 10-17 in 7 cases (Table 31). 

The Frénouville population was heterogeneous. Roughly two-thirds were of local origin while 

one-third were outsiders who had been living in the region from the 3rd century AD, some of 

them from the Roman army (Buchet, 1998). This military presence may well have attracted 

migrants up until the 5th century (Buchet, 1998), and the local populations gradually mixed 

with the new arrivals during the next three centuries. In order to calculate the growth rate over 

two centuries and then deduce an annual value, it may be assumed that immigration  

continued at a steady rate from the late 3rd to the late 5th centuries. 

                                                 
147

 
147

 Excavations directed by Christian Pilet (CRAHAM, Caen, France), (Pilet, 1980); 

anthropological study by Luc Buchet (CEPAM, Nice, France) (Buchet, 1978, 1998). 

148
 The grave lengths varied from 0.8 to 1.5 m; since the body occupied on average 65% to 

70% of this length (allowing for coffins), the height of the bodies buried there must have 

ranged from 0.50 to 1.40 m, corresponding to children under 10 years old. 
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1.1.3. Preliminary calculations 

a. Calculating the annual growth rate 

The increase in the number of deaths observed from one period to another may be measured 

by the formula 

 
 0

ln
tD

tD n  

Where D(t0) represents the deaths occurring during the first phase of site occupation (from the 

late 3rd-5th centuries), and D(tn), the deaths occurring during the second phase (6th-7th 

centuries), assuming that all the deaths observed during a given period are distributed 

uniformly throughout that period. 

From the known number of skeletons corresponding to the first site phase (N=163) and the 

second phase (N=487 for the 6th-7th centuries), the population growth throughout the period 

is 

095.1
163

487
ln   

which converts to an annual rate of 

0055.0
200

107.1
  

 

Table 31. Distribution by age group of the skeletons exhumed at Frénouville (4th century AD) 

 
FrŽnouville :  
archaeological data 

130 adults and adolescents (over 15 years) 

7 adolescents (10-14 years) 

26 children aged below 10 years 

of which 50% below one year (i.e.12 or 13 children) 

 

 

 

Since we know that the Frénouville population has a high rate of immigration, we can 

develop D(tn) as 

D(tn) = D(p0,n) + D(i0,n). 

where D(p0,n) is the proportion of deaths of local people between the late 3rd and late 5th 

centuries, and D(i0,n) the proportion of deaths among the population that immigrated over the 

same period. 

According to the archaeo-osteological observations, we may estimate that  

D(in) = 2  D(p0,n), as above, and deduce an increase by the formula 
 

 
  098.13ln

3
ln

0

0 


pD

pD
 

which, converted to an annual rate, provides a value identical to that calculated above 

0055.0
200

098.1
  

illustrating the importance of migration increase and the marginal effect of natural increase 

(based on the rate of natural increase observed in the early modern period in France: 0.0033). 

Since the cemetery has been fully excavated and was used over a fairly long period, one may 

expect to find all the individuals who died during these two centuries. However, only 26 

tombs were those of children aged under 5, representing just 15% of the entire buried 

population. This is a surprising result given the high infant and child mortality among pre-

industrial populations. 
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Can the “missing” proportion of the population be estimated from osteological data, given 

that we cannot base our calculations on either the juvenility index or indicator P, because it is 

impossible to obtain an accurate count of juveniles whose skeletons are not preserved? 

b. Estimating the probable distribution of adult deaths and the associated mean age at 

death 

Provided that the Gallo-Roman population that used this cemetery had a demographic 

structure similar to the pre-industrial standard as defined by us, and that the distribution by 

stages of suture closure observed on the 69 “adults” is representative of all the exhumed 

adults (bearing in mind that for half of the adults and adolescents ages could not be estimated 

because of poor bone preservation), we can estimate the probable distribution of adult deaths 

by age (Figure 50) and calculate the mean age at death associated with that distribution. 

The probable distribution of deaths by five-year age groups has the advantage of enabling a 

visual comparison with the theoretical distribution of deaths in a life table. This requires a 

sample large enough to be distributed across all the age groups (N>60), however. If the adult 

numbers are too low, it is preferable to allocate the deaths by ten-year age groups (and 

aggregate the theoretical deaths in the life table similarly to enable comparison). 

The automatic calculation of mean adult age at death (see macro utility in the supplementary 

materials on the INED website) gives a figure of 56.07 years.
149

 

However, a reasoned calculation is preferable because of the specific archaeo-anthropological 

features of the site. Among the 69 skeletons to which a cranial suture closure coefficient was 

attributed, there are surely individuals from the 15-19 age group,
150

 so their inclusion in the 

automatic calculation will lead to under-estimation of mean age at death. Starting from the 

probable distribution by five-year age group and removing this bias, we obtain a value for 

mean adult (over 20) age at death of 56.78 years (and 57.09 years using ten-year groups). 

Figure 50. Probable distribution of deaths by five-year and ten-year age groups 

 
                                                 
149

 With a distribution by five-year group, the central age-point is defined more precisely (a = 

x + 2.5) than with ten-year groups (a = x + 5), leading to a slight variation in the calculated 

mean age at death (56.07 and 55.92 years, respectively). The sample size here is sufficient to 

justify calculation from five-year groups. 

150
 Some skeletons were not sufficiently well preserved to observe spheno-occipital fusion, 

which is a good indicator of entry into adulthood. 
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Key. Probable distribution of deaths by age group associated with the mean adult age at death 

calculated for 3rd-5th century Frénouville (frequency matrix PLisbon1889). Top, five-year age 

groups; bottom, ten-year age groups (except for first). 

1.1.4. Estimating the proportion of missing juveniles 

a. First method: use of model tables 

• First hypothesis 

In 2008, we proposed estimating the missing proportion of juveniles from life tables 

established for pre-industrial populations (“Power” model), on the assumption of constant 

growth in all age groups (Séguy and Buchet, 2008). Mean adult age at death, taken from the 

probable distribution of deaths by age group (five-year, a20 = 56.8 years), is used as the input 

for the network of life tables corresponding to an annual growth rate of 0.005, the value 

closest to that estimated for Frénouville (0.0055). 

In addition to the series of probabilities of dying by age (95% confidence interval), Table 32 

provides the age structure of the theoretical population and the allocation (proportional) of 

deaths by age group. The birth rate corresponding to this stable population is 26.22 per 1,000; 

the mortality rate is thus 21.22 per 1,000. 

If we consider the period of occupation of the cemetery as a single point of observation, we 

can calculate the number of deaths occurring at Frénouville before age 10 from the number of 

deaths occurring after age 10 (N = 137). Under the demographic conditions defined above, 

the number of children dying before their tenth birthday should be 88 (or 39% of all deaths), 

of whom 80 before their fifth birthday (Table 33 and Figure 51 illustrate the observed and 

expected distributions of deaths by age at Frénouville). 

However, if a constant rate of increase is applied to all ages, this does not take account of the 

particular context at Frénouville, where immigration was high throughout the period under 

consideration. 

Table 32. Frénouville, Gallo-Roman period, estimated life table 

Annual growth rate = 0.005 Associated stable population  

Age group Adjusted R2  
Mean probability 

of dying (Qx) 
Probability in a 

95% CI 
Age structure 

Deceased of the 
table (Dx) 

Life expectancy at 
age x (Ex) 

00-04  0.287 293.4 [285 - 301] 167 354 38.1 

05-09  0.319 45.0 [42 - 47] 144 37 46.7 

10-14  0.520 25.7 [24 - 26] 126 20 42.8 

15-19  0.721 34.3 [33 - 35] 110 25 38.2 

20-24  0.841 43.5 [42 - 44] 94 30 34.0 

25-29  0.852 49.3 [48 - 50] 80 32 30.1 

30-34  0.903 55.0 [54 - 55] 67 33 26.6 

35-39  0.926 62.0 [61 - 62] 55 34 23.2 

40-44  0.913 72.8 [71 - 73] 45 36 19.9 

45-49  0.905 86.3 [85. - 87] 35 39 16.9 

50-54  0.868 107.9 [106 - 109] 27 43 14.1 

55-59  0.836 142.2 [140 - 144] 19 49 11.5 

60-64  0.828 193.8 [191 - 196] 13 56 9.2 
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65-69  0.804 260.4 [257 - 263] 8 59 7.2 

70-74  0.571 371.3 [366 - 376] 5 60 5.5 

75-79   0.327 493.0 [486 - 499] 2 49 4.3 

80-84  0.189 621.9 [612 - 631] 1 31 3.5 

85-89   750.0   0 14 3.5 

 

Key. Input “estimated a20” (56.8 years), both sexes combined, annual r = 0.005. The blue figures are estimates with a low correlation coefficient (R2 
≤ 0.78). 

 

• Second hypothesis 

Here we start from the assumption that the population growth observed during the Gallo-

Roman period is due to both migration and natural increase (excess of births over deaths). We 

accept that immigrants probably represented one-third of the population at the end of the 5th 

century (see above) and assume that it consists mainly of individuals rather than families. We 

also make the assumption of constant immigration throughout the two centuries observed. 

This amounts to ascribing to the young and mature adult age groups (15-59) of the 

Frénouville population an immigration rate that is higher than the growth rate for the other 

age groups. 

We assume that the age 0-14 and over 60 age groups had a growth rate of some 0.001 and that 

the immigration rate for the 15-59 age group was 0.003. Knowing the life table, we can then 

calculate the theoretical population associated with these parameters (Table 34). When this is 

applied to the conditions observed at Frénouville, where there are 137 deaths over the age of 

10, the expected number of child deaths before age 10 is 73 (35.2% of all deaths), including 

66 under age 5 (Table 35 and Figure 52). 

On this assumption of young adult immigration, the proportion of children is lower than when 

a constant rate of increase is considered (identical for all age groups). The estimated values 

remain within the ranges observed in historical demography. 

It is therefore possible to propose plausible reconstructions of the juvenile population at 

Frénouville, even if it left few archaeological traces. Two hypotheses that are consistent with 

the archaeo- and osteological data have been proposed. However, the weak statistical 

correlation between the chosen estimator (mean adult age at death) and the probability of 

dying in the youngest age groups does appear to undermine these results somewhat, so we 

looked for another approach. 

b. Second method: use of the logit method to estimate the missing proportion of 

juveniles 

We can estimate the proportion of juveniles in another way, by reasoning from the structure 

and level of mortality, i.e. by using the logit method. 

For values close to those obtained for this site – between 56.8 and 57.1 years – the values of 

the regression parameters vary in the proportions given in Table 36. These three proposed 

solutions correspond to three mortality patterns that are both possible and plausible, albeit 

differing widely from each other. 

Table 33. Frénouville, Gallo-Roman period, estimated distribution of deaths 

Age group 
Deaths by age (Dx) proportionate to 

number of over-10s (N = 137) 
Age group 

Archaeological and anthropological 
estimate 
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N % N 

00  52 23.0 00 13 

26 01-04  28 12.3 01-04 
13 

05-09  8 3.7 05-09 

10-14  4 2.0 10-17 7 7 

15-19  6 2.5 15-19 4 

130 

20-29  14 6.1 20-29 

126 

30-39  15 6.6 30-39 

40-49  17 7.5 40-49 

50-59  21 9.2 50-59 

60-69  26 11.5 60-69 

70-79  25 11.0 70-79 

80+ 10 4.4 80+ 

Total/ of which 226 100.0 Total 163 

Over 10  138 61.0  

Under 10  88 39.0 

Under 5  80 35.0 

Key. The distribution of deaths associated with the life table in Table 32 has been calculated proportionately for the set of skeletons over 10 
years of age. 

 

 

Figure 51. Frénouville, Gallo-Roman period, estimated distribution of deaths by age group 

 
 

Key. The expected distribution of deaths by age, according to the mortality distribution given 

in Tables 30 and 31, and the number of skeletons over 10 years of age (N=137). Grey: the two 

age groups with the greatest shortfall (26 skeletons are under 10 years of age). 

1) The first,  = 0.2;  = 0.9, is not far from the pre-industrial mortality standard we have 

defined (where  = 0 and  = 1). However, it does show a higher infant and child 

mortality and a slightly lower adult mortality (Figure 53). The main demographic 

parameters associated with this mortality distribution are 5q0= 430.2 per 1,000; life 

expectancy at birth = 30.0 years; life expectancy at age 20 = 36.8 years. The expected 
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number of individuals under age 10 is 119 (46.5% of all deaths), including 110 under 

age 5 (43.0%). 

2) The second,  = 0.4;  = 0.8, ascribes a predominant weight to child mortality: it is 

much higher than that of the pre-industrial standard and strongly affects the 

distribution of deaths by age (Figure 54). The main demographic parameters 

associated with this mortality distribution are 5q0= 548.52 per 1,000; life expectancy at 

birth = 24.0 years; life expectancy at age 20 = 36.7 years. The expected number of 

individuals under age 10 is 189 (57.9% of all deaths), including 179 under 5 (54.85%). 

3) The third,  = – 0.2;  = 1.2, is the reverse of the other two. Child mortality is lower 

than the pre-industrial standard, and it is adults close to the median age who contribute 

most to the distribution of deaths by age group (Figure 55). 

Table 34. Frénouville, Gallo-Roman period, estimated life table 

Annual rate of increase unevenly allocated 
across age groups 

Associated theoretical population  

Age group 
Adjusted 

R2  

Mean 
probability of 

dying (Qx) 

Probability in 
a  

 95 % CI 

Age 
structure 

Deceased of 
the table (Dx) 

Life 
expectancy 
at age x (Ex) 

00-04  0.287 293.4 [285 -301] 158 314 38.6 

05-09  0.319 45.0 [42 - 47] 140 34 48.3 

10-14  0.520 25.7 [24 - 26] 125 18 45.3 

15-19  0.721 34.3 [33 - 35] 107 23 39.9 

20-24  0.841 43.5 [42 - 44] 93 28 35.9 

25-29  0.852 49.3 [48 - 50] 80 30 32.3 

30-34  0.903 55.0 [54 - 55] 68 31 28.8 

35-39  0.926 62.0 [61 - 62] 57 32 25.4 

40-44  0.913 72.8 [71 - 73] 46 35 22.1 

45-49  0.905 86.3 [85 - 87] 37 38 19.0 

50-54  0.868 107.9 [106 - 109] 28 43 16.0 

55-59  0.836 142.2 [140 - 144] 21 50 13.2 

60-64  0.828 193.8 [191 - 196] 16 65 12.1 

65-69  0.804 260.4 [257 - 263] 11 70 9.7 

70-74  0.571 371.3 [366 - 376] 6 73 7.6 

75-79  0.327 493.0 [486 - 499] 3 61 6.1 

80-84  0.189 621.9 [612 - 631] 1 39 5.1 

85-89   750.0  1 18 5.2 

Key. Entry parameter Òestimated a20Ó (56.8 years), both sexes combined, r variable among age 
groups: r=0.001 for ages 0-14 and over 60, and r=0.003 for ages 15-59. The blue figures are 
estimates with low correlation coefficients (R2²0.78). 

 

Table 35. Frénouville, Gallo-Roman period, distribution of deaths 

Age group 

Deaths by age (Dx) 
proportionate to number 

of over-10s (N = 137) Age group 

Archaeological and 
anthropological 

estimates 

N % N 
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00 43 20.6 00 an 13 

26 01-04  23 11.0 01-04  

13 

05-09  7 3.4 05-09  

10-14  4 1.8 10-17  7 7 

15-19  5 2.3 15-19  4 

130 

20-29  12 5.7 20-29  

126 

30-39  13 6.3 30-39  

40-49  15 7.3 40-49  

50-59  19 9.2 50-59  

60-69  28 13.5 60-69  

70-79  28 13.4 70-79  

80+ 13 5.6 80+ 

Total/dont 210 100.0 Total 163  

Over 10  137 65.2  
Under 10  74 34.8 

Under 5  66 31.6 

Key. The distribution of deaths associated with the life table in Table 34 has been calculated 
proportionately from the number of skeletons over 10 years of age. 

 

Figure 52. Estimated number of deaths by age group 

 
 

Key. The expected distribution of deaths by age, according to the mortality distribution given 

in Tables 32 and 33, and the number of skeletons over 10 years of age (N=137). Grey: the two 

age groups with the greatest shortfall. 

 

Table 36. Values of parameters  and  that come close to the value of “estimated a20” for 

this site 

Parameter values Estimated a20  

 = 0.2 ;  = 0.9 56.91 

 = 0.4 ;  = 0.8 56.98 
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 = – 0.2 ;  = 1.2 57.16 

 

The main demographic parameters associated with this mortality distribution are 5q0= 212.82 

per 1,000; life expectancy at birth = 42.0 years; life expectancy at age 20 = 37 years. The 

expected number of individuals under age 10 is 45 (17.5% of all deaths), including 39 under 

age 5 (15.1%). 

Figures 53, 54, 55. Estimated number of deaths by age group according to various selected 

parameters 

 
Key. Expected distribution of deaths by age, according to a mortality regime defined by 

parameters  = 0.2 and  = 0.9, and number of skeletons over 10 years of age (N=137). Grey: 

the two age groups with the greatest shortfall. 

 
 

Key. Expected distribution of deaths by age, according to a mortality regime defined by 

parameters  = 0.4 and  = 0.8, and number of skeletons over 10 years of age (N=137). Grey: 

the two age groups with the greatest shortfall. 

 
Key. Expected distribution of deaths by age, according to a mortality regime defined by 

parameters  = – 0.2 and  = 1.2, and number of skeletons over 10 years of age (N=137). 

Grey: the two age groups with the greatest shortfall. 

Of the three, this is the estimate
151

 that comes closest to the number archaeologically observed 

(N=26). 

                                                 
151

 Note that similar values of  and  will naturally provide an age distribution at death close 

to this one, but mean adult age at death can vary (for example, with =– 0.25 and =1.3, the 
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The missing osteological data for the under-10s makes it impossible to use a second indicator 

(P or JI) to choose one of the models. However, we can take account of the archaeological 

evidence we have, namely a veterans’ settlement site for the Roman army, to prefer the 

second model. During the first decades of the site’s occupation, most of the population was 

adult. The small number of children exhumed may consequently reflect demographic reality. 

1.1.5. Discussion and conclusion 

Through careful use of archaeological sources alongside the osteological data, the solution 

that comes closest to the living conditions described can be chosen from among the range of 

plausible options. 

The power model has at least two advantages: 1) there is no need to choose one hypothesis 

over another, which is appreciable when archaeological documentation is imprecise; 2) the 

population growth rate can be varied. On the other hand, this model lacks flexibility, and does 

not allow for possible variations in mortality by age group. 

Conversely, the logit model provides considerable latitude for observing the consequences of 

minimal variations, not on the curve as a whole, but on the two segments we have isolated (, 

representing the mortality of the youngest group, 0-5, and , representing the mortality of 

mature adults around the mean age at death of our pre-industrial standard, 38.4 years). So the 

unknown proportion of juveniles we are seeking to estimate may vary considerably (Table 

37). 

Depending on the various assumptions made (mortality regime, population growth rate), the 

130 skeletons of adolescents and adults exhumed at Frénouville may correspond to a total 

population of 182 to 326 individuals, of whom 17.5% to 57.9% died before age 10, and 

15.1% to 54.8% before age 5. 

The situations described are all compatible with the demographic behaviour of pre-industrial 

populations. The choice of one over another must be based on archaeological or historical 

evidence. For Frénouville, therefore, we prefer the hypothesis of infant and child mortality 

well below the generally accepted standards, given the weight of male, and to a lesser extent 

female, immigration of “mature” individuals. A reconstruction with 40-50% juveniles would 

therefore be inappropriate in this context. 

                                                                                                                                                         

age distribution of deaths is virtually identical but the mean age at death is 56.68 years). It is 

not so much the value of the paleodemographic indicator that must be considered first, but 

rather the mortality trends in the two age groups that modify the model. 
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Table 37. Summary of hypotheses used and results obtained 

 

For an estimated mean adult 
age at death of 57.33 years and 

an observed population size 
over age 10 of 137  

Logit method Power method 

Mortality regime close to pre-
industrial standard 

 

 = 0.2 and  = 0.9  

(e20 : 36.8 yrs) 

Infant-child mortality regime... 
Life tables for pre-industrial populations. Input: estimated mean 

adult age at death: 56.8 yrs 

higher than that of the pre-
industrial standard 

 

 = 0.4 and  = 0.8 

(e20 : 36.7 yrs) 

lower than that of the pre-
industrial standard 

 

 = - 0.2 and  = 1.2 

(e20 : 37.0 yrs) 

Annual growth rate  
= 0.005 

Annual growth rate  
= variable by age group 

5q0 430,2 548,5 212,8 289,4 289,4 

Estimated share of under-5s                  110                 189                   39                   80                   66 

Estimated share of under-10s                  119                 176                   45                   88                   74 

Estimated total population                  256                 326                 182                 225                  210 
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1.2 Lisieux urban cemetery (Calvados, N.W. France, 4th century AD sector) 

1.2.1. Research question: estimating the population living in Lisieux in the 4th century AD 

Only in exceptional cases is historical, archaeological and anthropological evidence about 

housing and burial practices available for a single site. The “Lisieux-Michelet” cemetery has 

provided several hundred skeletons from the Late Empire and Early Middle Ages. Some 793 

graves date from the 4th century alone. Two methods for estimating the settlement pattern 

were tested and compared. One is based on archaeological data – the urban structure and its 

environment – and the other on a paleodemographic approach using as source data the 

skeletons from the cemetery. 

1.2.2. Archaeological and anthropological sources
152

 

The town of Noviomagus Lexoviorum (Lisieux) was founded in the 1st century AD in the 

heart of the territory of a Gaulish tribe, the Lexovii. The Roman town’s expansion peaked in 

the second half of the 2nd century. Following disturbances at the end of the 3rd century, the 

town was fortified and became part of the continental side of the Saxon Shore defensive 

system. In around 280, a castrum was erected in the centre of the settlement. It was 

rectangular in shape (400 x 200 m) and protected a small area of 8 hectares. All the 

archaeological evidence supports the thesis that the districts outside the walls were 

deliberately demolished and that the urban fabric withdrew to the interior of the castrum. This 

radical rearrangement of residential space, together with economic and religious influences, 

must have deeply marked the mentalities of the time. The changes can be seen even among 

the dead. There was a shift from cremation to burial, some burial areas were moved and new 

cemeteries appeared in the countryside, as at Frénouville (see above) and Saint-Martin-de-

Fontenay.
153

 

A major burial area, discovered by chance in the courtyard of the former Michelet school, 250 

metres from the castrum, was exhaustively excavated.
154

 More than 1,150 skeletons, in two 

distinct groups dating from the Late Empire and Early Middle Ages – with no intervening use 

– were inventoried. In size (0.8 ha) and burial density (up to six clearly identified levels of 

graves), the Late Empire phase is the larger. The earliest graves, oriented north-south, were 

dug in the early 4th century and the latest at the very beginning of the 5th century. 

(A colour version of this illustration can be found in the supplementary materials on the INED 

website. 

The extensive size and general layout of the burial area suggest that this was the main, or even 

sole, cemetery of the town. The large quantity of burial goods has made it possible to date the 

                                                 
152

 An initial estimate of the 4th-century population of Lisieux was proposed in 2006 (Paillard 

et al., 2006). Since then, more refined methods have been used to calculate new estimates, and 

the results are presented here. 

153
 Saint-Martin-de-Fontenay (Calvados, France): excavations directed by Christian Pilet 

(CRAHAM, Caen, France); anthropological study: Armelle Alduc-Le Bagousse (CRAHAM, 

Caen, France) and Luc Buchet (CEPAM, Nice, France). Publication: Pilet et al., 1994. 

154
 The burial ground was excavated in four consecutive field seasons from 1990 to 1993. 

Excavations directed by Didier Paillard. Anthropological study: Armelle Alduc-Le Bagousse 

and Luc Buchet. 
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burials by quarter-century periods. It is this series of 793 individuals that is used for the 

present study. 

1.2.3. Estimating the population size of Lisieux from archaeological data 

The archaeological data suggest that Lisieux occupied a maximum area of around 60 hectares 

at its height in the second half of the 2nd century. This area consisted of spaces for living, 

working and recreation, making it difficult, indeed hazardous, to estimate the population of 

Noviomagus on the basis of surface area alone. Furthermore, one would need to know the 

actual floor area of the major public buildings (forum, baths, etc.) and premises used by 

craftsmen. 

Starting from Christian Goudineau’s hypothesis (1980b, pp. 261 and 309-310) that the 

populations of most major towns did not exceed 5,000 to 6,000, we may estimate that for an 

equal area, Early Empire Lisieux had a maximum density of 80 to 100 residents per hectare. 

The reduction in urban area from the late 3rd century may well have involved a reduction in 

density, but less marked than that observed within the walls. This is why Didier Paillard et al., 

(2006) took a density of 50 residents per hectare as their working hypothesis for their 

estimated 4th-century population of Noviomagus. 

If we suppose that population density is related to urban area (8 ha), the estimated 4th-century 

population of Lisieux living within the town walls must have been around 400. In view of the 

remarks made above (areas of public buildings and workshops, etc.), this estimate can be 

considered as a maximum. 

1.2.4. Estimating the population size of Lisieux from anthropological data 

Estimating population size from anthropological data is no easy task. First, one must critically 

examine the quality of the sample available for analysis. With 748 skeletons under study, the 

sample can be considered as large enough, but the distribution by sex and age at death 

requires some commentary. 

a. Observed distribution by sex and age 

Unlike what is usually observed in rural cemeteries of that period in what is now Lower 

Normandy, there is a relatively high number of juveniles (208 have been identified, 26.2% of 

all buried subjects) and all age classes are represented, from newborns to older adolescents. 

The adult/juvenile ratio did not remain constant throughout the cemetery's period of use; 

juveniles were proportionately fewer between 325 and 375 CE
155

 (Table 38). 

Table 38. Distribution of adults and juveniles (under 18) by chronological phase 

Phase Total 
number 

of 
individua

ls 

Adults (MF 
and sex 

undetermin
ed) 

Juvenile
s 

% 
JU/AD 

N  
males 

N  
females 

Total 
both 

sexes 

Sex ratio Sex 
undetermin

ed (%) 

300-
325 

169 118 51 30,2 69 42 111 0,62 5,9 

325-
350 

195 155 40 20,5 80 61 141 0,57 9,0 

350-
375 

183 147 36 19,7 74 65 139 0,53 5,4 

375- 141 97 44 31,2 53 34 87 0,61 10,3 

                                                 
155

 This is confirmed by a chi-square test. The observed value of 
2
 is 11.414, and since the p-

value (0.022) is below the chosen threshold (0.05), the null hypothesis (that the proportions 

are constant) cannot be confirmed. At least one proportion differs from the others. 
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400 

+/-400 60 41 19 31,7 17 22 39 0,44 4,9 

 

 

Although the number of buried children is higher than in other cemeteries, it is difficult, in 

order to explain the variation between periods (Figure 61), to estimate the relative importance 

of demographic and taphonomic processes. The age distribution at death of juveniles
156

 in the 

first and third quarter-centuries corresponds to the expected distribution among pre-industrial 

populations, but in the second and fourth quarter-centuries, the number of infants and the ratio 

1410

95





D

D
 seem very low, but these figures should not be dismissed out of hand . The previous 

example showed the impact of high population growth on the juvenility index. 

The sex distribution of adults also varies. Throughout the 4th century, males outnumber 

females. Only in the early years of the 5th century does the balance shift in favour of females 

(Figure 56).
157

 This male excess is more marked during the earliest phase (62%) and the last 

quarter of the 4th century (61%), where burial goods and evidence of traumatic injuries 

suggest the presence of soldiers (Paillard et al., 2006).
158

 The inversion of the sex ratio (56% 

women) at the start of the 5th century may not be due to chance; military activities may 

explain the absence of some of the male population. 

Figure 56. Probable distribution of age at death of juveniles by quarter-century 

 
 

b. Estimating the proportion of missing juveniles 

For this purpose we used the mortality models that link anthropological information to the 

expected age distribution of deaths. The chosen input is either the estimated mean adult (over 

                                                 
156

 Probable age distribution at death estimated from stages of tooth mineralisation. 

157
 The low number of subjects of indeterminate sex gives these variations in the sex ratio a 

high level of significance. 

158
 The probabilities calculated with the Z-test display a significant difference at the 0.05 

threshold between the numbers for the first quarter of the 4th century and those of the early 

5th century. There is only a weakly significant difference (0.08 level ) between the last quarter 

of the 4th century and the start of the 5th century. 
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20) age at death
159

 (a20) or the juvenility index (JI),
160

 so that only regressions that provide the 

best results are used (called “best model”). We assume, therefore, that all persons who died 

over the age of 5 were buried in the cemetery, for every quarter-century (although for some 

periods the representativeness of juveniles may be questionable, see above). 

The growth of the Lisieux population throughout the 4th century must also be taken into 

account. Thanks to the precise nature of the topo-chronological evidence, it is possible to 

single out four phases of uneven length. The skeleton count reveals significantly different 

population numbers for the four chronological phases thus defined (see Table 38). Population 

growth (positive or negative, by natural increase or migration) can thus be introduced by 

means of the following formula: 

 

t

at

D

D

a
r


 ln

1
 

where D is the number of exhumed adult skeletons, t the observation phase, and a its length. 

We calculated for each phase the annual and instantaneous growth rate  using the method 

explained earlier (Frénouville example, Chapter X.1 and Chapter VII, Box 6). Table 39 

summarises the parameters to be included in the choice of mortality models: both sexes 

combined, growth rate, input and JI, number of adult deaths. 

The mortality models provide the demographic parameters associated with the values given as 

inputs, including the theoretical age distribution at death, and life expectancy at birth 

associated with that distribution (Table 40, for the first quarter of the 4th century). This 

distribution can then be weighted according to the observations made at Lisieux by linking the 

number of exhumed adult skeletons for the first quarter of the 4th century (118) with the 

number of deaths over age 18 given by the life table, i.e. 655 (assuming a linear distribution 

of deaths in the 15-19 age group and hence a two-fifths contribution from the 18-19 age 

group). 

In this way we obtain the expected number of juvenile deaths at Lisieux, according to the 

parameters and hypotheses formulated for the first quarter of the 4th century. By adding the 

known number of adults and the estimated number of juveniles, we can calculate the total 

population, i.e., without migration or changes in the fertility or mortality regimes, the 

minimum number of individuals who must have been born to result in the observed number 

of adult deaths.  
The same operation is repeated for the other three quarter-centuries, using each time the 

relevant parameters as shown in Table 39. The introduction of a growth rate, whether positive 

or negative, requires using the mathematical concept of semi-stable populations, in other 

words, assuming that the population immediately achieves a stable state. On a first 

hypothesis, we assume no migration and therefore that population growth, positive or 

negative, is due solely to variations in fertility and mortality. Given the extremely short period 

over which this change had to occur, we assume that it immediately produced the expected 

effects (semi-stable population model), particularly on the structure of age at death. 

 

Table 39. Lisieux-Michelet, 4th century, both sexes combined 

                                                 
159

 The mean adult age at death was calculated by the method proposed in this book, using the 

utility available on the INED website (reference population Lisbon 1889, distribution by five-

year age groups).  

160
 The presence at this site of a large number of children makes it possible to calculate a 

juvenility index for each quarter-century. 
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Lisieux 4th century 
c. 1st quarter 

310-325 
2nd quarter 

325-350 
3rd quarter 

350-375 
c. 4th quarter 

375-± 400 

Number of years (a) 15 25 25 30 

Annual growth rate 0 0.0109 – 0.0021 – 0.0021 

N adults 118 155 147 138 

Value of Òestimated a20Ó (five-year groups) 54.35 53.48 55 55.3 

Juvenility Index (JI) 0.203 0.11 0.075 0.138 

Key. Demographic parameters by quarter-century: number of adults, estimated mean adult age at death (a20), and juvenility index (JI). 

 

Proceeding as before, but from the deaths of the stable population associated with the life 

table, we obtain the expected number of juvenile deaths at Lisieux in each quarter-century. By 

adding the number of adults and estimated number of juveniles, we estimate the minimum 

number of individuals that must have been born to result in the number of adult deaths 

observed in each quarter-century (Table 41). 

The calculation of the number of people living at Lisieux in each period is based on the 

equation that demographers apply to stationary populations (Pressat, 1983), adapted to 

cemetery populations (in a stationary population, the number of births and deaths balances out 

and life expectancy at birth equals mean age at death): 

a

eD
P 0
  

where P is the mean annual population, D the total number of deaths observed (i.e. all the 

exhumed skeletons plus the “missing” skeletons from certain age groups, as estimated from 

the life table), e0 life expectancy at birth and a the number of years the cemetery was in use. 

Table 40. Lisieux-Michelet, 1st quarter of 4th century, life table associated with “best model” 

Age group 
Calculated 
probability 
of dying 

Standard 
deviation of 
Qx (95% CI) 

Survivors 
according to 

table (Sx) 

Deaths 
according to 
table (Dx) 

Life 
expectancy 

at age x 
(Ex) 

00-01 275.0 [273.0 - 276.8] 1 000 275 26.4 

01-04  215.4 [213.5 - 217.1] 725 156 35.2 

05-09  117.9 [117.1 - 118.5] 569 67 40.4 

10-14  53.2 [52.8 - 53.6] 502 27 40.4 

15-19  44.8 [44.2 - 45.2] 475 21 37.6 

20-24  58.1 [57.6 - 58.6] 454 26 34.2 

25-29  66.5 [65.8 - 67.0] 427 28 31.2 

30-34  74.0 [73.4 - 74.5] 399 30 28.2 

35-39  83.7 [83.2 - 84.2] 370 31 25.3 

40-44  97.6 [97.0 - 98.2] 339 33 22.3 

45-49  114.4 [113.7 - 115.0] 306 35 19.5 

50-54  141.3 [140.4 - 142.1] 271 38 16.7 

55-59  182.1 [180.8 - 183.3] 232 42 14.0 

60-64  233.2 [232.0 - 234.3] 190 44 11.6 

65-69  302.0 [300.5 - 303.4] 146 44 9.3 

70-74  406.2 [346.2 - 476.5] 102 41 7.3 
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75-79  522.3 [445.2 - 612.7] 60 32 5.6 

80+ 750.0  29 29 4.0 

Key. Entry parameters: “estimated a20” (54.35 years) and JI both sexes combined (0.203), r=0. 

 

However, we must now include the growth, positive then negative, of the population of 

Lisieux over the 4th century and weight the terms of the equation by the consequences of this 

growth on the population structure. 

The approximate formula
161

 we use is 

  
a

aeeD
P 000 1 



 

where a0 is mean age at death (estimated, like e0, from the life table) and  the instantaneous 

growth rate. 

The population estimates obtained (Table 41) therefore differ slightly from those calculated 

under the stationary population hypothesis (Paillard et al., 2006), except for the first quarter-

century, which has a zero growth rate. 

Table 41. Estimated population of Lisieux, by quarter-century, as a function of the 

anthropological data and demographic assumptions  

Lisieux-Michelet- 4th century 
1st quarter 

310-325 

2nd quarter 

325-350 

3rd quarter 

350-375 

c. 4th quarter 

375-c.400 
 

Number of years (a) 15 25 25 30 

Anthropological data 

Annual growth rate 0 0.0109 –0.0021 –0.0021 

N adults 118 155 147 138 

Value of Òestimated a20Ó (five-
year groups) 54.35 53.48 55 55.3 

Juvenility index (IJ) 0.203 0.11 0.075 0.138 

Life expectancy at birth (e0) in 
associated stable population 26.4 38.2 34.9 29.5 

Estimated demographic 
parameters 

Mean age at death in stable 
population 26.4 29.2 36.7 31.2 

Estimated number aged 0-17 in 
Lisieux 137 137 77 114 

Estimated total number of deaths 
(0- years) 255 292 224 252 

Estimated total population of 
Lisieux 449 490 314 249 

 

1.2.5. Discussion and conclusion 

                                                 
161

 We are grateful to Daniel Courgeau for developing Alfred J. Lotka’s formula (1939, p. 

20): P(a) = N  e
-  a

  p(a), where P(a) is the population of age (a), N the number of births 

in that year;  the instantaneous population growth rate; p(a) the probability of survival from 

birth to age (a), and adapting it to a cemetery population under the hypothesis of a Malthusian 

population with a constant growth rate (here, the number of deaths does not equal the number 

of births and life expectancy at birth does not equal mean age at death). 
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The results obtained from the anthropological data, under assumptions of varying growth rates 

during the 4th century (supported by archaeological observation), come close to the estimate 

initially made from population density per hectare (roughly 400, see above). 

The advantage of the paleodemographic estimate is that it offers a dynamic view of 

population change that is more informative than the mean population size calculated over a 

century. It places the start of demographic decline at the end of the first half of the 4th 

century, whereas archaeo-anthropological observations only note a gradual slowdown in 

burial rate in the last quarter of the 4th century.  It also measures that decline, since the town 

lost nearly 45% of its population in 50 years. 

The paleodemographic estimate does not appear, on first glance, to agree with the 

archaeological and paleopathological observations that identify harsh living conditions for the 

residents of the Lisieux castrum throughout the 4th century, particularly during its second 

quarter, which was a critical phase in the history of the settlement, with serious disturbances 

that caused economic disruption leading to poor living conditions. These events do not 

emerge so clearly in our demographic reconstruction, where some indicators, such as a rapid 

growth rate and a relatively high life expectancy at birth, may appear to signal improvements 

in living conditions. However, this high growth rate may well have been due, not to a 

significant increase in fertility or a sharp drop in mortality (particularly among young 

children), but rather to a large inflow of men, women and, to a lesser extent, children, possibly 

fleeing the disorder and growing poverty in the countryside during the second quarter of the 

4th century. In this way, the town’s apparent demographic boom more likely reflects the flight 

of country-dwellers to a protected area (the castrum) and is merely a precursor of the 

misfortunes soon to follow. 

Indeed, during the following period, the third quarter-century, the population of Lisieux 

declined and the general indicator of estimated mortality (life expectancy at birth) fell. Mean 

adult age at death, meanwhile, rose slightly. Together with the previous indicators, this 

supports the hypothesis of a fall in the birth rate or, more probably, the emigration of the 

youngest individuals, accompanied by their mothers, as suggested by the sharp rise in the sex 

ratio at that time (see Table 38). 

The final quarter of the 4th century is, in every way, the most critical period. The extent of 

traumatic injuries observed (including a number of violent deaths) and the sudden decrease in 

the proportion of male graves just before the cemetery was abandoned, possibly reflect a 

renewal of military activity in the region. Far-reaching socioeconomic changes occurred at 

this point and the hypothesis of a gradual abandonment of the town as early as the second half 

of the 4th century is supported by the archaeological evidence: the cemetery remained out of 

use from the start of the 5th century until the 7th. 

2. Examples from sites for which biological and statistical sources 

are available162
 

For the end of the early modern period (particularly second half of the 17th and the 18th 

centuries) and the contemporary period, written sources, such as parish records and then civil 

records, reveal the demographic features of past populations. In some exceptional cases, there 

are both historical archives (written data) and biological archives (exhumed skeletons). This is 

true for the two examples we have chosen, where we have both the population exhumed from 

the excavated sector and the historical sources referring to the population from which this 

                                                 
162

 An earlier work (Signoli, Buchet and Séguy, 2005) contains a study of these sites using a 

different calculation method, based on Masset’s (1982) proposed probability vectors. 
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sample was taken. Furthermore, these sources are sufficiently detailed to enable us to 

reconstruct the age-sex structure of the population and to establish the mortality distribution 

corresponding to the paleodemographic sample. 

Such exceptional situations enable us to compare the demographic data established from 

historical documents contemporary with the excavated cemetery against the results obtained 

by paleodemographic methods from the skeletons, and not least, to identify certain biases in 

these methods and open up new avenues for research. These extremely rare sites give us the 

opportunity to test our tools, devise models applicable to similar contexts and advance the 

debate concerning a fundamental question, namely the representativeness of the 

paleodemographic sample. 

2.1. Monastic cemetery at Maubuisson, Val d’Oise (Paris region) (17th and 18th century 

convent population) 

2.1.1. Research question: what paleodemographic standards should be applied to a 

population whose specific features are known? 

To answer this question, the chosen example is taken from the study of skeletons in a convent 

of Cistercian nuns not far from Paris: the Royal Abbey of Maubuisson (Saint-Ouen-

l’Aumône, Val-d’Oise, 17th-18th centuries), for which the historical sources can be used to 

reconstruct the population structure and establish the life table specific to this community.
163

 

The site has another feature of particular interest: it is one of the rare cases where there is 

almost perfect identity between the burying population (the living population that uses this 

burial ground) and the buried population.  Once a nun had entered the convent she was rarely 

authorised to leave it; the only exceptions were the abbesses and nuns still alive when the 

abbey was closed down in 1791. From 1677 to 1791, our observation period, 162 nuns were 

buried at Maubuisson and 37 of them have been exhumed. The statistical representativeness 

of the paleodemographic sample can, in this case, be quantified (since the skeletons represent 

just over one-fifth of the burials) and studied qualitatively: does the age distribution at death, 

estimated from osteological data, correctly reflect the demographic behaviour of the 

population under study? If not, can it be improved? 

2.1.2. Archaeological and anthropological sources 

Two burial areas at the abbey have been excavated: the chapterhouse, reserved primarily for 

senior nuns and those of aristocratic birth, and the west gallery of the cloister, intended for lay 

sisters and novices. Our study uses only the 37 adult skeletons dating from the early modern 

period (29 from the cloister west gallery and 8 from the chapterhouse). 

The skeletons are fairly well preserved and their age at death has been determined 

anthropologically from stages of cranial suture closure. 

2.1.3. Contribution of written sources 

These 37 nuns were recorded in the “Register of professed nuns of Our Lady Royal known as 

Maubuisson, deceased since the 6th of November 1652”, which from 1677 until the convent’s 

closure in 1791 lists the date of death of all the nuns, their age and the number of years since 

taking their vows. From this information, it was possible to construct the life table for the 

                                                 
163

 Excavation: Philippe Soulier, Christian Toupet and Jean-Yves Langlois; anthropological 

analyses by Christine Dumont, Bertille Danion and Jean-Yves Langlois, reviewed by 

Véronique Gallien; documentary research: Monique Wabont.  
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Maubuisson nuns during the final years of the French Ancien Régime (Table 42 and Figure 

64) but not to identify the 37 exhumed nuns, since their graves are now unnamed. 

One of the major points to be considered is the specific age structure of the mortality of the 

Maubuisson nuns. These women, mainly from aristocratic backgrounds, enjoyed privileged 

living conditions during their childhood and adolescence so were in excellent health when 

they entered the convent (indeed this was a requirement for taking vows in this highly 

selective royal abbey). Monastic life, albeit harsh in some respects, also sheltered them from 

the risks facing contemporary laywomen during their reproductive years. Thanks to these 

various factors, their rate of survival at each age was higher than that of other women. 

 

Table 42. Life table of nuns at Maubuisson (Val d’Oise) 

 

Age group 
Observed 

probability of 
dying 

Survivors from 
the table (Sx) 

Deceased from 
the table (Dx) 

Life expectancy 
at age x 

Female probability 
of dying in France 

(1770-1779) 

Female life 
expectancy in 
France (1770-

1779) 

15-19 ans 0 1000 0 51.9 33 41.4 

20-24 0 1000 0 46.9 44 37.7 

25-29 12 1000 12 41.9 54 34.3 

30-34 9 988 9 37.3 62 31.1 

35-39 16 979 15 32.7 70 28.0 

40-44 50 963 48 28.1 77 24.9 

45-49 43 915 39 24.5 83 21.8 

50-54 79 876 70 20.5 105 18.6 

55-59 125 807 100 17.0 140 15.4 

60-64 195 706 137 14.1 203 12.5 

65-69 266 569 151 11.9 280 10.1 

70-74 211 417 88 10.3 370 8.1 

75-79 372 329 122 7.4 490 6.3 

80-84 600 207 124 5.2 620 5.0 

85-89 692 83 57 4.3 730 4.1 

90+ 1000 25 25 3.5 1000 3.5 

Key. The life table of the 179 Maubuisson nuns (1677-1791) is compared with that of French women, 1770-1779 (based on Yves Blayo, 
1975). 

 

The age distribution of deaths at Maubuisson, according to the mortality distribution
164

 (Table 

42) necessarily differs from our reference for pre-industrial populations, as can be seen in 

Figure 57. 

2.1.4. Choosing the right method  

                                                 
164

 The age distribution of deaths results from a combination of two demographic phenomena: 

the age structure of the population and its mortality distribution. It is preferable to use the 

distribution of deceased women taken from the life table (Dx) rather than the age distribution 

of deaths observed in parish registers (dx). This makes it possible to measure the impact of 

mortality independently from the age structure of the population. 
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Using frequency matrices (or the probability vector method) has the advantage of flexibility; 

in particular, we can vary the reference population so that it matches as closely as possible the 

demographic characteristics attributed to the study population. 

In the Maubuisson example, the demographic parameters of the population are known (age-

sex structure, mortality distribution). We have therefore constructed a fictitious reference 

population that has the biological characteristics (in this case, the rate of closure of cranial 

sutures) of our PReference population (see Chapter III) but the population structure (age 

distribution of deaths taken from the life table) of the study population. Given the small 

number of skeletons, it is preferable to use ten-year age groups for the various reference 

matrices. 

Using a reference matrix that matches the demography of the Maubuisson nuns makes it 

possible to obtain a distribution of deaths by age group for the buried population very close to 

that observed from the archive documents (Figure 57a). Statistical tests for comparing 

distributions (Wilcoxon, Mann-Whitney U) confirm this impression, although care must be 

taken with the statistical validation of the results. The distributions obtained using 

“PMaubuisson1677-1791” (Figure 58) or “PLisbon1889” (Figure 59) do not differ significantly, at the 

0.05 level, from the observed mortality structure.
165

 

Figure 57. Theoretical distribution of deaths by age 

 
 

a. For a population exposed to the same mortality distribution as the Maubuisson nuns (1677-

1791) 

b. For a population exposed to the Lisbon (1889) mortality distribution. 

However, the results obtained with frequency matrices adapted to the features of pre-

industrial populations are indubitably better than those obtained from a “standardised” 

reference population (see Buchet et al., 2003, for the results obtained using the probability 

vectors proposed by Masset). 

We took the comparative study a little further and calculated the mean age at death of the 

over-20s associated with the various age distributions of deaths (Table 43), and checked to see 

whether the mortality models proposed could be used to predict the nuns’ demographic 

characteristics. To save space, we have restricted the analysis to input a20= 68.62 years, 

“female” model, with zero growth rate. 

Figure 58. Distribution of deaths by age obtained with  

PMaubuisson1677-1791  (figure de gauche) 

 

Figure 59. Distribution of deaths by age obtained with 

PLisbon1889 (figure de droite) 
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 For PMaubuisson1677-1791, the risk of rejecting a true null hypothesis is 94.53%, exactly the 

same as for PLisbon1889 (94.53%). 
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Table 43. Mean age at death (years) of the Maubuisson nuns, based on various sources and 

hypotheses 

 

Written sources based on 
Osteological sources* 
Reference population : 

registers of deaths Maubuisson distribution 
of deaths 

Lisbon  
(1890) 

Maubuisson (1670-
1791) 

Age at death 67,81 66,88 63,72 68,62 

* Whereas the osteological data establish a mean age at death for individuals aged over 20, the historical data show that this is in fact a mean 
age at death for those aged over 25, since no nun is recorded as dying between the two ages. This partly explains the variation between 
‰20 (68.6 years) and the value calculated from the ÒRegister of nunsÓ (a20 = 67.8 years). Similarly the value of a20 associated with the life 
table (66.9 years) includes deaths from age 20. 

 

 

Figure 60. Mortality by age of Maubuisson nuns (17th-late 18th century) compared with all 

French women (late 18th century) 

 
 

Key. Mortality curve estimated from the female “estimated a20” model and mortality curve 

calculated from written sources. Comparison of mortality in the Royal Abbey of Maubuisson 

(17th-late 18th century) with that of the female French population in the 18th century. 

The estimated mortality curve matches quite well with the successive probabilities of dying 

established from the written sources (Figure 60), and does show levels of mortality lower than 

those observed nationally. 
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2.1.5. Discussion and conclusions 

In the case of a cemetery for a socially advantaged female population, we suggest using the 

“Maubuisson” paleodemographic model rather than the standard model constructed from the 

characteristics of the population of late-19th-century Lisbon,  because the structure of age at 

death (reference population) significantly affects the estimate obtained. This drawback may 

turn out to be a useful advantage. 

The particular features of this site were also used by Henri Caussinus and Daniel Courgeau to 

design the statistical model they proposed Chapter B.  

2.2. The urban cemetery of Antibes, Alpes-Maritimes (small port and garrison town, end 

19th century) 

2.2.1. Research question: the representativeness of the anthropological sample in terms of 

paleodemographic analysis
166

 

For our purposes, the study of the Antibes cemetery is of exceptional interest, because, as in 

the case of Maubuisson, we have both statistical documents providing information on the 

population of Antibes, and a set of skeletons representing a sample of the population buried in 

this cemetery. Moreover, this example represents a “natural” population, in the sense that both 

sexes and all age groups are theoretically present, and concerns an urban site, with problems 

of reuse of graves, so there is a risk that the sample may not be as exhaustive as assumed.  

Using a paleodemographic model that reflects the specific features of the Antibes population, 

and the same approach as described above for the Maubuisson site, we discuss how far the 

paleodemographic sample is representative of both the buried population and the “burying” 

population, i.e., all the people who may potentially use the cemetery. 

2.2.2. Archaeological and anthropological sources 

A planned building development (îlôt Terminus) near Antibes railway station gave rise to an 

archaeological assessment, carried out in 1996, which confirmed the presence of graves on the 

site, known to have been part of the town’s former cemetery. The graves belonged to the last 

cemetery extension in 1877-1897 (Figure 68). When the Antibes town council decided to 

transfer the human remains to the new cemetery at Rabiac, just over a kilometre from the old 

one (this took place from 1897 to 1902), some skeletons were not claimed by family members 

and these are the ones found in the excavation. In fact, it turned out that none of the remains 

buried in the excavated area had been claimed and transferred to the new cemetery (which 

would have left the outline of an empty grave). 

A rescue excavation was carried out in 1998 by a team from AFAN.
167

 It produced the 

skeletons of 165 adults and 17 juveniles which were in very different states of preservation 

and generally highly fragmented (only 73 adult skeletons were sufficiently well preserved for 

age and sex to be identified). The anthropological analysis and the demographic study were 

performed at Sophia Antipolis (Séguy, Buchet, 2003; Buchet et al., 2003). 

2.2.3. Demographic sources 

                                                 
166

 An initial approach to this question and a discussion of paleodemographic models were 

published in 2003 (Buchet et al., 2003) 

167
 Excavation led by Philippe Vidal, AFAN-Mediterranean unit (AFAN is now INRAP: 

Institut National de Recherches Archéologiques Préventives). 
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Antibes presents certain marked demographic features revealed in censuses that must be taken 

into account: rapid growth, mainly by immigration, from the end of the 19th century; a large 

number of immigrants, mainly Italians employed as housemaids and seasonal labourers in 

farming, construction and crafts; military garrisons accounting for 10% to 20% of the total 

population, depending on the year (Figure 61). 

 

Figure 61. Population pyramid of Antibes residents in 1881 

 
 

 

Census records include the sex and age of all residents in the town at given dates. Combined 

with the deaths recorded from 1877 to 1897, these data can be used to establish the mortality 

by sex and age of Antibes residents in various periods. Using the census records from 1881 

and the deaths in the years just before and after (1879-1883), we calculated, with the method 

recommended by Alain Blum and Louis Henry (1988, pp. 158-160), the mortality distribution 

for the early part of the period of cemetery occupation (Figure 62). 

Taking both sexes together, the age-specific probabilities of dying reveal for Antibes in 1881 

high infant and child mortality, characteristic of pre-industrial populations, and mortality of 

young people and adults well above the national average (France, 1881, based on France, 

Meslé and Jacques Vallin, 2001). This excess mortality partly reflects the specific features of 

this port and garrison town and also, probably, the deficiencies in the 1881 census (under-

recording of certain categories, particularly housemaids aged 18-25, causing an over-

estimation of the risk of dying at those ages). After age 50, the Antibes mortality curve joins 

that of France as a whole. 

Note that despite certain similarities (same period, ports), Lisbon’s mortality characteristics 

differ noticeably from those of Antibes (Figure 62). While infant mortality is higher in 

Lisbon, the risk of dying between the ages of 5 and 45 is lower than in Antibes. This leads to 

an age distribution of deaths rather different from the one we have adopted as a standard 

(PLisbon1889). 

Figure 62. Mortality by age of Antibes residents (both sexes combined) in the late 19
th

 century 

compared with that of the French population as a whole and of Lisbon in 1889 
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2.2.4. Paleodemographic approach 

a. Distribution by age group of adult deaths and associated mean age 

As for the Maubuisson site, knowledge of the demographic context for the archaeo-

anthropological sample (exhumed skeletons) makes it possible to use a specially adapted 

frequency matrix, or paleodemographic model. We consequently constructed a reference 

population from the distribution of deaths by age observed in Antibes in 1881 (see utility in 

supplementary materials on INED website). The results obtained using this reference 

population, “Antibes 1881”, were preferred to those provided by the “Lisbon 1889” reference 

population (Figures 63 and 64), although the two distributions do not differ significantly at the 

0.05 level (Kolmogorov-Smirnov test). The rationale adopted here was the one that underpins 

the development and use of “paleodemographic models”, the idea being to include 

demographic behaviours specific to the population under study, where these are available. 

Mean age at death of the over-20s was calculated from the probable distribution of deaths 

associated with the two paleodemographic models (“Antibes 1881” and “Lisbon 1889”). 

These values are lower than those provided by the historical sources
168

 (Table 44) and the 

observed difference between the two estimates of a20 is due to the influence of the structure of 

the reference population. 

a. Distribution by age group of juvenile deaths  

In view of the small number of juveniles (N=17) taken from the partial excavation of the 

cemetery, it is not possible to use the PFP method of tooth mineralisation stages. They were 

therefore divided into age groups according to their individual ages, using for the 13 cases 

where the estimated age covered two or more age classes, the probability of belonging to one 

or other group. 

2.2.5. Sample representativeness 

                                                 
168

 The difference between values based on death records and those based on the mortality 

distribution is due to large migrant inflows to Antibes, notably in the late 19
th

 century, and to 

the emergence of a new category of migrants, namely retirees. 
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Excavation of this late cemetery was necessary for specific methodological purposes, 

primarily to measure the representativeness of the paleodemographic sample. For the modern 

and contemporary periods, demographic data sources are a useful tool for complementing the 

anthropological data (exhumed skeletons); they can be used for direct quantitative and/or 

qualitative comparison with the set of deceased subjects they concern, and with the “burying” 

population that used the cemetery (Table 545 and Figure 65). 

Figure 63. Age distribution of deaths obtained with PAntibes1881 (figure de gauche) 

 

Figure 64. Age distribution of deaths obtained with PLisbon1889 (figure de droite) 

 

 

 

 

 

Table 44. Mean age at death of Antibes residents, calculated from various sources and 

hypotheses 

 

Written sources according to... 
Osteological sources 

Reference population rŽfŽrence : 

registers of 
deaths 

Antibes 
distribution of 

deaths 

Lisbon  
(1890) 

Antibes  
(1881) 

Age at death 59.89 57.31 55.89 56.84 

 

 

a. From the exhumed sample to the analysed sample 

Of the 165 adult skeletons, sex and age could be determined for only 73, and for the 17 

juvenile skeletons a probable age was attributed. 

The representativeness of the paleodemographic sample (individuals whose age and/or sex 

could be determined) with respect to the exhumed population is no worse at Antibes (47.80%)  

than at most archaeological sites (see the mean calculated for selected Late Antiquity and 

Early Middle Ages sites, Table 46). 

b. From the analysed sample to the buried population 

The availability of death records for the site’s entire period of use makes it possible, on 

certain assumptions,
169

 to know the total number of burials carried out in the Antibes 

                                                 
169

 In particular, assuming the following to be negligible quantities: transported remains 

(Antibes residents deceased elsewhere and buried in Antibes), those lost at sea, non-residents 

deceased in Antibes and buried in their place of origin (whose death is recorded in the civil 

records but whose place of burial is unknown). 
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cemetery (3,558). The population exhumed during the excavations (182) represents 5.12% of 

all deceased, and the analysed sample (87) just 2.45%. 

This poor result is not surprising. In urban areas, cemetery graves are regularly cleared and 

reused and there no chance of finding the entire buried population. Furthermore, for obvious 

land use reasons, it is rarely possible to excavate the entire area of a former cemetery, but only 

a part. In a number of ways, therefore, the Antibes cemetery “yields” as much evidence as a 

normal urban cemetery. 

c. From the analysed sample to the population of Antibes 

The town’s population is known in detail from the censuses held every five years: 6,752 

(including 935 military personnel) in 1876; 9,329 (including 1,840 military personnel and 

2,039 non-nationals) in 1896,
170

 or a mean Antibes population of 8,040 for the period 1876-

1896. In fact, allowing for variations in the growth rate
171

, the mean population corresponding 

to the cemetery’s period of use (1877-1897) is closer to 8,200 (see Figure 65). 

Figure 65. Representativeness of an excavated sector of Antibes cemetery (1877-1897) 

 
 

Table 45. Representativeness of the various samples 

 Number of 
subjects 

 Representativeness 
(%) 

  
Representativeness 

(%) 

Mean Antibes 
population 

8 200 
Analysed 
population/Antibes 
population 

1.06 
Exhumed 
population/Antibes 
population 

2.22 

Buried 
population 

3 558 
Analysed 
population/buried 
population 

2.45 
Exhumed 
population/buried 
population 

5.12 

Exhumed 
population 

182 
Analysed 
population/exhumed 
population 

47.80   

Analysed 
population 

87     

 

 

Table 46. Representativeness of the number of skeletons analysed with paleodemographic 

methods 

                                                 
170

 Source: Antibes municipal archives – 1F2 827. 

171
 The annual growth rate was fairly low between 1876 and 1881, roughly 0.63%, taking the 

population to 6,795. By the end of the century, however, Antibes saw rapid population growth 

(some 3% per year) and its 1897 population can be estimated at approximately 9,610. 
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Sites 
Number of exhumed 

skeletons 
Number of analysed 

skeletons 
Representativeness (%) 

Les Rues-des-Vignes (Nord)* 208 134 64.4 

FrŽnouville (Calvados) 697 299 42.9 

Verson (Calvados) 289 173 59.9 

Lyon-Saint-IrŽnŽe (Rh™ne) 170 97 57.1 

Lyon-Saint-Laurent (Rh™ne) 178 61 21.1 

SŽzegnin (Switzerland) 644 320 49.7 

Mean   49.2 

*From Luc Buchet, 1998. 

 

Since the town had only one cemetery, the “burying” population from which the buried 

persons were taken coincides in this case with the mean population of the town of Antibes. At 

this level of analysis, representativeness dwindles even further, since the exhumed sample 

now only amounts to 2.22% of deaths of Antibes residents, and this may become critical for 

the paleodemographic sample (Table 45): can these 87 analysed skeletons, 1.06% of the 

population then living in Antibes, really reflect the town’s demographic characteristics? 

d. Representativeness in terms of population structure 

This question is even more acute when the age-sex structure of the buried population is 

examined. The paleodemographic sample is not homogeneous: the adult population is over-

represented with respect to the age distribution of deaths recorded in Antibes from 1877 to 

1891. Table 47 shows the distribution of deaths by age group as observed and as expected 

from the mortality distribution specific to late-19th-century Antibes. Juveniles, especially the 

under-5s, are clearly under-represented, a very common state of affairs in paleodemography 

(Figure 66). 

e. Representativeness of the child population 

Because of poor preservation (child skeletons), only 14 were used in the analysis. The 

distribution of these 14 skeletons into age classes at death is nothing like the distribution 

expected from the demographic data. There are a number of reasons for this, and primarily the 

small sample size (Figure 66 and Table 47). Furthermore, this partial excavation of the 

cemetery may have omitted the sector traditionally reserved for children, and the planned 

closure of the cemetery may have caused most families to transfer the remains of their 

prematurely deceased children to the new cemetery. 

f. Representativeness of the adult population 

The use of a frequency matrix adapted to the demographic situation of the Antibes population 

increases the reliability of the analysis. The probable distribution of deaths by age group of 

the paleodemographic sample comes close to that observed from the archive documents. The 

two distributions were compared in a statistical test (Kolmogorov-Smirnov), which concluded 

that the series do not differ significantly at the 0.05 level. We may say, therefore, that the two 

distributions (Figure 67 and Table 48) are not significantly different and that the sample of 

analysed skeletons is representative of the distribution of deaths by age group in the Antibes 

population. 

Note, however, the over-representation of the 18-19 age group, similar to the excess in the 15-

17 age group. We are tempted to explain this anomaly, not by higher mortality in this age 
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group, but by the effect of migration. Since the graves of young immigrants and young 

conscripts who happened to die in Antibes were less often transferred to the new cemetery, 

their skeletons were more likely to emerge from the excavation. 

As a test, we introduced into Table 46 the distribution of deaths estimated from our model 

tables (input a20; instantaneous annual growth rate = 0.015). The results are mostly good, 

including for those ages where correlation with input a20 is weak (0-14 years and over-70s). 

Table 47. Age distribution of deaths recorded in Antibes and of the exhumed skeletons 

Age groups 

Recorded deaths 

Expected 
deaths (Dx) (%) 

Distribution of exhumed skeletons 

(N) (%) (N) 
(%) minus those of 
undetermined age 

(%) with 3 of 
undetermined age 

0-4 732 21 

27 

28 2 

+ 3 

1.12 

9.34 
5-9 69 2 3 3 1.68 

10-14 73 2 5 2 1.12 

15-17 62 2 3 7 3.91 

18-19 41 1 

73 

2 

165  92.18 90.66 

20-29 338 10 8 

30-39 222 6 7 

40-49 270 8 7 

50-59 311 9 7 

60-69 403 11 10 

70-79 594 17 13 

80+ 443 11 7 

Total 3 558 100 100 179 182 100 100 

 

Figure 66. Probable distribution of deaths of under-18s, in the paleodemographic sample and 

according to the mortality distribution 

 
 

 

Table 48. Antibes – 19th century. Distribution of deaths by age group 

 
Age group (A) 

Recorde
d 

deaths 

(B) 
Expected 

deaths 
(Dx) 

Expected 
adult 

deaths 
(Dx) 

based on 

(C) 
Probable 

distribution of 
skeletons (ten-

year groups 

(D) 
Antibes 

19th 
century 
Model 

Expected 
juvenile 
deaths 

(Dx) 
based on 

(E) 
Probable distribution 
of juvenile skeletons 

(dental analysis) 
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(A) Antibes 1881), 
both sexes 
combined 

a20; 
r = 0.015 

(A) 

0-4 20.6 27.8  85.1 78.2 14.3 

5-9 1.9 3.1 7.9 7.4 21.4 

10-14 2.1 4.8 3.9 7.8 14.3 

15-17 1.7 2.8 2.8 6.6 50.0 

Sub-total 
children 

26.3 38.4 100.0 100.0 100.0 

18-19 1.2 1.8 1.6 3.6 2.0   

20-29 9.5 7.8 12.9 14.5 11.6   

30-39 6.2 6.6 8.5 11.1 11.6   

40-49 7.6 7.2 10.3 11.8 12.5   

50-59 8.7 7.1 11.9 11.3 14.9   

60-69 11.3 10.2 15.4 15.8 19.4   

70-79 16.7 13.2 22.7 20.2 19.3   

80+ 12.5 7.6 16.9 11.6 8.8   

Sub-total 
adults 

73.7 61.6 100.0 100.0 100.0   

Key. Proportional distribution of deaths by age group based on various sources: the first (A), observed in death records; the second (B), as 
expected from the Antibes mortality distribution (late 19th century), the third and fourth as reconstructed from the adult paleodemographic 
samples using the probability vector method (C) and model tables (D), and the fifth (E) based on the juvenile paleodemographic sample (tooth 
stages). 

 

2.2.6. Conclusion: the paleodemographic sample may indeed reflect the buried population 

under certain conditions 

The îlôt Terminus site in Antibes proves that it is possible to make good use of 

anthropological data even where numerical representativeness is poor. A poor yield is not a 

valid reason for rejecting a sample, provided that qualitative representativeness can be 

achieved by means of suitable paleodemographic models (specific reference population). 

Knowledge of the mortality distribution of the population makes it possible to estimate the 

age-sex structure of the exhumed population. Where, in addition, the “sampling fraction” of 

the paleodemographic sample is known, it is possible to go further and attempt to reconstruct 

the buried population. 

Some sites from the modern and contemporary periods already lend themselves to this 

approach (Signoli et al., 2005). Others will emerge, making it possible to identify general 

trends and to propose models applicable to periods for which no written data are available, but 

which can be considered as fairly similar in socio-demographic terms. 

Figure 67. Probable distribution of deaths of over-18s, in the paleodemographic sample and 

based on the mortality distribution 

 
 



183 

 

 



184 

 

PART FOUR 

Further analysis 
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Chapter A 

Critique of current methods 
Daniel Courgeau

172
 

To estimate the age structure of a population of skeletons, paleodemographers usually only 

have the structure by the stage of evolution of certain biological indicators. As we shall see, 

these indicators alone are generally not sufficient for this estimation. So another source of 

information is needed to link the indicators to individuals’ actual ages. It may be a reference 

population for which researchers have both types of measurement. The combination of the 

two should provide an age structure for the observed population. However, there are various 

possible solutions to the problem, and these have been extensively discussed among 

paleodemographers. In this chapter we examine these solutions and that discussion. 

First, the names given to the methods used in paleodemography are often incorrect and 

contradictory. For example, what Masset, Bocquet-Appel, Jackes and others call the vector 

method, namely IPFP and IBFP,
173

 are referred to by Konigsberg, Frankenberg and others by 

such terms as the ALK and IALK
174

 methods. Here they will be designated not by initials but 

names that clearly indicate their underlying hypotheses, because these methods have long 

been used in other disciplines and have a specific meaning that must be clearly defined. 

Obviously, the links between the more general name and the specific methods used by 

paleodemographers will be spelt out. 

Second, we present in detail the aim of each method, independent of the discipline that uses it, 

in order to show its purpose. Each one will be applied to precisely identical examples so as to 

demonstrate its usefulness for paleodemography. We shall attempt to see which is the best 

suited to answering the questions asked by paleodemographers. 

                                                 
172

 The author wishes to express his warmest thanks to Henri Caussinus for his highly relevant 

comments on the draft of this chapter, leading to a number of improvements. Thanks also to 

Isabelle Séguy and Luc Buchet for their many comments on the same draft. The author is, of 

course, entirely responsible for the content. 

173
 Iterative Proportional Fitting Procedure, Iterative Bayesian Proportional Fitting Procedure. 

174
 Age Length Key, Iterated Age Length Key. 
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We shall start from the established hypotheses underpinning these estimates (biological 

uniformity), which are crucial for solving the problem posed. We shall, in particular, assume 

that the two sources mentioned above provide sufficiently reliable and fully usable 

information to estimate the age structure of buried populations. These hypotheses have been 

fully discussed throughout the book (see also Kemkes-Grottenthaler, 2002; Usher, 2002). 

We set aside earlier estimates of less value to modern research: an excellent critical 

presentation of them can be found in Masset (1973). We shall only present the main two 

approaches currently used by most paleodemographers. 

1. Tables of minimum distance between each cell 

The principle of this method is to reconstitute the cells of a matrix when only its marginal 

values (the row totals and column totals) are known and then to use an earlier reference 

matrix to improve the estimate. The criterion used is the greatest proximity between each cell 

in the reconstituted matrix and those of the earlier matrix. In paleodemography, this means 

starting from the observed biological stages of a population under study and a reference 

population for whose members both age and biological stage are known, and reconstituting 

the breakdown by age and stage of the population under study. This makes it possible to 

deduce that population age structure. 

1.1. Historical background 

This approach was first used by Kruithof (1934), who was working on telephone networks. 

Starting from a full phone traffic flowchart taken from a reference population, he sought to 

estimate a new matrix of traffic flows for an observed population where only the marginal 

values were known (row and column totals). 

This work was taken further in the 1940s (Deming and Stephan, 1940; Stephan,
175

 1942) to 

estimate the cells of a contingency table subjected to a number of constraints on one or more 

of its marginal values, where all the cells of an initial table are known and are to be 

approximated as closely as possible. This method was used for census data, which were often 

incompletely tabulated. 

It was later developed by Leontief (1941), Stone, Bates and Bacharach
176

 (1963) in 

economics, Friedlander (1961), Thionet (1963, 1964), Caussinus (1965), Fienberg (1968, 

1970) and Bishop et al. (1975) in statistics, Tugault (1970), Willekens (1977) and Willekens 

et al. (1981) in demography, etc., to be applied to increasingly complex cases, especially those 

where there was not even an initial matrix taken from a reference population. A detailed 

presentation is given in the chapter on estimates from incomplete data in Courgeau (1988), 

because these methods are widely used to estimate matrices of migration flows between 

zones, where information is incomplete (only the two marginal values known; earlier matrix 

known with, for example, only one or two marginal values for the period under study). 

1.2. Table subject to constraints 

                                                 
175

 In the second article, Stephan recognised that the results of the earlier one did not coincide 

with those of the least squares method, as Deming and Stephan (1940) had wrongly stated, but 

they did provide an approximate solution. 

176
 These authors called it the RAS method, from the symbols they used in the input-output 

matrices. This name was common in the 1960s.  
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This is a brief presentation of the simplest case where only the marginal values of the table are 

available and these are the constraints. The aim is to estimate all the cells without having a 

reference population, and then to do so with one. 

Assume a two-entry matrix where only the marginal values are known (Table 49). 

Table 49. Example of a simple matrix 

  Age 
Stage totals 

  Group 1 Group 2 

Stage 
Stage 1 m11 m12 3 

Stage 2 m21 m22 2 

Age totals 4 1 5 

 

It can easily be seen that if only the age and stage totals are known, it is not possible to choose 

each intersecting age-stage cell arbitrarily. Here only two matrices are possible: 



M1 
3 0

1 1









 and 



M2 
2 1

2 0









. 

To choose between these two matrices, a further hypothesis must be made. Let us assume that 

each matrix corresponds to a macrostate generated by microstates induced by the deceased 

individuals themselves. Since we have five individuals i1, i2, i3, i4, i5, it can be seen that the 

three individuals comprising m11 in M1 can be chosen in a large number of ways: 

(i1, i2, i3) or (i1, i2, i4) or (i3, i4, i5) etc. 

If we then assume that each of these microstates is equally probable, the number of possible 

choices of three individuals for m11 is  



5!

3!(5  3)!
 = 



5!

3!2!
 = 



120

10
 = 10 

where 5! = 1 x 2 x 3 x 4 x 5 (factorial). 

This leaves just two individuals, for whom the number of choices is simply 2. The last 

individual is necessarily counted in the last non-zero cell. There are therefore 



5!

3!2!
 x 2 = 20 

possibilities for five individuals to form matrix M1. This is known as the entropy of the 

macrostate. 

Similarly, we show that there are 



5!

2!3!


3!

2!1!


5!

2!2!1!


120

4
 30 

possibilities of forming matrix M2 from five individuals. So this is the matrix we shall take as 

the most likely estimate for the matrix for which only the marginal values are known. In other 

words, we optimise the entropy.  

It may be supposed that this method, where the two sets of marginal values are known, is also 

applicable in cases where, as in paleodemography, we only have the row marginal values 

(stage totals). In such cases there is more than one possible solution. For the example used 

here, we find the same maximum number of possibilities for two different matrices: 



M1

' 
2 1

1 1









 and 



M2

' 
1 2

1 1









 

this number being 



5!

2!3!


3!

2!1!


2!

1!
 60 for the first matrix and 



5!

1!4!


4!

2!2!


2!

1!
 60 for the 

second. And yet the two matrices are quite different, since their column marginal values (age 

totals) are (3 2) and (2 3), respectively. 
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This shows clearly that, as stated above, this method cannot provide an estimate of the age 

structure when we only have the stage distribution of the observed population, except, of 

course, for the obvious case where it is known that a single age group corresponds to a single 

stage. In other cases, it is generally necessary to have a reference population whose age and 

stage structure is known. This brings us to the second case, in which we seek to come as close 

as possible to the reference. 

1.3. Table subject to constraints and coming as close as possible to an initial table 

Where the two sets of marginal values of an observed table are known, along with a reference 

table, the problem has been addressed in detail by many of the authors cited above, and leads 

to an iterative method, now universally known as the IPFP method. Where only one set of 

marginal values for the estimated table is known, the problem has received less attention, and 

we examine it here with some simple examples. 

1.3.1. Method used when only one set of marginal values is known 

a. Example 1 

This example starts from a matrix taken from a reference population which gives the joint 

distribution of two characteristics: 



M 0 
40 10

20 30









 

If the observed population still has the same age totals as before, 



3

2








, a new estimation of age 

structure may be obtained that includes this extra information. The principle is once again to 

estimate a matrix M whose terms come closest to those of matrix M
0
 and which provides the 

age totals of the observed population. 

The proximity between two matrices can be measured in different ways, however. The 

simplest, on the face of it, is a Euclidean distance, the sum of the squares of the differences 

between each corresponding term in the two matrices divided by two. But this distance will 

depend largely on terms with a high value, where the differences may be greater than for 

terms of a low value. So the difference may best be judged in relative terms. In this case, one 

can use a chi-square distance that will weight the squares of each difference by the numbers 

observed in the reference population. This distance,
177

 proposed by Deming and Stephan 

(1940) and Friedlander (1961), can be expressed as 



d M,M 0 
1

2

mij mij

0 
2

mij

0

ij

  

We shall seek to minimise it, subject to the constraints 

m11 + m12 = 3   and    m21 + m22 = 2. 

Because of these constraints, we shall use the Lagrange multiplier method. This calculates the 

partial derivatives of the distance, subject to constraints, with respect to each variable mij, 

which must be zero to obtain the minimum distance. This may be expressed, for example, for 

m11 and m12: 

                                                 
177

 Minimising a chi-square distance involves additive adjustments, whereas optimising an 

entropy involves multiplicative adjustments. The corresponding algorithms are very similar in 

approach and results, but are, strictly speaking, different. 
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


0
11

0
1111

m

mm
 or 



m11  m11

0 1  



0
12

0
1212

m

mm
 or 



m12  m12

0  1  

 

where –λ is the Lagrange multiplier for the sum of the differentials dm11 + dm12. Summing the 

two equations, the value of λ+1 may be estimated as 



m1.

m1.

0


3

50
. Applying this to the other two 

cells, we now obtain a single solution: 



m1

" 

12

5

3

5
4

5

6

5
















 . 

This does give us the stage totals 



3

2








, but the age totals are no longer integers (3.2  1.8). This 

is therefore a theoretical solution not verified in practice, since the numbers of individuals 

must be integers, but it may be considered as the age structure of a larger population, namely 

(0.64  0.36). The matrix obtained is the closest to the initial matrix in terms of chi-square 

distance. The use of other distances
178

 would clearly lead to different estimates, which are 

generally not far from this one. 

It can also be seen that this method requires only one iteration and that consequently the name 

Iterative Proportional Fitting Procedure is no longer really appropriate. We propose calling it 

simply Proportional Fitting Procedure (PFP). 

b. Example 2 

This example uses the paleodemographic data from Bocquet-Appel (2005, p. 297). It provides 

first a matrix of initial data where both the individuals’ ages and the stages in which their 

femurs are classified are known (Table 50). 

We wish to estimate from this matrix the age structure of a new population (Loisy-en-Brie, 

Late Neolithic) for which we know only the femur stage distribution (Table 51). This is a 

clear case for a PFP procedure, with a reference matrix, Table 50, and only one set of 

marginal values for the observed population. Although the aim here is not to estimate the cells 

of the matrix, which are of no interest to paleodemographers, but rather to estimate one set of 

marginal values from another, the method will still seek to find the closest matrix to Table 60, 

term by term, that provides stage totals equal to the numbers in Table 51. 

The solution to this problem corresponds exactly to that presented above, minimising the chi-

square distance when one set of marginal values for the table to be estimated is known and 

another matrix is available, estimated from a larger number of individuals (Deming and 

Stephan, 1940). In this case, we assume that the Loisy-en-Brie population is distributed across 

                                                 

178
 Such as 



d M,M 0 
mij mij

0 
2

sijij

 , where 



1

sij

 is the weight attached to 



mij

0  (see Stephan, 

1942), which may be measured, for example, by the variance of 



mij

0 ; 



d M,M 0  mij

i, j

 ln
mij

mij

0
 

which is a measurement known as Kullback–Leibler divergence (also information divergence, 

information gain, relative entropy, or KLIC). 
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the osteological stages in the same way as the reference population: we work on row 

probabilities (the probabilities in each row sum to unity). This gives Table 52. 

Applying these probabilities to each stage observed at Loisy-en-Brie, we obtain the following 

age at death structure: 

12P23 = 0.244, 12P35 = 0.225, 12P47 = 0.222, 12P59 = 0.142, 12P71 = 0.132, 12P83 = 0.035179
 

Once more it can be seen that where we have only one set of marginal values for the matrix to 

be estimated, a simple calculation with no iteration is sufficient, whereas with the standard 

IPFP method, where both sets of marginal values for the matrix to be estimated are known, 

more than one iteration is required. 

 

Put tables 50 and 51 side by side 

Table 50. Population classified by age and femur stage (reference population) 

Stages 

 \Ages 

 

23-34 
 

35-46 
 

47-58 
 

59-70 
 

71-82 
 

83-94 
 

Total 

I 

II  

III  

IV  

V  

VI 

Total 

8 

22 

47 

13 

1 

0 

91 

1 

10 

35 

29 

4 

0 

79 

0 

3 

26 

35 

10 

1 

75 

0 

0 

6 

30 

10 

0 

46 

0 

0 

5 

25 

9 

5 

44 

0 

0 

0 

5 

4 

3 

12 

9 

35 

119 

137 

38 

9 

347 

 

Table 51. Numbers of femurs observed at Loisy-en-Brie, classified by stage* 

 

Stages 
 

Numbers 

I  

II 

III 

IV 

V 

VI 

Total 

2.0 

8.0 

31.5 

40.5 

12.0 

2.0 

96.0 

 

*The numbers given by Bocquet-Appel for Stages III and IV are in decimal form, probably to 

allow for some approximate determinations. 

Table 52. Transformation of Table 50 so that the probabilities in each row sum to unity. 

  

23-34 
 

35-46 
 

47-58 
 

59-70 
 

71-82 
 

83-94 
Row sum 

I  

II 

III  

IV  

V  

VI 

0.889 

0.628 

0.395 

0.095 

0.027 

0.000 

0.111 

0.286 

0.294 

0.212 

0.105 

0.000 

0.000 

0.086 

0.219 

0.255 

0.263 

0.111 

0.000 

0.000 

0.050 

0.219 

0.263 

0.000 

0.000 

0.000 

0.042 

0.182 

0.237 

0.556 

0.000 

0.000 

0.000 

0.037 

0.105 

0.333 

1 

1 

1 

1 

1 

1 

                                                 
179

 This notation may appear unusual but corresponds to the results previously presented in 

tabular form as below, or as a histogram. 

Age group 23-34 35-46 47-58 59-70 71-82 83-94 Row total 

Proportion 0.244 0.225 0.222 0.142 0.132 0.035 1 
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c. General case 

Let nij be the number of individuals at stage i (out of a total of l stages) in age group j (out of a 

total of c groups), and ni. the various stage totals in the reference population. For the observed 

population, let πi be its stage structure, the only known element. It can be shown that its age 

structure 



ˆ p j  is expressed by the formula 



ˆ p j   i

nij

ni.i1

l

   [1] 

This corresponds to the matrix with the lowest possible chi-square distance from the reference 

matrix, subject to the numbers observed for each stage. 

The results are identical to those obtained with the traditional method of age estimation in 

paleodemography, usually known as the probability vector method. This method goes back to 

Masset (1971) and was officially proposed by that author in 1973. Since then it has been used 

by many authors (Simon, 1982; Blondiaux, 1988; Pilet et al., 1990; Danion et al., 1994, 

Buchet, 1998). It is clearly described in Masset (1973, 1982, 1995) as the sum of the l vectors 

corresponding to the various probabilities for each individual in the observed population 

located at stage i of belonging to each age group j, based on probabilities calculated from the 

reference population. This sum must naturally be divided by the total number of individuals 

observed to obtain the age structure given by the above formula. So it is indeed the same 

principle that underlies both this method and the PFP method. 

Now we shall show that this estimator 



ˆ p j  is also the same as that proposed by another 

approach. 

1.3.2. The ALK method 

The ALK (Age Length Key) method was initially proposed by Friðriksson (1934) for 

determining the age of all the caught fish of a given species via a random sample taken from a 

single catch. Although it is easy to classify the total population by length group, measuring 

the age of each fish by close observation of their otoliths
180

 is too expensive. So a small 

random number of fish are taken from each length group, the reference population, and their 

ages are accurately measured. The problem then is to estimate the age of fish taken from the 

total population on the basis of their length alone. The basic assumption of this method is that 

the fish in each length class in the reference population are a random sample of the observed 

population (Kimura and Chikuni, 1987). If so, then it is possible to estimate the age 

distribution of the entire observed population. This method is still used (Holden and Raitt, 

1975; Farley and Basson, 2005) to estimate the age of caught fish . It has also been used in 

other fields, notably in paleodemography. 

It was the first method proposed by Konigsberg and Frankenberg (1992) under the same 

name, Age Length Key, to estimate the age distribution of past populations from a cross-

distribution. But in this case we note that the basic assumption is unlikely to hold because we 

are working with two populations whose age structures have no particular reason to be the 

same. 

More specifically, estimation by the ALK method involves first calculating a matrix of age 

group frequencies for each of the stages in the reference population. The numbers in each 

                                                 
180

 Otoliths, literally “ear stones”, are crystal structures found in the internal ears of fish and 

other vertebrates that are sensitive to gravity and linear acceleration. Their growth rings are 

used to estimate the fish’s age. 
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stage in the observed population are then attributed to the various age groups according to the 

frequencies calculated in the reference matrix for each of the observed stages. It only remains 

to sum the values in this matrix for each age group and divide each of these numbers by the 

total observed population to obtain the age distribution of the observed population.  It can be 

seen that this amounts to calculating for the age group j 



ˆ p j  i

i1

l


nij

ni

 

This is the same estimator [1] as for the PFP method with chi-square distance, although it is 

based on apparently different principles. Naturally, if another distance is used, the two 

estimators will differ, but generally only slightly. 

1.4. Critique 

Note that the distribution calculated in this manner necessarily depends on the age distribution 

of the reference sample and it is “flattened under the influence of the reference sample”, in the 

words of Masset (1995). This is a direct result of the assumption that each cell of the 

estimated matrix must be as close as possible to each cell of the reference matrix. Naturally, 

the greater the correlation between age and stage, the more satisfactory the estimate. 

Unfortunately, these correlations are rather weak in paleodemography, usually around 0.5 

(Bocquet-Appel and Masset, 1982; Table 1, Chapter II.2 above), so the reference population 

has a major impact on the age structure of the observed population. 

Similarly, the assumption of the ALK method that the reference population is drawn from the 

observed population no longer holds, even for two populations of the same fish species taken 

from different catches. This problem has been raised by a number of researchers (Kimura, 

1977) and is a crucial one in paleodemography, where the two populations are necessarily 

different, as mentioned above. 

Note too that the two methods are used to estimate the theoretical observed matrix that is 

closest, term for term, to the initial matrix, which explains the dependency between the two 

matrices and ignores the invariance hypothesis (Müller et al., 2002), also known as biological 

uniformity hypothesis (see Chapter I.3) whereby for any human remains of a given age at 

death, the likelihood of being classified in a given stage only depends on that age, whatever 

the population to which the bones or teeth belong. Similarly, for fish, when the age structures 

of the reference population and the observed population are not necessarily the same, the 

more general hypothesis is made that the length structure for each age must be identical for 

the two populations. This hypothesis is similar to the previous one, introducing a dissymmetry 

into the tables under consideration. It therefore becomes necessary to look for a more 

satisfactory method that takes this hypothesis fully into account. 

2. Tables of minimum distance between each column 

Here it is not each cell in the reference matrix which must come as close as possible to the 

corresponding cell in the matrix of observed stages but each column with respect to its 

marginal value. In paleodemography, this means starting from the distribution by stage within 

each age group in the reference population. Then the weightings are found that, after 

multiplication by the various previously estimated distributions, give the numbers per stage in 

the observed population. The weightings will then correspond to the numbers per age in the 

observed population. In this case, the invariance hypothesis is perfectly verified. This 

problem, which differs from the previous one, must be solved by different methods. 

2.1. Historical background 
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Here too the original task was to determine the age of an observed fish population for which 

only the length distribution is known. In this case, the reference population does not come 

from the same observed population but only a population of the same species, for which both 

length and age are known, as measured once again from the otoliths. Hasselblad (1966) 

provided an iterative method for an estimate of this type, followed by Orchard and Woodbury 

(1972), then Chikuni (1975). It was statistically developed by Kimura and Chikuni (1987), 

who proposed to call the method IALK, showing that it involved iterations. Unlike the ALK 

method, it only assumes that the length distributions for each age in the reference population 

are applicable to the observed population, which does not belong to the same total population 

(Kimura and Chikuni, 1987) and may therefore have a quite different age structure. These 

authors use the same algorithms and most of them use the term “mixture” for the method. It 

is, in fact, a special case of the more general likelihood maximisation (or expectation 

maximisation, EM) algorithm proposed by Dempster et al. (1977). 

In his unpublished 1977 thesis, Bocquet-Appel proposed to estimate the age structure of a 

population for which only the stage structure of its osteological remains are known by means 

of an iterative method starting from a uniform age structure. Masset (1982), in another 

unpublished thesis, proposed this method of successive approximations to avoid the over-flat 

result of the probability vector method. To that end, he and Bocquet-Appel wrote an iterative 

program, called Approx, which he appended to his thesis. We shall see below that, when 

starting from a uniform distribution, this program gives the same results as the IALK method. 

But Masset wrongly states that this method “only gives really satisfactory results if the 

subjects tested and those forming the basis of the sample are one and the same” (Masset, 

1982, p. 225), whereas in fact it avoids the need for that assumption, as we saw above. The 

application example for this method provided by Masset on pages 275-276 of his thesis, using 

a population with seven age groups, leads to results that are hard to accept. Although he starts 

from a reference population with seven age classes and seven stages, and the vector of the 

stages in an observed population of 60 individuals contains no zero term, he obtains an age 

structure for the observed population that is rather implausible: 

(34.10  1.72  0  24.18  0  0  0), 

because it contains four zero proportions. Faced with these disappointing results, he falls back 

on the less sophisticated method, thought to be more reliable, of probability vectors. In 1996, 

as we shall see, he adopted this method again with Bocquet-Appel. 

Meanwhile, Konigsberg and Frankenberg (1992), looking for a more satisfactory method than 

ALK and wishing to avoid starting from a uniform distribution like Masset and Bocquet-

Appel, realised that the IALK method avoided these biases. First, while the ALK method 

gives good results when the reference population and the population whose age structure is to 

be estimated come from the same population, the IALK method avoids this constraint. 

Moreover, the estimation can be based not only on a uniform age distribution but on a 

distribution of any sort. Konigsberg and Frankenberg apply it to paleodemography using the 

maximum likelihood method (see Box 8 for the principle). 

Bocquet-Appel and Masset (1996) continued with their approximation method, which they 

now, wrongly, called IPFP, explicitly referring on p. 572 to Deming and Stephan (1940). In 

the first part of this chapter, we showed that Bocquet-Appel and Masset sought to minimise 

the chi-square distance between each cell in the reference population matrix and the unknown 

matrix of the observed population, for which only one marginal value is known. IPFP is thus a 

misnomer, because the aim here is to minimise the distances between each of the columns 

corresponding to the same age: as we shall see, it is more like the IALK method. In order to 

distinguish it, we shall keep its original name of approximation method. In the same article, 

the authors also indicated the difficulties involved in getting this method to converge on 

acceptable results, and consequently proposed using it only to calculate the average age at 
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death of individuals in the population. This restriction removes much of the method’s 

usefulness. 

These two approaches, which we shall call, for simplicity’s sake, American and French, were 

the subject of considerable controversy between 1992 and 2002. But ultimately, they turn out 

to be practically identical (Konigsberg and Frankenberg, 2002; Konigsberg and Herrmann, 

2002). Whereas the French insisted on the need to start from a uniform age distribution in 

order for their approach to yield the right result, the Americans understood that their approach 

always gives the same result, whatever the initial distribution. We return to this point below. 

However, the French realised that the IALK method could lead to solutions with a large 

number of zero age groups, as we showed when Masset’s thesis was first presented. This 

explains the highly sceptical attitude of French paleodemographers towards this method. 
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Box 8. Estimation by maximum likelihood 

Henri Caussinus and Daniel Courgeau 

1. Principle 

In general, the statistical model states that data x are the observations of a random variable X, 

whose probability distribution depends on an unknown parameter . The probability density 

of X is a function of the data x and parameter , called likelihood function, often denoted L, 

and its value for x and , therefore, L(x, ). 

In frequentist (non-Bayesian) statistics, the most widely-used method is probably the so-

called maximum likelihood method, which consists of estimating parameter  by the value 

that maximises L(x, ). The estimate is often denoted ̂ (x), showing that it depends on 

observations x, or ̂  for short. 

In practice: 

 Parameter  can be of any value, but is usually (and, in the cases studied here, invariably) a 

real number or a family of k real numbers, with possible restrictions; for example, variance 

is necessarily positive or a probability between zero and unity. 

 The data can be of any value, but are usually a list (vector) of real numbers; this may be a 

sample of n values xi, observations of n independent random values Xi from the same 

distribution. The likelihood here is the product of the individual densities f(xi, ) and it is 

shown that, on very general hypotheses, the method is efficient for high values of n (see 

Part 2); but it is of much wider application, and although its efficiency cannot be 

guaranteed, one may hope that it still provides reasonable estimates. 

 Where the data are discrete, the density L(x, ) is understood as the probability of 

observation x. 

 It is clear that the same estimate 



ˆ (x) is obtained if L(x, ) is multiplied by a quantity that 

does not depend on  (but may depend on x); this will simplify the expressions in many 

cases (in formal terms, the only change concerns the reference with respect to which the 

density is taken, an operation that must obviously be neutral for the estimation). Similarly, 

in finding the maximum, it is equivalent to replace L(x, ) by an increasing function of this 

expression, its natural logarithm ln[L(x, )], for example. 

 It is usual practice to find the maximum of a function by setting the derivative to zero, in 

the case of one variable, or the partial derivatives in a multi-dimensional case. This 

practice, which is justified for large samples on fairly broad hypotheses, calls for certain 

precautions, however. First, the likelihood function may not be concave and the equations 

that set the derivatives to zero may have more than one solution, so a choice must be made; 

however, this case will not be encountered in the questions covered by this book. Second, 

where the set of parameter variations is bounded, the maximum likelihood may be achieved 

on the boundary without corresponding to a zero-value derivative; this case is of direct 

interest to us, as we shall see in the example in Part 3. 

2. Properties 

The most significant properties of the maximum likelihood method of estimation are 

asymptotic properties concerning samples of n independent observations, where n tends to 

infinity; in practice, where n is sufficiently high. In this case,  



L x,  f xi, 
i

  and 



ln L x,   ln f xi,  
i

  

Moving on to the random variables, we have 
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

ln L X,   ln f Xi,  
i

  

So ln[L(x, )] is a sum of independent random variables to which, on very broad hypotheses, 

we may apply the general results of the calculation of probabilities such as the law of large 

numbers and the central limit theorem (normal distribution). We can then show that for high 

values of n 

 the maximum likelihood is “regular”, i.e., is obtained by setting at zero the derivative or 

derivatives of likelihood with respect to  

 the probability distribution of 



ˆ  is approximately normal, centred on  (absence of 

asymptotic bias), with a variance close to 



E 
d2 ln L X,  

d 2

























1

 [1] 

in the case of a one-dimensional parameter (E stands for expected value); in the multi-

dimensional case, the matrix of second-order partial derivatives replaces the second derivative 

above to produce the matrix of variances and covariances of 



ˆ . Replacing  by its estimate in 

this expression, we obtain an estimate of the variance of 



ˆ . So it is possible to give 

approximate confidence intervals for  or carry out tests. (Space does not permit 

demonstrations here, but note that the maximum of the likelihood function is less stable when 

it is poorly marked, i.e., the likelihood function is “flatter” near this maximum, its second 

derivative is smaller, making it intuitively likely that this derivative will appear in the 

variance of the estimator.) 

3. Example 

We may illustrate the point with a textbook example linked to the problems of estimating the 

age distribution where the stage distribution is known, with a reference distribution assumed 

to be error-free (Example 1 in this chapter with two age groups and two stages). The reference 

probabilities are 

0.6667   0.25 

0.3333   0.75 

There is a single unknown parameter: let us take  to be the probability p of the first age class. 

The stage probabilities are 0.6667p + 0.25(1 – p) and 0.3333p +  

0.75(1 – p). 

For m independent observations we therefore have the likelihood 



L x, p  0.6667 p 0.25 1 p  
i


xi

0.3333 p 0.75 1 p  
1xi 

 

or 

          .4167.075.04167.025.0175.03333.0125,06667.0),( 2121 mmmm
pppppppxL   

(In the first expression above, xi is the indicator that takes the value 1 if the observation is of 

stage 1 and 0 if it is of stage 2, and this formulation shows that it is a sample of size m; in the 

second expression, m1 is the total number of stage 1 observations, and m2 the total number of 

stage 2 observations, using the notation adopted in this book. One could also start from the 

binomial distribution of m1, which would show in the likelihood a factor m!/(m1!m2!), which, 

as we have seen, would have no effect.) 

Figure 68 shows the variations of ln[L(x, p)] for two site data, respectively (m1 = 3, m2 = 2) 

and (m1 = 4, m2 = 1), the two cases considered in this chapter. It can be seen that if (m1 = 3, m2 

= 2), there is a “regular” maximum; however, for (m1 = 4, m2 = 1) the regular maximum is 
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“virtual”, obtained for a value of p that is outside the range of possible values, since the “true 

maximum” for p is 1 and does not correspond to a zero value of the derivative. 

Figure 68. Log-likelihood for x = (3, 2), left, and  = (4, 1), right 

 
 

Interpretation: although p on the x-axis can vary only between 0 and 1, the second curve has 

been extended to higher values (blue) to show the “virtual regular maximum”.  

For a sample of size m, we have 

ln[L(x, p)] = m1 ln(0.25 + 0.4167p) + m2 ln(0.75 – 0.4167p) 

hence 



d ln L x, p  
dp


0.4167m1

0.250.4167p


0.4167m2

0.750.4167p
 

which cancels to give 



p 
0.75m1

0.4167m


0.25m2

0.4167m
. 

So we obtain for the two cases considered above 



ˆ  p  = 0.84 and 1.32 respectively. Note that 

these values depend solely on the relative frequencies m1/m and m2/m. 

Let us also calculate expression [1]. Here we need to take the second derivative of the 

logarithm of likelihood expressed for the random values M1 and M2, whose observed values 

are m1 and m2. This gives 



d2 ln L X, p  
dp2

  0.4167 
2 M1

0.250.4167p 
2 

M2

0.750.4167p 
2














. 

Following the standard result from the binomial distribution, we have 

E(M1) = m(0.25 + 0.4167p) and E(M2) = m(0.75 – 0.4167p), therefore: 



E 
d2 ln L X, p  

dp2














 0.4167 

2
m 0.250.4167p 

1
 0.750.4167p 

1  

We obtain an approximation to the variance of the estimator of p by inverting this expression 

and replacing p by its estimate. Thus, for m = 5, m1 = 3, m2 = 2 (therefore 



ˆ  p  = 0.84), as in the 

example above, we obtain 0.2765 as the approximation to the variance, hence a standard 

deviation of 0.526; this is high because of the small sample size, but it is important to 

remember that this value is extremely unreliable, since it is based on the assumption that the 

sample is large. If, however, the sample were larger, for example m = 100 with m1 = 60, m2 = 

40, the estimate of p would be the same but with an approximate variance divided by 20, 

namely 0.0138, with a standard deviation of 0.118. These are clearly more satisfactory and, 

not least, more reliable values. 
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We end by noting that if we had m1 = 80, m2 = 20 and a sample of 100, there would still be an 

“irregular” maximum likelihood for p equal to 1. However, with the values considered for the 

reference probabilities, to obtain m1 = 4, m2 = 1 for 5 observations is highly realistic, whereas 

m1 = 80, m2 = 20 for 100 observations is extremely unlikely because of the law of large 

numbers. 

2.2. Maximum Likelihood Estimator 

We will take the general case with the same notation as above to formulate and solve the 

problem. Let us look first at the IALK method. 

We apply the frequencies of the distribution of the biological indicator, conditioned by the age 

groups in the reference population, namely 



f ij 
nij

n. j

. For the observed population, we have 

stage frequencies i  . Applying the maximum likelihood method shows that the age structure 



ˆ p j  may be obtained by successive iterations from any initial structure, which is often taken to 

be 



1

c
, i.e. uniform: 



ˆ p j
n1   i

i1

l


ˆ p j

n f ij

ˆ p j
n f ij

j1

c


  [2] 

As many iterations as necessary are run to bring 



ˆ p j
n  as close as required to 



ˆ p j
n1. An estimate 

of the age structure of the observed population is thus obtained. Konigsberg and Frankenberg 

(2002) recognise that the estimators they obtain in this way are estimators of maximum 

likelihood and not Bayesian estimators. Furthermore, this solution is only valid if the 

estimators are all positive: if some are zero, this may perhaps not be a maximum likelihood 

solution. It is also possible to estimate the variances of these estimators, as Cribari-Neto and 

Zarkos (1999) have done. We shall not develop these estimates here but shall use them below 

to estimate their standard deviation. 

This method is easy to generalise to the case where there is more than one biological indicator 

or where these indicators are not discrete but continuous (Konigsberg and Frankenberg, 

1992). 

It can also be used to introduce a continuous, rather than discretised, age without changing the 

principle. This is well laid out in Hoppa and Vaupel’s edited volume (2002a), following a 

workshop on the topic at the Max Planck Institute for Demographic Research in Rostock, 

attended by a large number of English-speaking anthropologists, but with no French 

specialists invited. Konigsberg and Herrmann (2002) clearly indicate the similarity of the 

results obtained by IALK and these more sophisticated methods: “Our current methods fit 

fairly comfortably within the approaches taken during the Rostock workshop”.
181

 

First, the age distribution of a given stage in the reference population – with age now treated 

as a continuous variable – is provided by various types of non-parametric or parametric 

regression models. However, the volume’s main originality is the use of a parametric event-

history model (Courgeau and Lelièvre, 1989) to model the probability density of the observed 

population’s mortality. Provided the model does not include too many parameters (Gompertz 

two-parameter model, Gompertz-Makeham three-parameter model, Siler five-parameter 

model, etc.), we can estimate it using the maximum-likelihood method with the previously 

                                                 
181

 The initial workshop was held in June 1999. 
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estimated age distribution of stages. Applying a notation similar to the previous one, we can 

summarise this formulation in the following form, where the age variable j is now continuous: 



 i  wi

j

 j p j, dj 

and where wi(j) is the distribution of the stage i by age j, estimated in the reference population 

and p(j, ) the age-specific probability density of the observed population, whose parameters 

 we need to estimate using the l similar relations for each stage.  

However, these methods introduce a number of additional hypotheses. They assume that the 

population is stationary or stable, so that the event-history model can apply to a population at 

a given moment, and that the age distribution of a given stage is continuous, so estimates 

differ according to the methods used. In principle, therefore, there is no reason why these 

hypotheses – which we have no way of verifying – should be fully satisfactory. For instance, 

a past population that has experienced an epidemic cannot be considered stationary or stable. 

Similarly, to impose on that population a parametric event-history model – ultimately rather 

simple and verified on current populations – may fail to capture situations where these models 

were not verified. Not least, these methods still assume that the reference population is 

perfectly observed, although sampling errors in paleodemography can be considerable. Not to 

allow for that fact, as with the IALK method, introduces a major risk of error into the estimate 

of the age structure of the observed population.  

2.3. Approximation method 

The approximation method proposed by French-speaking authors is also iterative, but 

presented in an experimental rather than truly mathematical manner. Bocquet-Appel and 

Masset (1996) contains a detailed description of the procedure, where both pj and fij depend 

on the iteration. We shall show that in fact it is not necessary for them to depend on the 

iteration, and in this case the method can, in some conditions, lead to the same result as IALK. 

It starts from an initial value for the age breakdown which is assumed from the outset to be 

uniform, 



m

c
, where the total number of members of the observed population m is distributed 

across the c age groups. The two important relationships for this algorithm are the following 



ˆ p j
n   i

i1

l


ˆ f ij

n1

ˆ f ij
n1

j1

c


 and 



ˆ f ij
n  ˆ f ij

n1
ˆ p j

n

ˆ p j
n1

 

Starting from the initial value 



ˆ p j
0 

m

c
 and the initial value 



fij

0  f ij , we deduce from the first 

relationship 



ˆ p j
1   i

i1

l


f ij

f ij

j1

c


 [3] 

Note that in this first iteration, the formulation [3] differs from the general formulation [2]. 

The second relationship then gives 



ˆ f ij
1 

c

m
f ij

ˆ p j
1  

and finally, by the first relationship 



ˆ p j
2   i

i1

l


ˆ p j

1 f ij

ˆ p j
1 f ij

j1

c


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Now we are back at formula [2]. It can also be seen that there is no point in considering 



ˆ f ij
1  or 

the number 



m

c
, which cancels out from top and bottom. It only remains to see whether 



ˆ f j
n1 

c

m
f ij

ˆ p j
n1 

is verified, so 



ˆ p j
n   i

i1

l


ˆ p j

n1 f ij

ˆ p j
n1 f ij

j1

c


 and 



ˆ f ij
n 

c

m
fij

ˆ p j
n  

which is easily shown by using the previous algorithm. As we have demonstrated that these 

relationships held for n = 2, they therefore hold for all values of n. Again we are back at the 

same formula [2] as for IALK, from the second iteration on. What Konigsberg and 

Frankenberg showed empirically has thus been proven mathematically in its most general 

form. 

However, the main difference between the two methods is that the first can be used with any 

initial structure, as long as its age values sum to unity, whereas the second one requires 

starting from a uniform structure. This is simply due to the formulations and the resulting 

difference in values for the first iteration, because, from the second iteration on, the 

formulations are identical. If we take a non-uniform initial distribution for the second method, 

the solutions found will no longer be maximum likelihood estimators. 

In the first example, it can be seen that, starting from a uniform initial age distribution (2.5 

2.5), one arrives at the solution (0.84 1.16) after some 70 iterations, as with the IALK method. 

However, if the initial distribution is slightly different, the solution becomes widely different. 

For example, for an initial age group whose size varies from 2.35 to 3.25, the estimate of the 

final population for that group will fall from 5 to zero. Below 2.35, the final population of the 

first age group will remain at 5, and above 3.25, it will remain at zero. We see that the final 

estimate is highly sensitive to the initial distribution, which must be taken as precisely 

uniform. 

It is instructive to use the same reference population for a larger observed population 

comprising 50 skeletons, for example. As long as the size of the observed population at the 

first stage is below 13, the population in the first age group is zero. But, as soon as it exceeds 

13, the estimated population in the first age group increases regularly from 0 to 50, when the 

population at this stage reaches 34 individuals. It can be seen that the structure of the 

reference population can be used to estimate all possible combinations by age for the 

observed population. This contradicts the idea that some structures cannot be found with this 

method, as claimed by Bocquet-Appel (2005), as we shall see below. Naturally, this case 

needs to be extended to a larger number of age groups, but then the number of possible 

combinations becomes too high for the extension to be done properly. However, it can be 

clearly seen that in some cases we always find a population for which only one age group is 

represented. This coincides with Masset’s result (1982), mentioned above, where certain age 

groups are estimated at zero. 

2.4. Summary of the two methods 

Now we examine the more general case of an observation of l stages in a population with c 

age groups. The reference population is given in Table 53, with numbers nij by age j and stage 

i. 

We seek to estimate the age structure of a new population for which only the numbers by 

stage mi are known, as given in Table 54. 
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Unlike the PFP estimate, where the probabilities to be estimated make no distinction between 

rows and columns, this method considers the initial reference table in an asymmetric fashion. 

The invariance hypothesis involves assigning a clear significance to the probability of 

belonging to stage i if we are dealing with a given age group j, denoted pij, which is supposed 

to be applicable to any observed population. These probabilities then verify the relationship 

1
j

ji
p  for all values of  j. 

To estimate these probabilities from Table 53, we shall see below the various assumptions 

that may be made. 

 

Put tables 53 and 54 side by side 

Table 53. Reference population matrix by stage and age group 

 
 

  
Age group j 

Stage 
totals 

 

Stages 
(i) 
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nij 
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. 

nlj 
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. 
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. 

. 

. 
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. 
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. 
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. 

. 
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. 

n1c 

. 

. 

. 

nic 

. 

. 

. 

nlc 

n1 . 

. 
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. 

. 

. 

nl . 

Age 
totals  

n. 1 

 

. 
 

. 
 

.  
n. j 

 

. 
 

. 
 

.  
n. c 

 
n. . 

 

 

Table 54. Size of the observed population by stage 

 
Stage totals 

m1 

. 

. 

. 

mi 

. 

. 

. 

ml 

 
m 

 

 

For the observed population, we need to estimate the probability of belonging to one of the 

various stages pi from the observed frequencies in Table 54. Using these probabilities and 

those estimated from Table 53, we can then estimate the age structure of this population p.j, 

that we are seeking. 

The initial matrix is used to calculate, for each age group j, a vector giving the distribution 

frequencies of biological indicator i: 



f ij 
nij

n. j
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If we assume that the observed numbers of individuals are high enough, the conditional age 

probabilities for a given stage will equal these frequencies pij = fij. This gives us c vectors, for 

which we ignore any sampling errors in the reference population. 

For the new observed population, we assume once again that the observed numbers are high 

enough. This gives us a vector estimating the probabilities that an individual from this 

population belongs either to the various stages i or, for stage i: 



 i 
mi

m
 

From these estimates we can devise a method for estimating age structures. 

2.4.1. Devising the model 

We wish to know if there is a set of weightings  cppp ,,, 21   representing the required age 

structure such that they verify the relationships: 



p j f1 j 1

j

  

                                                              . 

                 



p j f ij   i

j

        [4] 

. 

. 



p j f lj   l

j

  

A final condition must be added: 



p j 1
j

  

which is a necessary one, because the weightings must sum to unity. So it is a mixture of 

distributions, of prior data, that must be estimated to find the distribution by stage of the 

observed population. 

2.4.2. Solution for a square matrix 

If the matrix is square (l = c), Cramer’s rule applies, with generally one and only one solution. 

It is easy to see that the additivity condition for the pj to be equal to one is necessarily 

satisfied. 

 This application of Cramer’s rule can be expressed more simply in matrix notation. 

If F is the square matrix 



F 

f11 . f1i . f1c

. .

f i1 . f ii . f ic

. .

f l1 . f li . f lc























 

π the column vector 



 

1

.

.

 l


















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and p the column vector 



p 

p1

.

p j

.

pc























 

The previous system of equations can be expressed concisely as 

Fp = π 

The estimator of  p, 



ˆ  p , is then obtained by multiplying on the left the two members by the 

inverse of the F matrix, which is generally calculable: 



ˆ p  F 1  

When the matrix is not square: 

if l < c, the system is indeterminate and admits an infinity of solutions. 

if l > c, the system usually has no solution, but 



ˆ p j  can be calculated using statistical methods. 

2.4.3. Least squares method 

This involves seeking those values of pj that minimise the following sum of squares: 



S  p j f1 j 1

j












2

 ... p j f ij  i

j












2

 ... p j f lj  l

j












2

 

with the constraint 



p j 1
j

 . It can be seen, first, that where l = c, the solution Fp = π given 

for a square matrix is always verified, because the solution is the same for both methods. 

Where l > c, if we assume that we have values for pj, then by introducing a variation ∂pj, the 

differentials of the two previous equations give: 



1
2S  f11 p j f1 j 1

j










 ...f l1 p j f lj  l

j

























p1  ... f1c p j f1 j 1

j










 ...f lc p j f lj  l

j

























pc  0  

and 



p j  0
j

  

Now, multiplying the last equation by the arbitrary Lagrange multiplier  and adding the two 

equations, we obtain: 



S

p1

 








p1  ...

S

pc

 








pc  0  

leading to a linear system for (c + 1) equations with (c + 1) unknowns p1, p2,… pc, : 

























11

2
11

111
2
11

ci

i
iic

i
icc

i
ijicj

i
iic

i
ii

i
icic

i
ijij

i
i

p..p..p

ffp..ffp..ffp

.........

.........

fffp..ffp..fp





 

If the invariance condition and the assumption that the observed numbers are not subject to 

uncertainty are verified, this system of equations could be solved by Cramer’s rule to obtain a 

system of weightings whose values all lie within [0, 1], corresponding to the structure of age 

at death. But, since the data are few, and therefore necessarily subject to uncertainty,  and 

since this estimate is obtained by least squares, some estimates may fall outside [0, 1], even if 



204 

 

the invariance hypothesis is verified. If so, the problem of estimating the structure of age at 

death will need to be solved allowing for these measurement errors, as we shall see below. 

2.4.4. Maximum likelihood method 

This method consists of considering that system [4] gives the probability πi that an individual 

belongs to stage i. It is then possible to calculate the probability of observing a sample of m 

individuals of whom m1 are at stage 1, m2 at stage 2, etc., which will constitute its likelihood: 



m

mi!
i1

l


p j f ij

j1

c












i1

l


m i

 

with, as before, the constraint: 



mi  m
i1

l

  

Since the first fraction of likelihood is independent of the pj, it suffices to maximise the 

logarithm of the second expression with the constraint. If this maximum satisfies the pj 

positivity constraint, it will be found by setting the likelihood gradient to zero. Using the 

Lagrange multiplier, we then obtain the system of the following c equations to be solved: 



mi f ij

p j f ij

j1

c

i1

l

    0  

It can easily be seen that by multiplying each equation by pj and summing the l equations, we 

obtain  = m. The result is the non-linear system of c equations with c unknowns: 



 i f ij

p j f ij

j1

c

i1

l

   1 

It can be seen that where l = c, the solution Fp =  is always verified and that this method 

gives the same result as the least squares method. 

It can be demonstrated that this system can be solved by the following iterations (Hasselblad, 

1966): 



p j

n 
 i p j

n1 f ij

p j

n1 f ij

j1

c

i1

l

  

which are the same as those in formula [2]. Starting from any positive values of 



p j

0  that sum 

to unity, and setting a threshold beyond which the values of 



p j

n1 and 



p j

n  are taken to be 

equivalent, we obtain the solution of the system by the maximum likelihood method.  

It can be seen that these iterations are identical to those proposed by such paleodemographers 

as Konigsberg and Frankenberg (2002) and Bocquet-Appel and Masset (2005). Note, 

however, that since it starts from positive values, this algorithm can only give positive or zero 

values. If the point of zero gradient on the likelihood curve does not fall within the domain of 

possible values, the IALK algorithm gives an estimate on the boundary of this domain (at 

least one of the pj is zero), for which there is no proof that it is a maximum likelihood for c > 

2 (although it is probably true in many cases). For that reason, in the following chapter, the 

maximum likelihood will be found by a procedure other than the IALK algorithm. 
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The least squares and maximum likelihood methods lead to different solutions where l > c, 

but these are generally close together. It is instructive to compare them in the application 

examples.  

2.4.5. Application examples 

We shall now apply the two methods to four populations to see if they are always valid for 

paleodemography. 

a. Theoretical example 1: 2 age groups, 2 stages 

We use once more the earlier simplified example, which provides the age structure (0.84   

0.16), as we have shown. Since l = c = 2, it is easy to verify that the solutions given by the 

least squares and maximum likelihood methods are both identical to that given by direct 

calculation. 

Note, however, that it is not possible to start from any marginal row value to find a column 

structure that fits with the two stage structures given for each age. It can easily be seen that 

the proportion for stage 1 of the observed population must fall between 



1
4  and 



2
3 , in order to 

obtain solutions within the limits [0, 1] of the probabilities. In this particular case, this is so, 

because 



3
5  does lie in this interval [



1
4 ,



2
3 ]. 

However, if we had an observed population with stage values of 



4

1








, which is perfectly 

possible if we observe, still from the same larger overall population, a sample of only five 

individuals, then the age structure estimated by the analytical method will be (1.32   – 0.32). It 

can be seen that the two solutions always sum to unity, but that they do not correspond to 

probabilities. Interestingly, the IALK method leads to a different solution (1 0), which does 

correspond to the maximum likelihood, but a maximum on the boundary of possible values, 

where the derivative of likelihood is not zero (see Box 8, “Estimation by Maximum 

Likelihood ”). In practice, we have here a case where none of the proposed solutions is 

appropriate. 

b. Theoretical example 2: 2 age groups, 3 stages 

Now we take the same number of age groups and one extra stage. Here we shall estimate the 

least squares and maximum likelihood solutions. 

The reference population, established for this example, gives us the following matrix: 



40 10

20 30

4 40
















 

and for the population whose age structure is to be estimated we have the following 

breakdown by stage: 



3

2

1
















 

From this we deduce the two stage structures of the reference population for each age group: 



S1 

0.625

0.3125

0.0625
















 and 



S2 

0.125

0.375

0.5
















 

and the stage structure of the population for which we wish to estimate the age structure: 
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

 

0.5

0.3333

0.1667
















 

If we apply the least squares method, we obtain the following system of equations: 















1

27087.040625.022656.0

42700.022656.049219.0

21

21

21

pp

pp

pp





 

This system is solvable and leads to the age structure of the observed population (0.7549   

1.2451), with a parameter  at the very low value of 0.0004. 

If we now apply the maximum likelihood method, we obtain the following age structure 

(0.7576    0.2424), which is very close to the preceding one. 

c. Example 3: Loisy-en-Brie population 

Here we take the example given by Bocquet-Appel (2005) of the Loisy-en-Brie population 

estimated from a reference population for which both age of individuals and stage in which 

their femurs are classified are known (Table 50). 

Here we have a case where l = c = 6. The analytical solution is therefore applied, without 

turning to the least squares or maximum likelihood methods. The matrix F used is given in 

Table 55, where the column probabilities now sum to unity. 

We calculate the inverse of the matrix: 







































810.0080.6978.1246.0205.5417.10

648.10861.13699.4395.0750.8481.20

493.8195.6140.0358.3650.9814.7

550.0125.4970.2974.7024.23784.20

240.0798.1294.1476.3934.20029.39

035.0259.0186.0500.0015.3996.16

 

which, multiplied by the vector of the probabilities of belonging to each stage obtained from 

Table 56, finally gives the structure by age at death to be estimated: 

12p23 = 0.219, 12p35 = 0.119, 12p47 = 0.380, 12p59 = 0.197, 12p71 = 0.040, 12p83 = 0.045. 
Since l = c = 6, this solution is always identical to that obtained by the maximum likelihood or 

least squares methods. 

However, these solutions differ sharply from that obtained by the PFP method: 

12p23 = 0.244, 12p35 = 0.225, 12p47 = 0.222, 12p59 = 0.142, 12p71 = 0.132, 12p83 = 0.035. 

Table 55. Transformation of Table 50 so column probabilities sum to unity 

 23-34 35-46 47-58 59-70 71-82 83-94 

I 0.088 0.013 0.000 0.000 0.000 0.000 

II 0.242 0.126 0.040 0.000 0.000 0.000 

III 0.516 0.443 0.347 0.131 0.114 0.000 

IV 0.143 0.367 0.467 0.652 0.568 0.417 

V 0.011 0.051 0.133 0.217 0.204 0.333 

VI 0.000 0.000 0.013 0.000 0.114 0.250 

Total 1.000 1.000 1.000 1.000 1.000 1.000 

 

This last method provides an age distribution closer to the reference population than the 

previous one. 
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d. Example 4: the Maubuisson nuns (17th-18th centuries) 

Here we use cranial suture closure as the age indicator for the female reference population 

established in Chapter III, for which we have combined certain ages and stages (Table 56) so 

as not to take up too much space, but the result is the same when all values are considered. 

The observed population is distributed by stage
182

 (Table 57). Once again, since the matrix is 

square, the analytical method is applied. The corresponding matrix F is 





























333.0121.0171.0140.0020.0072.0008.0

174.0197.0271.0120.0062.0060.0028.0

116.0182.0100.0110.0062.0072.0028.0

158.0167.0186.0130.0113.0024.0046.0

073.0167.0086.0140.0155.0133.0055.0

073.0060.0029.0100.0124.0157.0055.0

073.0106.0157.0260.0464.0482.0780.0

 

Omitting intermediate calculations, we arrive at the structure of age at death to be estimated: 

10p20 = 0.091, 10p30 = – 0.505, 10p40 = – 5.018, 10p50 = 11.560,  

10p60 = 1.709, 10p70 = – 3.387, 10p80+ = – 3.450 

 

 

 

Table 56. Distribution by stage (combined suture closure 

coefficients) and age group observed in the Preference female 

reference population (established from three Portuguese 

collections, see Chapter III) 

 

Table 57. Distribution 

by stage observed in the 

archaeological 

population 

 

 
Stages\ 

Ages 

 

20-29 
 

30-39 
 

40-49 
 

50-59 
 

60-69 
 

70-79 
 

80 + 
 

Total 
 Stages 

 

Population 

0-4 

5-7 

8-12 

13-18 

19-23 

24-30 

31-40 

Total 

85 

6 

6 

5 

3 

3 

1 

109 

40 

13 

11 

2 

6 

5 

6 

83 

45 

12 

15 

11 

6 

6 

2 

97 

26 

10 

14 

13 

11 

12 

14 

100 

11 

2 

6 

13 

7 

19 

12 

70 

7 

4 

11 

11 

12 

13 

8 

66 

5 

5 

5 

11 

8 

12 

23 

69 

219 

52 

68 

66 

53 

70 

66 

594 

0-4 

5-7 

8-12 

13-18 

19-23 

24-30 

31-40 

Total 

6 

2 

4 

5 

3 

9 

8 

37 

 

 

** 

Although these figures sum to unity, they cannot now be used as a weighting system, since 

some are negative and others exceed unity. The numbers observed here are too small to give 

an age structure with all values lying within [0, 1]. The analytical method cannot provide an 

acceptable estimate here. Naturally, a positivity constraint could be introduced for the 

probabilities, but in that case some estimates would be zero, which would still not be 

satisfactory. 

                                                 
182

 The stage division adopted here is slightly different from that used in Chapter III.1.2., 

since there needed to be at least as many stages and age groups (7). 
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Whereas the least squares method always gives an identical solution, since l = c = 7, the 

maximum likelihood method, with its standard algorithm, leads to the following solution: 

10p20 = 0, 10p30 = 0.110, 10p40 = 0, 10p50 = 0, 10p60 = 0.614, 10p70 = 0, 10p80+ = 0.276. 

As can be seen, this algorithm, which imposes positive probabilities, leads to a totally 

different estimate for the age structure, with four age groups with zero values. Once again, the 

solution is not acceptable. 

However, in this case, where l = c, it is possible to estimate the maximum likelihood solution 

directly, because we obtain a square matrix that can be inversed. It can be verified that the age 

structure is the same as that obtained by the analytical solution or the least squares method. 

2.5. Critique 

First, some authors use this method where l > c. In some cases, the algorithm appears to 

converge towards a solution, but the variance of the estimates increases excessively and the 

method loses any potential interest . For example, Bocquet-Appel and Bacro (1997) apply this 

method to estimate seven age classes though they have only six stages. Although the iteration 

results seem to converge properly, Konigsberg and Frankenberg (2002) estimate that the 

standard deviations of these estimators are respectively 

(576  3.156  9.496  14.355  25.786  22.084  3.737),  

demonstrating that the results are incoherent. An even more extreme example is Jackes' 

(2000) attempt to estimate 17 age classes with only 6 stages. Her results include a large 

number of zero-value age classes, clearly indicating that the model has not been identified. 

Furthermore, since this iteration procedure cannot provide negative probabilities, which 

should happen here, the positive results do not even verify the conditions in which the 

columns of the estimated matrix come closest to those of the reference matrix. Konigsberg 

and Frankenberg (2002) clearly state the conditions required to obtain a solution, as we have 

done above: the number of stages must be equal to or exceed the number of age groups 

considered. This condition is not verified in all the preceding examples, which explains the 

incoherencies.  

Whereas Konigsberg and Frankenberg (1992) consider that they can correctly estimate the 

age structure of the observed population by this method, Bocquet-Appel and Masset (1996) 

believe that an estimate of this sort cannot yield any valid conclusion as to the shape of the 

sample age distribution. They think this is due to the random fluctuations of the ageing 

process, in both the reference population and the observed population. Consequently, they 

only use this method to provide estimates of the mean of the age distribution, whatever its 

actual shape. They consider this estimate of the mean as precise enough to be accepted with 

greater confidence. However, where the estimate of age structure is as implausible as in the 

example provided by Masset (1982), cited above, the average age calculated from this 

structure is unlikely to be more reliable. 

As we have already said, the approximation method was devised empirically, after its 

supporters had noted that the method presented in the earlier section did not give satisfactory 

results, and had no clear mathematical justification. Not only did they doubt its validity for 

calculating an age structure, but they even thought that starting from a uniform distribution for 

age was likely to produce an unsatisfactory solution. One of the authors (Bocquet-Appel, 

2005) states: 

The uniform distribution was deliberately entrenched to eliminate the influence of the 

reference anthropological sample (Bocquet-Appel and Masset, 1996) but this prior 

distribution turns out to be a hindrance. It eliminates from the outset a large number of 

possible archaeological situations that are not represented by a uniform distribution of 

skeletons (page 279). 
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We have already shown, in the case of the simple example with two age groups and two 

stages, that this method covered all possible age distributions. Similarly, Konigsberg and 

Frankenberg (1992) state that the result of the iterations is independent of the age structure 

taken as a starting point: although a uniform structure is usually taken, this can be replaced by 

any other without changing the result of the iterations, since any distribution that sums to 

unity and has no zero cells is acceptable. The uniform distribution inserted in the proposed 

solution is no justification, in our opinion, for rejecting the IALK method, despite what 

Bocquet-Appel has suggested. 

2.5.1. The IBFP method 

We turn to the iterative method he proposes (Bocquet-Appel, 2005, 2008a; Bocquet-Appel et 

Bacro, 2008) and calls IBPFP (Iterative Bayesian Proportional Fitting Procedure), an 

inappropriate name since the approach involves neither the methods usually called IPFP nor 

Bayesian methods. It aims to avoid the use of a uniform prior distribution. 

Let us first describe the principle of the method. Since starting from a uniform age 

distribution appears to impose constraints in finding the age structure of a population for 

which only the stage structure is observed, it would seem to be more useful to start from more 

general distributions taken from a universe of possible demographic models of mortality. We 

use, therefore, the data from the reference population to calculate the probabilities for the 

stage indicator given the age. The reason is that from each of the prior age distributions it is 

possible to calculate the stage probabilities. We construct an indicator that indicates the 

variation between that probability and the one provided by the observed population. In the end 

we take the age distribution that minimises that indicator. 

The problem is that from one publication to another, the method used for this purpose leads to 

different calculations. First, let us examine the presentation given by Bocquet-Appel in La 

paléodémographie (2005). 

The algorithm he proposes is based on the probability of belonging to stage i, for individuals 

in age class j, fij, considered to be accurately known for the reference population. He then 

starts from each of the prior probabilities of belonging to age class j, 



p j

0 , provided by the 

various types of distribution considered here (Beta, non-central Beta, Weibull and Bi-

Weibull). He attempts first to calculate the posterior probability of belonging to age class j, 

where the probability ip  of belonging to stage i is known from the observed population. He 

obtains (page 296) 



p j

1   i

f ij p j

0

f ij p j

0

j1

c

i1

l

  

This estimate turns out to be identical with the first iteration of algorithm [2], corresponding 

to the IALK method, and not that of the approximation method [3]. The result is that the 

subsequent iterations, given in greater detail (Bocquet-Appel, 2005, p.296), if taken far 

enough, should lead to the same age distribution whatever prior distribution one starts from. 

But the author ends the iterations when the variation  between the observed and estimated 

frequencies by stage falls below the threshold of 10
-5

, without giving any reason for this 

choice. 

This manner of operating is confirmed by the example of the Loisy-en-Brie population 

(Bocquet-Appel, 2005, p. 297-298), presented above as Example 3 of the maximum 

likelihood method, with prior age probabilities  

(0.10191  0.23279  0.26755  0.22668  0.1361  0.03497).   

Taking the 10
-5

 threshold, we calculated that the IALK method leads to age structure 
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(0.212  0.155  0.332  0.201  0.061  0.039), 

compared with Bocquet-Appel’s estimate (op.cit., top of page 297) rounded to three decimal 

places 

(0.212  0.156  0.332  0.201  0.061  0.038), 

which is practically identical. 

But in this case, whatever the values of the Beta distribution parameters, the calculated 

variations are all in principle very close to the 10
-5

 variation, and it is hard to see how the 

choice of parameters that give the smallest variation  can lead to a final result. Nor is it clear 

what age distribution is to be chosen: the one we start from or the one we arrive at when the 

variation is 10
-5

, which are quite different from each other. 

Furthermore, if the iterations are continued, all these distributions will tend towards the IALK 

solution given above  

(0.220  0.117  0.332  0.196  0.040  0.045). 

This is exactly the solution obtained by continuing the iterations proposed in Bocquet-Appel’s 

article, taking a variation of 10
-10

 after 5,587 iterations. 

The result is that this first approach does not seem to lead to a fully satisfactory solution for 

estimating an age distribution, whatever family of demographic distributions is taken as a 

prior. 

2.5.2. The Iterage program 

To understand more clearly the presentation by Bocquet-Appel (2008a) and Bocquet-Appel 

and Bacro (2008b) in more recent books, it is necessary to refer to the Fortran program 

Iterage.for, released in August 2007, which can be downloaded from Bocquet-Appel’s site: 

http://www.evolhum.cnrs.fr/bocquet/index.html. 

This time, the authors draw 1,000 equally probable samples with replacement by the bootstrap 

procedure from each of the age groups in the reference population. Unlike in the previous 

approach, this population is no longer fixed but can vary from one draw to another. Basically, 

this procedure is introduced so that the confidence intervals for the age distribution can be 

estimated. For each of these reference populations, the authors then use each of the prior 

probabilities by age, calculated from a mortality model including both usual and crisis 

mortality, to calculate a distance between the breakdown by stage of the observed population 

and that obtained by calculation, from each prior probability and the stage structure for each 

age in the reference population. 

For that purpose, however, the authors appear to have returned to the method used in the 

earlier article by running iterations, in this case 1,000, and comparing in each iteration the 

stage structure of the observed population with that provided by the prior probabilities by age. 

Here we appear once more to come across the shortcoming mentioned above: for a reference 

population drawn by bootstrap, all the estimates taken from different prior age structures 

converge on the same solution. However, since this convergence is a slow one, the 1,000 

iterations will produce solutions that appear to be different. 

On closer inspection, it can be seen that the formulation of these iterations is almost identical 

to formula [2], except that the observed frequency i is replaced by its estimate, with the help 

of prior probabilities pi: 



pi  f ij p j

0

j1

c

  

and its first iteration is therefore transformed into 
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

p j

1  pi

f ij p j

0

f ij p j

0

j1

c

i1

l

  

In this case, it is easy to verify that 



p j

1  equals 



p j

0  and there is no point in continuing the 

iterations. This means that, contrary to what one might imagine from the complexity of this 

subroutine, one simple calculation leads directly to the result pi. For each prior probability 

there corresponds one distance between pi and i. 

The authors state that this procedure does not permit any valid estimate of the terms in the 

matrix fij, which is now random, but can be used to choose for each sample the prior 

probability by age that provides the smallest distance from the stage structure of the observed 

population. They then calculate the mean of each of these probabilities and estimate a 95% 

confidence interval with the various bootstrap estimates. However, although the bootstrap 

technique can be used when the model is properly specified, it is known that no theoretical 

result can be used to validate its results when, as here, an empirical model is used with no 

sufficient specification. 

For this program, the authors slightly modified the Loisy-en-Brie data: but it is easy to use the 

stage data cited in Bocquet-Appel (2005). They also modified the age groups, using seven 

instead of six. We showed above that if a number of age groups greater than the number of 

stages is taken, it is impossible to solve the system of equations. The new program makes it 

possible and the results can still be compared with the previous ones by interpolation (failing 

which, the calculation of the 753 age probability vectors for six instead of seven age groups 

becomes unnecessarily cumbersome, and the authors do not supply the formulae used). For 

the Loisy-en-Brie example, the authors’ program leads to the following solution: 

10p20 = 0.125, 10p30 = 0.133, 10p40 = 0.172, 10p50 = 0.199,  

10p60 = 0.185, 10p70 = 0.125, 10p80+ = 0.061. 

The program provides the mean chi-square distance between the observed and calculated 

stage distribution, 0.090. But this is not a chi-square distance, because it is calculated with the 

formula 



2  mi

 i  ˆ i 
2

ˆ i













i

  

where mi is the observed number of skeletons at stage i, and πi, and 



ˆ i  the frequencies by 

stage of the observed and estimated population, respectively. A standard chi-square distance 

should include the total number of observed skeletons m and not the number mi by stage. The 

effect is that the value calculated by the authors’ program underestimates the real chi-square 

distance. From these proportions of deaths, calculated for the first group over seven years and 

the following over ten years, it is possible to construct the curve that gives the survival 

probabilities of this population (Figure 69). 

From this curve, it is possible to calculate the twelve-year survivors by interpolation (see 

Figure 69) and thus the following structure of age at death: 

12p23 = 0.203, 12p35 = 0.182, 12p47 = 0.220, 12p59 = 0.213, 12p71 = 0.142, 12p83 = 0.040. 
This structure will be used as a basis for comparison with the Bayesian estimates we provide 

below. 

However, in the case of the Maubuisson nuns, it is possible to start from the matrix of prior 

probabilities for normal pre-industrial mortality, known as attritional (20 to 80 years and 

above, in seven ten-year groups), the female Lisbon reference population (see Chapter III) and 

the distribution of observed deaths for seven stages, and use the Iterage.for program to 

estimate the distribution of death in the seven age groups. This gives 

10p20 = 0.025, 10p30 = 0.036, 10p40 = 0.073, 10p50 = 0.133,  
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10p60 = 0.210, 10p70 = 0.268, 10p80+ = 0.255. 

This breakdown will also be used for comparison with the Bayesian estimates we make 

below, particularly since we have an exhaustive estimate of these deaths during the period 

1670-1789: 

10p20 = 0.012, 10p30 = 0.025, 10p40 = 0.087, 10p50 = 0.170,  

10p60 = 0.289, 10p70 = 0.210, 10p80+ = 0.207. 

It can already be seen that, although the deaths in the first two ages are reasonably estimated, 

the quality of the estimates declines sharply for the following age groups. 

Although this method does introduce a random element into the reference population, it is still 

not fully Bayesian, because the observed population is considered here to be non-random. The 

effect is that the variances calculated by the program must be strongly biased, and for this 

reason we have not addressed the point here. In fact, as we shall see below, it is more 

important to consider the observed frequencies as random than those of the reference 

population. And by choosing the age structure from a parametric model of mortality, this 

method, like the previous one, introduces a structure that is not necessarily verified by past 

populations. If the solution lies outside the proposed list, the authors have no way of verifying 

that fact. 

Figure 69. Survival probabilities at Loisy-en-Brie, estimated by Bocquet-Appel and Bacro’s 

Iterage.for program, interpolated to obtain survivors every twelve years. 

 
 

3. Conclusions 

After this overview of the methods used by paleodemographers, we can see first that finding a 

table with observed stage totals where each term comes as close as possible to an initial table 

is not the best method. It assumes that the sum of the distances between each term in the 

reference and observed matrices must be minimised, without allowing for the asymmetric 

structure of the table, where it is the stage distribution for each given age which must be 

considered as invariant. 

A much more satisfactory method is to find a table, still with observed stage totals, where the 

columns come as close as possible to those of an initial table. This complies with the 

invariance hypothesis that says that for a given stage the age distribution of individuals is 

independent of the population. However, a large number of conditions that validate this 
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estimate by iteration are generally left unexplained by paleodemographers, who also fail to 

mention that, even in acceptable conditions, these methods can lead to unacceptable solutions. 

The general use of this method, which amounts to assuming that the observed population must 

follow one of the distributions in a universe of mortality models, may be of interest for 

providing a prior distribution for a genuinely Bayesian model. However, Bocquet-Appel and 

Bacro' approach is not strictly speaking a Bayesian generalisation of the second type of model 

but rather a highly empirical approach that does not consider the random nature of the 

reference data. Furthermore, it only holds if the observed population follows one of these 

distributions 

In the following chapter, co-written with Henri Caussinus, we examine in greater detail the 

second type of model, generalising it as a fully Bayesian model that allows for uncertainty in 

all the starting data. 
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Chapter B 

A new method for estimating age-at-death structure  
Henri Caussinus and Daniel Courgeau 

1. Introduction 

The previous chapter presents the main methods hitherto recommended for estimating a 

population’s age structure. This chapter proposes a new method based on a precise statistical 

model taking into consideration the essential specificity of the data upon which the estimation 

is based. 

First the notation, which is basically that of the previous chapter. We denote ijp  the 

probability that an individual taken at random from the study population belongs to age class j 

(j = 1, …, c) and stage i (i  = 1, …, l) of a given indicator; the sum of the ijp  with respect to i 

is denoted 
jp  (the probability that an individual is aged j), the sum of the ijp  with respect to j 

is denoted 
i  (the probability that an individual is at stage i); the conditional probability of 

stage i being at age j is denoted 
ji

p . These various probabilities are positive and satisfy the 

equations  
j

j
i

i p 1  and 1
i

ji
p for all values of j. They are also connected by the 

following equation: 

 i
j

jii pp   for all values of  i  = 1, …,l                                                                           [1] 

In practice, the estimation must be made with data nij, the number of observations of stage i 

and age j in a reference base (i  = 1, …, l and j = 1, …, c), and mi, the number of observations 

of stage i at the site in question (i  = 1, …, l; mm
i

i  ): these data are shown in Tables 53 

and 54 in the previous chapter. The invariance hypothesis assumes that the probability 
ji

p of 

stage i occurring at age j is the same for any population; it is possible therefore to calculate 

these conditional probabilities from the reference data even if they come from another 

population. Consequently, the model is parametered by 
ji

p  and 
jp  , with the 

i  being 

deduced if necessary from equation [1]; the parameters of interest are clearly the jp , whereas 

the 
ji

p  are only of intermediate value. 

The various proposals mentioned in the previous chapter do not take fully into consideration 

the variability of some of the observations: for example, the IALK method replaces each 
ji

p  
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by jij nn .  as if this quantity were fixed and not random
183

, and Bocquet-Appel and Bacro’s 

method (2008) does not fully consider the random nature of the mi, since the results of the 

estimation depend solely on the mi/m ratios (it is clear that the size of sample m affects the 

precision of the estimates, i.e., the confidence intervals). Furthermore, except for Bocquet-

Appel and Bacro’s method, the procedures proposed do not address the specific nature of the 

problem at hand. One does not estimate just any set of probabilities but rather a distribution of 

ages at death for a group of individuals about whom one may even have more precise specific 

information. If we also consider that the data available are usually scarce, this specific 

information is all the more valuable. This may also be concluded empirically from the high 

instability of most of the methods proposed up to now. 

All these points have convinced us of the utility of introducing the Bayesian method we 

present in Section 2. A few simulations in Section 3 show that this method appears to 

effectively replace most of the former methods; they are also used in the discussion of certain 

questions of calibration. Section 4 addresses particular examples and provides comparisons 

with other approaches from a new angle. 

One final point concerns vocabulary. Some methods in the literature may appear to be 

Bayesian in so far as they make use of the so-called Bayes formula or introduce a priori 

considerations into the resolution of estimation problems, but the paradigm on which they are 

based remains frequentist.
184

 The method we present here, on the other hand, is Bayesian in 

the sense most often used in statistics: it is considered that the parameters themselves are 

random, with a probability distribution, called prior, chosen by the user to reflect his(her) 

knowledge (and ignorance) before the observation; this distribution is then corrected in 

response to the observations to achieve a posterior distribution, which is the observation-

based probability distribution of the parameters, and, more specifically in our case, the 

posterior distribution of the parameters of interest pj (j = 1, …,c). 

2. A Bayesian estimation method 

2.1. Model and principle 

It is natural to suppose that the frequencies mi (i  = 1, …,l) observed on the site for various 

stages are the observed values of a multinomial distribution whose parameters πi are linked to 

the pj and 
ji

p  according to equation [1]. We shall use these parameters to pursue the 

modelling. 

We denote by G the prior density of parameters ji
p , i = 1,…, l and j = 1,..., c (we shall see 

how G can be expressed in Section 2.2) and assume that the parameters pj (j = 1,…, c) have a 

prior density g (also discussed in Section 2.2) and are independent of the 
ji

p . 

If we denote by M the vector of mi, P the vector of  
ji

p  and p the vector of pj, the joint 

density of (M, P, p) will be f given by 

                                                 
183

 The IALK method can be modified to take account of this randomness. One proposal is 

given in Appendix B; while this does improve the method in some ways, it may weaken it in 

others, which confirms our view that more radical changes in viewpoint are necessary. 

184
 This is true of Bocquet-Appel and Bacro’s method (2008), which takes account of the 

nature of the probabilities to be estimated by reducing the parametric space of the standard 

framework. 
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where the index i always goes from 1 to l and the index j from 1 to c. 

The marginal density of the pair (M, p) is 

 dPpPMf ,,
 

and the marginal density of M is 

  dPdppPMf ,,  

whereby the integrals are taken over the variation domains of P or p and P, which are a 

simplex (for p) or a product of simplexes (for P). 

The conditional density of p, given M, is therefore 

 
 



dPdppPMf

dPpPMf

,,

,,
 

This is the posterior density of pj  (j = 1, …,c) on which the Bayesian estimation will be 

based. 

For example, one may have the posterior mean of pj  

 

 



dPdppPMf

dPdppPMfp j

,,

,,

 
More generally, the conditional expectation given M of a function  of p will be given by 

   

 


dPdppPMf

dPdppPMfp

,,

,,
                                                                                            [2] 

                                                        

     

We thus obtain, for example, the kth-order moment of pj with φ(p)= k
jp  . Taking for  p  the 

function that equals 0 for pj  > x and 1 for pj  <  x (indicator variable of the event xp j  ), we 

express the posterior distribution function for pj at point x. 

The various integrals in expression [2] may be evaluated by a Monte Carlo method as follows. 

We denote  cXXX ,,1   a random vector with density distribution g and Y a family of c 

vectors  jljj YYY ,,1   (j = 1,…,c), whose joint distribution is independent of X and admits 

density G. We verify that expression [2] equals 























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




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







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



 
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i
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ijj
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YXXE )(

 
Let us generate S independent sets of such random vectors (X,Y), with s (s = 1,…,S) 

representing the iterations. By virtue of the law of large numbers, if S is large enough, the 

expression above is approximated by 
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This supplies the posterior expectation of each ph (h = 1, … ,c) – which can be taken as a 

point estimate – or the posterior variance useful for characterising the accuracy of the 

estimate. The same principle can be applied to evaluate cross-moments, such as the 

covariance matrix of the posterior distribution of the ph parameters. The posterior distribution 

function of a ph parameter can be used, for example, to calculate intervals containing that ph 

with a given probability, known as credibility intervals, which are the Bayesian equivalent of 

the confidence intervals of the standard system. 

2.2. Use in practice 

2.2.1. Choice of prior distributions 

a. Density G 

The only source of information on the conditional probabilities 
ji

p   is the reference data. If 

they are raw data merely obtained by recording the stage frequencies on a sample of skeletons 

of known ages, we can logically conclude that, for each age class j (j = 1,…,c), the 

frequencies nij are the observed values of a multinomial distribution with a total nj and 

probabilities 
ji

p (i = 1,…,l). Adopting a prior distribution for the 
ji

p  probabilities, we 

deduce the  conditional distribution given the reference data. We take it, in turn, as the prior 

distribution of the 
ji

p  probabilities in the final model. Given the absence of supplementary 

information on these 
ji

p  probabilities beyond what is contained in the reference data, it 

makes sense to adopt a uniform distribution as the prior distribution of the
ji

p   probabilities 

for each j. For a given j, we find a posterior distribution of the 
ji

p  probabilities that 

represents a Dirichlet distribution (see Box 9) of parameters αij = nij + 1 (i = 1,…,l). Density G 

is then the product of c Dirichlet densities, namely 

 

 






i j

ji

i j
ij

j
j

ijppG
1

.

)(






 
In practice, the raw data may be “processed” in various ways (for example, in order to achieve 

the right weighting between male and female samples), so that their distribution is no longer 

strictly multinomial. However, the prior G as defined above appears still to hold, since the 

multinomial nature of the reference data is more an indication than a necessity for arriving at 

that distribution. 

The choice of G may be refined in various ways. For example, in order to avoid excessive 

confidence in the reference data, the αij may be multiplied by a “reducing” coefficient r (0 < r 

< 1) with a choice of αij = r(nij + 1), which does not affect the prior mean values of  
ji

p  but 

increases the prior variances, thereby expressing the degree of doubt. These variances are 

roughly multiplied by 
r

1
 ; note that it is very broadly equivalent to assume that the nij are 

multiplied by r, another way of reducing the information contained in the reference data since 
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it amounts to assuming that the relative frequencies observed in the data reference are retained 

but taken from a smaller sample.  

 

 

           Box 9. The Dirichlet distribution 

Let D be the subset of k  defined by: 

  1,...,10,...,
1

1  


k

i
iik xandkiallforxDxxx . 

and  kaaa ,...,1  a vector of strictly positive real numbers. 

The random vector  kXXX ,...,1  follows a Dirichlet distribution with parameter a 

if its probability density d is such that: 
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where 


k

i
iaa

1
.  and Γ is the Euler’s Gamma function defined by 




0

1)( dxxep px . 

Note that d is constant over D (uniform distribution) when 1ia  for all i. The 

marginal distribution of iX  is Beta with parameters  ii aaa ., . The moments of iX  are: 

 
.a

a
XE i

i   

   
 1

.1

..

2






aa

aa
XE ii

i    ,  
 
 1.

2
.

.






aa

aaa
XVar ii

i  

More generally, the moment of order h  1h  is: 

  









1

0 .

h

j

ih
i
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ja
XE  

We have also, for ji   :  
 

 
 11

.
2
... 





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aa
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aa

aa
XXE
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ji
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ji . 

 

Remarks 

1. The iX  means, 
.a

a
e i

i  , are proportional to the ia ; they remain unchanged if the ia  are 

all multiplied by the same positive number s. We can write:  
 

1

1

. 




a

ee
XVar ii

i  ; 

hence, for equal means, the variances are larger when the ia  are smaller: if ia  is 



219 

 

multiplied by s, then  iXVar  is multiplied by 
.

.

1

1

as

a




, a decreasing function of s (if .a  

is large enough, this is almost equivalent to multiplying  iXVar  by 
s

1
). 

2. In the Bayesian statistical framework, one says that the Dirichlet distribution is 

conjugate to the multinomial one; when the prior distribution of the parameters of a 

multinomial law is Dirichlet, the posterior distribution is another Dirichlet distribution 

whose parameters are obtained by adding the vector of observed numbers to the 

parameter vector of the prior. 

 

b. Density g 

The choice of the prior distribution for the pj parameters is a trickier matter. We give our 

preferred method first, which will be systematically used in this chapter. But we shall also 

briefly mention other possibilities, some of which merit further examination. 

As there is no clearly designated “class” of distributions from which to select the prior 

distribution, the most sensible course is to opt for a Dirichlet distribution, which is well suited 

to probability vectors. This leaves the problem of choosing the distribution parameters, say 

(β1,…, βc). In the absence of specific information, we can, as above, choose a uniform 

distribution and take βj = 1 for all j. This is a “neutral” choice and may sometimes be justified. 

It also yields reasonable results with simple examples. However, in paleodemography, other 

choices would appear to be preferable as certain information is naturally available. We can, 

for example, take a “standard” mortality distribution and calculate the probabilities for each of 

its age classes. The class probabilities become the means of the prior distribution. This gives 

the parameters βj up to a proportionality coefficient (see Box 9), i.e. the βj / β.  values, where 

β.  is the sum of the βj parameters over j = 1,…,c. The remaining step is to choose β. , i.e. in 

practice, the prior variances. Note that the variances need to be relatively large in order to 

express the fact that the prior means are not very reliable and that the prior distribution should 

not play a dominant role – in other words, that the family of possibilities envisaged covers a 

broad field. Hence β.  should be fairly small, say, below unity or barely above. We shall see 

that this is indeed the case in the simulations examined below. 

Note that the prior means may be seen as “test” values: if the data are scarce and the estimates 

consequently imprecise, it is helpful to use the posterior distribution qualitatively by 

observing in which direction these means move, i.e. how the data “correct” the prior values. 

This principle for the choice of the prior distribution may be extended in a number of ways. 

For example, instead of choosing a standard mortality distribution as the basis for 

constructing the prior distribution, one may choose a mix of two “standard” distributions, 

leading to a mix of two Dirichlet distributions. These might be the mix (in carefully chosen 

proportions) of a routine mortality distribution (attrition) and a catastrophic distribution. 

Clearly, quite different approaches are also possible, such as, along the lines of Bocquet-

Appel and Bacro’s proposals (2008), defining the prior distribution as a uniform distribution 

on a finite set of distributions corresponding to standard mortality distributions. We have 

examined this in Caussinus and Courgeau (2010), together with the comparison of our method 

with that of Bocquet-Appel and Bacro. As standard mortality distributions, rather than the 

“artificial” distributions proposed by these authors, one may consider the distributions used to 

construct the pre-industrial standard (Table XIX)???. This deserves further research; however, 

this type of prior distribution is likely to place too much weight on routine mortality and be 

less effective in identifying specific situations of interest. Even if a Dirichlet prior as 
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described is not necessarily optimal, it does provide a flexible general approach that is easy to 

implement: it is therefore the only one we consider below. 

2.2.2. Posterior distribution and credibility intervals 

Earlier, we saw how to calculate the posterior distribution function for each pj  point by point. 

The posterior density for each pj can be numerically derived and then appropriately smoothed. 

A graphical display of the densities may help in interpreting the numerical results. In some 

cases, the posterior density of each pj can be approximated by a Beta density with the same 

mean and variance, which, for example, simplifies the evaluation of densities. Approximation 

quality can be controlled to a certain extent via higher-order moments: one can check the 

proximity of the beta distribution’s third- and fourth-order moments with respect to the 

corresponding moments of the “true” posterior distribution, easily calculable by simulation, as 

seen above. Note, however, that this type of approximation is not always valid and must be 

used with care, and avoided in those cases where exact calculations can readily be performed. 

After calculating the posterior distribution function for each pj, we can determine α-credible 

intervals (Robert, 2006, p. 278) in which a pj parameter has a probability 1 – α conditional 

upon the observations. It is preferable to use the exact posterior distribution function, but in 

some cases the approximation by beta distribution mentioned above
185

 is acceptable. 

Finally, note that it is extremely inadvisable to use an interval of the “mean plus or minus one 

(or two) standard deviations” type because the posterior distribution is, in most cases, highly 

asymmetric. 

2.2.3. Size of the reference data table 

System [1] described in Section 1 is undetermined if the number of rows (stages) l is smaller 

than the number of columns c (ages). In other words, the parameters of interest are not 

identifiable, given that several values lead to the same distribution of observable samples. The 

Bayesian method avoids the difficulty by starting with a prior distribution, and the aim is 

simply to make it change by means of the data. The posterior distribution steers us towards a 

distribution of the unknown parameters, which is wholly compatible with the fact that they are 

not completely determined. This method can therefore be used with l < c. Clearly, the 

posterior distribution can be somewhat dispersed, which merely reflects the indeterminacy 

inherent in the situation. 

3. Brief simulation study 

The following examples, taken from a wider study, are intended to illustrate the properties of 

the recommended Bayesian method and to specify certain points in the choice of parameters 

for the prior distributions. The first two examples are elementary and do not refer specifically 

to the nature of the underlying application, although they are described in the “language of 

paleodemography” (ages, stages) for the sake of consistency and to simplify explanation. The 

third and fourth examples are more directly connected to applications in paleodemography. In 

order to compare the Bayesian method with frequentist methods, we only consider the point 

estimates it provides with the posterior mean.  

                                                 
185

 One example is the set of data processed in Section 4. But there are cases where this 

approximation is highly unsatisfactory: an example of a bimodal posterior distribution is even 

given in Séguy, Caussinus, Courgeau and Buchet (2012). 
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In all events, we start from a population distributed by two discrete features with l (in lines) 

and c (in columns) classes respectively. We assume as known the probabilities pij that an 

individual will be located in line i and column j. We then simulate a large number R of 

situations, taking each time a multinomial sample with l categories and probabilities πi in 

order to simulate the site data and also c multinomial samples with, for the jth, the probability 

ji
p  for the ith class, in order to simulate the reference data. Each repetition leads to estimates 

of the probabilities pj  (the desired structure by age) by various methods. 

In Examples 1, 2 and 3, we evaluate the least-squares regression method, the IALK method 

(which we prefer to call “Maximum Likelihood 1”), the Maximum Likelihood 2 method 

described in Box 10, and the proposed Bayesian method, by comparing the estimates found 

with the true values of the parameters, known in this case. These results are given both 

graphically in the form of frequency histograms for the estimated probability of being in one 

of the age groups, and in the form of standard summaries: mean, standard deviation and mean 

squared error. We know that the mean squared error of an estimator X of the real parameter  

equals the expected value of the square of the X- difference, or E[(X-)
2
] = Var(X) + E[(X-

E(X))
2
]; it accounts therefore both for the variance of the estimator, the first term in the sum 

above, and for its bias, the second term in the sum. 

In Examples 3 and 4, we add the comparison with the Bocquet-Appel and Bacro method 

(2008), since its restriction of parametric space only becomes fully meaningful with 

paleodemographic data; in both examples we have chosen a breakdown into age classes 

compatible with the authors’ “prior” datasets. In these larger examples, the quality of results 

is examined with an overall criterion of distance between the vector of true probabilities and 

the vector of estimated probabilities. In fact, two criteria are used: the sum of mean squared 

errors obtained for the various age classes (“total MSE”) and an analogous sum weighted by 

the true probabilities [as in a chi-square test], (“relative MSE”). 

Example 1 

We first take the two-row two-column example from the previous chapter, drawing 

multinomial samples of 20 by the probabilities considered in that chapter:  as conditional 

probability (reference) for Line 1 we have 0.667 for Column 1 and 0.25 for Column 2; the 

marginal probability for Line 1 is 0.6. There is only a single parameter to be estimated in this 

case, for example, the probability for Column 1, which we know to be 0.84. We run 1,000 

iterations, obtaining different samples. Since l = c, equivalent results are obtained for the 

“corrected” regression (i.e., least squares subject to positivity constraint) and Maximum 

Likelihood 1 (IALK). 

“Ordinary” regressions with no positivity constraint run on each of these samples gave 347 

“estimates” greater than unity, which is understandable since the true probability is fairly 

close to unity, and also 11 negative values, which is more surprising. In fact, there is a wide 

dispersion of results (standard deviation 0.63) around a mean close to the true value, but 

which hardly make sense. Correcting the higher estimates to unity and the negative ones to 

zero, the mean obtained is 0.78, standard deviation 0.25, and mean squared error 0.06. The 

histogram of estimated values is given in Figure 69 (left). 

 

Box 10. Another maximum likelihood approach: ML2 

Let us consider the following statistical model which takes into account the random character 

of all the data. The set of parameters is the set of probabilities ijp  (i  = 1, …, l and j = 1, …, 

c); their sums over i are denoted 
jp  while the sums over j are denoted 

i . For each  j 
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 cj ,,1 , the nij  li ,,1  are the observed frequencies of a multinomial distribution 

with l categories, the total number of trials being nj and the cell probabilities pi/j = pij/pj 

 li ,,1  ; the frequencies mi (i=1,…l) follow a multinomial distribution with l categories, 

total number of trials m and cell probabilities πi   li ,,1 ; these c+1 multinomial 

distributions are independent. Up to an additive constant, the log-likelihood is: 

                          i

i

ijij

i j

ij mppn lnlnln    

Under the usual constraints on the set of probabilities ijp it can be shown that this function has 

a unique maximum, either inside the parameter space or on its boundary. In both cases, this 

maximum likelihood solution can be obtained by a suitable algorithm, for instance by the 

constrOptim procedure in the R package (R Development Core Team, 2008). We shall call 

this estimating method “Maximum Likelihood 2” (ML2). 

In practice, the parameters of interest are the
jp  cj ,,1 . It is worth noting that, even if 

the maximum of the likelihood is reached on the boundary (i.e. at least one of the ijp is equal 

to zero), this does not mean that the corresponding
jp vanishes since this is only the case if  

ijp = 0 for all i  = 1, …, l. 

 

For the Bayesian model, we first take “neutral” prior parameters β1 = β2 = 1. We obtain 

estimates with mean 0.64, standard deviation 0.12, and mean squared error 0.05. The 

corresponding histogram is given in Figure 69 (centre). 

It can be seen that the Bayesian method is more satisfactory, even when the situation is highly 

unfavourable for it, with a probability to be estimated relatively close to unity and a prior 

distribution that allocates a mean of 0.5. 

If it is known in advance that the probability to be estimated is “fairly high”, this may be 

allowed for in the value of β1; to check the impact we repeat the estimation with β1 = 1.5 and 

β2 = 0.5. We obtain a mean estimate of 0.78, standard deviation 0.11 and mean squared error 

0.01. The estimates are consequently much better, and this is also illustrated in Figure 69 

(right). In general terms, therefore, if one has some idea of the age distribution of the observed 

population , it should be introduced into the model without hesitation. However, in practice, it 

must be borne in mind that the choice of the prior distribution must be justified. 

Figure 69. Simulations – Example 1: histograms of estimates of the probability of belonging 

to the first age group obtained in 1,000 iterations. Left: “corrected” regression; centre: 

Bayesian method with β1 = β2 = 1; right: Bayesian method with β1 = 1.5 and β2 = 0.5 
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Example 2 

This example corresponds very closely to the second theoretical example (3 stages and 2 

ages) in the previous chapter. The conditional probabilities of the three stages are (0.6250  

0.3125  0.0625) for age class 1 and (0.125  0.375  0.500) for age class 2; the marginal 

probabilities for the three stages are (0.500; 0.328; 0.172) and the marginal probabilities for 

the ages are 0.755 and 0.245. These last two probabilities are to be estimated from 

multinomial samples of stages of size t (chosen as 20). The estimated results are given for the 

first probability (here p), whose true value is 0.755. 

Since in this case l and c are different, the IALK method and the corrected regression do not 

necessarily give the same results, so  it is instructive to compare them. In this comparison, we 

also introduce the Maximum Likelihood 2 method (Box 10) and our Bayesian method with β1 

= β2 = 1. The histograms of the results are shown in Figure 70 and the key features in Table 

58. 
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Figure 70. Simulations – Example 2: histograms of estimates obtained by four methods (with 

β1 = β2 = 1 for the Bayesian method) 

 
 

Table 58. Simulations – Example 2 – 5,000 iterations. Characteristics of the estimates of p 

obtained by four different methods 

 

 Mean Standard 

deviation 

MSE 

Bayesian method 0.672 0.134 0.025 

Corrected regression 0.724 0.201 0.041 

Maximum Likelihood 1 0.727 0.197 0.039 

Maximum Likelihood 2 0.737 0.205 0.042 

As we said above, we use the term “Maximum Likelihood 1” for what is more generally 

known as the IALK method. This is because the name IALK confuses the concept with a 

numerical solution technique which is incomplete in any case. The I in IALK basically refers 

to an “iterative” process that only gives a clear result if the maximum likelihood lies within 

the set of possible solutions and, in that case, corresponds to the zero point on the likelihood 

gradient; we prefer to take the principle of the maximum likelihood method to its logical 

conclusion and also consider a maximum at the  boundary. Although the IALK iterative 

process probably provides the maximum, this has not, to our knowledge, been rigorously 

proven, so we look for the maximum likelihood in all cases by using the constrOptim 

procedure from the R package (R Development Core Team, 2008). The same procedure was 

used to find the maximum likelihood in the more general model underlying Maximum 

Likelihood 2. 

Table 58 shows that the mean squared errors are similar for the corrected regression and the 

two maximum likelihood methods, while that of the Bayesian method is significantly lower, 

although the prior distribution uses no indication as to the true value of p. This in fact explains 

why this method gives the largest bias, fortunately corrected by a much lower variance. 

Maximum Likelihood 1 gives slightly better results than corrected regression, which is to be 

expected, since it accounts better for the nature of the sampling errors. However, it may at 
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first glance seem surprising that Maximum Likelihood 2 is not better than ML1 since, here 

again, it accounts better for the nature of the errors; the reason is probably that the number of 

parameters to be estimated is less parsimonious, which does reduce the bias but increases the 

variance more, and thus increases the mean squared error. Note finally that the individual 

differences between the estimates of the last three methods are quite small, rarely more than 

0.1; in this particular example, regression and Maximum Likelihood 1 relatively often provide 

estimates of p “at the boundary”, with unity in more than 10% of cases and even a certain 

number of zero values (approximately 0.2%). Maximum Likelihood 2 has the advantage of 

leading less often to these results (in our simulations we obtained no zero estimates and only 

1.6% at unity).  

Figure 71. Simulations – Example 2. Histograms of estimates obtained for p by the Bayesian 

method with β1 = β2 = 1 (left) and β1 = β2 = 0.5 (right). 

 

Up to now we have considered the Bayesian method with β1 = β2 = 1 and have seen that it 

performs better than methods based on other principles. However, we still need to examine 

the influence of the parameters of the prior distribution. To avoid giving undue advantage to 

the method we are comparing, we have taken various values for these prior parameters, 

staying within “neutral” prior means (0.50  0.50) but varying the confidence levels, with 

successively 1, 0.75 and 0.50 as common values for β1 and β2. A higher value for βj (1.2) was 

also envisaged. 

The characteristics of the distribution of estimates obtained for p are given in Table 59. 

Table 59. Simulations – Example 2. Characteristics of p estimates by the Bayesian method for 

prior values of β1 and β2. 

 Mean Standard 

deviation 

MSE 

β1 = β2 = 1.2 0.660 0.123 0.024 

β1 = β2 = 1 0.672 0.129 0.024 

β1 = β2 = 0.75 0.688 0.149 0.027 

β1 = β2 = 0.50 0.707 0.163 0.029 

 

Figure 71 also compares the histograms obtained with β1 = β2 = 1 (left) and β1 = β2 = 0.5 

(right). 

In both the numerical values in Table 59 and the histograms in Figure 71, it can be seen that, 

just as with the previous example, reducing the βj slightly reduces the bias (which is due to a 

mean choice of prior probability lower than the true value), but at the cost of a noticeable 

increase in variance; in all, this ultimately gives a slight deterioration in mean squared error 

(MSE). Increasing the βj above unity increases the bias and gives an equivalent mean squared 

error. There appear to be no strong arguments for any particular choice of βj, but the simple 

option β1 = β2 = 1 can no doubt be recommended with no great risk. 

Example 3  

Now we apply simulation to an example that comes closer to the problems encountered in 

paleodemographic practice. We began with the 7 × 7 example of the Maubuisson nuns with 

conditional reference probabilities deduced from the frequencies given in Table 56 of the 

previous chapter, and row (stage) probabilities of 

(0.180  0.068  0.115  0.159  0.119  0.188  0.171). 

These probabilities comply with probabilities of dying in each age class of  

(0.012  0.025  0.087  0.170  0.289  0.210  0.207) 
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as calculated from an exhaustive evaluation of deaths in the period 1670-1789 recorded in the 

registers available. 

The simulation results are therefore to be compared with the second set. The simulation 

involves R = 1,000 iterations, the multinomial samples comprise 37 individuals for the site 

data and are the same size as the reference data samples for the latter. 

We first compare the estimates obtained by the Bayesian method (posterior means) with β = 

(1, 1, 1, 1, 1, 1, 1), by regression (with a positivity constraint), and by Maximum Likelihood 1 

and 2. Table 60 shows the mean of estimates for each age class and each method, and, for 

each method, the total over seven age classes of mean squared errors (total MSE) and this 

same total weighted by the true values of the probabilities (relative MSE). 

 

Table 60. Simulations – Example 3. Means of probability estimates for each age class 

obtained by four methods, and total and relative MSEs. 

Method Age class Total 

MSE 

Relative 

MSE 20-

29 

30-

39 

40-49 50-59 60-

69 

70-

79 

80+ 

Bayes, 

uniform prior  

0.078 0.098 0.102 0.143 0.194 0.182 0.203 0.033 0.751 

Regression 0.001 0.069 0.061 0. 232 0.032 0.402 0. 203 0.233 1.526 

Max. L. 1 0.035 0.056 0.063 0.137 0.253 0.232 0.222 0.253 2.204 

Max. L. 2 0.174 0.071 0. 155 0. 257 0.168 0.125 0. 051 0.170 3.409 

True values 0.012 0.025 0.087 0.170 0.289 0.210 0.207   

 

 

To round out the raw numerical data above, Figure 72 gives the histograms of the frequencies 

of estimates obtained by the four methods for the probability of a single age-class, class 4 

(“true” value 0.17). 

It can be seen that the Bayesian method clearly outranks the other three in terms of mean 

squared error (whether total or relative). For the other three methods, theory predicts that 

where l = c, regression with positivity constraint and Maximum Likelihood 1 should provide 

equivalent results, at least when the estimates are not at the boundary of admissible values. 

And this is indeed observed with other examples not described here. In this case, however, the 

two methods provide fairly dissimilar results; most likely because the results are all at the 

boundary (one estimated probability is zero). It is also clear that the optimisation of the 

functions concerned is highly unstable, which is a further argument against these methods. 

With respect to zero estimates, Figure 72 shows that there are a fair number of them with 

regression and Maximum Likelihood 1, even for Class 4, where the value to be estimated 

(0.17) is not particularly low. 

Figure 72. Simulations – Example 3. Histograms of estimates obtained from 1,000 iterations 

by four methods for probability p4 (with uniform prior for the Bayesian method). 
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Although the Bayesian method is clearly superior to the others, it presents notable biases, 

particularly in estimating the low probabilities of classes 1 and 2.  The method could be 

improved in two ways. One is to adjust the “weighting” of the prior distribution by modifying 

the variance while keeping the same means (equal for each class). It is clear, however, that the 

observed biases are produced by a prior distribution highly unfavourable in its means since it 

allocates the same probability of death to each age class. It would be more realistic to allocate 

to each class a prior mean equivalent to standard mortality rates, and the data collected at a 

given site would serve to modify the standard for that site. 

To test this first attempted improvement, we adjust the variances of the prior distribution 

without changing the means; the βj remains the same for all j but takes successive values 1.25 

, 1,  0.75 and 0.50, so that the variances gradually increase. The means of the estimates 

obtained for these four prior distributions with 1,000 iterations are given in Table 61, with 

total and relative mean squared errors in the last two columns as before. 

It can be seen that βj = 1 is a reasonable compromise. Low probabilities tend to be 

overestimated and high probabilities underestimated; the overestimation of the low 

probabilities is less marked when the βj are smaller, giving a lower relative mean squared 

error, but what is gained in one place is lost in another, so the total mean squared error is 

higher. 

 

Table 61. Simulations – Example 3. Mean of the estimates by the posterior mean from 

identical βj varying from 0.50 to 1.25, and total and relative mean squared errors. 

Value of βj Age class Total 

MSE 

Relative 

MSE 20-29 30-39 40-49 50-59 60-69 70-79 80+ 

1.25 for all j 0.082 0.102 0.105 0.143 0.190 0.177 0.200 0.030 0.811 

1 for all j 0.078 0.098 0.102 0.143 0.194 0.182 0.203 0.033 0.751 

0.75 for all j 0.0678 0.087 0.093 0.141 0.205 0.190 0.216 0.036 0.672 

0.5 for all j 0.059 0.079 0.085 0.141 0.215 0.200 0.221 0.042 0.598 

True 

probabilities  

0.012 0.025 0.087 0.170 0.289 0.210 0.207   
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We now attempt to use standard mortality rates instead of equal prior means. In view of the 

nature of this example, we take the pre-industrial standard mortality for women, which, with 

considerable rounding, gives the following proportions for the seven classes: 

0.10   0.11   0.12   0.15   0.21   0.21   0.10 

The βj are calculated in proportion to these values, with a sum β. varying around 7 as 

suggested by the previous study. 

The results obtained for β., successively equal to 5, 7 and 10, are given in Table 62, with 

comparative figures for a uniform prior distribution. 

The first point to note is that the new prior results in a substantial improvement, in both 

absolute and relative terms, particularly in relative errors because of the major bias in 

estimating low probabilities with a uniform prior distribution. Comparison of the three prior 

distributions deduced from the standard shows relatively similar behaviour, with an advantage 

for a smaller β. if focusing on relative errors, for a larger β. if focusing on absolute ones. The 

choice of β.  = 7 (number of columns) appears to be a good compromise and our conclusion is 

to recommend it. 

 

Table 62. Simulations – Example 3. Comparison of mean estimates obtained from a uniform 

prior distribution (row 1) and three prior distributions deduced from the female pre-industrial 

standard, with total and relative mean squared errors. 

Value of βj Age class Total 

MSE 

Relative 

MSE 

20-29 30-39 40-49 50-59 60-69 70-79 80+ 

1 for all j 0.078 0.098 0. 102 0.143 0.194 0.182 0.203 0.033 0.751 

Standard  

 β.  = 5 

0.054 0.074 0.084 0.149   0.260 0.239 0.140 0.028 0.428 

Standard  

 β.  = 7 

0.059 0.079 0.089 0.148 0.254 0.235 0.135 0.024 0.451 

Standard  

 β.  =10 

0.065 0.084 0.094 0.148  0.246 0.233 0.130 0.022 0.498 

True 

probabilities  

0.012 0.025 0.087 0.170 0.289 0.210 0.207   

 

Actually, for the Maubuisson nuns whose ages at death are simulated in this example, the fact 

that the site is a convent cemetery provides important supplementary information because the 

young nuns were probably in better health on average than the general population and not 

exposed to certain major mortality risks, particularly death in childbirth. The method can 

incorporate this prior information by modifying the βj parameters. For example, we may 

consider that mortality in the 20-29 age class is probably more than halved and that mortality 

in the following age class is also halved. This leads us to consider a new βj vector (



7

6.21
) 
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(0.30  0.40  0.84  1.05  1.47  1.47  0.70) (the coefficient 



7

6.21
 is used to bring total β.  to 7 as 

recommended above). This produces the following mean estimates: 

0.033   0.051  0.107  0.164  0.262  0.245  0.138 

with a total mean squared error of 0.019 and a relative mean squared error of 0.183. 

The improvement is significant, most clearly for the low probabilities in Classes 1 and 2, 

which are most affected by the change in prior distribution, and consequently for the relative 

mean squared error. 

Finally, it is reasonable in this case to use the Bocquet-Appel and Bacro method (2008) with 

the ProbAtri20-90 set of 756 base vectors. Table 63 gives the total and relative mean squared 

errors for the results obtained with that method and the Bayesian method using the βj above 

(MPI means “modified” pre-industrial); for a comprehensive comparison we also give the 

results from Table 8 for the βj corresponding to the pre-industrial (PI) standard. 

Comparing our method and that of Bocquet-Appel and Bacro on this example, it can be seen 

that their performances in this case are similar, with a slight advantage to the Bayesian 

method if an informed choice of prior distribution is possible. 

 

Table 63. Simulations – Example 3. Comparison of the Bayesian method using two prior 

distributions (PI: female pre-industrial standard; MPI: modified pre-industrial standard, see 

text) with the Bocquet-Appel and Bacro method. 

 

Method Total MSE Relative MSE  

Bayes (PI) 0.024 0.451 

Bayes (MPI) 0.019 0.183 

Bocquet-Appel 0.021 0.304 

Example 4 

Here we take an example where the bone stages are subdivided into 5 categories, with the 

same 7 age classes as before. Traditional frequentist methods cannot be used because there are 

more columns than rows, but it is possible to use the Bocquet-Appel and Bacro method with 

the ProbAtri20-90 set of 756 vectors. This example serves to continue the comparison 

between that method and ours. 

The reference data table is the 5 × 7 table for both sexes as follows: 

138  68.8  58.2  33.2  13.4   7.0    5.0 

 42  58.6  54.6  48.8  24.2  26.4  14.6 

 18  25.4  35.4  38.2  31.0  33.8  24.0 

 12 17.0  20.4  35.6  49.2  42.0  36.6 

  4  16.4  12.4  24.6  42.2  32.4  42.8 

We took in turn three different probability vectors for the age classes 

(0.166   0.115   0.150   0.178   0.173   0.134   0.084) 

(0.10   0.10   0.15   0.15   0.20   0.20   0.10 ) 

(0.35   0.09   0.09   0.10   0.18   0.11   0.08 )  

They were chosen to represent realistic situations, assumed to be favourable to one method or 

the other. The first is the vector mean of the ProbAtri20-90 set of 756 vectors; the second a 
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vector close to the pre-industrial standard; and the third the estimate made for the Frénouville 

site. We consider that no particular prior information is available: the Bayesian method is 

therefore used with a prior distribution complying with the pre-industrial standard and β. = 7.  

Table 64 gives the squared differences observed from a simulation of 1,000 repetitions. It can 

be seen that the two methods perform more or less equally for the last case, while ours is 

clearly better for the other two (including the first case where intuition might have suggested 

otherwise). 

Table 64. Simulations – Example 4. Comparison of the Bayesian method (with pre-industrial 

standard prior) and the Bocquet-Appel and Bacro method. 

 

 Case 1 Case 2 Case 3 

 Total MSE  Relative 

MSE 

Total MSE  Relative 

MSE 

Total MSE  Relative 

MSE 

Bayes (PI) 0.001 0.006 0.004 0.028 0.035 0.231 

Bocquet-

Appel  

0.020 0.155 0.022 0.182 0.034 0.248 

 

Conclusion to the simulated examples 

The examples provide initial data for a discussion of the practical aspects of choosing the 

prior distribution. They also show that our method is clearly preferable to any method that 

does not address the specific features of the problem posed. Compared with the Bocquet-

Appel and Bacro method, which makes wide use of these features, our method appears on the 

whole to be perfectly competitive, and much simpler to apply: the choice of a prior 

distribution is clearly easier and more flexible than constructing a set of base vectors. 

However, this comparison merits further examination (on this point, see Caussinus and 

Courgeau, 2010). 

Note that the comparisons above concern the effectiveness of the method in producing point 

estimates. In the section below, we demonstrate a few more of its advantages. 

4. Examples of archaeological application 

We now apply our Bayesian method to the two archaeological examples addressed differently 

in the previous chapter. The choice of the prior distribution will use the principles described 

in Section 3. And a further question will be addressed: how to weight the reference data. This 

was not relevant in the above simulations because the invariance model was assumed to be 

valid by definition. 

Example 1: Loisy-en-Brie population 

The data are those considered in the previous chapter, for which regression was used (or, 

equivalent in this case, IALK). There are six age classes of equal duration and six stages. If 

we have no precise prior information, we can first apply the Bayesian method with β = (1, 1 ,1 

,1 ,1 ,1). Table 63 gives the estimated proportions for each class obtained for two values of 

coefficient r (weighting of reference data): 1 and 0.75. The standard deviations of the 

posterior distributions are also given. 
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Table 63. Loisy-en-Brie example 

Estimated parameters 2312 p
,..., 8312 p

 with β1 = β2 = … = β6 = 1 

 Age class 
23-34 35-46 47-58 59-70 71-82 83-94 

 r = 1 Expected posterior 

probability   
0.148  0.252 0.245 0.174 0.114 0.067 

Standard deviation 0.099 0.162 0.171 0.122 0.094 0.059 

 r = 0.75 Expected posterior 

probability 

0.153 0.247 0.238 0.175 0.116 0.071 

Standard deviation 0.101 0.159 0.165 0.122 0.097 0.062 

. 

The differences in expected posterior probabilities according to r are negligible if one takes 

account of the standard deviations (note that the standard deviations themselves differ little). 

There seems no reason, therefore, to weight the reference data and we continue the study with 

r = 1. 

From the posterior means and standard deviations we can establish the Beta distributions 

approximating the posterior distribution of each of the 6 probabilities of belonging to each age 

class (see 2.2.2.). We first examine how satisfactory this approximation was by also 

calculating the exact distribution functions by the method given in 2.1. Figure 73 compares 

the exact and approximate distribution functions. It can be seen that the approximation is 

extremely close, as is also suggested by the relative difference between the 3rd-order (to the 

power 1/3) and 4th-order (to the power ¼) moments: they are all less than 1.8% for the 3rd 

order and less than 3.8% for the 4th order. In practice the Beta distribution approximation 

appears mainly to provide an opportune sort of smoothing. 

 

Figure 73. Loisy-en-Brie example (6 age classes) 

 
Exact (black) and Beta approximate (green) posterior distribution functions. 

In the light of these results, we consider the Beta approximations of the posterior 

distributions. The corresponding densities are shown in Figure 74, compared with the prior 

densities (all Beta (1; 5) densities, mean 0.167 and standard deviation 0.141). 
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Figure 74. Loisy-en-Brie example. Posterior probability density (black) for each age class, 

compared with prior density (red), in the case of uniform prior distribution. 

 
We shall not enter here into a detailed discussion of these initial results because the prior 

distribution considered here does not integrate the fact that we are attempting to estimate a 

mortality distribution. Since we have no other specific a priori argument, it is reasonable to fit 

the prior distribution on the pre-industrial standard. We did this by assuming that parameters 

βj are proportional to that standard and sum to 6 (see Section 3) as follows: 

β = (0.77  0.90  1.16  1.53  1.25   0.39)  

The posterior means and standard deviations are now the ones shown in Table 64. 

 

Table 64. Loisy-en-Brie example.  

Estimated parameters 2312 p
,..., 8312 p

 with prior deduced from pre-industrial standard. 

Age class 23-34 35-46 47-58 59-70 71-82 83-94 

Expected posterior 

probability  
0.139 0.233 0.250 0.220 0.132 0.026 

Standard deviation 0.100 0.157 0.165 0.123 0.096 0.038 

As before, the Beta approximation of the posterior distributions is excellent. We used it 

therefore for the densities shown in Figure 75. 

 

Figure 75. Loisy-en-Brie example. Posterior probability density (black) for each age class, 

compared with prior density (red), in the case of a prior complying with the pre-industrial 

standard. 
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Comparing the numerical values in Tables 63 and 64 as well as the posterior densities in 

Figures 74 and 75, most of the estimated probabilities are quite stable, demonstrating the 

limited influence of this prior on the result of the estimation. The greatest difference is 

observed for the 83-94 age class, which is to be expected since this class will clearly have a 

low probability, a feature allowed for by the second prior distribution but not the uniform one. 

With the uniform prior, the posterior deviates quite significantly from it, showing that the data 

impose a serious downward revision; the same is true, though to a lesser extent, for the second 

prior distribution (taking only the mean, it falls from 0.39/6 = 0.065 to 0.026), confirming that 

the corresponding probability is not only low but in all likelihood lower than the pre-industrial 

standard. The next greatest difference between the two estimates can be seen in the 59-70 age 

class, where the posterior mean rises with the pre-industrial standard, as does the prior mean; 

the posterior standard deviation also increases (in fact the posterior density is quite clearly 

more “open”). But these differences are limited, if we consider the wide dispersion of the 

posterior distributions, due to the small sample size and the structural instability of the 

problem considered. 

For a clearer idea of the accuracy of the estimates, credibility intervals can be calculated. As 

we have already pointed out, because of the considerable asymmetry of the distributions 

involved, it is highly inadvisable to calculate symmetric confidence intervals of the “mean 

plus or minus so many standard deviations” type. It is better to stay with the Bayesian 

paradigm and give quantiles of the posterior distribution. Table 65 gives quantiles 0.05 and 

0.95, which provide a 90% credibility interval and quantiles 0.25 and 0.75 (quartiles), which 

provide a 50% credibility interval. 

 

Table 65. Loisy-en-Brie example. Estimates by posterior mean and quantiles for 90% and 

50% credibility intervals 
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Estimated probabilities  
2312 p  3512 p  4712 p  5912 p  7112 p  8312 p  

Posterior mean 0.139 0.233 0.250 0.220 0.132 0.026 

Quantile 0.05 0.019 0.031 0.035 0.053 0.018 0.000 

Quantile 0.95 0.334 0.536 0.566 0.452 0.319 0.104 

Quantile 0.25 0.062 0.108 0.119 0.126 0.059 0.002 

Quantile 0.75 0.193 0.329 0.353 0.296 0.187 0.035 

 

Now we shall compare these results with those obtained by the various methods presented in 

the previous chapter. Rather than work with deaths observed for various age groups, it is 

useful to observe a quantity more generally used in demography: the probabilities of death per 

age group, which can be estimated from mortality data on the assumption of a stationary 

population. We examine the various estimates made for the Loisy-en-Brie population. Figure 

76 gives these various probabilities. 

 

Figure 76. Probabilities of death for Loisy-en-Brie estimated by the Bayesian method with 

pre-industrial standard prior (Bayesian PI), uniform prior (Bayesian U), regression, and the 

method proposed by Bocquet-Appel and Bacro in 2008 (Bocquet), compared with the pre-

industrial standard (PI). 

 
 

The figure clearly shows that the curve of regression method estimates, which, it will be 

recalled, gives the same results as the IALK method, is highly erratic. This confirms what is 

seen in the simulations, where the regression method leads to widely dispersed results (see 

Section 3). On the other hand, the Bayesian methods, with either a uniform or a pre-industrial 

standard prior, exhibit a regular increase in the probabilities of death with age. The difference 

in prior distribution only affects the last two age groups, and then only slightly. We enter the 

probabilities of death for this standard, clearly showing its effect on the Bayesian estimates 

for the oldest age group. Despite this slight effect, the Bayesian estimated distributions differ 

significantly from the standard and are similar to each other, showing the robustness of this 

method, whatever the prior distribution chosen. We explained above why we prefer the 

second estimate (PI). We also entered the probabilities of death obtained by the method 

proposed in Bocquet-Appel and Bacro (2008: see presentation and results in the previous 

chapter): their distribution is fairly close to the Bayesian solution with the pre-industrial 

standard. But it is higher for the youngest age group and lower for the others. On this precise 

point, the fact that our estimates are stable with respect to the prior distribution and that the 

dispersion of the posterior distribution is relatively low suggests that they can be ascribed to a 
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high confidence level. As for the overall results, it can be seen that the Bocquet-Appel and 

Bacro method with the choice of a parametric space comprising a distribution of age 

distributions close to the Bayesian solution, leads to results similar to the Bayesian method, 

but at the cost of a significantly more cumbersome technique.  

Example 2: the Maubuisson nuns (17th-18th centuries) 

We now turn again to the Maubuisson example, which gave unacceptable results with the 

ordinary least squares method, such as negative values and values above unity. Even if the 

least squares can be forced to meet the necessary constraints, the estimates obtained are on the 

boundary of the parametric space (zero values) and clearly unrealistic. We adopt now the 

same division into 7 stages and 7 age classes as before.
186

 The numbers observed for the 

various stages in a sample of 37 skulls are (6 2 4 5 3 9 8). 

We have a large amount of prior information about this site, particularly useful since the 

sample is fairly small (37). These are nuns, and consequently all women, all theoretically 

older than 20. We can therefore opt for specific reference data, namely those already used in 

the previous chapter and Section 3 of this chapter. If we stick to this information, using the 

experience from Section 3, Example 3, we shall take for the 7 parameters to be estimated a 

Dirichlet prior probability distribution with βj parameters proportional to the values of the pre-

industrial standard (women) and summing to 7, namely (0.70  0.77  0.84  1.05  1.47  1.47  

0.70). We present here these initial estimates, more for comparative purposes than for a 

conclusion. The fact that these women were nuns gives us further information: on admission 

they were for many reasons in better health than the mean of the general population; they 

were then protected from various major mortality risks, particularly death in childbirth. These 

factors can be considered to reduce the mortality of the 20-29 age class by just over 50% and 

of the 30-39 class by just under 50%, thus replacing the parameters of the prior distribution by 

(0.30  0.40  0.84  1.05  1.47  1.47  0.70) or rather by the proportional values (0.337 0.449 

0.944 1.180 1.652 1.652 0.786) summing to 7, as recommended in Section 3. From this prior 

distribution we propose a second estimation: it appears prima facie to be the one that should 

be adopted in practice, and we shall see how far the results obtained confirm this. 

Finally, as mentioned in the previous chapter, there is a further major source of information in 

this case: the convent records give direct evidence of the actual ages at death; as a result the 

age class probabilities may be evaluated as follows: (0.012 0.025 0.087 0.170 0.289 0.210 

0.207). We have therefore an objective way of judging the effectiveness of the method, 

although some caution is necessary, because the evaluation is probably only approximate and 

the 37 skulls are only a small and possibly biased sample.
187

 

We begin with an analysis using a prior distribution that complies with the pre-industrial 

standard for women. We applied various “reduction coefficients” to the reference data; since 

                                                 
186

 A study of this site with 5 suture stages instead of 7 and five-year age classes (a total of 

13) has been carried out and is given in Séguy et al. (2012). The results tally completely, 

showing in particular that the method described here works effectively with significantly 

more age classes than stages. 

187
 Note, however, that with the reference probabilities we are using, the sample is fully 

compatible with the documented values. If we calculate theoretical frequencies for stages 

from these data and compare them with the observed values by chi-squared test, we obtain 

1.93 with 6 degrees of freedom. 
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the results were observed to be stable, we shall stick with coefficient 1. The posterior 

expected values and standard deviations are given in Table 66. 

Table 66. Maubuisson example. Estimated parameters  2010 p
, to 80p

: posterior means and 

standard deviations for a “standard” prior distribution. 

 

 
2010 p

 3010 p
 4010 p

 5010 p
 6010 p

 7010 p
 80p

 
Posterior 

expected value  
0.048 0.067 0.071 0.135 0.301 0.219 0.159 

Posterior 

standard 

deviation 

0.050 0.068 0.069 0.114 0.166 0.142 0.135 

 

It is instructive to compare the posterior means with the prior means, in this case (0.10 0.11 

0.12 0.15 0.21 0.21 0.10). It can be seen that the data significantly revise downwards the 

probabilities for the “youngest” classes, and upwards only the two oldest ones; which is 

consistent with the discussion above. We leave this analysis as it stands and move on to the 

Bayesian analysis with a prior distribution with parameters (0.337 0.449 0.944 1.180 1.652 

1.652 0.786) corresponding to a modified pre-industrial standard as discussed above. The 

posterior means and standard deviations obtained are given in Table 67. We now go on to 

examine various other parameters of the posterior distribution relating to each age class. For 

example, we may calculate quantiles: a selection is given in Table 68. Figure 77 is a graphical 

representation of the 50% credibility intervals, comparing posterior means and medians with 

the values in the records. 

Table 67. Maubuisson example. Estimated parameters 2010 p
, to 80p

: posterior means and 

standard deviations for a “modified pre-industrial standard” prior distribution 

 
2010 p

 3010 p
 4010 p

 5010 p
 6010 p

 7010 p
 80p

 
Posterior 

expected value  
0.025 0.041 0.083 0.151 0.311 0.230 0.159 

Posterior 

standard 

deviation 

0.037 0.054 0.074 0.119 0.163 0.142 0.132 

 

 

Table 68. Maubuisson example. Posterior medians and quantiles for 90% and 50% credibility 

intervals 

Estimated 

probability  
2010 p

 3010 p
 4010 p

 5010 p
 6010 p

 7010 p
 80p

 

Median  0.010 0.020 0.065 0.125 0.300 0.208 0.130 

Quantile 0.05 0.002 0.002  0.006 0.015 0.069 0.042 0.008 

Quantile 0.95 0.106 0.156 0.232 0.387 0.604 0.501 0.417 

Quantile 0.25 0.003 0.005 0.028 0.061 0.186 0.121 0.053 

Quantile 0.75 0.034 0.058 0.121 0.216 0.427 0.319 0.239 

. 
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Figure 77. Maubuisson example. Fifty-percent credibility intervals for 7 age classes (green 

lines), posterior means (black dashes) and medians (red circles) compared with values from 

the records (asterisks). 

 
The prior means in this case are 

(0.048    0.064    0.135    0.169     0.236      0.236       0.112) 

and the target values given in the records are 

(0.012 0.025 0.087 0.170 0.289 0.210 0.207). 

First, it is clear that with so small a sample it is not possible to obtain very precise estimates, 

as can be seen from the rather wide credibility intervals. But some relevant information may 

be inferred from the analysis of the data. It can be seen that this analysis leads to a further 

downward revision of probabilities for the first three classes and a further upward revision for 

the fifth and seventh. The most noticeable differences (particularly in relative terms) between 

posterior means and target values are to be seen for the first two probability figures, where the 

values taken from the records are much lower than would have been expected. In fact, with 

the highly asymmetric distributions corresponding to extremely low probabilities, the mean 

can be deceptive; if we examine class 1, for example, we can see that 50% of the posterior 

probability lies in the interval [0.003  0.034], whose mean 0.0185 is close to the target value, 
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as is, indeed even more so, the posterior median 0.010; the same holds for class 2. It is 

therefore justifiable to suppose that for these two classes the posterior means overestimate the 

true values, an indication that turns out to be realistic. In more general terms, it can be seen 

that the 50% credibility intervals do indeed cover the target values, which are always close to 

the posterior mean and median, and the greatest discrepancy, albeit quite understandable 

given the sample size, is to be found in class 7. To sum up, we may say that the posterior 

means provide base information likely to be usefully supplemented by a range of 

considerations concerning various features of posterior distributions (medians, credibility 

intervals, etc.). 

Here our results can be compared with those obtained by Bocquet-Appel and Bacro’s Iterage 

algorithm, because the division into classes adopted corresponds to the ProbAtri20-90 file of 

“prior” vectors they provide. Their algorithm gives the following estimates: 

0.025  0.036  0.073  0.133  0.209  0.268  0.255 

It can immediately be seen that the estimates for the first two classes are closer to the target 

values (probably because we did not wish to give too low a prior mean for these classes), but 

that the estimates for the other classes are on the whole better with our method. To have a 

closer idea, we calculated the distances between estimates and target values in two ways: sum 

of squared deviations and sum of squared deviations weighted by the target value. The figures 

are 

– for the Bayesian method: 0.003 and 0.040 

– for the Bocquet-Appel and Bacro method: 0.014 and 0.078 

demonstrating a significant advantage for our method. 

It must be said, however, that if we had merely used the Bayesian analysis without taking 

account of the information provided by the particular situation of the nuns (our first analysis), 

we would have obtained distances 0.007 and 0.199. The method would have retained its 

advantage in crude deviation but lost it in relative deviation because of too large an “error” in 

the low probabilities. 

We look now at the calculation of probabilities of death for the Maubuisson nun population. 

Figure 78 shows these probabilities calculated under various hypotheses. 

 

Figure 78. Probabilities of death for the Maubuisson nuns as estimated by the Bayesian 

method with prior from the modified pre-industrial standard (MPI), the method proposed by 

Bocquet-Appel and Bacro (Bocquet) and the Maximum Likelihood 2 method (Max. L. 2), 

compared with the modified pre-industrial standard (MPI) and the values actually observed 

(Observed) for these nuns. 
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This figure compares the ten-year  probabilities of death estimated by the Bayesian method 

described here (blue unbroken line) with as prior the modified pre-industrial standard (blue 

dotted line) and the method proposed by Bocquet-Appel and Bacro (2008) (green unbroken 

line) with the 756 vectors proposed by these authors (combination of Gompertz-Makeham 

distributions and extreme values - see previous chapter). For the purposes of comparison, the 

graph also shows the observed probabilities of death distribution for the nuns as estimated for 

the period 1640-1889 (blue dashed line). The IALK method (see previous chapter) gave 

results outside the limits [0, 1] for the proportion of deaths by age group. This method can, 

however, be used with the addition of a positivity constraint. Here, we used the Maximum 

Likelihood 2 method (see Appendix B) (red unbroken line). 

It can be seen straightaway that this last method (Max. L. 2) provides rather unlikely 

probabilities of death close to zero except for the 50-60 and 60-70 age groups. Even if they 

are all positive, they are hardly acceptable. The Bocquet-Appel and Bacro method only gives 

probabilities of death close to the observed values for the first two age groups. They differ 

widely for the later groups, systematically underestimating the probabilities of dying. 

Conversely, the Bayesian method we propose gives quite accurate estimated probabilities for 

all ages, slightly overestimating for the first two age groups and underestimating for the last 

age group.  

5. Conclusion 

The previous chapter presented a detailed critical examination of the main approaches used by 

paleodemographers to estimate the age structure of a population for which they only have 

biological indicators measured from skeletons. Paleodemographers often call these methods 

Bayesian because they use Bayes’ theorem and introduce a priori considerations into their 

method of estimation, but the paradigm upon which they are based is frequentist in nature. 

This chapter has rather proposed a strictly Bayesian approach in the sense habitually used in 

statistics, as specified in the introduction, in order to solve this major and recurrent problem 

for palaeographers. This conclusion provides an overview of the main advantages of this 

approach compared with the previous ones. 

First, the previous approaches considered that the data taken from the observed groups 

(frequencies of data from reference population, frequencies of data from observed population) 

were entirely or partially fixed quantities. The probability vectors method and the IALK 

method took all these parameters as fixed in order to estimate the age structure of the 

observed population; the method proposed by Bocquet-Appel and Bacro (2008) considered 

the frequencies of data by stage taken from the observed population as fixed when 

establishing recommended confidence intervals. Since the numbers of skeletons, especially 

for the observed population, are often small, these hypotheses do not hold. The IALK method 

thus yields estimates that are incorrect or totally unrealistic (age-groups with zero probability) 

for the age structure of the observed population. The confidence intervals provided by 

Bocquet-Appel’s Iterage software, which we ran with the Lisbon reference data for various 

site data frequencies, appear to be erroneous and much too small, and therefore over-

optimistic: in some cases the interval is zero, some do not contain the estimated parameter 

value or that value is at one extremity of the interval. We shall see below a further possible 

reason for these inadequacies in the algorithm used.  

Our approach considers all observed frequencies (both site and reference data) to be random; 

the same is true for the model in Appendix B , but we have seen that this in itself is not 

necessarily an advance. We continue by considering the unknown parameters (reference 

conditional probabilities and age probabilities) to be random under the Bayesian paradigm. 
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Estimates are thus obtained in the form of posterior distributions of probabilities of various 

age classes, from which can be deduced point estimates (such as posterior means) and 

“Bayesian confidence intervals”, more commonly known as “credibility intervals”, whereas 

methods that do not allow for the randomness of the data cannot provide confidence intervals 

since these are based, by definition, on the uncertainty caused by the randomness. 

Second, earlier approaches, except for that of Bocquet-Appel and Bacro, do not take into 

account the specific nature of the paleodemographic question, although the demographic 

knowledge accumulated over many years and information about the living conditions of the 

populations concerned can provide information about their mortality that is potentially usable. 

Establishing networks of model life tables has made it possible to hypothesise a standard pre-

industrial mortality that can be used to select a prior age distribution for the observed 

population that is more satisfactory than the uniform distribution. Similarly, in work on the 

Maubuisson nuns, say, one can use the fact that these women, because of their monastic lives, 

were not exposed to the same mortality risk as the general French population: in particular 

they avoided the risk of death in childbirth. Bocquet-Appel and Bacro’s approach (2008) also 

uses prior information taken from paleodemographic research, but presented in a different 

manner. As we have said, the Iterage program introduces a restriction of the parametric space 

to make up for the small number of data. In some respects, their method is a regression, but 

instead of considering that the vector of the parameters to be estimated is in a space with as 

many dimensions as the number of age groups considered, with the sole restriction that its 

components sum to unity, it is confined within the convex envelope of vectors defined ex-ante 

by a mix of Gompertz-Makeham distributions and extreme values, for which the four 

parameters vary within restricted intervals. Although this mode of calculation is justifiable as 

it reduces the variability of the estimators, it may in return introduce a considerable bias. If 

the age distribution sought falls outside this restricted space, the estimate obtained may be at a 

considerable distance. This may result in some confidence intervals that never contain the true 

values, as pointed out above: this occurs if the intervals are confined within the same limits as 

the point estimates, as is the case with those provided by the Iterage algorithm. 

The Bayesian approach differs in a third way from the IALK and frequentist approaches in 

general (except for the method proposed by Bocquet-Appel and Bacro, 2008). Whereas many 

authors have stressed that when the number of age groups is greater than the number of stages 

considered, no valid estimate of the age structure of the observed population is possible with a 

frequentist method, use of a Bayesian method removes this obstacle. We have seen that such 

an estimate is always possible in Bayesian terms; using examples we have even shown that 

the quality of the estimate may be improved with a finer division into age classes (see Séguy, 

Caussinus, Courgeau and Buchet [2012]). 

A fourth feature sets the Bayesian approach apart. In the frequentist approach, it is usually 

considered sufficient to evaluate the mean and variance of the estimator of a parameter 

because, when the number of observations is large, its probability distribution often tends 

towards a normal distribution characterised by these two values. For the estimates in which 

we are interested (low probabilities and small samples), however, the distribution is generally 

highly asymmetric, casting doubt on this approach. The same asymmetry can be found in the 

posterior distributions of the Bayesian approach, but these distributions are easy to determine, 

making it possible to calculated reliable credibility intervals. 

A fifth difference, this time between the Bayesian approach and the Iterage algorithm, is its 

simplicity of operation. Selecting a prior distribution is much easier and more flexible that the 

construction of a mortality model whose parameters are supposed to represent the most varied 

conditions of mortality, by attrition as well as disaster. Furthermore, once the 

paleodemographic sample differs from the model conditions, both in number of age classes 

and in selected intervals, the model has to be reset and all the prior probability vectors 
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recalculated, whereas, to our knowledge, Bocquet-Appel and Bacro do not provide anywhere 

their full parametric formulation. It is clear that some situations will always fall outside such a 

mortality model, whereas the Bayesian method can be used to address all possible cases, 

albeit with varied efficacy. 

In parallel to the “theoretical” considerations we have presented here, it is important to recall 

the results of our empirical studies. The simulations we have run can be used to measure the 

quality of results obtained under the various methods proposed. Calculation of their mean 

squared errors provides a comparison between the estimates produced and the true values of 

the parameters, which in this case are known. The method we propose outperforms the other 

methods in almost all cases, often with substantial gains in accuracy. Only some of the results 

obtained with the Iterage algorithm manage to equal its performance, but in other cases 

Iterage introduces noticeable biases because it requires a restricted parametric space, whereas 

the age structure of the population under study falls outside that space. 

We trust that this chapter has clearly demonstrated all the advantages of using a fully 

Bayesian estimation of the age structure of historic populations for which there is no record of 

age at death and where the records are replaced by the measurement of biological indicators. 

We hope that many paleodemographers will use it, providing further insight into its 

application and encouraging any improvements that may be necessary, so that their 

experience will complement our own. 
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