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John Friedlander and Henryk Iwaniec showed in 1997 the infinity of primes being written as x 1 2 +x 2

4

, where x 1 and x 2 are integers. Their results included an asymptotic expression of the enumeration of solutions. Here we give a method to find such result jointly to its generalization.

Dénombrements asymptotiques d'équations diophantines avec le fil conducteur de l'équation de John Friedlander et Henryk Iwaniec.

Résumé

John Friedlander et Henryk Iwaniec ont démontré en 1997 l'infinité des nombres premiers s'écrivant x 1 2 +x 2 4 , les variables x 1 et x 2 étant des entiers. Leur résultat incluait une expression asymptotique du dénombrement des solutions. Nous donnons ici une méthode pour trouver un tel résultat conjointement à sa généralisation.

Asymptotic representatives

Our investigations are of asymptotic nature. We can then assume that it suffices to get a probabilistic representation of a variable to identify its potential to create solutions.

Entities created on this occasion will be called asymptotic representatives and indicated within brackets {{}}. We will describe below how they are formed distinguishing the case of variables of integers from the case of variables of prime numbers.

Case of variables of prime numbers

Let us start with a variable of prime numbers {{y}} and observe its local potential : We project, to do this, the whole set P of prime numbers y on the congruence classes modulo p i . mod p i P → {0, 1, 2, …, p i -1} y y mod p i This application sends a unique number y on 0. This is p i . Other classes are images in same density (equidensity) of all other primes, which is a well-known result. By assigning a probability density to the quantities of numbers projected on each of the congruence 0, 1, 2,..., p i -1 and arbitrarily summing all densities to p i (i.e. getting an average density of 1 per class), we get the correspondence : Congruencies 0 1 2 … p i -1 Normalized densities of probability → 0 → p i /( p i -1) → p i /(p i -1) … → p i /(p i -1)

This means that locally, that is modulo p i , (or at the sequence p i ), omitting equiprobable weighting, the set of prime numbers is equivalent to the following classes :

{1, 2, …, p i -1} ≈ {{P}} ≡ {{y}} (5) Indeed, the density of probability of 0 being 0, we can ignore this value 0 and we can then ignore weightings since weights are of equal values.
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However we used the sign ≈ instead of ≡ because we have neglected temporarily p i /(p i -1) weighting which is essential elsewhere and to which we will return at the chapter "normalization". Variable of type y i (or y) and P are otherwise the same in our use and need (thus the sign ≡).

The set {1, 2,..., p i -1} is the Galois Group (Z/p i Z)*. This group is generated by some root primitive g i of p i : {g i 0 , g i 1 , …, g i pi-2 } (6)

We can make similar projections on any set of congruencies modulo p i ki . mod P → {0, 1, 2, …, p i ki -1} y y mod p i ki Then, the table will be (with always an average weighting value of 1 per class) :

Congruencies 0 mod p i ≠ 0 mod p i (7) Densities → 0 → p i /(p i -1)

Let us have φ(p i ) = p i (ki-1) (p i -1), φ the Euler totient. The corresponding group will be : {g i 0 , g i 1 , …, g i φ(pi)-1 } (8) Of course, for p i = 2, there is no unique primitive g i and the case is more complex, but the spirit of the approach remains exactly the same. The detail is not included in this article which is intended to be synthetic.

Case of variables of integers

The set of nonnegative integers N will project in an equiprobable way modulo p i ki : mod N → {0, 1, 2, …, p i ki -1} x

x mod p i ki

We have the following congruencies mapping table densities with trivial average density of 1 per class : Congruencies 0 mod p i ≠ 0 mod p i (9) Densities → 1 → 1

For p i = 2, there is no unique primitive root, but there is still equiprobability.

The following remark is important. We mentioned probabilities. It is wise to do so when we consider a sufficiently large part of P. But when all of P is on the line, the concept is more than a simple probability : there is rather identity (or equivalence) strictly speaking.

The case of the previous variable of integers x is trivial, but that of x 2 or more generally those like x m would not (we will see that for x 2 and x 4 below). Similarly, buildings are more developed for a variable of prime numbers y 2 and more generally y m . But the projection method is the same for these examples as for all Diophantine equations.

Case of a multifaceted expression

Let us see this with the equation of Iwaniec and Friedlander.

We can simply write (instead of c ≡ {{x 1 2 }}+{{x 2 4 }}+{{-y}}) the expression :

c ≡ {{x 1 2 +x 2 4 -y}} (10)
Locally, that is modulo p i ki , looking for occurrences of the target c, means just to write a set of nested loops where the three variables y, x 1 and x 2 are incremented on a discrete domain (thus integers) : The previous equation (10), applied locally, is to be simply the following sequence of operations : P 4/20 From y = 0 to p i ki -1 If y = 0 mod p i goto next y otherwise From x 1 = 0 to p i ki -1 From x 2 = 0 to p

i ki -1 c = x 1 2 +x 2 4 -y mod p i ki #(c) = #(c)+1 Next x 2 Next x 1 Next y (11)
Let us give a few details fur these operations.

-What interests us here is the evaluation of the expression #(c).

-The order of the loops has no impact on results #(c). He is indifferent to start with y, x 1 or x 2 and continue in any order.

-A local exploration is, for a given variable to test modulo p i ki all values of the variable from 0 to p i ki -1. Of course an exploration from 1 to p i ki would be a quite equivalent choice and giving the same result. -We find a conditional line after variable y that we do not find after variables x 1 and x 2 . Indeed, y is a variable representing the set of prime numbers P. Thus, we have seen in paragraph 2.1 that the probability of a number of P to reach a value that is a multiple of p i is 0. We endorse this fact by jumping this instance each time that we face a multiple of p i . On the other hand, in paragraph 2.2, we have seen that a variable of integers x i is trivially equiprobable. There are therefore no additional conditions to be provided after such variables in nested loops.

-As we look at a problem of enumeration of solutions, when the result of the operation x 1 2 +x 2 4 -y mod p i ki provides a given value c, we store the number of occurrences in the counting variable #(c), thus the incremental operation #(c) = #(c)+1.

The comparison of all values #(c), in reviewing c from 0 to p i ki -1, gives access to a local "probability" (here #(c)/(p i 3ki .(p i -1)) with two variables x i and one variable y j ) of events. We will call #(c) = Fa(c) the factors of abundance of the target c.

Performing the calculations for our example gives the following table limiting results to range p i between 2 and 29 and for k i = 1. It should be noted that during the execution of calculation, numbers in red font are not displayed. They must be added modulo p i ki (so modulo p i here).

p i k i c
It is useful, at this stage, to highlight a key point from the practical (and theoretical) point of view.

Degree of stability

Let us suppose that we evaluate from k i = 1 up to k, the local "probabilities" modulo p i ki (mentioned above), and that the said relative probabilities are stabilizing from k on. We will then call k the local degree of stability (at the sequence p i ). For some given problem, the degree of stability may vary from one sequence p i to another. We will call its maximum the degree of stability of the Diophantine equation. This degree may be finite or infinite, locally and/or for the maximum.

If the degree is finite, the asymptotic enumeration is easier to achieve. If it is infinite, there may be still some way to identify a convergence of the different probabilities when k i tends towards infinity by a careful study.

The degree of stability is finite (and equal to 1) for the monomials y 1 m , i.e. variables of prime numbers, but also for sufficiently symmetrical expressions like for example y 1 4 +y 1 3 .y 2 +y 1 2 .y 2 2 +y 1 .y 2 3 +y 2 4 placed inside Diophantine equations (in this case equal to 1 locally except for p i = 2 and p i = 5 which degree is 2). P 5/20 This is not the case for monomials of variables of integers or for polynomials (therefore generating likely difficult problems for elliptic equations and more complex equations) for which sole remedy is to understand how relative occurrences evolve at infinity (of k i ) and this for each p i as there is no formal reason for families (modulo some values) with similar behaviours to exist.

In the example chosen for this article, it turns out that the degree of stability is equal to 1 for all p i (thus the systematic selection of k i = 1 made in the table of the previous paragraph). The presence of monomials of variables of integers is not an obstacle here because there is also a monomial of prime numbers which imposes its stability to the whole.

Normalization of occurrences

With the nested loops such as those numbered (11), we get occurrences of the target c. According to the number of variables, it is necessary to submit quantities to the right "probability". The goal is to get an average per class, after calculation, weighted at 1. We call this normalization.

Modulo p, we have for the variables of integers x and for a variable of prime numbers y :

{{x}} p ≡ 0 1 2 … p-1 1 1 1 … 1 {{y}} p ≡ 1 2 3 … p-1 1 1 1 … 1
Note that c = 0 is absent in the second expression.

For an additional variable :

{{x i }} p ≡ 0 1 2 … p-1 1/p 1/p 1/p 1/p 1/p (i.e. ∑ = 1) {{y i }} p ≡ 1 2 3 … p-1 1/(p-1) 1/(p-1) 1/(p-1) 1/(p-1) 1/(p-1) (i.e. ∑ = 1)
This operation is prolonged modulo p δ .

-for a variable of integers, the cardinal obtained should be divided by p δ at the sequence p, -for a variable of prime numbers, the cardinal obtained should be divided by p δ-1 (p-1) at the sequence p.

These ratios apply to each new entry of variables : k variable of integers → ratio 1/(p δ ) k , m variables of prime numbers → ratio 1/(p δ .(p-1)) m . To bring back the sum to p δ , we then perform a multiplication of the coefficients by p δ . Hence the rules : k variables of integers → ratio r = 1/(p δ ) (k-1) m variables of prime numbers → ratio r = p δ /((p δ-1 (p-1)) m ) k variables of integers and m variables of prime numbers → ratio r = 1/(p δ ) (k-1) /((p δ-1 (p-1)) m ) This normalization results for our example in the following table :

p i k i c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #(c) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1
,333 0,833 0,833 1,333 0,833 0,833 1,333 0,833 0,833 1,333 0,833 0,833 1,333 0,833 0,833 1,333 5 1 0,8 0,95 0,85 1,25 1,15 0,8 0,95 0,85 1,25 1,15 0,8 0,95 0,85 1,25 1,15 0,8 7 1 1,143 0,976 0,976 0,976 0,976 0,976 0,976 1,143 0,976 0,976 0,976 0,976 0,976 0,976 1,143 0,976 11 1 1,091 0,991 0,991 0,991 0,991 0,991 0,991 0,991 0,991 0,991 0,991 1,091 0,991 0,991 0,991 0,991 13 1 0,923 1,045 0,981 1,045 0,968 0,981 0,981 1,032 1,032 1,045 0,968 1,032 0,968 0,923 1,045 0,981 17 1 0,941 1,011 0,996 0,974 1,011 0,974 1,033 1,033 0,996 0,996 1,033 1,033 0,974 1,011 0,974 0,996 19 1 1,053 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 0,997 23 1 1,043 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 29 1 0,966 0,989 0,996 0,996 1,014 1,014 1,014 0,989 1,006 1,014 1,006 0,996 1,006 1,014 0,996 1,006

… … … … … … … … … … … … … … … … … … Fan(c)
1,225 0,796 0,664 1,627 0,915 0,621 1,252 0,842 1,037 1,557 0,646 0,891 1,035 0,948 1,095 1,009 P 6/20

We have here k = 2 variables of integers and m = 1 variable of prime numbers, with δ = k i = 1, i.e. a ratio r i = 1/(p i δ

) (k- 1) /((p i δ-1 (p i -1)) m ) = 1/(p i .(p i - 1 
)) that was used for each of the lines. As the average of the values is adjusted to 1 on each line (modulo p i ki ), the product by column Fan(c) indicates, depending on whether it is higher or lower than 1, the potential of the target c to give an excess or lack of solutions from the average. Here the solutions corresponding to c = 3 (Fan(3) = 1,627) are a priori 2,5 times more abundant than those of c = 2 (Fan(2) = 0.621). Of course, to get a more precise result the product must be realized for p i describing all of the set P. Let us notice that having big gaps of populations between targets will be welcome when we test our method numerically.

It should be noted also that if all of the lines were adjusted to an average strictly greater than 1, respectively strictly lower than 1, infinite products would generally diverge (if not null), respectively would tend towards 0. This would be unusable in an asymptotic formula for counting. If such a formula exists, it can be derived with our method only after normalization. We will find these infinite products further. We call them normalized abundances factors. They have also in the literature the names of singular series or Euler products. However, to our knowledge, they are not obtained by a systematic method, such as the one proposed here.

We now do much better.

Construction of cardinal matrices

We have shown so far how to get numerically what we called the factors of abundance. However, this is so far experimental work and we want a comprehensive calculation of these items. In the example, the pattern of the occurrences looks very simple for p i equal to 3, 7, 11, 19 or 23, but is more complicated for other values.

In addition, when the degree of stability is not 1 and with a greater number of variables, the amount of calculations increases exponentially. So, it is essential to find a parry to the digital explosion.

The solution is then, since the variables are independent from each other, to use the calculation loops of the elementary building blocks :

From y = 0 to p i ki -1 If y = 0 mod p i goto next y otherwise c = (-y) mod p i ki

#(c) = #(c)+1 Next y (12) From x 1 = 0 to p i ki -1 c = x 1 2 mod p i ki #(c) = #(c)+1 Next x 1 (13) From x 2 = 0 to p i ki -1 c = x 2 4 mod p i ki #(c) = #(c)+1 Next x 2 (14)
There is no degree of stability for variables of integers due to one exception, namely c = 0 (but not for p i and multiples). Thus, we propose an alternative to this peculiar obstacle by avoiding it : we first calculate simulating a variable of prime numbers (which does not contain 0), which then allows effectively to establish a degree of stability, then we return to the case of the integers' variable by using an extremely precious property which is given further :

From x 1 = 0 to p i ki -1 If x 1 = 0 mod p i goto next x 1 otherwise c = x 1 2 mod p i ki #(c) = #(c)+1 Next x 1 (15) From x 2 = 0 to p i ki -1 If x 2 = 0 mod p i goto next x 2 otherwise c = x 2 4 mod p i ki #(c) = #(c)+1 Next x 2 (16)
The degree of stability of each loop is then 1 (and for each p i ) in our case.

In fact, the proposed methodology requires, to make it the most effective possible, an essential and absolute rule of work :

Always start considering all variables as variables of prime numbers.
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Solving the proper problem is done in a second time.

For each of the variables, one can build a square matrix that is representative of its individual action within a Waring sum, i.e. a sum of monomials of identical degree j (y j or x j ). A problem of counting involving t nested loops and thus t variables then translates in a result deriving from a matrix to the power t. This matrix, which we call cardinal matrix, (because it is used to count) is obtained through what we call a primitive root equation. It is, in general terms, the following expression : m(r,s) = {#(r,s) / or(0,g i r-1 ) = or(0,g i u.d )+ or(0,g i s-1

.

g i v.d ) mod p i ki } (17)
Indeed, we seek the effect of the introduction of a new monomial z n+1 j in a Waring sum c = z 1 j + z 2 j +…+ z n j on #(c). This research is done by crossing classes of equal size, if they exist, which is the case when a primitive root is used to create these classes. Of course, integer 0 is to be taken into account also as it cannot be generated by a root primitive g i .

Here m(r, s) is the component of the matrix on the r line and s column, and d = gcd(j,φ(p i ki ). The parameters u and v are integers and are incremented from 0 to p i ki -1. During this incrementing, for each occurrence of g i r-1 = g i u.d +g i s-1 .g i v.d mod p i ki , and taking also into account 0, the operation #(r,s) = #(r,s)+1 is performed and m(r, s) are the end results of all the #(r,s) thus obtained.

Initially, cardinal matrices have rank p i ki , but due to targets with identical number of occurrences (the patterns mentioned at the beginning of this paragraph), they can contract into smaller entities. Expression (17) already takes account of these associations with factor d = gcd(j,φ(p i ki

)) playing a central role.

The collection of occurrences #(c = g i w .g i u.d ) is done by considering the classes of equal occurrences (u is generic in a class, and in our case we have either d = env = 1, d = 2, or d = 4). These classes present generic form based on a primitive root g i of p i (for p i > 2), any choice of primitive root providing the same classes within eventually a permutation. Matric results are collected in a column vector : For a variable of integers x, the original square matrix [MI0] is rank p i (the degree of stability is 1) with all components equal to 1.

#{0} #{g i 0 .g i u.d } #{g i 1 .g i u.d } … #{g i d-1 .g i u.
The passage of a variable of integers to a variable of primes always results in the withdrawal of identity [I] to the initial matrix (the precious property referred to above).

[M0] = [MI0]-[I]

(18)

To simplify writings, we refrain from indexing i within p i and g i .

According to the degree of potential contraction (linked directly to d), matrices for x (variable of integers) and y (variable of prime numbers) are as follows : 

Var x or -x [A] Var y or -y [B] = [A]-[I] #{0} : [MI0] = 1 p-1 #{0} : [M0] = 0 p-1 #{g u } 1 p-1 #{g u } 1 p-2 #{0} : [MI0] = 1 (p-1)/2 (p-1)/2 #{0} : [M0] = 0 (p-1)/2 (p-1)/2 #{g 2u } 1 (p-1)/2 (p-1)/2 #{g 2u } 1 (p-3)/2 (p
For d = 1 [M1] = 1 p-1 1 p-1
For d = 2 and p = 3 mod 4 :

1 0 p-1 [M1] = 2 (p-1)/2 (p-3)/2 0 (p+1)/2 (p-1)/2
For env = 4 (d = 2) and p = 1 mod 8 :

1 (p-1)/2 0 (p-1)/2 0 2 x 1 +1 x 2 x 3 x 4 [M1] = 0 x 2 x 3 +1 x 4 x 1 +2 2 x 3 x 4 x 1 +1 x 2 0 x 4 x 1 +2 x 2 x 3 +1 where x 1 = (p-7)/4+(-1) (β+1)/2 .(1/2).β x 2 (p-1)/4+α.if(x 4 >x 2 ,-1,1) x 3 (p-3)/4-(-1) (β+1)/2 .(1/2).β x 4 (p-1)/4-α.if(x 4 >x 2 ,-1,1)
For env = 4 (d = 2) and p = 5 mod 8 :

1 (p-1)/2 0 (p-1)/2 0 2 x 3 +1 x 4 x 1 x 2 [M1] = 0 x 4 x 1 +1 x 2 x 3 +2 2 x 1 x 2 x 3 +1 x 4 0 x 2 x 3 +2 x 4 x 1 +1 where x 1 = (p-3)/4+(-1) (β+1)/2 .(1/2).β x 2 (p-1)/4+α.if(x 4 >x 2 ,-1,1) x 3
(p-7)/4-(-1) (β+1)/2 .(1/2).β x 4

(p-1)/4-α.if(x 4 >x 2 ,-1,1)

We will come back on the "env" later on.

For [M2] corresponding to x 4 , we have again four other useful formulations:

For d = 1 [M2] = 1 p-1 1 p-1
For d = 2 and p = 3 mod 4, the matrix is identical to the case x 2 :

1 0 p-1 [M2] = 2 (p-1)/2 (p-3)/2 0 (p+1)/2 (p-1)/2
For p = 1 mod 8, we have d = 4 and :

1 p-1 0 0 0 4 x 1 -3 x 2 x 3 x 4 [M2] = 0 x 2 x 4 +1 x 5
x 5 0

x 3 x 5 x 3 +1 x 5 0

x 4 x 5 x 5 x 2 +1 where x 1 (p+5)/4+(-1) (β+1)/2 .(3/2).β x 2 (p-3)/4+2α.if(x 4 >x 2 ,-1,1)-(-1) (β+1)/2 .(1/2).β x 3 = (p-3)/4-(-1) (β+1)/2 . ( Each of these results here derives from a primitive root equation and its comprehensive study. In appendix 1, we provide some examples of numerical calculations using some general constructive rules of cardinal matrices. Each of these matrices displays by construction a sum equal to respectively p or p-1 per line depending on whether it represents a variable respectively of integers or of prime numbers (when the degree of stability is 1).

The reader can see here the complexity of the literal formulas for simple monomials. To get an expression directly, without decomposition in independent terms, is hence quite illusory (and thus probably inaccessible to another approach than the one proposed here).

We have three main situations (and two lower cases) to examine when the nested loops given in (11) are decrypted. Each of the variables, with assigned power, gives rise to a particular "environment" (9 environments here by the crossing of cases, plus 3 environments due to the subcase p i = 5 mod 8, which is in addition to p i = 1 mod 8). What we call environment is linked to the size (rank) of the matrix which gives an account of occurrences for a given basic brick rated generically {{z}}. The environment is equal to the rank of the matrix minus one unit. Thus : env{{z}} = rang{{z}}-1

p
It turns out that any assembly of basic bricks can be treated by adopting a common environment which is the lowest common multiple (lcm) of the environments of each brick.

The difference of 1 between rank and environment stems from the specific and systematic behaviour of target c = 0 in the assessment of occurrences, behaviour that we mentioned above and which extends into the matrix treatment. Any matrix of environment "env" can be transformed into a matrix of multiple environment k.env. These matrices can be multiplied after adjustment to the same environment (being of identical rank). The object is not to show in a short text the mechanism to get multiple environment matrix from another, nor to expand on the many properties of these matrices ("semi-hermicity", common basis change matrices, formal writing as p functions of eigenvalues and eigenvectors, moving to a multiple environment by the rules attached to the eigenvalues, relationship with the Gauss sums, etc.). We just give away them.

It should be noted that the asymptotic representatives (and the matrices) of y and y are identical as {1, 2, ..., p i -1} and {-1, -2, ..., -p i +1} are the same modulo p i .

Then, we get : P 10/20

For p = 2

The case p = 2 resolves directly immediately showing the equality of occurrences :

2 #{0} = [M0].[M1].[M2]. 1 = 0 1 1 1 1 = 2 #{g u } 0 1 0 1 1 0 2 For p = 3 mod 4 #{0} 1 1 p 2 -1 #{g 2u } = [M0].[M1].[M2]. 0 = [M0] p+1 = p 2 -p-1 #{g.g 2u } 0 p+1 p 2 -p-1 For p = 1 mod 8 #{0} 1 2p-1 2p-1 (p-1) 2 #{g 4u } 0 4x 1 +6 p-1+2.(-1) (β+1)/2 .β p 2 -p+1-2.(-1) (β+1)/2 .β #{g.g 4u } = [M0].[M1].[M2]. 0 = [M0] 4x 2 = [M0] p-1+4α.if(x 4 >x 2 ,-1,1) = p 2 -p+1-4α.if(x 4 >x 2 ,-1,1) #{g 2 .g 4u } 0 4x 3 +2 p-1-2.(-1) (β+1)/2 .β p 2 -p+1+2.(-1) (β+1)/2 .β #{g 3 .g 4u } 0 4x 4 p-1-4α.if(x 4 >x 2 ,-1,1) p 2 -p+1+4α.if(x 4 >x 2 ,-1,1)
For p = 5 mod 8

#{0} 1 2p-1 2p-1 (p-1) 2 #{g 4u } 0 4x 3 +6 p-1-2.(-1) (β+1)/2 .β p 2 -p+1+2.(-1) (β+1)/2 .β #{g.g 4u } = [M0].[M1].[M2]. 0 = [M0] 4x 4 = [M0] p-1-4α.if(x 4 >x 2 ,-1,1) = p 2 -p+1+4α.if(x 4 >x 2 ,-1,1) #{g 2 .g 4u } 0 4x 1 +2 p-1+2.(-1) (β+1)/2 .β p 2 -p+1-2.(-1) (β+1)/2 .β #{g 3 .g 4u } 0 4x 2 p-1+4α.if(x 4 >x 2 ,-1,1) p 2 -p+1-4α.if(x 4 >x 2 ,-1,1)
Normalization consists in dividing cardinals by p 2-1 (p-1) In these entries, please do not forget that all the results are identical modulo p ki , hence modulo p here. In particular, we have Fan{c\p, p} = Fan {0, p}.

Let us go back to our example and take a sample of each type (the choice of primitive roots g is that of the smallest value, the results being identical for any other choice The targets c from 1 to 15 are thus in the following families' classification : The reader may refer to the table at paragraph 2.3 to check the consistency of the results.

g 4u g 4u .g g 4u .g 2 g 4u .g 3 c 1, 7 2, 3, 11, 14 4, 5, 6, 9, 13 8, 10, 12, 15 Fa(c 
Thus, we get after normalization : 

Fan(0) = П (1-1/p) p = 1 mod 4 П (1+1/p) (20) 
p ∤ c p = 3 mod 4 p ∤ c p = 1 mod 4 c = g i .g 4u where a = (-1) (p+3)/4+int(i/2) .if(i mod 2 = 0, (-1) (β+1)/2 .β, 2α.if(x 4 >x 2 ,-1,1)) and p = (2α) 2 +β 2 α > 0, β > 0 +…+x i 4 +x i+1 2 +x i+2 2 +…+x i+j 2 +y 1 4 +y 2 4 +…+y k 4 +y k+1 2 +y k+2 2 +…+y k+m 2 = y+c Previously (for the enumeration of x 1 2 +x 2 4 = y+c), the complete knowledge of the components of the matrices [M2] was not useful (the first quasi-trivial column knowledge was sufficient). For the general count however, it becomes indispensable.

Asymptotic formula

So far, our results allow us to compare the number of solution between targets. If we have an asymptotic formula counting solutions for c = 0, we can deduce a general formula for any target c by simply using the ratio Fan(c)/Fan(0). Friedlander and Iwaniec study [START_REF] Friedlander | Using a parity-sensitive sieve to count prime values of a polynomial[END_REF] settled the following formula for c = 0 (here Γ is the Gamma function) :

lim #{x 1 2 +x 2 4 = y} = 2 1/2 .(Γ(1/4)) 2 /(3.π 3/2 ).y 3/4 /Ln(y) (23) y → ∞ 
We get straightforward :

lim #{ x 1 2 +x 2 4 = y+c} = Fan(c).(1/(6.2 1/2 π 1/2 )).(Γ(1/4)) 2 .y 3/4 /Ln(y) (24) 
y →∞ using : П 1-1/p . П 1+1/p = 4/π p = 1 mod 4 p = 3 mod 4

Numerical application

We have (1/(6.2 1/2 π 1/2 )).(Γ(1/4)) 2 ≈ 0.8740191847640399368216131966 and then according to formula (24) : lim #{x 1 2 +x 2 4 = y+c} ≈ Fan(c).0,874019184764.y 3/4 /Ln(y)

This formula cannot be used directly without taking a few precautions as the distribution of the prime numbers near the origin shows a surplus compared to the formula : coef(y i ) 1,1864 1,1633 1,1626 1,1454 1,1336 1,1221 1,1100 1,1037 1,0966 1,0931 1,0903 1,0887

lim #{y} = y/Ln(y) (26) y → 
We will use these values to correct the initial counting formula of Friedlander and Iwaniec equation by writing : lim #{x 1 2 +x 2 4 = y+c} ≈ Fan(c).0,874019184764.coef(y).y 3/4 /Ln(y)

In addition, we do an approximate calculation of the normalized factors of abundance Fan(c) taking the column products up to p i = 197, products given by the following table :   P 13/20 c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Fan(c) 1,2548 0,8009 0,6628 1,6285 0,9182 0,6138 1,2209 0,8356 1,0220 1,5366 0,6424 0,8945 1,0326 0,9528 1,0948 1,0159

The evolution of the curves Fan(c), when values of p i are increasing, stabilizes very early as shown in the previous graphic. One target shows as an exception, namely c = 0, for which undulations of the curve remain important throughout the area presented here, but however a trend exists. All factors expressed at the p i = 197 sequence are less than 2.5 percent of their values at the sequence p i = 29.

We will now be able to test the formula Fan(c).0,874019184764.coef(y).y 3/4 /Ln(y) by comparing it to the effective number of solutions of the equation when y is increasing. The distribution of the solutions in a given volume, here delimited by the value y, is not necessarily homogeneous. The road to infinity is very long. We do not know a priori whether there may be concentration or scarcity of the solutions on this or that part of the volume.

Let us consider the case of the 16 targets selected in a natural way (without skipping some that would be annoying) and for this we will check deviations from an average value. Thus, we will use the following equality : Σ(#{x 1 2 +x 2 4 = y+c} -Fan(c).0,874019184764. coef(y).(y-ey) 3/4 /Ln(y-ey)) = 0 (29)

The unknown here is parameter ey and we evaluate the relative gap ey/y obtained when y increases. In practice, this gap should tend towards 0 when y is increasing (with coef(y) tending towards 1 at the same time). This gap being settled for an given y, we then check the target by target gaps. The ripple of ey/y actually takes a direction towards 0 % when y is increasing.

For the number of solutions target by target and for given y, we get the following table : -18,7% -39,3% 39,3% 1,4% -15,4% 10,8% -0,5% -1,2% 14,1% -2,0% -16,8% 3,2% -1,2% 17,3% 19,8% -4,4% 1000 7919

-10,4% -20,3% 16,4% 1,2% -8,7% 22,6% 6,9% 6,0% 0,7% -8,9% -9,6% 5,4% 7,0% -1,0% 7,9% -3,4% 10000 104729

-5,0% -8,7% 11,2% 1,4% -3,9% 3,8% 5,3% -1,8% 4,5% -2,9% 1,6% -0,3% -1,2% 2,4% -2,5% 0,6% 100000 1299709 -1,4% -5,0% 6,4% 2,3% 0,9% -0,1% 0,4% -0,2% 0,5% -1,9% -1,1% 1,2% -0,3% 1,1% -1,6% -0,2% 1000000 15485863 -0,4% -2,7% 3,5% 0,9% -0,3% 2,1% -1,2% -0,5% 0,5% 0,0% -0,3% -0,3% -0,3% -0,4% -0,4% 0,8% 10000000 179424673 0,3% -1,5% 0,7% 0,3% -0,5% 0,8% 0,2% -0,6% 0,2% 0,2% 0,0% -0,4% 0,5% -0,2% -0,7% 0,3% P 15/20

The population densities corresponding to any particular target vary along the "volume" y : the curves are undulating. Targets that follow less the expected approximate formula are here c = 1, c = 2 and c = 9. However, the trend toward 0 % is underway for all targets.

Fugue et prelude

This article is a case study, which gives general terms for the asymptotic enumeration of Diophantine equations. Many aspects of the method are not covered here including :

-The constitution of global asymptotic formulas (i.e. the assessment of r and s in asymptotic formulas α.z r /Ln s (z)), -The type of completely solvable equations, -The genesis and properties of cardinal matrices, -The construction of the cardinal matrices of a given environment, -The classic examples (De Polignac, Hua, Catalan, Pillai, Waring, quadratic equations u.z 1 2 +v.z 1 .z 2 +w.z 2 2 ) and more complex examples (z 1 6 , z 1 3 z 1 3 +z 1 2 .z 2 +z 1 .z 2 2 +z 2 3 , z 1 4 +z 1 3 .z 2 +z 1 2 .z 2 2 +z 1 .z 2 3 +z 2 4 ), -Etc.

APPENDIX 1

This appendix provides two examples of calculation of cardinal matrices related to the Friedlander and Iwaniec equation. The calculation is based on a general formulation for a cardinal matrix corresponding to the monomial x n where d = gcd(n,p-1) and with a degree of stability that is equal to 1 (for the complete equation) : In this entry, the complex number λ k * is the complex conjugate of λ k .

1 λ 0 */d λ 0 */d … λ 0 */d σ 0 0 0 … 0 1 λ 0 /d λ 0 /d … λ 0 /d 1 λ 1 */d λ 2 */d … λ d */d 0 σ 1 0 … 0 1 λ 1 /d λ 2 /d … λ d /d [M] = (1/p) 1 λ 2 */d λ 3 */d … λ 1 */d 0 0 σ 2 … 0 1 λ 2 /d λ 3 /d … λ 1 /d … … … … … … … … … … … … … … … 1 λ d */d λ 1 */d … λ d-1 */d 0 0 0 … σ d 1 λ d /d λ 1 /d … λ d-
If p = 1 mod 2d, then eigenvalues σ k (and the λ k ) are real, as g (u+(p-1)/(2d)).d = g (p-1)/2 .g u.d = -g u.d mod p and the terms sin((2π/p).g k-1+(u+(p-1)/(2d)).d ) + sin((2π/p).g k-1+u.d ) = 0 offset each other in pairs. If p = 1 + d mod 2d, on the contrary eigenvalues σ k (and the λ k ) have an imaginary part.

We write the product of previous matrices as : For what interests us here, we have d = 4, and we consider two cases.

Case p = 1 mod 8. We take the example p = 17 and g = 3

Calculation of λ k /d λ k /d = ∑cos(2π/17.3 k-1+4r ) + i.∑-sin(2π/17.3 k-1+4r ) cos -sin k r 0 1 2 3 k r 0 1 2 3 
1 0,445738 -0,273663 0,445738 -0,273663 1 0,895163 0,961826 -0,895163 -0,961826 2 -0,982973 0,739009 -0,982973 0,739009 2 -0,183750 -0,673696 0,183750 0,673696 3 -0,850217 -0,602635 -0,850217 -0,602635 3 -0,526432 -0,798017 0,526432 0,798017 4 0,092268 0,932472 0,092268 0,932472 4 -0,995734 -0,361242 0,995734 0,361242 (p-3)/4+(-1) (β+1)/2 .(1/2).β 4 with integers' decomposition of p p = (2α) 2 +β 2 so that α = 1 and β = 5.

  u (as one can verify). Let us return to the case of the Iwaniec and Friedlander equation, with basic bricks -y, x 1 2 et x 2 4 already mentioned, whose representative matrices are noted [M0], [M1] and [M2] respectively.

  x 4 = 12 (with this choice of g).

  previous matrices [M0], [M1] and [M2], we are able to evaluate the (normalized) factors of abundance of a Diophantine equation such as :

∞

  Then let us write the count of prime numbers near the origin in the form :#{y} ≈ coef(y).y/Ln(y)(27)Let us have y(i) = y the i-th prime number. We have the following values :

  c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10 c = 11 c = 12 c = 13 c = 14 c = 15 100 541

  i y = y(i) c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10 c = 11 c = 12 c = 13 c = 14 c = 15 100 541

  d. ∑e(-2πi/p).g^(k-1+r.d) r = 0 à (p-1)/d-1 and σ k = if(variable of integers,1,0) + λ k

  [M] = (1/p).[λ d *].[σ d ].[λ d ] The matrices [σ d ] and [λ d ] are complex according to the cases and [λ d *] is, except for the first row and the first column, the transconjugate matrix of [λ d ]. In fact, matrices [λ d ] and [λ d *] are contracted expressions of transconjugate (and unitary) basis change matrices of circular matrices. The eigenvalues of these basis change matrices are typically consisting of ∑c t .e - 2πi.t.r/n , hence the previous form of the λ k . By the way, [I d ] being the identity matrix of rank d, we have also : [λ d *].[λ d ] = p.[I d ]

  

  

  

  It is easy to check here that [λ d *].[λ d ] = 17.[I d ].

				0	0	0	0		0
				0	0,509188	-2,643998	-0,509188		2,643998
	Calculation of [σ d ]	Im[λ d ] =		0	-2,643998	-0,509188	2,643998		0,509188
				17 0	0 -0,509188	0 2,643998	0 0,509188		0 -2,643998
				0 0	2,376603 2,643998	0 0,509188	0 -2,643998		0 -0,509188
		[σ d ] =		0	0	-0,951713	0		0
				0 1	0 7	0 7	-10,622814 7		0 7
				0 1	0 -1,596291	0 1,096291	0 -1,596291		9,197925 1,096291
	Calculation of [M] and	Re[λ d *] = [M] = Im[λ d *] =		1 1 1 4 1 0 0 0 0 0 0	1,096291 16 -1,596291 1 1,096291 8 4 0 0 -0,509188 2,643998	-1,596291 0 1,096291 8 -1,596291 1 4 0 4 2,643998 0,509188	1,096291 0 -1,596291 4 1,096291 4 5 0 4 0,509188 -2,643998		-1,596291 1,096291 0 -1,596291 0 4 0 4 -2,643998 9 -0,509188
	This compares to			0 1 0	0,509188 p-1 -2,643998	-2,643998 0 -0,509188	-0,509188 0 2,643998		2,643998 0 0,509188
	4 0 It is easy to verify here that [λ d *].[λ d ] = 29.[I] [M] =	x 1 -3 x 2	x 2 x 4 +1	x 3 x 5		x 4 x 5
	Calculation of [σ d ] where and	x 1 x 2 Re[σ d ] = x 3 x 4 x 5	0 0 29 (p+5)/4+(-1) (β+1)/2 .(3/2).β x 3 x 4 0 0 -5,385165 (p-3)/4+2α.if(x 4 >x 2 ,-1,1)-(-1) (β+1)/2 .(1/2).β x 5 x 5 0 0 0 0 5,385165 = (p-3)/4-(-1) (β+1)/2 .(1/2).β 0 0 0 -5,385165 x 3 +1 x 5 0 0 0 (p-3)/4-2α.if(x 4 >x 2 ,-1,1)-(-1) (β+1)/2 .(1/2).β 0 0 0 0 (p+1)/4+(-1) (β+1)/2 .(1/2).β 0 0 0 0	=	x 5 x 2 +1 0 0 4 0 8 0 4 5,385165 0 4 0
	with integers' decomposition of p Im[σ d ] =	0 0	2,036750 p = (2α) 2 +β 2 0 0 -10,575994	0 0		0 0
	thus also α = 2 and β = 1.		0	0	0	-2,036750		0
				0	0	0	0		10,575994
	Case p = 5 mod 8.							
	We take the example p = 29 and g = 2 Calculation of [M]				
				1	0	0	28		0
	Calculation of λ u /d	[M] =		4 λ k /d = ∑cos(2π/29.2 k-1+4r ) + i.∑-sin(2π/29.2 k-1+4r ) 9 4 8 0 12 5 4		4 8
				0	0	8	9		12
	cos			0	8	12	4		5
	k This compares to r	0		1	2	3	4		5	6
	1	0,907575		0,796093 1	-0,561187 0	-0,994138 0	-0,161782 p-1		-0,856857 0	-0,725995
	2 3	0,647386 -0,161782 [M2] =		0,267528 4 -0,856857 0 0	-0,370138 x 3 +1 -0,725995 x 4 x 1	0,976621 x 5 0,907575 x 5 +1 x 2	-0,947653 x 3 0,796093 x 5 x 3 +1		0,468408 x 5 -0,561187 x 2 x 4	0,054139 -0,994138
	4	-0,947653		0,468408 0	0,054139 x 2	0,647386 x 4	0,267528 x 5		-0,370138 x 5 +1	0,976621
	where							
	3 Calculation of [λ d ] et [λ d *] 0,986827 -sin k r 0 1 0,419889 x 1 x 2 x 3 x 4 2 0,762162 x 5	=	1 0,515554 1 0,605174 (p+1)/4+(-1) (β+1)/2 .(3/2).β 4 -0,687699 2 -0,827689 (p+1)/4+2α.if(x 4 >x 2 ,-1,1)-(-1) (β+1)/2 .(1/2).β 4 -0,419889 -0,605174 4 3 4 0,108119 -0,986827 (p-7)/4-(-1) (β+1)/2 .(1/2).β (p+1)/4-2α.if(x 4 >x 2 ,-1,1)-(-1) (β+1)/2 .(1/2).β 0,963550 0,928977 -0,214970 0,319302	=	4 0,827689 5 -0,515554 0 8 8 12 0,883512	-0,108119 6 0,687699 -0,998533
	4	-0,319302		1 -0,883512	0,344151 0,998533	-0,487928 -0,762162	-2,905704 -0,963550		2,049481 -0,928977	0,214970
		[λ d ] =		1	-0,487928	-2,905704	2,049481		0,344151
	Calculation of [λ d ] et [λ d *]		1 1 1	-2,905704 2,049481 7	2,049481 0,344151 7	0,344151 -0,487928 7		-0,487928 -2,905704 7
	and	Re[λ d ] = [λ d *] =		1 1 1 1 1 1 1 1 1	4 -1,596291 0,344151 1,096291 -0,487928 -1,596291 -2,905704 1,096291 2,049481	4 1,096291 -0,487928 -1,596291 -2,905704 1,096291 2,049481 -1,596291 0,344151	4 -1,596291 -2,905704 1,096291 2,049481 -1,596291 0,344151 1,096291 -0,487928		1,096291 4 -1,596291 2,049481 1,096291 0,344151 -1,596291 -0,487928 -2,905704
	P 18/20 P 19/20							

APPENDIX 2 CODE FOR PARI/GP

Getting the exact number of solutions to x 2 +y 4 = p+c with parameter q = p i (to be chosen). {i= 100000; q = primes(i)[i]; print(i); print(q);limit1 = floor(q^(1/2)); limit2 = floor(q^(1/4)); for(c = 0 , 15, s = 0 ; for(x = 0 , limit1, for(y = 0, limit2, t = x^2+y^4-c; if(isprime(t), if(t < q, s++)))); print(s))}