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Abstract

This paper presents novel mathematical results in support of the probabilistic learning on manifolds (PLoM) recently
introduced by the authors. An initial dataset, constituted of a small number of points given in an Euclidean space,
is given. The points are independent realizations of a vector-valued random variable for which its non-Gaussian
probability measure is unknown but is, a priori, concentrated in an unknown subset of the Euclidean space. A learned
dataset, constituted of additional realizations, is constructed. A transport of the probability measure estimated with
the initial dataset is done through a linear transformation constructed using a reduced-order diffusion-maps basis.
It is proven that this transported measure is a marginal distribution of the invariant measure of a reduced-order Itô
stochastic differential equation. The concentration of the probability measure is preserved. This property is shown
by analyzing a distance between the random matrix constructed with the PLoM and the matrix representing the initial
dataset, as a function of the dimension of the basis. It is further proven that this distance has a minimum for a
dimension of the reduced-order diffusion-maps basis that is strictly smaller than the number of points in the initial
dataset.

Notations

The following notations are used:
x: lower-case Latin of Greek letters are deterministic real variables.
x: boldface lower-case Latin of Greek letters are deterministic vectors.
X: upper-case Latin or Greek letters are real-valued random variables.
X: boldface upper-case Latin or Greek letters are vector-valued random variables.
[x]: lower-case Latin of Greek letters between brackets are deterministic matrices.
[X]: boldface upper-case letters between brackets are matrix-valued random variables.
N, R: set of all the integers {0, 1, 2, . . .}, set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
x = (x1, . . . , xn): point in Rn.
<x, y>= x1y1 + . . . + xnyn: inner product in Rn.
‖x‖: norm in Rn such that ‖x‖2 =<x, x>.
Mn,m: set of all the (n × m) real matrices.
Mn: set of all the square (n × n) real matrices.
M+0

n : set of all the positive symmetric (n × n) real matrices.
M+

n : set of all the positive-definite symmetric (n × n) real matrices.
δkk′ : Kronecker’s symbol.
δ0ν and δ0Mν,N

: Dirac measure at the origin of Rν and of Mν,N .
[In]: identity matrix in Mn.
[x]T : transpose of matrix [x].
Tr {[x]}: trace of the square matrix [x].
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< [x], [y] >F= Tr {[x]T [y]}, inner product of matrices [x] and [y] in Mn,m.
‖x‖ or ‖ [x] ‖: Frobenius norm of matrix [x] such that ‖x‖2 =< [x], [x] >F .
E: mathematical expectation.
1: vector (1, . . . , 1) ∈ RN .

1. Introduction

In this paper, novel mathematical results are presented for justifying and clarifying the methodology of proba-
bilistic learning on manifolds (PLoM), initially introduced in [1]. The proposed PLoM, which can be viewed either
as a supervised or an unsupervised machine learning method, considers a given initial dataset constituted of N given
points η1

d, . . . , η
N
d in Rν, which are interpreted as independent realizations of a Rν-valued random variable H for which

its non-Gaussian probability measure pH(η) dη on Rν is unknown but is, a priori, concentrated in an unknown subset
of Rν. In this paper, a quantity indexed by d means that this quantity is relative to the initial dataset and consequently,
is a given quantity. Denoting by p(N)

H the nonparametric statistical estimation of pH, the sequence of probability mea-
sures {p(N)

H (η) dη}N on Rν is convergent to pH(η) dη for N → +∞. In the PLoM, the number N of data points is
fixed and is presumed to be relatively small (case for which only small data are available in opposite to the big-data
case). Nevertheless, it is assumed that N is larger than some lower bound N0 needed for to be a sufficiently accurate
estimate of pH(η) dη. Let us now define the random vector H(N) such that its probability measure is p(N)

H (η) dη. We
define the random matrix [HN] = [H1 . . .HN] with values in Mν,N , whose columns H1, . . . ,HN are N independent
copies of H(N). The matrix [ηd] = [η1

d . . . η
N
d ] ∈ Mν,N is then interpreted as one realization of random matrix [HN]. A

reduced-order diffusion-maps basis [gm] ∈MN,m of order m < N is introduced by the authors for constructing a Mν,N-
valued reduced-order representation [HN

m] = [Zm] [gm] of random matrix [HN]. A MCMC generator of the random
matrix [Zm] with values Mν,m is explicitly constructed as a reduced-order Itô stochastic differential equation (ISDE)
associated with a dissipative Hamiltonian dynamical system. We then consider the family {p[HN

m]([η]) d[η]}1≤m≤N of
probability measures on Mν,N for which the reduced-order ISDE is the MCMC generator. We prove that there exists an
optimal value mopt < N such that the probability measure p[HN

mopt ]
([η]) d[η] allows for generating an arbitrary number

nMC � N of independent realizations of [HN
mopt

] (the learned dataset) in preserving the concentration of the measure.
This property is shown by analyzing the function m 7→ d2

N(m) = E{‖[HN
m] − [ηd]‖2}/E{‖ηd‖

2}, which is minimized for
m = mopt and such that d2

N(mopt) � d2
N(N). It should be noted that, for m = N, the value d2

N(N) represents the dis-
tance of the random matrix [HN

N] to the initial dataset [ηd], for which the learned dataset would be generated without
using the PLoM and consequently, would involve a scattering of the generated realizations corresponding to a loss of
concentration.

In the formulation proposed and analyzed, N is fixed. There is a priori no sense in studying the convergence of
the distance for N going towards infinity, on the one hand because N has a limited value that is supposed to be rather
small and on the other hand because N also represents the number of columns of the random matrix [HN]. However,
for a fixed small value of N, the convergence of the probabilistic learning with respect to N can be considered by
introducing an ordered subset of integers N1 < N2 < . . . < Nimax with N1 > 1 and Nimax = N, and by studying the
convergence as a function of Ni for i = 1, . . . , imax. If the convergence is reached for i ≤ imax, then the learning process
is successful; if not, this means that the value of N is too small and has to be increased, that is to say, by increasing
the number of points in the initial dataset. This question is outside the scope of this paper and we refer the reader to
the references given in the first paragraph of this introduction, references in which this question is dealt with.

1.1. Framework and objective of the PLoM

In the framework of supervised machine learning, a typical problem for the use of the PLoM is the following. Let
(w,u) 7→ f(w,u) be any measurable mapping on Rnw × Rnu with values in Rnq representing a computational model
coming, for instance, from the discretization of a boundary value problem, in which nw, nu, and nq are any finite
integers. Let W and U be two independent (non-Gaussian) random variables defined on a probability space (Θ,T ,P)
with values in Rnw and Rnu , for which the probability measures PW(dw) = pW(w) dw and PU(du) = pU(u) du are
defined by the probability density functions pW and pU with respect to the Lebesgue measures dw and du on Rnw and
Rnu . Random vector W is made up of a part of the random parameters of the computational model, which are used
for controlling the system, while random vector U is made up of the other part of these random parameters, which
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are not used for controlling the system. Let Q be the quantities of interest (QoI) that is a random variable defined on
(Θ,T ,P) with values in Rnq such that

Q = f(W,U) . (1)

Let us assume that N calculations have been performed with the computational model (the training) whose solution
is represented by Eq. (1), allowing N independent realizations {q j, j = 1, . . . ,N} of Q to be computed such that
q j = f(w j,u j), in which {w j, j = 1, . . . ,N} and {u j, j = 1, . . . ,N} are N independent realizations of (W,U), which
have been generated using an adapted generator for pW and pU. We then consider the random variable X with values
in Rn, such that

X = (Q,W) , n = nq + nw . (2)

The probabilistic learning is performed for X. The unnormalized initial dataset DN related to random vector X is
then made up of the N independent realizations {x j, j = 1, . . . ,N} in which x j = (q j,w j) ∈ Rn. In this paper, it is
assumed that the measurable mapping f is such that the non-Gaussian probability measure PX(dx) of X = (Q,W)
admits a density pX(x) with respect to the Lebesgue measure dx on Rn. The probability measure of X is unknown
and is assumed to be concentrated in a subset of Rn that is also unknown (this concentration property is due to
Eqs. (1) and (2)). The objective of the PLoM proposed in [1] is to construct a probabilistic model of non-Gaussian
random vector X using only the unnormalized initial dataset DN , which allows for generating νsim � N additional
independent realizations {x1

ar, . . . , xνsim
ar } in Rn of random vector X, preserving the concentration of its probability

measure and without using the computational model. It can then be deduced νsim additional realizations {(q`ar,w`
ar), ` =

1, . . . , νsim} that are such that (q`ar,w`
ar) = x`ar. These additional realizations allow, for instance, a cost function J(w) =

E{J(Q,W)|W = w} to be evaluated, in which (q,w) 7→ J(q,w) is a given measurable real-valued mapping on Rnq×Rnw

as well as constraints related to a nonconvex optimization problem [2] and this, without calling the computational
model.

1.2. Organization of the paper and its what are the main results

In Section 2, we introduce the Rν-valued random variable H resulting from the principal component analysis
(PCA) of the Rn-valued random variable X with ν ≤ n. Section 3 is devoted to the nonparametric statistical estimate
p(N)

H of the pdf pH of H and we give Theorem 1 concerning the consistency of the sequence of estimators of pH(η)
for all η fixed in Rν. Section 4 deals with the definition of random matrix [HN] and Proposition 1 gives an explicit
expression of the pdf p[HN ] of random matrix [HN]. In Section 5, we present the construction of the reduced-order
diffusion-maps basis [gm] that is used by the PLoM method and we introduce the estimation of the optimal values εopt
and mopt of the hyperparameter εDM and of the reduced order m. In particular, we compare the hyperparameter εDM and
the modified Silverman bandwidth ŝ; we conclude that the invariant probability measure pεDM (i) of the Markov chain
allowing the diffusion-maps basis to be constructed is different from the probability measure p(N)

H (η) dη of random
vector H(N) that is considered by the PLoM. Section 6 is devoted to the construction of the probability measure
and its generator related to the probabilistic learning on manifolds. We introduce the reduced-order representation
[HN

m] = [Zm] [gm]T of random matrix [HN]. In a first central Theorem 3, we prove that the transported probability
measure p[Zm]([z]) d[z] of random matrix [Zm] is the marginal distribution of the invariant measure of the reduced-
order ISDE that is used as the MCMC generator of random matrix [Zm]. We also prove in Proposition 2 that p[Zm] has a
”Gaussian representation”, which is a linear combination of NN products of ν Gaussian pdf on RN . Consequently, the
use of Theorem 3 effectively allows realizations of random matrix [Zm] to be generated, while a Gaussian generator
that would be based on the Gaussian representation is unthinkable for N > 10, for instance. Section 7 deals with
the square of the relative distance d2

N(m) of random matrix [HN
m] to matrix [ηd] of the initial dataset. This distance

allows for quantifying, as a function of m, the concentration of the measure p[HN
m]([η]) d[η] in the subset of Mν,N where

the initial dataset (represented by [ηd]) is located. We show that the usual MCMC generator of random matrix [HN]
corresponding to m = N, yields d2

N(N) ' 2 (see Lemma 2), and induces a loss of concentration of the probability
measure. Under a ”reasonable hypothesis”, the second central Theorem 4 proves that d2

N(mopt) � d2
N(N) in which

mopt < N is the optimal value of m. This result demonstrates that the PLoM method is a better method than the
usual one because it keeps the concentration of the measure. In Section 8, we present a justification of the hypothesis
introduced in Theorem 4, based on the use of the maximum entropy principle from Information Theory. Section 9 is
devoted to a brief numerical application that illustrates the mathematical results. The conclusions follow in Section 10.
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The novelty of the mathematical results presented are mainly those of Section 6.3 related to the explicit expression
of pdf p[Zm] (Proposition 2) and its connection to the invariant measure of the reduced-order ISDE (Theorem 3), and
those of Section 7 related to the characterization of the concentration of the probability measure of random matrix
[HN

m] by introducing distance dN(m) (Propositions 3 and 4), and to the existence of a minimum of this distance for an
optimal value mopt < N of m (Theorem 4), which demonstrates that the PLoM method allows the concentration of the
measure to be kept.

2. De-correlation and normalization of random vector X by PCA

The first step of the PLoM consists in performing a principal component analysis (PCA) of X in order to obtain a
scaled random vector H through de-correlation and normalization. Let x̂ ∈ Rn and [Ĉ] ∈M+0

n be the classical empirical
estimates of the mean vector and the covariance matrix of X, constructed using DN . Let [µ̂] ∈ Mν be the diagonal
matrix of the first ν eigenvalues µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂ν > 0 of [Ĉ] and let [Φ̂] ∈ Mn,ν be the matrix of the associated
orthonormal eigenvectors. For any ε > 0 fixed, ν ≤ n is chosen such that errPCA(ν) = 1 − (µ̂1 + . . . + µ̂ν)/(Tr [Ĉ]) ≤ ε.
This PCA allows for representing X by

Xν = x̂ + [Φ̂] [µ̂]1/2 H , E{‖X − Xν‖2} ≤ ε E{‖X‖2} . (3)

Throughout this paper, it will be assumed that ν < N. The N independent realizations {η j
d, j = 1, . . . ,N} of the

second-order Rν-valued random variable H defined on probability space (Θ,T ,P) are such that

η j
d = [µ̂]−1/2 [Φ̂]T (x j − x̂) ∈ Rν , j = 1, . . . ,N . (4)

The initial dataset DN related to random vector H is then defined as DN = {η1
d, . . . , η

N
d }.

Let [ηd] = [η1
d . . . η

N
d ] ∈ Mν,N be the matrix of the N realizations of H. The empirical estimates mN ∈ Rν and

[CN] ∈M+
ν of the mean vector and the covariance matrix of H, are such that

mN =
1
N

N∑
j=1

η j
d = 0ν , [CN] =

1
N − 1

[ηd] [ηd]T = [Iν] . (5)

It can be seen that the Frobenius norm ‖ηd‖ of matrix [ηd] ∈Mν,N is such that

‖ηd‖
2 = Tr {[ηd]T [ηd]} =

N∑
j=1

‖η j
d‖

2 = ν(N − 1) . (6)

3. Nonparametric estimate of the pdf of H

As proposed in [1], the modification of the multidimensional Gaussian kernel-density estimation method [3, 4, 5,
6] is used for constructing the estimation p(N)

H on Rν of the pdf pH of random vector H, which is written, ∀η ∈ Rν, as

p(N)
H (η) =

1
N

N∑
j=1

πν,N(
ŝ
s
η j

d − η) , πν,N(η) =
1

(
√

2π ŝ)ν
exp{−

1
2ŝ2 ‖η‖

2} , (7)

s =

(
4

N(ν + 2)

)1/(ν+4)

, ŝ =
s√

s2 + N−1
N

, (8)

in which s is the usual Silverman bandwidth (since [CN] = [Iν]) (see for instance, [7]) and where ŝ has been introduced
in order that

∫
Rν η p(N)

H (η) dη = 0ν and that
∫
Rν η ⊗ η p(N)

H (η) dη = [Iν], because, in the framework of the PLoM, we
need to preserve the centering and the orthogonality property. Finally, for fixed ν,

if N → +∞ , then s→ 0 , ŝ→ 0 ,
ŝ
s
→ 1 ,

s
ŝ
→ 1 . (9)
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Theorem 1 (Sequence of estimators of pH(η) [8]). Let us assume that pH is continuous on Rν. For ν fixed and for
η given in Rν, let {P(N)(η)}N be the sequence of estimators of pH(η) for which P(N)(η) = 1

N

∑N
j=1 πν,N( ŝ

s Ĥ j − η) is a
positive-valued random variable where Ĥ1, . . . , ĤN are N independent copies of H. Thus, ∀η ∈ Rn, the mean value
P(N)(η) = E{P(N)(η)} of P(N)(η) is such that limN→+∞ P(N)(η) = pH(η) and the variance is such that Var{P(N)(η)}
= E

{(
P(N)(η) − P(N)(η)

)2}
≤ N−4/(ν+4) βν,N P(N)(η), in which, for ν fixed and for N → +∞, the positive constant βν,N

is such that βν,N ∼ (2π)−ν/2
(
(2 + ν)/4

)ν/(ν+4).

PROOF. The proof, inspired from [8], is adapted to the modification ŝ , s used for defining the estimator. Since
pH is assumed to be a continuous function, ∀η ∈ Rν, pH(η) = E{δ0ν (H − η)}. Using the second Eq. (7), for all η̃
and η in Rν, we have πν,N( ŝ

s η̃ − η) dη̃ = (s/ŝ)ν (
√

2π s)−ν exp{− 1
2s2 ‖η̃ −

s
ŝη‖

2} dη̃. Using Eq. (9) yields the following
equality in the space of the bounded measures on Rν, limN→+∞ πν,N( ŝ

s η̃ − η) dη̃ = δ0ν (η̃ − η). Since Ĥ1, . . . , ĤN are
independent copies of H, we have P(N)(η) = E{πν,N( ŝ

s H − η)} =
∫
Rν πν,N( ŝ

s η̃ − η) pH(η̃) dη̃. Using the two last above

equations yields the expression for the mean. Similarly, E
{(

P(N)(η)
)2}

= 1
N E
{(
πν,N( ŝ

s H−η)
)2}

+ (1− 1
N )
(
P(N)(η)

)2.

Consequently, Var{P(N)(η)} = 1
N E
{(
πν,N( ŝ

s H−η)big)2
}
− 1

N

(
P(N)(η)

)2
≤ 1

N E
{(
πν,N( ŝ

s H −η)
)2}
≤ 1

N

(
supη̃ πν,N( ŝ

s η̃−

η)
)

E{πν,N( ŝ
s H − η)} = 1

N (
√

2π ŝ)−ν P(N)(η). From Eq. (8) and the last inequality yield the expression for the variance

in which βν,N = (2π)−ν/2 {(2 + ν)/4}ν/(ν+4) {1 − 1/N}ν/2
{

1 +
(
4/(2 + ν)

)2/(ν+4)N−2/(ν+4) (1 − 1/N)−1
}ν/2 that is the

expression given in the theorem for N sufficiently large.

Remark 1 (Properties of the sequence of estimators of pH(η)). Theorem 1 shows that estimator P(N)(η) is asymp-
totically unbiased. Since ∀η ∈ Rν, E

{(
P(N)(η) − pH(η)

)2}
= Var{P(N)(η)} +

(
P(N)(η) − pH(η)

)2, we have limN→+∞

E
{(

P(N)(η) −pH(η)
)2}

= 0, which shows that estimator P(N)(η) is consistent. This mean-square convergence implies
the convergence in probability.

4. Definition of the random matrix [HN] and its pdf

The introduction of a (ν × N) random matrix [HN] will allow the initial dataset DN to be represented using the
diffusion-maps basis.

Definition 1 (Matrices [η], [ηd], [ηd(j)], and set J ). Let [η] be any matrix in Mν,N that is written as

[η] = [η1 . . . ηN] ∈Mν,N , η` = (η`1, . . . , η
`
ν) ∈ Rν , ` = 1, . . . ,N , (10)

and let d[η] = ⊗N
`=1dη` be the measure on Mν,N induced by the Lebesgue measures dη1, . . . , dηN on Rν. Let [ηd] ∈Mν,N

be the matrix constructed using the N points η j ∈ Rν defined by Eq. (4),

[ηd] = [η1
d . . . η

N
d ] ∈Mν,N , η j

d = (η j
d,1, . . . , η

j
d,ν) ∈ R

ν , j = 1, . . . ,N . (11)

Let j = ( j1, . . . , jN) ∈ J be the multi-index of dimension N with J = {1, 2, . . . ,N}N ⊂ NN . For all j in J , the matrix
[ηd(j)] ∈Mν,N is defined by

[ηd(j)]k` = η
j`
d,k , k = 1, . . . , ν , ` = 1, . . . ,N . (12)

Finally, we will use the following notation,
∑

j∈J =
∑N

j1=1 . . .
∑N

jN =1.

Note that matrix [ηd] defined by Eq. (11) has to carefully be distinguished from matrix [ηd(j)] defined by Eq. (12).
Nevertheless, it can be seen that for j0 = (1, 2, . . . ,N) ∈ J , we have [ηd(j0)] = [ηd].

Definition 2 (Random matrix [HN]). Let H(N) be the Rν-valued random variable defined on (Θ,T ,P) for which
the pdf is p(N)

H defined by Eqs. (7) and (8). We then define the random matrix [HN] with values in Mν,N such that
[HN] = [H1 . . .HN] in which H1, . . . ,HN are N independent copies of H(N). From Section 3, it can be seen that
E{H(N)} = 0ν and that E{H(N) ⊗H(N)} = [Iν].

Note that in Definition 2, H1, . . . ,HN are not taken as N independent copies of H whose pdf pH is unknown, but are
taken as N independent copies of H(N) whose pdf p(N)

H is known.
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Proposition 1 (Probability density function of random matrix [HN]). The probability measure of random matrix
[HN] with values in Mν,N admits the following density [η] 7→ p[HN ]([η]) on Mν,N with respect to d[η],

p[HN ]([η]) =

N∏
`=1

{
1
N

N∑
j=1

1
(
√

2π ŝ)ν
exp{−

1
2ŝ2 ‖

ŝ
s
η j

d − η
`‖2}} . (13)

PROOF. Using Definition 2 yields, for all [η] in Mν,N , p[HN ]([η]) = ΠN
`=1 p(N)

H (η`) and using Eq. (7) yields Eq. (13).

5. Construction of a reduced-order diffusion-maps basis

To identify the subset around which the initial data are concentrated, the PLoM method relies on the diffusion-
maps method [9, 10, 11, 12]. We use the Gaussian kernel such that, for all η and η′ in Rν, kεDM (η, η′) = exp{−(4 εDM)−1

‖η − η′‖2} in which εDM > 0. The matrices [K] and [b] are defined, for all i and j in {1, . . . ,N}, by [K]i j =

exp{−(4 εDM)−1‖ηi
d − η

j
d‖

2} and [b]i j = δi j bi with bi =
∑N

j′=1[K]i j′ . It is assumed that [ηd] is such that [K] ∈ M+
N .

Hence, the diagonal matrix [b] belongs to M+
N . Let P = [b]−1[K] ∈ MN be the non symmetric matrix with positive

entries such that
∑

j[P]i j = 1 for all i. Matrix [P] is the transition matrix of a Markov chain that yields the probability
of transition in one step.

5.1. Diffusion-maps basis as a non orthogonal vector basis in RN

The eigenvalues λ1, . . . , λN and the associated eigenvectors ψ1, . . . ,ψN of the right-eigenvalue problem [P]ψα =

λα ψ
α are such that 1 = λ1 > λ2 ≥ . . . ≥ λN and can be computed by solving the generalized eigenvalue problem

[K]ψα = λα [b]ψα with the normalization < [b]ψα,ψβ >= δαβ. The eigenvector ψ1 associated with λ1 = 1 is a
constant vector that can be written as ψ1 = N−1/2‖ψ1‖ 1 with 1 = (1, . . . , 1) ∈ RN .

Definition 3 (Reduced-order diffusion-maps basis [gm] of order m). For a given integer κ ≥ 0, the diffusion-maps
basis {g1, . . . , gα, . . . , gN} is a vector basis of RN defined by gα = λκα ψ

α such that < [b] gα, gβ >= λ2κ
α δαβ. For a given

integer m with 2 < m ≤ N, we define the reduced-order diffusion-maps basis of order m as the family {g1, . . . , gm} that
we represent by the matrix [gm] = [g1 . . . gm] ∈MN,m with gα = (gα1 , . . . , g

α
N) and [gm]`α = gα` .

Note that {gα}α is not orthogonal for the inner product < ·, · >, but is orthogonal for the one defined by (u, v) 7→
< [b] u, v > on RN × RN . It can also be seen that the construction of the reduced-order diffusion-maps basis [gm]
depends, a priori, on three parameters: the smoothing parameter εDM, the order m, and the integer κ. Nevertheless, we
will see in Section 5.4 that κ has not a role from a theoretical point of view in the proposed method, in contrary to the
one used in [9]. In the PLoM, its role is the one of an additional scaling; its value can therefore be fixed arbitrarily
(for instance, it can be set to 1 or even to 0; in the latter case, we have gα = ψα). As a result, the only two parameters
that will be considered will be εDM and m.

5.2. Estimation of the optimal values εopt and mopt of εDM and m

Hypothesis 1 (On the initial data represented by matrix [ηd]). For a given matrix [ηd], the eigenvalues λα depend
on εDM. It is assumed that there exist a value εopt of εDM and a value mopt > 2 of integer m such that 1 = λ1 > λ2(εopt) ≥
. . . ≥ λmopt (εopt) � λmopt+1(εopt) ≥ . . . ≥ λN(εopt) > 0.

Under Hypothesis 1, the following algorithm associated with the given initial dataset is proposed for estimating the
optimal value εopt of εDM and an optimal value mopt of order m. Let εDM 7→ m̂(εDM) be the function from ]0 ,+∞[ into
N such that

m̂(εDM) = arg min
α |α≥3

{
λα(εDM)
λ2(εDM)

< 0.1
}
. (14)

If function m̂ is a decreasing (that is to say, nonincreasing) function of εDM, then the optimal value εopt of εDM can be
chosen as the smallest value of the integer m̂(εopt) such that

{m̂(εopt)< m̂(εDM) ,∀εDM ∈ ]0, εopt[ } ∩ {m̂(εopt) = m̂(εDM) ,∀εDM ∈ ]εopt, εmax[ } , (15)
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in which εmax is an arbitrary value chosen sufficiently large in order that εDM 7→ m̂(εDM) be a flat function on the interval
]εopt, εmax[. The corresponding optimal value mopt of m is then given by mopt = m̂(εopt).

In fact, we are looking for the couple (εopt,mopt) so that we have 1 = λ1 > λ2(εopt) ' . . . ' λmopt (εopt) �
λmopt+1(εopt) ≥ . . . ≥ λN(εopt) > 0 (see the illustration shown in Fig. 1 (left)). Consequently, Hypothesis 1 is satisfied.
We have seen through all the performed numerical experiments that εmax is generally less that 1.5 εopt.

In practice, Hypothesis 1 is easy to verify. A value of εmax is fixed a priori. The interval ]0 , εmax[ of the values of
εDM is explored defining an ordered partition of it. For each value εDM in this partition, the eigenvalues are computed
as explained in Section 5.1 and the criterion defined by Eqs. (14) and (15) are examined. Note that this estimation has
been used with success for many applications (see for instance, [13, 2, 14, 15, 16, 17, 18, 19, 20]).

If function m̂ is not a decreasing function of εDM, then a general method based on Information Theory is proposed
in [21]. Alternatively, if data come from a mixture model, the method proposed in [22] could also be used.

5.3. On the relationship between hyperparameter εDM and the modified Silverman bandwidth ŝ

The invariant measure associated with transition matrix [P] of the one-step Markov chain is pεDM (i) = bi (
∑N

j=1 b j)−1,
which is such that

∑N
i=1 p( j|i) pεDM (i) = pεDM ( j) in which p( j|i) = [P]i j. Let us compare the measure pεDM (i) =

(
∑N

j=1 b j)−1 ∑N
j′=1 exp{−(4 εDM)−1‖ηi

d −η
j′
d ‖

2} with p(N)
H (η) dη in which p(N)

H (η) is defined by Eqs. (7) and (8), which is
written, for N sufficiently large (that is to say for ŝ/s ∼ 1 and ŝ ∼ s), as p(N)

H (η) ' N−1(
√

2πs)−ν
∑N

j=1 exp{−(2 s2)−1‖η−

η j
d‖

2}. In general, for ν sufficiently large (for instance, ν ∼ 10), the optimal value εopt defined by Eqs. (14) and (15)
is such that εopt � 1 while, since ν ≤ N, Eq. (8) shows that s2/2 < 1. Therefore, pεDM (i) is very different from the
probability measure p(N)

H (η) dη that corresponds to an observation of the initial dataset from inside it, that is to say, for
an observation at the smallest scale. In contrast, the probability measure pεDM (i) is the one for which the initial dataset
is observed from outside it, that is to say, for an observation at a larger scale.

5.4. Properties of the reduced-order diffusion-maps basis

Definition 4 (Matrices [am] and [Gm] ). For all fixed m, let [gm] ∈ MN,m be the matrix defined in Definition 3. Since
matrix [gm]T [gm] ∈ Mm is invertible, we define the matrix [am] = [gm] ([gm]T [gm])−1 ∈ MN,m and the matrix [Gm] =

[am] [gm]T = [gm] ([gm]T [gm])−1 [gm]T ∈MN .

It should be noted that, as announced at the end of Section 5.1, matrix [Gm] is independent of λκ1, . . . , λ
κ
m and thus, is

independent of κ.

Lemma 1 (Properties of [Gm]). For all m such that 1 ≤ m ≤ N − 1:
(i) rank{[Gm]} = m, Tr {[Gm]} = m, [Gm]T = [Gm], and [Gm] ∈M+0

N .
(ii) for m = N, we have [GN] = [IN].
(iii) [Gm]2 = [Gm], thus [Gm] is idempotent and is a projection operator.
(iv) the eigenvalue problem [Gm]ϕα = µα ϕ

α is such that µ1 = . . . = µm = 1 and µm+1 = . . . = µN = 0. Matrix [Gm]
can be written as [Gm] =

∑N
α=1 µαϕ

α ⊗ ϕα =
∑m

α=1 ϕ
α ⊗ ϕα in which the eigenvectors are such that <ϕα,ϕβ>= δαβ.

(v) [IN] − [Gm] ∈M+0
N .

PROOF. The proof is left to the reader.

6. Probabilistic learning on manifolds (PLoM): construction of the probability measure and its generator

The three main steps of the PLoM introduced in [1] are the following. 1) Construction of a MCMC generator for
random matrix [HN] defined in Definition 2, based on a nonlinear Itô stochastic differential equation (ISDE) that will
be introduced in Section 6.1, for which the probability measure p[HN ]([η]) d[η] is a marginal probability distribution
of the unique invariant measure of this ISDE. 2) Definition of a reduced representation [HN

m] = [Zm] [gm]T of order
m < N for random matrix [HN] using the reduced-order diffusion-maps basis [gm] and where [Zm] is a random
matrix with values in Mν,m for which its probability measure is p[Zm]([z]) d[z]. 3) Construction of a reduced-order
ISDE for which p[Zm]([z]) d[z] is a marginal probability distribution of its unique invariant measure. We will then
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obtain a MCMC generator of random matrix [Zm] and then of random matrix [HN
m], which allows a learned dataset

{[η`ar], ` = 1, . . . , nMC} to be generated with an arbitrary number nMC of realizations of [HN
mopt ].

As already explained, the PLoM methodology has been developed for small values of N (small data) for which the
probability measure p(N)

H (η) dη is not necessarily converged. Therefore additional realizations that would be generated
with this measure would not provide good realizations preserving the concentration. This is the reason why, the
measure p[HN ]([η]) d[η] is improved by introducing the transported probability measure p[Zmopt ]([z]) d[z] of random
matrix [Zmopt ]. It should be noted that the additional realizations of [HN

mopt ] are not constructed using the projection
of realizations of [HN] on the subspace spanned by the reduced-order diffusion-maps basis [gmopt ] (that would not
be correct for a small value of N), but are constructed using the reduced-order ISDE associated with the transported
probability measure p[Zmopt ]([z]) d[z] allowing additional realizations of [Zmopt ] to be generated and then deducing the
additional realizations of [HN

mopt ] = [Zmopt ] [gmopt ]
T .

6.1. MCMC generator for random matrix [HN]
The PLoM method begins with the construction of a MCMC generator for random matrix [HN] whose pdf p[HN ]

is given by Eq. (13). It is based on a nonlinear ISDE, formulated for a dissipative Hamiltonian dynamical system [23]
for a diffusion stochastic process {([U(r)], [V(r)]), r ≥ 0} with values in Mν,N ×Mν,N , which admits a unique invariant
measure for which the marginal probability distribution with respect to [U] is the probability measure p[HN ]([η]) d[η].
This MCMC generator is adapted to perform its projection on the subspace spanned by the reduced-order diffusion-
maps basis and in addition, a dissipative term allows the transient part of the response to be rapidly killed. This
MCMC generator belongs to the class of Hamiltonian Monte Carlo methods [24, 25], which is an MCMC algorithm
[26, 27, 28].

Notation 1 (Matrix-valued Wiener process [W] and parameter f0). Let us introduce the stochastic process {[W(r)]
= [W1(r) . . .WN(r)], r ≥ 0} defined on (Θ,T ,P), with values in Mν,N , independent of random matrix [HN], in which
the columns W1, . . . ,WN are N independent copies of the normalized Wiener stochastic process W = (W1, . . . ,Wν),
defined on (Θ,T ,P), indexed by R+, with values in Rν, such that W(0) = 0ν a.s., E{W(r)} = 0ν, and E{W(r)⊗W(r′)} =

min(r, r′) [Iν]. Let f0 > 0 be a free parameter that will allow the dissipation term of the nonlinear ISDE (dissipative
Hamiltonian system) to be controlled.

Theorem 2 (ISDE as the MCMC generator of matrix [HN]). Using Notation 1, we consider the stochastic process
{([U(r)], [V(r)]), r ≥ 0} with values in Mν,N × Mν,N , which verifies the following ISDE for r > 0, with the initial
conditions for r = 0,

d[U(r)] = [V(r)] dr , (16a)

d[V(r)] = [L([U(r)])] dr −
1
2

f0 [V(r)] dr +
√

f0 d[W(r)] , (16b)

[U(0)] = [ηd] a.s. , [V(0)] = [v0] a.s. , (16c)

in which [ηd] is defined by Eq. (11) and where [v0] a given matrix in Mν,N . For k = 1, . . . , ν and ` = 1, . . . ,N,
and for u` = (u`1, . . . , u

`
ν) with u`k = [u]k`, the matrix [L([u])] ∈ Mν,N is defined, as a function of a potential V, by

[L([u])]k` = −∂V(u`)/∂u`k in which V(u`) = − log{ 1
N

∑N
j=1 exp{− 1

2 ŝ2 ‖
ŝ
s η

j
d − u`‖2}}. The ISDE defined by Eqs. (16a)

and (16b) admits the unique invariant measure, p[HN ],[VN ]([η], [v]) d[η]⊗ d[v] = (p[HN ]([η]) d[η])⊗ (p[VN ]([v]) d[v]) on
Mν,N×Mν,N , in which p[VN ] is the Gaussian density [v] 7→ (2π)−νN/2 exp{−‖v‖2/2} on Mν,N and where the pdf p[HN ]([η])
is defined by Eq. (13). Matrix [v0] is any realization of the Gaussian pdf p[VN ], independent of {[W(r)], r ≥ 0}.

PROOF. Since the columns H1, . . . ,HN of random matrix [HN] are independent copies of random vector H(N) (see
Definition 2), and since the pdf of random matrix [HN] is p[HN ] defined by Eq. (13), Theorems 4, 6, and 7 in Pages
211 to 214 of [29] and the expression of the invariant measure given in Page 211 of the same reference, for which
the Hamiltonian is H(u, v) = ‖v‖2/2 +V(u), prove that the invariant measure is the one given in Theorem 2 and is
unique.
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6.2. Reduced representation [HN
m] of random matrix [HN]

Definition 5 (Random matrix [HN
m]). For given εDM, m, and κ, the random matrix [HN

m] on (Θ,T ,P), with values in
Mν,N , is defined by [HN

m] = [Zm] [gm]T with [gm] ∈ MN,m defined in Definition 3 and where [Zm] is a random matrix
with values in Mν,m for which its probability measure admits a pdf p[Zm]([z]) with respect to d[z].

Notation 2 (Random vectors Ĥk and Ẑk). For k ∈ {1, . . . , ν}, let Ĥk = (Ĥk
1, . . . , Ĥk

N) be the random vector in RN

such that Ĥk
j = [HN

m]k j for j ∈ {1, . . . ,N} and let Ẑk = (Ẑk
1, . . . , Ẑ

k
m) be the random vector in Rm such that Ẑk

α = [Zm]kα

for α ∈ {1, . . . ,m}. Consequently, Ĥk =
∑m

α=1 Ẑk
α gα in which gα is defined in Definition 3.

Let L0(Θ,RN) be the vector space of all the random variables, defined on (Θ,T ,P), with values in RN . It can be seen
that each RN-valued random variable Ĥk belongs to the subspace L0(Θ,Em) ⊂ L0(Θ,RN) in which Em ⊂ RN is the
subspace of RN spanned by {g1, . . . gm}. Note that, contrarily to the PCA that is a reduction following the physical
coordinates axis, the representation constructed with the reduced-order diffusion-maps basis is a reduction following
the data axis.

Remark 2 (Relationship between [HN
N] and [HN]). Since [gN] is a vector basis of RN (see Definition 3), for m = N,

the random matrix [HN
N] is an independent copy of random matrix [HN] introduced in Definition 2, in which [HN

N] =

[ZN] [gN]T is a representation of [HN] with [ZN] = [HN] [aN], where [aN] is given by Definition 4 for m = N.

6.3. Explicit expression of pdf p[Zm] and reduced-order ISDE

Theorem 3 (Reduced-order ISDE and pdf p[Zm]). The notations introduced in Definition 4 and in Theorem 2 are
used. For given εDM, m, and κ, let {([Z(r)], [Y(r)]), r ≥ 0} be the stochastic process defined on (Θ,T ,P), with values
in Mν,m ×Mν,m, which verifies the following reduced-order ISDE for all r > 0, with the initial conditions for r = 0,

d[Z(r)] = [Y(r)] dr , (17a)

d[Y(r)] = [L([Z(r)])] dr −
1
2

f0 [Y(r)] dr +
√

f0 d[W(r)] [am] , (17b)

[Z(0)] = [ηd] [am] a.s. , [Y(0)] = [v0] [am] a.s. , (17c)

in which, ∀ [z] ∈Mν,m, [L([z])] = [L([z] [gm]T )] [am] ∈Mν,m. Eqs. (17a) and (17b) admit the unique invariant measure
on Mν,m ×Mν,m,

p[Zm],[Ym]([z], [y]) d[z] ⊗ d[y] = (p[Zm]([z]) d[z]) ⊗ (p[Ym]([y]) d[y]) , (18)

in which p[Ym] is the Gaussian density [y] 7→ (2π)−νm/2 exp{−‖y‖2/2} on Mν,m and where the pdf [z] 7→ p[Zm]([z]) on
Mν,m is written as

p[Zm]([z]) = cνm
N∏
`=1

{

N∑
j=1

exp{−
1

2ŝ2 ‖
ŝ
s
η j

d −

m∑
α=1

zαgα` ‖
2}} . (19)

The positive parameter cνm is the constant of normalization, [z] = [z1 . . . zm] ∈ Mν,m with zα = (zα1 , . . . , z
α
ν ) ∈ Rν and

with zαk = [z]kα, and gα` is given by Definition 3. The reduced-order ISDE with initial conditions, defined by Eqs. (17a)
to (17c), has a unique stochastic solution {([Z(r)], [Y(r)]), r ≥ 0} that is a second-order diffusion stochastic process,
which is asymptotic, for r → +∞, to a stationary and ergodic stochastic process {([Zst(rst)], [Y st(rst)]), rst ≥ 0} for the
right-shift semi-group on R+ = [0,+∞[. For all rst fixed in R+, the joint probability measure of the random matrices
[Zst(rst)] and [Y st(rst)] is the invariant measure defined by Eq. (18) and the pdf of random matrix [Zst(rst)] is defined
by Eq. (19). Consequently, Eqs. (17a) to (17c) yield a MCMC generator of random matrix [Zm] and parameter f0
allows for killing the transient regime induced by initial conditions, in order to reach the stationary solution more
quickly.

PROOF. We introduce the stochastic process {([Z(r)], [Y(r)]), r ≥ 0} with values in Mν,m ×Mν,m, such that, for all
r ≥ 0, [U(r)] = [Z(r)] [gm]T and [V(r)] = [Y(r)] [gm]T in which [gm] ∈ MN,m is given by Definition 3 and where
{([U(r)], [V(r)]), r ≥ 0} is the stochastic process with values in Mν,N×Mν,N , introduced in Theorem 2. Considering this
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change of stochastic processes, substituting them in Eqs. (16a) and (16b), and right multiplying these two equations
by matrix [am], yield Eqs. (17a) and (17b). The initial conditions defined by Eq. (17c) are similarly obtained.
(i) Proof of Eq. (19). For m fixed, since the reduced representation of random matrix [HN] (for which its pdf p[HN ] is
given by Eq. (13)) is defined as the random matrix [HN

m] = [Zm] [gm]T (see Definition 5), the theorem of the image of
a measure by a measurable mapping allows for deducing Eq. (19) of the pdf p[Zm] of random matrix [Zm] with values
in Mν,m.
(ii) Proof that p[Zm],[Ym]([z], [y]) d[z] ⊗ d[y] defined by Eq. (18), with p[Zm]([z]) given by Eq. (19), is the invariant
measure of Eqs. (17a) and (17b). For proving that, there are several possibilities. We chose to use an algebraic-
based demonstration, which allows for introducing notations that will be reused in Proposition 2. For simplifying the
writing, the Itô equation (17a)-(17b) is rewritten as the following second-order stochastic differential equation that
has to be read as an equality of generalized stochastic processes (see for instance, Chapter XI of [30]),

D2
r [Z] +

1
2

f0 Dr[Z] − [L([Z])] =
√

f0 Dr[W] [am] , (20)

in which Dr[W] is the generalized normalized Gaussian white process resulting from the generalized derivative with
respect to r of the Mν,N-valued Wiener stochastic process defined in Notation 1. For k = 1, . . . , ν, for α = 1, . . . ,m,
and for ` = 1, . . . ,N, we define zα = (zα1 , . . . , z

α
ν ) ∈ Rν and ẑk = (̂zk

1, . . . , ẑ
k
m) ∈ Rm with zαk = ẑk

α = [z]kα. Similarly, we
define the real functions (z1, . . . , zm) 7→ Φ(z1, . . . , zm) on Rν×. . .×Rν and (̂z1, . . . , ẑν) 7→ Φ̂(̂z1, . . . , ẑν) on Rm×. . .×Rm,
such that

Φ(z1, . . . , zm) =

N∑
`=1

V(u`) , u`=

m∑
α=1

zα gα` , Φ̂(̂z1, . . . , ẑν) = Φ(z1, . . . , zm) . (21)

Eq. (20) can be rewritten as ν coupled generalized stochastic equations on Rm,

D2
rẐ

k
+

1
2

f0 DrẐ
k

+ ([gm]T [gm])−1
∇
Ẑ

k Φ̂(Ẑ
1
, . . . , Ẑ

ν
) =

√
f0 [am]T DrŴk ,

with k ∈ {1, . . . , ν} and where {Ŵk}α = [W]kα. Left multiplying this last equation by the invertible matrix [gm]T [gm] ∈
Mm yields, for k ∈ {1, . . . , ν}, the following coupled equations,

[gm]T [gm] D2
rẐ

k
+

1
2

f0 [gm]T [gm] DrẐ
k

+ ∇
Ẑ

k Φ̂(Ẑ
1
, . . . , Ẑ

ν
) =

√
f0 [gm]T DrŴk .

Using the mathematical results given in Chapter X of [29], it can be deduced that the ISDE corresponding to the
previous ν coupled generalized stochastic equations admits a unique invariant measure on (Πν

k=1Rm) × (Πν
k=1Rm),

defined by the following density with respect to (⊗νk=1dẑk) ⊗ (⊗νk=1dŷk), which is

p(̂z1, . . . , ẑν; ŷ1, . . . , ŷν) = ĉ2 νm exp{−
1
2

ν∑
k=1

< [gm]T [gm] ŷk, ŷk> −Φ̂(̂z1, . . . , ẑν)} .

Consequently, the joint probability density function of the Rν-valued random variables Z1, . . . ,Zm with respect to
⊗m
α=1dzα is given, using the third Eq. (21), by pZ1,...,Zm (z1, . . . , zm) = ĉνm exp{−Φ(z1, . . . , zm)} and thus, using Eq. (21),

the pdf of random matrix [Zm] with respect to d[z] is

p[Zm]([z]) = ĉνm exp{−
N∑
`=1

V(
m∑
α=1

zαgα` )} .

Using the expression of V(u`) defined in Theorem 2 and introducing cνm = ĉνm/NN , this pdf can be rewritten as
Eq. (19).
(iii) Proof of uniqueness of an asymptotic stationary and ergodic solution of Eqs. (17a) to (17c). The use of Theorem
9 in Page 216 of [29] yields the proof that Eqs. (17a) to (17c) has a unique solution {([Z(r)], [Y(r)]), r ≥ 0} that is a
second-order diffusion stochastic process, which is asymptotic, for r → +∞, to a unique stationary stochastic process
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([Zst], [Y st]) having the properties given in Theorem 3. The ergodicity of the stationary solution is directly deduced
from [31] or from [32].

Proposition 2 (Explicit expression of the pdf p[Zm] of [Zm]). (i) The pdf p[Zm] of random matrix [Zm] defined by
Eq. (19) can be rewritten, for all [z] in Mν,m, as

p[Zm]([z]) =
∑
j∈J

pj(m)
ν∏

k=1

pẐk (̂zk; j) , ẑk = (̂zk
1, . . . , ẑ

k
m) ∈ Rm , ẑk

α = [z]kα , (22)

in which for all j in J (see Definition 1),

pj(m) = γj(m)
(∑

j′∈J

γj′ (m)
)−1

,
∑
j∈J

pj(m) = 1 , (23a)

γj(m) = exp{−
1

2 s2 < [IN] − [Gm] , [Md(j)] >F} . (23b)

Matrix [Gm] ∈MN (see Definition 4) and the matrix [Md(j)] ∈M+0
N is defined by

[Md(j)] = [ηd(j)]T [ηd(j)] , [Md(j)]``′ =<η j`
d , η

j`′
d > , (24)

in which [ηd(j)] ∈ Mν,N is defined by Eq. (12). For all k in {1, . . . , ν}, pẐk (·; j) is the Gaussian pdf, such that, for all ẑk

in Rm,

pẐk (̂zk; j)=
(
(2π)m det[Cm]

)−1/2 exp
{
−

1
2
< [Cm]−1(ẑk− ẑk(j)

)
, ẑk− ẑk(j)>

}
, (25)

in which [Cm] = ŝ2([gm]T [gm])−1 ∈M+
m, where ẑk(j) = (ŝ/s) [am]T η̂k

d(j) ∈ Rm with [am] ∈MN,m given by Definition 4,
and where η̂k

d(j) =
(
η̂k

d,1(j), . . . , η̂k
d,N(j)

)
∈ RN with η̂k

d,`(j) = η
j`
d,k = [ηd(j)]k` (see Eq. (12)).

(ii) For all j in J and for all 1 ≤ m ≤ N − 1, we have aj(m) def
= < [IN] − [Gm] , [Md(j)] >F ≥ 0, 0 < γj(m) < 1,

0< pj(m)<1, and for m = N, aj(N) = 0, γj(N) = 1, and pj(N) = 1/NN .

PROOF. (i) Eq. (19) can be written as

p[Zm]([z]) = cνm
∑
j∈J

ν∏
k=1

exp
{
−

1
2ŝ2 ‖

ŝ
s
η̂k

d(j) − [gm] ẑk‖2
}
.

On the other hand, ∀k ∈ {1, . . . , ν}, we have −(2 ŝ2)−1‖(ŝ/s) η̂k
d(j)− [gm] ẑk‖2 = −(1/2) < [Cm]−1

(
ẑk−ẑk(j)

)
, ẑk−ẑk(j)>

+(2 s2)−1(< [Gm]η̂k
d(j) , η̂k

d(j)> −‖η̂k
d(j)‖2). Combining the previous equations allows p[Zm]([z]) to be rewritten as

p[Zm]([z]) = cνm
∑
j∈J

γj(m)
ν∏

k=1

exp
{
−

1
2
< [Cm]−1(ẑk−ẑk(j)

)
, ẑk−ẑk(j)>

}
,

in which γj(m) =
∏ν

k=1 exp{− 1
2ŝ2 (‖η̂k

d(j)‖2− < [Gm]η̂k
d(j) , η̂k

d(j)>)}, which can, finally, be rewritten as Eq. (23b) with
Eq. (24). The above expression of p[Zm]([z]) is rewritten as

p[Zm]([z]) = cνm(2π)νm/2(det[Cm])ν/2
∑
j∈J

γj(m)
ν∏

k=1

pẐk (̂zk; j) .

The constant cνm of normalization is calculated by
∫
Mν,m

p[Zm]([z]) d[z] = 1. Since
∫
Rm pẐk (̂zk; j) dẑk = 1, it is deduced

that cνm = {(2π)νm/2(det[Cm])ν/2
∑

j∈J γj(m)}−1. Eq. (22) can then be deduced in which pj(m) is given by Eq. (23a).
Finally, [Md(j)] =

∑ν
k=1 η̂

k
d(j) ⊗ η̂k

d(j) = [ηd(j)]T [ηd(j)], which shows that [Md(j)] ∈ M+0
N because ν < N (see

Section 2).
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(ii) From Lemma 1-(v), and using Eq. (24), it can be seen that aj(m) ≥ 0. The end of the proof is easy to do.

Remark 3 (About the algebraic representation of pdf p[Zm] and its generator).
(i) Eq. (22) shows that pdf p[Zm] on Mν,m is a linear combination of NN products of ν Gaussian pdf on RN . Conse-
quently, the use of the reduced-order ISDE given by Theorem 3 effectively allows realizations of random matrix [Zm]
to be generated, while a Gaussian generator that would be based on the representation given by Eq. (22) is unthinkable.
(ii) The generation of nMC � 1 independent realizations {[z`], ` = 1, . . . , nMC} of random matrix [Zm] is performed
by using the MCMC generator defined by Theorem 3 in which the reduced-order stochastic Eqs. (17a) to (17c) are
solved using the Störmer-Verlet scheme [33, 34], which is well adapted to stochastic Hamiltonian dynamical systems
and which is detailed in [1]. We can then deduce the learned dataset {[η`ar], ` = 1, . . . , nMC} of random matrix [HN

m]
such that [η`ar] = [z`] [gm]T , with an arbitrary value of realizations.

7. L2-distance of random matrix [HN
m] to matrix [ηd] of the initial dataset and its analysis

In this section, N, ν, κ, and εDM = εopt are fixed. The optimal value of m associated with εopt is mopt as de-
fined in Section 5.2. Integer m varies in {1, . . . ,N}. The measure of the concentration of the probability measure
p[HN

m]([η]) d[η], which is informed by the initial dataset represented by matrix [ηd], will be analyzed as a function of
m by using the square d2

N(m) of the L2(Θ,Mν,N)-distance between random matrix [HN
m] and matrix [ηd].

Definition 6 (Square of the relative distance d2
N(m) of [HN

m] to [ηd]). For m fixed, the square of the relative distance
of random matrix [HN

m] with values in Mν,N to matrix [ηd] ∈Mν,N is defined as d2
N(m) = E{‖[HN

m]− [ηd]‖2}/E{‖[ηd]‖2}.

The following Lemma gives the value of d2
N(N), which corresponds to the value of the distance if the PLoM method

is not used (m = N). In this case, the MCMC generator of random matrix [HN
N] is given by Theorem 2.

Lemma 2 (Value of d2
N(m) for m = N). For m = N, the random matrix [HN

N], which is an independent copy of ran-
dom matrix [HN] (see Definition 2 and Remark 2) is such that E{[HN

N]} = [0ν,N], E{‖ [HN
N] ‖2} = νN, and the value of

d2
N(m) for m = N is d2

N(N) = 1 + N/(N − 1).

PROOF. Note that H1, . . . ,HN are independent copies of H(N) (see Definition 2). (i) E{[HN
N]} = E{[HN]} = [E{H(N)} . . .

E{H(N)}], and since E{H(N)} = 0ν, we have E{[HN
N]} = [0ν,N]. (ii) E{‖ [HN

N] ‖2} = E{‖ [HN] ‖2} =
∑N

j=1 E{‖H j‖2}

= N E{‖H(N)‖2}, therefore, E{‖H(N) ‖2} = Tr {[Iν]} = ν, and consequently, we have E{‖ [HN
N] ‖2} = νN. (iii) Using

Definition 6 and Eq. (6) yields d2
N(N) =

(
ν(N − 1)

)−1 ( E{‖ [HN
N] ‖2} − 2 < E{[HN

N]}, [ηd] >F +‖ηd‖
2
)
. The result is

obtained using (i), (ii), and Eq. (6).

It should be noted that the concentration is measured by the mean-square distance between the random matrix
[HN

m] and the deterministic matrix [ηd]. For m = N, this distance would be zero only if the probability measure of
[HN

N] were the Dirac measure in the space Mν,N at point [ηd] ∈Mν,N , which is obviously not the case.

Proposition 3 (Expression of d2
N(m)). Let m be fixed. We have

E{[HN
m]} =

∑
j∈J

pj(m)
ŝ
s

[ηd(j)] [Gm] ∈Mν,N , (26a)

E{‖[HN
m]|2} =

∑
j∈J

pj(m)
(
νŝ2m +

ŝ2

s2 < [Gm] , [Md(j)]>F
)
, (26b)

in which pj(m) is given by Eq. (23a), [ηd(j)] is defined by Eq. (12), [Gm] by Definition 4, and [Md(j)] by Eq. (24), and
we have

d2
N(m) = 1 +

mŝ2

N − 1
+

1
‖ηd‖

2

∑
j∈J

pj(m) < [Gm] , [Bd(j)]>F , (27a)

[Bd(j)] =
ŝ2

s2 [Md(j)] − 2
ŝ
s

[ηd(j)]T [ηd] ∈MN . (27b)
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The entries of [Bd(j)] are [Bd(j)]``′ = (ŝ2/s2) <η j`
d , η

j`′
d > −(2ŝ/s) <η j`

d , η
`′

d >.

PROOF. Since [HN
m] = [Zm] [gm]T (see Definition 5), it can be seen that E{[HN

m]} = [MN
1 (m)] [gm]T and E{‖[HN

m]|2} =<
[MN

2 (m)] , [gm]T [gm]>F , in which, using Eq. (22) for p[Zm],

[MN
1 (m)] =

∑
j∈J

pj(m)
∫
Rm
. . .

∫
Rm

[̂z1 . . . ẑν]T ⊗νk=1 {pẐk (̂zk; j) dẑk} ∈Mν,m ,

[MN
2 (m)] =

ν∑
k′=1

∑
j∈J

pj(m)
ν∏

k=1

{∫
Rm

ẑk′⊗ ẑk′ pẐk (̂zk; j) dẑk
}
∈Mν,m .

(i) Calculation of E{[HN
m]}. Using Eq. (25) and the expression of ẑk(j) defined in Proposition 2 yield [MN

1 (m)] =∑
j∈J pj(m) [̂z(j)]T with [̂z(j)] = [̂z1(j) . . . ẑν(j)] = (ŝ/s) [am]T [ηd(j)]T . Since [am] [gm]T = [Gm] (see Definition 4),

we obtain Eq. (26a).
(ii) Calculation of E{‖[HN

m]|2}. Eq. (25) shows that
∫
Rm ẑk⊗ẑk pẐk (̂zk; j) dẑk = [Cm]+ẑk(j)⊗ẑk(j). Since

∫
Rm pẐk (̂zk; j) dẑk =

1 and that
∑ν

k′=1 ẑk′ (j) ⊗ ẑk′ (j) = [̂z(j)] [̂z(j)]T , we have [MN
2 (m)] =

∑
j∈J pj(m)

(
ν [Cm] + [̂z(j)] [̂z(j)]T

)
. It can

then be deduced that E{‖[HN
m]|2} =

∑
j∈J pj(m)

(
νI1(m) + I2(m, j)

)
. Using [Cm] = ŝ2 ([gm]T [gm])−1 (see Proposi-

tion 2) and the expression of [Gm] given in Definition 4 yield I1(m) =< [Cm] , [gm]T [gm] >F= ŝ2 Tr {[Gm]} = ŝ2 m.
On the other hand, I2(m, j) = ‖[̂z(j)]T [gm]T ‖2 and since [̂z(j)]T = (ŝ/s) [ηd(j)] [am], we have [z(j)]T [gm]T =

(ŝ/s) [ηd(j)] [Gm]. Therefore, I2(m, j) = (ŝ2/s2)‖[ηd(j)] [Gm]‖2. Since [Gm]2 = [Gm] (see Lemma 1-(iii)) and that
[Md(j)] = [ηd(j)]T [ηd(j)] (see Eq. (24)), we obtain I2(m, j) = (ŝ2/s2) < [Gm] , [Md(j)]>F . By substitution, we obtain
Eq. (26b).
(iii) Calculation of d2

N(m). From Definition 6 of d2
N(m), we have d2

N(m) = ‖ηd‖
−2
(
E{‖[HN

m]‖2} − 2 <E{[HN
m]} , [ηd]>F

+‖ηd‖
2
)
. Using Eqs. (26a) and (26b) allows for proving Eq. (27a) with Eq. (27b).

In order to apply Proposition 3 for the case m = N, we need the results given in the following lemma.

Lemma 3. Using Definition 1 and Eqs. (24) and (27b), we have

1
NN

∑
j∈J

[ηd(j)] = [0ν,N] , (28a)

1
NN

∑
j∈J

[Md(j)] =
1
N
‖ηd‖

2 [IN] (28b)

1
NN

∑
j∈J

[Bd(j)] =
ŝ2

s2

1
N
‖ηd‖

2 [IN] . (28c)

PROOF. (i) Proof of Eq. (28a): for all fixed `, we have

N−N
∑
j∈J

η j`
d = N−N

N∑
j1

. . .

N∑
jN

η j`
d = N−1

N∑
j`=1

η j`
d = 0ν ,

taking into account Eq. (5). (ii) Proof of Eq. (28b): for ` = `′, it can be seen that

N−N
∑
j∈J

[Md(j)] = N−N
N∑
j1

. . .

N∑
jN

‖η j`
d ‖

2 = N−1
N∑

j`=1

‖η j`
d ‖

2 .

For ` , `′, due to Eq. (28a), it can bee seen that

N−N
∑
j∈J

[Md(j)] = N−N+2
∑

j,{j`∩j`′ }

<N−1
N∑

j`=1

η j`
d ,N

−1
N∑

j`′=1

η j`′
d >= 0 .
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Grouping the two cases yields Eq. (28b). (iii) Proof of Eq. (28c): this result can easily be deduced from Eqs. (27b),
(28a), and (28b).

Corollary 1 (Value of d2
N(N) as a corollary of Proposition 3). Taking m = N in Eq. (27a) yields the value d2

N(N) =

1 + N/(N − 1) given in Lemma 2.

PROOF. The proof is easy to obtain using Proposition 2-(ii), Lemma 1-(ii), Eqs. (27a) and (27b) with m = N, and
Eq. (8).

Definition 7 (Matrix [ηm
d ] and function εd). Let [ηd] ∈Mν,N be the matrix defined by Eq. (11) and let [Gm] ∈MN be

the matrix defined in Definition 4. For all m such that 1 ≤ m ≤ N, the matrix [ηm
d ] ∈MN is defined by

[ηm
d ] = [ηd] [Gm] . (29)

The function m 7→ εd(m) with values in R+ is defined by

‖[ηd] − [ηm
d ]‖ = εd(m) ‖ηd‖ . (30)

Lemma 4 (Properties of m 7→ εd(m) and expression of ‖ηm
d ‖

2). (i) m 7→ εd(m) is a decreasing function from {1, . . . ,N}
into [0 , 1] and we have εd(1) = 1 and εd(N) = 0. (ii) For all m such that 1 ≤ m ≤ N, the square of the Frobenius
norm of matrix [ηm

d ] that is defined by Eq. (29), is written as

‖ηm
d ‖

2 =
(
1 − εd(m)2) ‖ηd‖

2 . (31)

PROOF. (i) From Eq. (29) and Lemma 1-(ii), it can be seen that [ηN
d ] = [ηd]. Therefore, Eq. (30) yields εd(N) = 0.

From Section 5.1, it can be seen that g1 = N−1/2‖ψ1‖ 1 and using Definition 4 yield [G1] = N−1 1 ⊗ 1. We have
‖[ηd] − [η1

d]‖2 = ‖[ηd]([IN] − [G1])‖2 =< [ηd]([IN] − [G1]) , [ηd]([IN] − [G1])>F= < [ηd]T [ηd] , [IN] − [G1]>F because
([IN] − [G1])2 = [IN] − 2[G1] + [G1]2 = [IN] − [G1]. Hence, ‖[ηd] − [η1

d]‖2 = ‖ηd‖
2− N−1 < [ηd]T [ηd] , 1 ⊗ 1 >F

and < [ηd]T [ηd] , 1 ⊗ 1>F= ‖
∑N

j=1 η
j
d‖

2 = 0 (due to the first Eq. (5)), we deduce that ‖[ηd] − [η1
d]‖2 = ‖ηd‖

2, which
proves that εd(1) = 1. Since [Gm] =

∑m
α=1 ϕ

α ⊗ ϕα (see Lemma 1-(iv)), we have ‖[ηd] − [ηm
d ]‖2 = < [ηd]T [ηd] , [IN] −

[Gm]>F= ‖ηd‖
2 −
∑m

α=1 ‖[ηd]ϕα‖2, which proves that m 7→ εd(m) is a decreasing function. (ii) Developing the left-
hand side of Eq. (30) yields ‖ηd‖

2 − 2 < [ηd] , [ηm
d ] >F +‖ηm

d ‖
2 = εd(m)2‖ηd‖

2. On the other hand, < [ηd] , [ηm
d ] >F=

< [ηd] , [ηd] [Gm]>F and since [Gm] = [Gm]2 (see Lemma 1-(iii)), it can be deduced that, < [ηd] , [ηm
d ]>F= ‖ηm

d ‖
2, and

then Eq. (31) holds.

In Hypothesis 1, based on the properties of {λα(εDM)}α, we have introduced the existence of optimal values εopt and
mopt of εDM and m, respectively. In the following hypothesis, we introduce the connection between m 7→ εd(m) and
{λα(εDM)}α.

Hypothesis 2 (Relative to m 7→ εd(m)). Under Hypothesis 1, it is assumed that mopt is such that 1 = εd(1) > . . . >
εd(mopt − 1) � εd(mopt) > εd(mopt + 1) > . . . > εd(N) = 0.

Remark 4 (Comments about hypotheses 1 and 2 related to mopt). Regarding Hypothesis 1 devoted to the existence
of the optimal values εopt of εDM and mopt of m, Fig. 1 (left) displays the graph of function α 7→ log(λα(εopt)). The
graph of function m 7→ εd(m) corresponding to Hypothesis 2 is shown in Fig. 1 (right). For m > mopt, we have
εd(m) � 1 while εd(1) = 1 and εd(N) = 0.

Proposition 4 (Adapted expression of d2
N(m)). For all m such that 1 ≤ m ≤ N, d2

N(m) given by Eq. (27a) can be
written as

d2
N(m) = fd(m) + hd(m) , (32a)

fd(m) =
m ŝ2

N − 1
+ εd(m)2 , (32b)

hd(m) =
∑
j∈J

pj(m)
1
‖ηd‖

2 ‖[η
m
d ] −

ŝ
s

[ηm
d (j)]‖2 , (32c)
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Figure 1: Left figure: for εDM = εopt, distribution of the eigenvalues λα(εopt) in log scale as a function of rank α. Right figure: graph of function
m 7→ εd(m).

in which, ∀ j ∈ J , pj(m) is defined by Eq. (23a) as a function of γj(m) (defined by Eq. (23b)) that can be rewritten as

γj(m) = exp
{
−

1
2 s2 ‖[ηd(j)] − [ηm

d (j)]‖2
}
, (33)

where [ηm
d (j)] ∈Mν,N is defined by

[ηm
d (j)] = [ηd(j)] [Gm] , (34)

with [ηd(j)] ∈Mν,N defined by Eq. (12).

PROOF. (i) From Eqs. (27b) and (24), it can be seen that < [Gm] , [Bd(j)] >F = (ŝ/s)2 < [Gm] , [ηd(j)]T [ηd(j)] >F

−2 (ŝ/s) < [Gm] , [ηd(j)]T [ηd]>F . Since [Gm] = [Gm]2 (see Lemma 1-(iii)), we obtain< [Gm] , [Bd(j)]>F= (ŝ/s)2‖[ηd(j)]
[Gm]‖2 − 2 (ŝ/s) < [ηd(j)] [Gm] , [ηd] [Gm]>F , which can be rewritten, using Eqs. (29) and (34), as < [Gm] , [Bd(j)]>F=

‖[ηm
d ]−(ŝ/s) [ηm

d (j)]‖2−‖ηm
d ‖

2. By substitution into Eq. (27a), since
∑

j∈J pj(m) = 1, and using Eq. (31) yield Eqs. (32a)
to (32b). (ii) We have ([IN]− [Gm])2 = [IN]−2 [Gm] + [Gm]2 = [IN]− [Gm]. Consequently, < [IN]− [Gm] , [Md(j)]>F=

< ([IN] − [Gm])2 , [ηd(j)]T [ηd(j)] >F= ‖[ηd(j)] ([IN] − [Gm])‖2. Using Eq. (34) allows < [IN] − [Gm] , [Md(j)] >F

= ‖[ηd(j)] − [ηm
d (j)]‖2 to be written. By substitution into Eq. (23b) yields Eq. (33).

Lemma 5 (Rewriting function hd). For all m such that 1 ≤ m ≤ N and for all j in J , let gj(m), g(m), γ(m), and r(m)
be defined by

gj(m) =
‖[ηm

d ]− ŝ
s [ηm

d (j)]‖2

‖ηd‖
2 , g(m) =

1
NN

∑
j∈J

gj(m) , γ(m) =
1

NN

∑
j∈J

γj(m) , (35)

in which γj(m) is given by Eq. (33), and

r(m) def
=
∑
j∈J

pj(m)
gj(m)
g(m)

=

1
NN

∑
j∈J γj(m) gj(m)
γ(m) g(m)

, (36)

in which pj(m) is defined by Eq. (23a). Using these definitions, we have

g(m) = 1 +
ŝ2

s2

m
N
− εd(m)2 , g(m) > 0 , g(N) = 1 +

ŝ2

s2 , (37)

in which εd(m) is defined by Eq. (30), and

γ(m) > 0 , γ(N) = 1 , r(m) > 0 , r(N) = 1 . (38)

Function m 7→ hd(m) defined by Eq. (32c) can be rewritten as

hd(m) = r(m) g(m) . (39)
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PROOF. Using Eq. (35) yields

g(m) = ‖ηd‖
−2
{

N−N
∑
j∈J

‖ηm
d ‖

2 + (ŝ2/s2)N−N
∑
j∈J

‖ηm
d (j)‖2 − 2(ŝ/s) < [ηm

d ] ,N−N
∑
j∈J

[ηm
d (j)]>F

}
.

It can be seen that ‖ηm
d (j)‖2 =< [ηd(j)] [Gm] , [ηd(j)] [Gm]>F . Since [Gm]2 = [Gm] (Lemma 1-(iii)) and [ηd(j)]T [ηd(j)] =

[Md(j)] (Eq. (24)), we have N−N∑
j∈J ‖η

m
d (j)‖2 =<N−N ∑

j∈J [Md(j)] , [Gm]>F that can be rewritten, using Eq. (28b)
and Lemma 1-(i), as N−N∑

j∈J‖η
m
d (j)‖2 = N−1‖ηd‖

2 Tr {[Gm]} = (m/N)‖ηd‖
2. Substituting ‖ηm

d ‖
2 given by Eq. (31) in

the above expression of g(m) and using Eq. (28a) yield Eq. (37). Due to Eq. (35), g(m) > 0 and since εd(N) = 0 (see
Lemma 4-(i)), the first Eq. (37) with m = N yields the third Eq. (37). Since [GN] = [IN] (see Lemma 1-(ii)) and using
the definition of γj(m) given by Eq. (23b) yield γj(N) = 1. The other results of the lemma are easy to prove.

Lemma 6 (Property of function fd). For N and ν fixed, let ŝ be defined by Eq. (8). Function m 7→ fd(m) from
{1, . . . ,N} into R+, defined by Eq. (32b), is such that fd(1) = 1 + ŝ2/(N − 1) and fd(N) = N ŝ2/(N − 1). Let mopt be the
value of m defined in Hypothesis 1. If

εd(mopt)2 <
ŝ2

N − 1
< εd(mopt − 1)2 , (40)

then function m 7→ fd(m) has a unique local minimum that is a global minimum, which is reached for m = mopt,

mopt = arg min
1≤m≤N

fd(m) . (41)

PROOF. The value of fd(1) and fd(N) are directly deduced from Eq. (32b) and also from the values εd(1) = 1
and εd(N) = 0 (see Lemma 4). (i) Let m be such that mopt ≤ m ≤ N − 1, and let ∆+

m = fd(m + 1) − fd(m) =

ŝ2/(N−1)+εd(m+1)2−εd(m)2. Since εd is a decreasing function (see Lemma 4), εd(m)2 ≤ εd(mopt)2, and consequently,
∆+

m ≥ ŝ2/(N − 1) + εd(m + 1)2 − εd(mopt)2. Since εd(m + 1)2 > 0 and since ŝ2/(N − 1)− εd(mopt)2 > 0 (due to Eq. (40)),
we have ∆+

m > 0 and therefore, fd is an increasing function on {mopt, . . . ,N}. (ii) Let m be such that 1 ≤ m ≤ mopt,
and let ∆−m = fd(m) − fd(m − 1) = ŝ2/(N − 1) + εd(m)2 − εd(m − 1)2. From Hypothesis 2, it can be deduced that
εd(m)2 − εd(m − 1)2 < 0. For all 2 ≤ m ≤ mopt, we have εd(m − 1)2 ≥ εd(mopt − 1)2 � εd(mopt)2 and Eq. (40) shows
that ∆−m < 0. (iii) Since ∆−m < 0 for 1 ≤ m ≤ mopt and ∆+

m > 0 for mopt ≤ m ≤ N yield Eq. (41).

Theorem 4 (Existence of a minimum of d2
N(m) for m < N). LetMopt = {mopt, mopt + 1, . . . ,N} in which mopt is de-

fined in Hypothesis 1.

If ∀m ∈ Mopt , r(m) ≤ 1 , (42a)

then min
m∈Mopt

d2
N(m) ≤ min

m∈Mopt
d2,sup

N (m) < d2
N(N) , (42b)

in which d2,sup
N (m) is written as

d2,sup
N (m) = 1 +

m
N − 1

. (43)

Eqs. (42a) and (42b) shows that
min

m∈Mopt
d2

N(m) ≤ 1 +
mopt

N − 1
< d2

N(N) , (44)

which means that, if hypothesis defined by Eq. (42a) holds, then the PLoM method is a better method than the usual
one corresponding to d2

N(N).

PROOF. Eqs. (32a) and (39) yield d2
N(m) = fd(m) + r(m) g(m). If r(m) ≤ 1 for all m inMopt, then

d2
N(m) ≤ d2,sup

N (m) , ∀m ∈ Mopt , (45)

in which d2,sup
N (m) = fd(m) + g(m). From Eqs. (32b) and (37), it can be seen that d2,sup

N (m) = 1 + m ŝ2/(N − 1) +
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(ŝ2/s2)(m/N) that can be rewritten, using Eq. (8), as Eq. (43). For m = N, Eq. (43) and Lemma 2 yield d2,sup
N (N) =

d2
N(N) = 1+N/(N−1). From Eqs. (43) and (45), it can then be deduced that minm∈Mopt d2

N(m) ≤ minm∈Mopt d2,sup
N (m) =

1 + mopt/(N − 1), and since d2
N(N) = 1 + N/(N − 1), we obtain Eq. (44).

Remark 5 (Concerning the hypothesis r(m) ≤ 1,∀m ∈ Mopt). For m ∈ {1, . . . , N}, r(m) defined by Eq. (36) does not
seem to be calculable either explicitly or numerically (since there are NN elements in set J). This is the reason why
we have introduced the hypothesis defined by Eq. (42a) in order to formulate the theorem. Obviously, this hypothesis
has numerically been verified by a direct Monte Carlo simulation of d2

N(m) given in Definition 6 using Section 6.3 and
Remark 3. In Section 8, we give additional developments and comments about this hypothesis.

8. Justification of the hypothesis introduced in Theorem 4

This theorem holds if the hypothesis defined by Eq. (42a) is verified. As explained in Remark 5, r(m) defined by
Eq. (36) cannot explicitly be calculated for 1 ≤ m ≤ N − 1 (for m = N, we have r(N) = 1). The authors have not been
able to perform the exact calculation and therefore this question can be considered as an open problem. Consequently,
Section 8 has been developed to support the validation of this hypothesis. We then propose an estimation of r(m)
using the maximum entropy principle from Information Theory, and finally, we propose a rough approximation of
r(m). In Section 9, devoted to a numerical illustration, we will compare the two last estimations of d2

N(m) with the
”true” function d2

N(m) estimated as explained in Remark 5.

Remark 6 (Preliminary remark). For all j inJ and for all m in {1, . . . ,N}, let aj(m) ≥ 0 be defined in Proposition 2-
(ii). Therefore, γj(m), which is defined by Eq. (23b), can be rewritten as γj(m) = exp{− 1

2s2 aj(m)} and consequently,
pj(m) defined by Eq. (23a), can also be rewritten as

pj(m) =
exp{− 1

2s2 aj(m)}∑
j′∈J exp{− 1

2s2 aj′ (m)}
,
∑
j∈J

pj(m) = 1 . (46)

The discrete random variable A(m) with values in {aj(m), j ∈ J}, whose probability distribution {pj(m), j ∈ J} is
defined by Eq. (46), is a Maxwell-Boltzmann distribution. Its mean value is a(m) = E{A(m)} =

∑
j∈J aj(m) pj(m),

and its entropy is written as S
(
{pj(m)}j

)
= −

∑
j∈J pj(m) log pj(m) = 1

2s2 a(m) + log
(∑

j∈J exp{− 1
2s2 aj(m)}

)
. From

Eq. (36), we then have to calculate, for all m ∈ {1, . . . ,N − 1}, r(m) =
∑

j∈J
(
gj(m) /g(m)

)
pj(m), in which gj(m) is

defined by Eq. (35). As we have explained, such a calculation cannot be performed neither explicitly nor numerically
(there are NN elements in J).

In the following, we construct an estimation of r(m) using the maximum entropy principle.

Definition 8 (Discrete random matrix [A]). Let [A] be the discrete random variable with values in {[ηd(j)], j ∈ J}
with [ηd(j)] ∈Mν,N defined by Eq. (12), and for which the probability distribution is { p̂j, j ∈ J} with p̂j = 1/NN ,

P[A](d[a]) =
∑
j∈J

p̂j δ0Mν,N
([a] − [ηd(j)]) . (47)

Lemma 7 (Second-order moments of random matrix [A]).

E{[A]} = [0ν,N] , E{[A]T [A]} =
1
N
‖ηd‖

2 [IN] . (48)

PROOF. It can be seen that E{[A]} =
∫
Mν,N

[a]
∑

j∈J p̂j δ0Mν,N
([a] − [ηd(j)]) and E{[A]T [A]} =

∫
Mν,N

[a]T [a]
∑

j∈J p̂j

δ0Mν,N
([a]−[ηd(j)]) yielding E{[A]} = N−N ∑

j∈J [ηd(j)] and E{[A]T [A]} = N−N ∑
j∈J [ηd(j)]T [ηd(j)]. Using Eqs. (28a)

and (24) with Eq. (28b) yield Eq. (48).
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Lemma 8 (Expression of r(m) as a function of random matrix [A]). Let m be fixed in {1, . . . ,N}. Function hd(m) =

r(m) g(m) defined by Eq. (39) in which r(m) is defined by Eq. (36) can be rewritten as

r(m) g(m) = 1−εd(m)2+
1

γ(m) ‖ηd‖
2 <

ŝ2

s2 [T2(m)] − 2
ŝ
s

[T1(m)] [ηd] , [Gm]>F , (49a)

γ(m) = E
{

exp
(
−

1
2s2 < [IN] − [Gm] , [A]T [A]>F

)}
, (49b)

[T1(m)] = E
{

[A]T exp
(
−

1
2s2 < [IN] − [Gm] , [A]T [A]>

)}
, (49c)

[T2(m)] = E
{

[A]T [A] exp
(
−

1
2s2 < [IN] − [Gm] , [A]T [A]>F

)}
. (49d)

PROOF. For all j in J , gj(m) (defined by Eq. (35)) can be rewritten, using the proof of Proposition 4 and Eq. (27b),
as follows,

gj(m) = ‖ηd‖
−2{‖ηm

d ‖
2+ < (ŝ2/s2)[Md(j)] − 2(ŝ/s)[ηd(j)]T [ηd] , [Gm]>F} ,

or using Eq. (31),

gj(m) = 1 − εd(m)2 + ‖ηd‖
−2{< (ŝ2/s2)[ηd(j)]T [ηd(j)] − 2(ŝ/s)[ηd(j)]T [ηd] , [Gm]>F} .

Substituting this expression of gj(m) into Eq. (36) and using Eq. (35) yield Eq. (49a) in which γ(m) =
∑

j∈J p̂j exp(− 1
2s2

< [IN]− [Gm] , [ηd(j)]T [ηd(j)]>F)}, where [T1(m)] =
∑

j∈J p̂j [ηd(j)]T exp(− 1
2s2 < [IN]− [Gm] , [ηd(j)]T [ηd(j)]>F)} and

[T2(m)] =
∑

j∈J p̂j [ηd(j)]T [ηd(j)] exp(− 1
2s2 < [IN] − [Gm] , [ηd(j)]T [ηd(j)]>F)}. Using Eq. (47) allows γ(m), [T1(m)],

and [T2(m)] to rewritten as Eqs. (49b), (49c), and (49d).

Below, an approximation [Ac] of random matrix [A] is constructed using the maximum entropy principle [35, 36, 37,
38] under the available information defined by Eq. (48).

Definition 9 (Random matrix [Ac]). Let [Ac] be the random matrix with values in Mν,N whose probability measure
P[Ac](d[a]) is defined by a pdf [a] 7→ p[Ac]([a]) on Mν,N with respect to d[a]. This pdf is constructed as the unique
solution of the following maximum entropy (MaxEnt) problem,

p[Ac] = max
p∈Cad

S (p) , (50)

in which the entropy is written as S (p) = −
∫
Mν,N

p([a]) log(p([a])) d[a] and where the admissible set is defined by
Cad = {[a] 7→ p([a]) : Mν,N → R+,

∫
Mν,N

p([a]) d[a] = 1,
∫
Mν,N

[a] p([a]) d[a] = [0ν,N],
∫
Mν,N

[a]T [a] p([a]) d[a] =

(1/N)‖ηd‖
2 [IN]}.

Proposition 5 (Explicit expression of pdf p[Ac] ). The optimization problem defined by Eq. (50) has a unique solu-
tion written, for all [a] in Mν,N , as

p[Ac]([a]) =
1

(2π)νN/2

1
σνN exp

{
−

1
2σ2 ‖a‖

2} , σ2 =
1
νN
‖ηd‖

2 = 1 −
1
N
. (51)

PROOF. The proof is left to the reader.

Remark 7 (Independence of the entries of random matrix [Ac]). Eq. (51) shows that the real-valued random vari-
ables {[Ac]k` ; k = 1, . . . , ν ; ` = 1, . . . ,N} are independent and, each one Ac

k` = [Ac]k`, is a second-order, centered,
Gaussian random variable for which its variance is σ2,

pAc
k`

(ak`) =
1
√

2πσ
exp

{
−

1
2σ2 a2

k`

}
, E{Ac

k`} = 0 , E{(Ac
k`)

2} = σ2 . (52)

A simple calculation shows that [Ac] satisfies the constraints defined by the available information, that is, E{[Ac]}=
[0ν,N] and E{[Ac]T [Ac]} = (1/N) ‖ηd‖

2 [IN].
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Remark 8 (Comparison of the entropy of measures P[A] and P[Ac]). Let us compare the entropy of P[A](d[a]) de-
fined by Eq. (47) with the entropy of P[Ac](d[a]) = p[Ac]([a]) d[a] whose pdf is defined by Eq. (51). Since p̂j = 1/NN ,
we have (P[A]) = −

∑
j∈J p̂j log p̂j = N log N. On the other hand, we have S (P[Ac]) = −

∫
Mν,N

p[Ac]([a]) log p[Ac]([a])
d[a] = (νN/2)

(
log(2πe) + log(1 − 1/N)

)
. Consequently, S (P[Ac])/S (P[A]) = ν(2 log N)−1

(
log(2πe) + log(1 − 1/N)

)
.

Clearly, the approximation will be optimal if S (P[Ac]) ∼ S (P[A]), which, for ν ≥ 2, is reached if N ∼ (2πe)ν/2. In
general, N < (2πe)ν/2 and consequently, the level of uncertainties associated with probability measure P[Ac](d[a]) is
larger than the one for the probability measure P[A]. For instance, in Section 9 devoted to the numerical illustration,
we have ν = 9 and N = 200, which yields S (P[Ac])/S (P[A]) = 2.4.

Definition 10 (Approximation rc(m) of r(m)). For all m in {1, . . . ,N}, the approximations rc(m), γc(m), [T c
1(m)], and

[T c
2(m)] of r(m), γ(m), [T1(m)], and [T2(m)] is obtained by replacing [A] by [Ac] in Eqs. (49a) to (49d),

rc(m)g(m)=1−εd(m)2+
1

γc(m)‖ηd‖
2 <

ŝ2

s2 [T c
2(m)]−2

ŝ
s

[T c
1(m)] [ηd] , [Gm]>F , (53a)

γc(m) = E
{

exp
(
−

1
2s2 < [IN] − [Gm] , [Ac]T [Ac]>F

)}
, (53b)

[T c
1(m)] = E

{
[Ac]T exp

(
−

1
2s2 < [IN] − [Gm] , [Ac]T [Ac]>F

)}
, (53c)

[T c
2(m)] = E

{
[Ac]T [Ac] exp

(
−

1
2s2 < [IN] − [Gm] , [Ac]T [Ac]>F

)}
. (53d)

Lemma 9 (Explicit calculation of γc(m), [T c
1(m)], and [T c

2(m)]). For all integer m in {1, . . . ,N}, we have

γc(m) =
(
1 +

σ2

s2

)−ν(N−m)/2
, [T c

1(m)] = [0N,ν] , [T c
2(m)] = γc(m) ν [bm]−1 (54)

in which σ2 is defined by the second Eq. (51) and where the matrix [bm] is defined by [bm] = s−2([IN]−[Gm])+σ−2[IN]
and belongs to M+

N (and thus is invertible).

PROOF. Let f be a mapping on Mν,N such that the following quantity be defined,L f (m)= E
{

f ([Ac]) exp
(
− 1

2s2 < [IN]−
[Gm] , [Ac]T [Ac]>F

)}
. Using Eq. (51), it can be seen that L f (m)= (2πσ2)−

νN
2
∫
Mν,N

f ([a]) exp
(
− 1

2 < [a]T [a] , [bm]>F)
d[a]. From Lemma 1-(iv), [Gm] =

∑N
α=1 µαϕ

α ⊗ ϕα with < ϕα ,ϕβ >= δαβ, µ1 = . . . = µm = 1, and µm+1 =

. . . = µN = 0. Since [IN] =
∑N

α=1 ϕ
α ⊗ ϕα, matrix [bm] can be rewritten as [bm] =

∑N
α=1 ζα(m)ϕα ⊗ ϕα in which

ζα(m) = 1/σ2 if α ≤ m, and ζα(m) = 1/s2 + 1/σ2 if α > m. Since ζα(m) > 0,∀α, it can be seen that [bm] ∈ M+
N .

Hence, [bm]−1 =
∑N

α=1(1/ζα(m))ϕα⊗ϕα and consequently, det{[bm]−1} = (ζ1(m)× . . .×ζN(m))−1 = σ2N (1+ σ2

s2 )−(N−m).
Hence, L f (m) can be rewritten as

L f (m) = (1 + σ2/s2)−ν(N−m)/2
∫
RN
. . .

∫
RN

f ([â]T ) p(â1)×. . .×p(âν) dâ1 . . . dâν ,

where ∀k ∈ {1, . . . , ν}, âk ∈ RN is such that ∀` ∈ {1, . . . ,N}, âk
` = {[â]T }`k = [a]k`, and where

p(âk) = ((2π)N/2
√

det{[bm]−1})−1 exp(−
1
2
< [bm] âk , âk>)

is the pdf of a Gaussian centered second-order RN-valued random variable Âk whose covariance matrix is [bm]−1. (i)
Taking f ([a]) = 1, Eq. (53b) is written as γc(m) = (1+σ2/s2)−ν(N−m)/2 Πν

k=1{
∫
RN p(âk) dâk} that gives the first Eq. (54).

(ii) Taking f ([a]) = [a]T , Eq. (53c) is written as

[T c
1(m)] = (1 + σ2/s2)−ν(N−m)/2

∫
RN
. . .

∫
RN

[â] p(â1)×. . .×p(âν) dâ1 . . . dâν ,

which is equal to [0N,ν] because Âk is centered, and therefore, the second Eq. (54) is proven. (iii) Finally, taking
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f ([a]) = [a]T [a], Eq. (53d) is written as

[T c
2(m)] = (1 + σ2/s2)−ν(N−m)/2

∫
RN
. . .

∫
RN

[â][â]T p(â1)×. . .×p(âν) dâ1 . . . dâν

whose entries are

[T c
2(m)]``′ = (1 + σ2/s2)−ν(N−m)/2

ν∑
k=1

∫
RN
. . .

∫
RN

âk
` âk

`′ p(â1)×. . .×p(âν) dâ1 . . . dâν ,

which shows that

[T c
2(m)] = (1 + σ2/s2)−ν(N−m)/2

ν∑
k=1

E{Âk ⊗ Âk} .

The third Eq. (54) is then directly deduced.

Proposition 6 (Expression of rc(m)). For all m in {1, . . . ,N}, we have

rc(m) = 1 . (55)

PROOF. Substituting the second and the third Eq. (54) into Eq. (53a) yields

rc(m) g(m) = 1 − εd(m)2 + (γc(m)‖ηd‖
2)−1(ŝ2/s2)γc(m) ν< [bm]−1, [Gm]>F .

Since [Gm] =
∑N

α=1 µα ϕ
α ⊗ ϕα and using the proof of Lemma 9, we have < [bm]−1 , [Gm]>F =

∑N
α=1
∑N

β=1(µβ/ζα(m))
<ϕα ⊗ ϕα ,ϕβ ⊗ ϕβ>F=

∑m
α=1 1/ζα(m) = mσ2 = m ‖ηd‖

2/(νN). Therefore, rc(m) g(m) = 1 − εd(m)2 + (ŝ2/s2)(m/N).
It can be seen that the right-hand side of this equation is g(m) defined by Eq. (37). Consequently, rc(m) = 1.

Remark 9 (MaxEnt approximation d2,c
N (m) of d2

N(m) for all m ≥ mopt). Using Theorem 4 and Eq. (32a), the Max-
Ent approximation of d2

N(m) is defined, for all m ≥ mopt, as d2,c
N (m) = fd(m) + rc(m) g(m) in which fd(m) is defined

by Eq. (32b) and g(m) by the first Eq. (37). From Eqs. (55), Theorem 4 and its proof, it can be deduced that for all
m ≥ mopt, d2,c

N (m) = fd(m) + g(m) = d2,sup
N (m), and consequently, using Eq. (43),

∀m ≥ mopt , d2,c
N (m) = 1 +

m
N − 1

; d2,c
N (N) = d2

N(N) = 1 +
N

N − 1
. (56)

Remark 10 (Rough approximation d2,app
N (m) of d2

N(m) for all m ≥ mopt). In this remark, for m ≥ mopt, we define a
”rough approximation” rapp(m) of r(m) defined by Eq. (36). Let jo = (1, 2, . . . ,N) ∈ J ⊂ NN . Eq. (12) shows
that [ηd(jo)] = [ηd], and consequently, Eqs. (29) and (34) yield [ηm

d (jo)] = [ηm
d ]. Hence, Eq. (33) yields γjo (m) =

exp(−(2s2)−1‖ηd − η
m
d ‖

2), which can be rewritten, using Eq. (30), as γjo (m) = exp(−(2s2)−1εd(m)2‖ηd‖
2). Let us

assume that, for m ≥ mopt, γ(m) ' γ(N) = 1 (due to Eq. (38)). Starting from Eq. (36), we define

rapp(m) = N−N
(∑

j∈J

γjo (m) gj(m)) (γ(N) g(m)
)−1

= γjo (m) .

Therefore, for all m ≥ mopt, rapp(m) = exp(−(2s2)−1 εd(m)2 ‖ηd‖
2). Since εd(N) = 0 (see Lemma 4) and since

γjo (N) = 1, it can be seen that rapp(N) = r(N) = 1. Finally, using Eqs. (32a) and (39), the corresponding approximation
d2,app

N (m) of d2
N(m) is written as

∀m ≥ mopt , d2,app
N (m) = fd(m) + g(m) exp

(
−

1
2s2 εd(m)2 ‖ηd‖

2) , (57)

in which fd(m) is defined by Eq. (32b), g(m) by the first Eq. (37), and εd(m) by Eq. (30). Since rapp(N) = 1, using
Lemma 6, the third Eq. (37), and Eq. (8) yield d2,app

N (N) = d2
N(N) = 1 + N/(N − 1).
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9. Numerical illustration

The numerical illustration proposed is the application (AP1) of reference [36] (see the ”Electronic supplementary
material” of the online version of this reference). For reasons of limitation of the paper length, we cannot reproduce
the description of this application and we refer the reader to this reference. The reader can find further illustrations
concerning the estimation of mopt and the preservation of the concentration of the probability measure in [39, 13, 2,
40, 14, 15, 17, 18, 19, 20].

With respect to the notation introduced in Section 1.1, we have nw = 20, nq = 200, n = 220, and N = 200. For
the PCA (see Section 2) and for ε = 10−6 in the second Eq. (3), we have ν = 9. Consequently, errPCA(ν) ≤ 10−6.
Concerning the nonparametric estimate (see Section 3), the values of the parameters defined by Eq. (8) are s = 0.615,
ŝ = 0.525, and ŝ/s = 0.853. The use of Eqs. (14) and (15) yields εopt = 60 and mopt = 10. Parameter κ has been
fixed to 1. The graph of function α 7→ log(λα(εopt)) (see Section 5.1) is displayed in Fig. 2 (left) and the graph of
function m 7→ εd(m) defined by Eq. (30) is shown in Fig. 2 (right). In order to better visualize these graphs, a zoom
has been done for the abscissa (α ≤ 50 and m ≤ 50 instead of the upper bound N = 200). It can be seen that these
graphs are similar to the ones shown in Fig. 1 and that Hypotheses 1 and 2 are well verified. The graph of function
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Figure 2: Left figure: distribution of the eigenvalues λα(εopt) in log scale as a function of rank α ≤ 50 for εDM = εopt = 60. Right figure: graph of
function m 7→ εd(m) for m ≤ 50.

m 7→ fd(m) defined by Eq. (32b) is displayed in Fig. 3 (left) and the graph of function m 7→ g(m) defined by Eq. (37)
is shown in Fig. 2 (right). It can be seen that fd has a minimum for m = mopt = 10. For all m such that 1 ≤ m ≤ N,
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Figure 3: Left figure: graph of function m 7→ fd(m). Right figure: graph of function m 7→ g(m).

the estimation d2,sim
N (m) = ‖ηd‖

−2 1
nMC

∑nMC
`=1 ‖ [η`ar] − [ηd]‖2 of d2

N(m) defined in Definition 6 has been carried out using
the learned dataset {[η`ar] , ` = 1, . . . , nMC} with nMC = 320 000 realizations of random matrix [HN

m], which have been
computed with the PLoM method presented in Section 6. It has been verified that the L2-convergence is obtained for
this value of nMC. Left Fig. 4 shows the graph of function m 7→ d2,sim

N (m). It can be seen that the local minimum is a
global minimum obtained for m = mopt as expected and that d2,sim

N (N) ' 2 (in agreement with Lemma 2). Right Fig. 4
shows three curves: again the graph of m 7→ d2,sim

N (m) in order to have a reference, and for m ≥ mopt, the graph of
function m 7→ d2,c

N (m) computed with Eq. (56) and the graph of function m 7→ d2,app
N (m) computed with Eq. (57). It can
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be seen that the graph of m 7→ d2,c
N (m) is in coherence with Theorem 4 and that the graph of function m 7→ d2,app

N (m)
has a minimum in m = mopt = 10 onMopt, as expected.
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Figure 4: Left figure: graph of function m 7→ d2,sim
N (m). Right figure: graph of function m 7→ d2,sim

N (m) (blue dashed line), and for m ≥ mopt, graphs

of m 7→ d2,c
N (m) (dark thick straight line) and m 7→ d2,app

N (m) (red thick curve line).

10. Conclusions

In this paper, we have presented novel mathematical results that justify, highlight, and better explain the proba-
bilistic learning on manifolds proposed in [1]. We have formulated and proven several results, which show that the
PLoM methodology is efficient for probabilistic learning as it has been demonstrated in the framework of applications
performed for complex engineering systems. The distance introduced for the mathematical analysis of the concen-
tration properties of the probability measure could be used to estimate the optimal dimension of the reduced-order
diffusion maps basis and thus to replace the algorithm previously introduced, which uses only the initial dataset. How-
ever, the criterion based on this distance would require to generate a large number of replicates of the learned dataset
and therefore would induce a larger numerical cost.
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