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Abstract

Germain’s general micromorphic theory of order n is extended to fully non–symmetric higher order

tensor degrees of freedom. An interpretation of the microdeformation kinematic variables as relaxed

higher order gradients of the displacement field is proposed. Dynamical balance laws and hyperelastic

constitutive equations are derived within the finite deformation framework. Internal constraints are

enforced to recover strain gradient theories of grade n. An extension to finite deformations of a recently

developed stress gradient continuum theory is then presented, together with its relation to the second

order micromorphic model. The linearization of the combination of stress and strain gradient models

is then shown to deliver formulations related to Eringen’s and Aifantis well–known gradient models

involving the Laplacians of stress and strain tensors. Finally, the structure of the dynamical equations

is given for strain and stress gradient media, showing fundamental differences in the dynamical behavior

of these two classes of generalized continua.
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1. Introduction

The micromorphic theory currently arouses strong interest in the mechanics of materials community

due to its ability to account for size effects in the continuum modeling of many physical phenomena

like strain and damage localization or dispersion of elastic waves, e.g. (Hütter et al., 2015) and (Madeo

et al., 2016b). Eringen and Mindlin’s original model goes back to the early 1960s, see (Mindlin, 1964)

and (Eringen and Suhubi, 1964) for the presentation at finite deformations. The generally incompatible

microdeformation field variable χ
∼

was introduced by these authors to represent the deformation of a

triad of directors attached to the material’s microstructure, like lattice vectors in crystalline solids or

fiber directions in composite materials. This represents a drastic enhancement of the continuum theory

by 9 additional degrees of freedom complementing the displacement vector of the material point.

The most ambitious extension of the classical Cauchy continuum model is probably Germain’s general

micromorphic theory which introduces higher order microdeformations, χij , χijk, χijkl..., of increasing

tensor order up to order n (Germain, 1973b). Germain’s vision of this hierarchy of additional degrees

of freedom is related to a Taylor expansion of the description around the material point. Due to their

definition in terms of a Taylor expansion, the general microdeformations are symmetric with respect to

all the indices except the first one. Germain’s paper provides the hierarchy of balance of momentum

equations. However, it does not provide constitutive equations for this class of media. It should be noted

that Eringen himself also extended the original micromorphic model to higher order microdeformation

tensors based on averaging procedures (Eringen, 1967, 1970). However, his theory was shown to be

incomplete by Germain, leaving indeterminate higher order micromorphic variables.

The multipolar continuum mechanics proposed by (Green and Rivlin, 1964) also represents one of

the most general continuum model involving both higher order field variables and higher order gradients.

Green and Rivlin’s multipolar theory was compared to the general micromorphic one by (Germain,

1973b). Such a comparison will also be drawn for the theory proposed in the present work.

Suitable internal constraints on the microdeformation can be introduced so that Eringen’s micro-

morphic model reduces to the strain gradient theory proposed by (Mindlin, 1965), which is identical to

the second gradient of displacement model. Such a reduction has been proposed by (Bleustein, 1967)

and recently discussed by (Madeo et al., 2016c; Broese et al., 2016). This reduction can be applied to

Germain’s general micromorphic media. For instance, the second order micromorphic theory (n = 2)

can be shown to degenerate into Mindlin’s second strain gradient model by constraining the first and

second microdeformation to coincide with the deformation first and second gradients, respectively, see

(Mindlin, 1965; Javili et al., 2013; Cordero et al., 2016). In gradient theories, the micromorphic degrees

of freedom are therefore eliminated and a single balance equation of higher order remains to solve for the
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displacement field. Finite element simulations of strain gradient materials very often rely on the use of

such a constrained micromorphic theory, see (Dillard et al., 2006; Enakoutsa and Leblond, 2009; Ferretti

et al., 2014; Madeo et al., 2015, 2016a) and the discussion in (Bergheau et al., 2014). Mindlin’s second

strain gradient theory (Mindlin, 1965) was recently applied to the elasticity of nano–objects with surface

effects (Cordero et al., 2016) and to the numerical analysis of singularities at edges and corners (Reiher

et al., 2017). The associated computational analysis was based on a constrained second order micromor-

phic theory where the first and second order microdeformations are constrained to coincide with the first

and second gradients of the displacement field (Forest et al., 2011; Cordero et al., 2016). These internal

constraints were only considered for micromorphic media at small strains. Conversely, the micromorphic

continua can be seen as relaxed higher grade materials.

A third rank tensor as additional independent kinematic degrees of freedom is also present in the

stress gradient theory recently proposed by (Forest and Sab, 2012; Sab et al., 2016). The stress gradient

model is a completely new continuum theory which was shown to be fundamentally different from the

strain gradient approach. It was inspired by the bending gradient theory for thick plates according to

(Lebée and Sab, 2011a,b). The third order degrees of freedom are conjugate to the gradient of the classical

stress tensor in the work of internal forces. They have therefore a different physical unit as Germain’s

second order microdeformation. An alternative stress gradient theory was designed by (Polizzotto, 2014,

2015) where third order kinematic test functions also arise but are not treated as independent degrees

of freedom of the theory. The original stress gradient elasticity model was then shown to lead to a well–

posed boundary value problem with the new boundary conditions proposed by (Forest and Sab, 2012;

Sab et al., 2016). In particular, in a static stress gradient medium, the full stress tensor can be prescribed

at the boundary, in contrast to Cauchy’s model for which only the traction vector is controlled. The

stress gradient theories were originally formulated in the context of linear elasticity and a complete stress

gradient theory at finite deformation is still missing.

The theory of elastoviscoplasticity for first order micromorphic media at finite deformation is well–

established since the works by (Forest and Sievert, 2003, 2006; Regueiro, 2010; Sansour et al., 2010)

etc. First strain gradient theory was also explored at finite elastoviscoplastic deformations in (Forest and

Sievert, 2003; Bertram, 2015, 2016). Second strain gradient hyperelasticity at finite deformation was then

considered by (Javili et al., 2013). However the reduction of the hyperelastic laws based on invariance

requirements was not performed in the latter reference so that the suited Lagrangian strain measures

remain to be defined. The treatment of internal constraints in gradient continua at finite strains was

presented recently by (Bertram and Glüge, 2016).

The objective of the present work is to formulate a phenomenological theory of higher order micro-
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morphic media generalizing Germain’s one, and to establish the links to strain and stress gradient models.

The formulation is presented in the finite deformation setting. For that purpose, a constitutive framework

is proposed for hyperelasticity, taking into account possible internal constraints. Its linearization will be

shown to provide general equations for the statics and dynamics of second strain gradient and of stress

gradient media. In particular, the dynamical stress gradient theory will be formulated at finite strain for

the first time, providing the balance, boundary and Lagrangian constitutive equations.

The proposed extension of Germain’s theory consists in abandoning the symmetry requirements for the

microdeformation tensors, thus departing from the Taylor expansion approach. The theory is presented

for the order n = 2 (first and second order microdeformation tensors of orders 2 and 3 respectively) and

limited to the grade p = 1, considering only the first gradient of all degrees of freedom. Extensions to

order n and grade p are possible but not considered in the present work for the sake of simplicity.

The higher order kinematics is presented in Section 2. Following (Germain, 1973b; Maugin, 1980),

the method of virtual power is used to derive balance equations and the associated boundary conditions.

Lagrangian strain measures are proposed to formulate hyperelastic constitutive equations in Section 3,

based on the Helmholtz or Gibbs free energy potentials. This section ends with the consideration of

general internal constraints and the consequences on the formulation of hyperelastic laws based on the

exploitation of the second principle of thermodynamics. Specific internal constraints are then discussed

in section 4 in order to relate the general theory to strain gradient and stress gradient models. The

subsection 4.2 is devoted to the formulation of the stress gradient theory at finite deformation. This

theory is then linearized and shown to coincide with the already existing linear elastic stress gradient

model. The applications presented in Section 5 deal with the statics and dynamics of combined linear

stress and strain gradient media.

Notations

The material points of the body are labeled according to their position vectors X with respect to a

reference configuration Ω0. They occupy the positions x = Φ(X , t) in the current configuration Ω of the

body at time t. Their coordinates are expressed in two distinct Cartesian orthonormal bases:

X = XI E I , x = xi e i (1)

where upper–case (resp. lower–case) letters are used for indices referring to the reference (resp. current)

configuration of the body. The components XI (resp. xi) are called Lagrangian (resp. Eulerian) coordi-

nates. Einstein’s convention on summation of repeated indices is enforced.

The Lagrangian (resp. Eulerian) volume and surface elements are dV (resp. dv) and dS (resp. ds),
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respectively. The gradient operators are written

∇0 =
∂

∂XI
E I , ∇ =

∂

∂xi
e i (2)

In the index notation, we write

ui,J =
∂ui
∂XJ

(3)

An intrinsic notation is used whereby tensors of order 1, 2, 3, 4 and 6 are respectively denoted by a ,A∼ ,A∼

(or A∼ ), A
≈

, and A∼∼∼
. To avoid any ambiguity, the corresponding index notation is often provided together

with the intrinsic one.

2. Kinematics and balance laws for higher order micromorphic media

2.1. Higher order micromorphic degrees of freedom

Each material point is endowed with the following set of generalized degrees of freedom:

DOF = {u , χ
∼
, χ

∼
, χ

≈
, . . . } (4)

DOF = {ui, χiJ , χiJK , χiJKL, . . . }

where u = Φ(X , t) − X is the displacement vector and the micromorphic degrees of freedom are

independent tensors of increasing order. Following similar notations as introduced by (Mindlin, 1965),

the same letter χ is used for the independent micromorphic degrees of freedom of various order. These

variables can be distinguished by the indication of respective tensor rank in the tensor notation or from

the number of indices.

The first and higher order microdeformation tensor variables are generally non compatible fields.

They do not possess any symmetry property a priori. In particular, the second order microvariable χiJK

does not exhibit any symmetry with respect to the last two indices. This is in contrast to Germain’s

general micromorphic medium where the higher order microvariables are conceived as the coefficients

in a Taylor expansion of the relative motion of the material particle with respect to its center of mass.

Such symmetry properties also hold in Eringen’s higher grade micromorphic theory where higher order

moments of the microfields are introduced (Eringen, 1970). The physical meaning and physical dimension

of the higher order micromorphic variables are left unspecified since they will depend on the specific

application. However, if

F∼ = 1∼ + u ⊗∇0 = FiJ e i ⊗E J , J = detF∼ > 0 (5)

is the deformation gradient of the continuum, the first interpretation of the micromorphic degrees of

freedom proposed in this work is the relaxation of F∼ and its gradients of increasing order. The microde-

formation tensor χ
∼

is viewed as the relaxed counterpart of F∼ meaning that it is a generally incompatible
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deformation field, in contrast to F∼ . The reference state of microdeformation is χ
∼

= 1∼ and it is assumed

that detχ
∼
> 0. Similarly, the second order microdeformation χiJK represents the relaxed microdefor-

mation gradient χiJ,K , and consequently the relaxation of the second gradient FiJ,K = ui,JK which is

symmetric w.r.t. the last two indices. The reference states of the second and higher order microde-

formation tensors are zero. According to this definition, the physical dimension of each higher order

microdeformation tensor is that of the corresponding higher gradient of F∼ : χ
∼

is dimensionless, χ
∼

is in

m−1, etc.

The transformation of the deformation gradient by a change of observer represented by the time–

dependent rotation Q
∼

(t) is as follows:

F∼ −→ Q
∼
· F∼ (6)

The following transformation rules are assumed for the micromorphic degrees of freedom:

χ
∼

−→ Q
∼
· χ

∼
χiJ −→ QikχkJ (7)

χ
∼

−→ Q
∼
· χ

∼
χiJK −→ QilχlJK (8)

. . .

The generalized degrees of freedom χiJK... have the same structure and transformation rules as the

multipolar displacements introduced by (Green and Rivlin, 1964), later called multipolar deformation

fields in (Green and Rivlin, 1967). The fundamental difference with the present theory lies in the gener-

alization of the balance of momentum equation which is absent in Green and Rivlin’s theory, as recognized

by (Germain, 1973b). Green and Rivlin’s interpretation of the multipolar fields, presented in the appendix

of (Green and Rivlin, 1964), involves a collection of particles and is based on a Taylor expansion whereby

the multipolar tensors must be completely symmetric w.r.t. to all indices excepted the first. Their

multipolar displacements represent therefore a generalization of this concept to multiparticle systems.

The interpretation of the first microdeformation tensor as the linear transformation of a triad of

directors attached to the microstructure is particularly illustrative. Extensions to higher order microde-

formation is possible based on higher order tensor products of directors as proposed by (Green et al.,

1965).

2.2. Lagrangian generalized strain measures

The proposed theory is a continuum model of order n and of grade 1, meaning that only the first

gradient of all degrees of freedom is considered. The set GRAD contains all the available constitutive

variables of the model:

GRAD = {u , u ⊗∇0, χ
∼
, χ

∼
⊗∇0, χ

∼
, χ

∼
⊗∇0, . . .} (9)

GRAD = {ui, ui,J , χiJ , χiJ,K , χiJK , χiJK,L, . . .}
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Appropriate strain measures are obtained by considering the invariance properties of the constitutive

functions. In the case of hyperelasticity, the constitutive function is the Helmholtz free energy potential

ψ per unit volume. It is a priori a function depending on all the variables contained in GRAD. According

to the requirement of Galilean invariance, it must be invariant w.r.t. all Galilean transformations. The

translation invariance excludes the presence of the displacement in the arguments of the constitutive

function. The invariance w.r.t. to all constant rotations Q
∼ 0 writes

ψ(F∼ , χ
∼
, χ

∼
⊗∇0, χ

∼
, χ

∼
⊗∇0, . . .) =

= ψ(Q
∼ 0 · F∼ , Q

∼ 0 · χ∼ , Q
∼ 0 · χ∼ ⊗∇0, Q

∼ 0 · χ
∼
, Q

∼ 0 · χ
∼
⊗∇0, . . .)

= ψ(U∼ , R∼
T · χ

∼
, R∼

T · χ
∼
⊗∇0, R∼

T · χ
∼
, R∼

T · χ
∼
⊗∇0, . . .) (10)

= ψ(UIJ , RTIkχkJ , RTIjχjK,L, RTIjχjKL, RTIjχjKL,M , . . .)

where the specific choice Q
∼ 0 = R∼

T was made among all possible rotations, R∼ being the rotation part

in the polar decomposition of the deformation gradient F∼ = R∼ · U∼ , with U∼ the Lagrangian stretch

tensor. The last expression shows that the arguments of the free energy potential are Lagrangian strain

measures appropriate for constitutive modeling. In the present work, the following set of Lagrangian

strain measures is adopted, without loss of generality:

ψ(C∼ , Υ∼ := χ
∼
−1 · F∼ , K

∼
:= χ

∼
−1 · (χ

∼
⊗∇0), Υ

∼
:= χ

∼
−1 · χ

∼
, K

≈
:= χ

∼
−1 · (χ

∼
⊗∇0), . . .)(11)

ψ(CIJ , ΥIJ := χ−1Ik FkJ , KIJK := χ−1Il χlJ,K , ΥIJK := χ−1Il χlJK , KIJKL := χ−1ImχmJK,L, . . .)

The pull–back of all quantities by χ
∼
−1 provides Lagrangian strain measures. The right Cauchy-Green

strain is C∼ = F∼
T · F∼ . The generalized strain measures Υ∼ and K

∼
as defined in Eq. (11) are the

ones used in Eringen’s original micromorphic theory (Eringen, 1999; Forest and Sievert, 2003). All the

arguments of the constitutive function (11) can be expressed in terms of the arguments found in the

reduced constitutive law (10), as it should. The Lagrangian generalized strain measure K
∼

possesses the

remarkable property that its time derivative can be directly and simply related to the Eulerian gradient

of the microdeformation rate:

(χ̇
∼
· χ

∼
−1)⊗∇ = χ

∼
· K̇

∼
: (χ

∼
−1 � F∼

−1), (χ̇iLχ
−1
Lj ),k = χiP K̇PQRχ

−1
QjF

−1
Rk (12)

Other pull–backs are possible and lead to different strain measures, as usual in finite deformation theories.

However they lead to more complicated expressions as discussed by (Eringen, 1999; Forest and Sievert,

2003) and (Bertram, 2015) for the special case of strain gradient theory. The new tensors Υ
∼

and K
≈

represent direct extensions to second order micromorphic media.

Note that Green and Rivlin (1964) define similar Lagrangian generalized strain measures pulled–back

by means of F∼
T instead of χ

∼
−1.
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2.3. Generalized principle of virtual power

The method of virtual power is used to introduce the generalized stress tensors of the theory. The

virtual power density of internal forces is computed w.r.t. any subdomainD0 of the reference configuration

Ω0:

P(i)(δu , δχ
∼
, δχ

∼
, . . .) = −

∫
D0

Jp(i)(δu , δχ
∼
, δχ

∼
, . . .) dV (13)

where p(i) is the virtual power density of internal forces per unit volume of the current configuration,

and J is the Jacobian. It is introduced as a function of the virtual fields represented by variations of

displacements and microdeformations of any order. The virtual power density of internal forces is taken

as a linear form w.r.t. the variations of the Lagrangian strain measures (11):

Jp(i) =
1

2
Π∼ : δC∼ + T∼ : δΥ∼ +M

∼

... δK
∼

+ T
∼

... δΥ
∼

+M
≈

:: δK
≈

(14)

=
1

2
ΠIJ δCIJ + TIJ δΥIJ +MIJK δKIJK + TIJK δΥIJK +MIJKL δKIJKL

where Π∼ is the usual Piola stress tensor, T∼ and T∼ are the stress tensors conjugate to the microdeformations

whereas M
∼

and M
≈

are generalized couple stress tensors. The variations of the strains can be expressed

in terms of the virtual displacements and microdeformations:

δC∼ = F∼
T · δF∼ + δF∼

T · F∼ (15)

δΥ∼ = χ
∼
−1 · δF∼ − χ∼

−1 · δχ
∼
·Υ∼ (16)

δK
∼

= χ
∼
−1 · (δχ

∼
⊗∇0)− χ

∼
−1 · δχ

∼
·K

∼
(17)

δΥ
∼

= χ
∼
−1 · δχ

∼
− χ

∼
−1 · δχ

∼
·Υ

∼
(18)

δK
≈

= χ
∼
−1 · (δχ

∼
⊗∇0)− χ

∼
−1 · δχ

∼
·K

≈
(19)

The virtual power of contact forces acting on the boundary ∂D0 takes the form:

P(c)(δu , δχ
∼
, δχ

∼
, . . .) =

∫
∂D0

p(c)(δu , δχ
∼
, δχ

∼
, . . .) dS

=

∫
∂D0

t · δu + t∼ : δχ
∼

+ t
∼

... δχ
∼

+ . . . dS (20)

The virtual power of external forces, acting at a distance is taken of the form:

P(e)(δu , δχ
∼
, δχ

∼
, . . .) =

∫
D0

Jp(e)(δu , δχ
∼
, δχ

∼
, . . .) dV

=

∫
D0

f · δu + f
∼

: δχ
∼

+ f
∼

... δχ
∼

+ . . . dV (21)

Higher order volume forces working with the gradient of the microdeformation tensors could be introduced

in the latter expression in the spirit of (Germain, 1973a).
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The virtual power of acceleration forces is taken of the form:

P(a)(δu , δχ
∼
, δχ

∼
, . . .) = −

∫
D0

Jp(a)(δu , δχ
∼
, δχ

∼
, . . .) dV

= −
∫
D0

ρ0

(
a · δu + (χ̈

∼
· I∼) : δχ

∼
+ (χ̈

∼
: I

≈
)

... δχ
∼

+ . . .

)
dV (22)

= −
∫
D0

ρ0 (aiδui + χ̈iLILJδχiJ + χ̈iPQIPQJKδχiJK + . . .) dV

where I∼ and I
≈

are Lagrangian generalized microinertia tensors. The mass densities per unit reference or

current volume are called ρ0 and ρ, respectively. They are such that J = detF∼ = ρ0/ρ to comply with

mass conservation. The acceleration vector is a . This Lagrangian formulation is in contrast to Germain’s

general micromorphic dynamics which is primarily introduced in the Eulerian framework, see (Germain,

1973b). Note that the acceleration of the multipolar deformations was not considered by Green and

Rivlin (1964), even though these authors take the acceleration of directors into account in the subsequent

works (Green et al., 1965; Green and Rivlin, 1967).

The principle of virtual power for general micromorphic media stipulates that

P(i) + P(c) + P(e) + P(a) = 0, ∀δu , δχ
∼
, δχ

∼
and ∀D0 ⊂ Ω0 (23)

2.4. Balance laws of generalized moments of momentum

The exploitation of the principle of virtual power stated in the previous section leads to the derivation

of the balance equations valid for all X ∈ Ω0 in the form

Div (S∼ + T∼
B) + f = ρ0a , SiJ,J + TBiJ,J + fi = ρ0ai (24)

DivM
∼
B + T∼

C + f
∼

= ρ0χ̈∼
· I∼, MB

iJK,K + TCiJ + fiJ = ρ0χ̈iKIKJ (25)

DivM
≈
B − T

∼
B + f

∼
= ρ0χ̈∼

: I
≈
, MB

iJKL,L − TBiJK + fiJK = ρ0χ̈iPQIPQJK (26)

and of the Neumann boundary conditions valid for all X ∈ ∂Ω0:

(S∼ + T∼
B) ·N = t , (SiJ + TBiJ )NJ = ti (27)

M
∼
B ·N = t∼, MB

iJKNK = tiJ (28)

M
≈
B ·N = t

∼
, MB

iJKLNL = tiJK (29)

Tensor S∼ = F∼ ·Π∼ is the usual Boussinesq stress tensor, also called first Piola–Kirchhoff stress tensor.

The label B refers to generalized Boussinesq tensors:

T∼
B = χ

∼
−T · T∼ , TBiK = χ−TiJ TJK (30)

T
∼
B = χ

∼
−T · T

∼
, TBiJK = χ−TiI TIJK (31)

M
∼
B = χ

∼
−T ·M

∼
, MB

iJK = χ−TiI MIJK (32)

M
≈
B = χ

∼
−T ·M

≈
, MB

iJKL = χ−TiI MIJKL (33)
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The generalized stress tensor T∼
C arising in Eq. (25) couples all other micromorphic stress tensors in the

following way:

T∼
C = T∼

B ·Υ∼
T +M

∼
B : K∼

T + T
∼
B : Υ

∼
T +M

≈
B ...K

≈
T (34)

TCpQ = TBpJΥT
JQ +MB

pJKKQJ,K + TBpJKΥQJ,K +MB
pJKLKQJK,L

In contrast to the derived generalized balance of momentum equations, Green, Rivlin and Naghdi con-

sidered a single balance of momentum equation (Green and Rivlin, 1964; Green et al., 1965; Green and

Rivlin, 1967). Relations are introduced involving the divergence of multipolar stresses defining auxiliary

higher order stress tensors akin to the present tensors TiJK.... These relations2 are regarded as con-

stitutive, not as balance equations. There are substituted into a single additional boundary condition

involving the heat flux through the surface. Germain noted that this is due to their derivation of all

equations from the energy conservation law which, in the classical case, leads to the same results as the

method of virtual power, but to less equations in the case of micromorphic media, see (Germain, 1973b).

2.5. Linearized balance laws

The previous field equations are now linearized to obtain a more simple form and recover some existing

balance laws for micromorphic continua. Deformations are small when

‖F∼ − 1∼‖ � 1 (35)

Considering that the microdeformations are relaxed strain gradient-like variables, the generalized mi-

crodeformations are small when:

‖χ
∼
− 1∼‖ � 1, L‖K

∼
‖ � 1, L‖χ

∼
‖ � 1, L2‖K

≈
‖ � 1 (36)

where L is a characteristic length related to the structure or to the wavelength of the applied loading

conditions. In the following, χ
∼
− 1∼ is replaced by the same notation χ

∼
. The acceleration terms involve

constitutive inertia tensors of order 2 and 4.

Within the context of small deformations and microdeformations, the generalized strain measures are

linearized as follows:

C∼ ' 1∼ + 2ε∼, with 2ε∼ = u ⊗∇ + ∇⊗ u (37)

Υ∼ ' u ⊗∇− χ
∼
, Υ

∼
' χ

∼
(38)

2see the equations (13.2) in (Green and Rivlin, 1964).
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The linearized stress measures are then:

S∼ = F∼ ·Π∼ = Jσ∼ · F∼
−T ' σ∼ (39)

T∼
B ' T∼ , T

∼
B ' T

∼
, T∼

C ' T∼ (40)

M
∼
B ' M∼ , M

≈
B ' T

≈
(41)

where σ∼ is the usual Cauchy stress tensor.

As a result, the balance laws (24) to (26) reduce to

div (σ∼ + T∼ ) + f = ρa (42)

divM
∼
− T∼ + f

∼
= ρχ̈

∼
· I∼ (43)

divM
≈
− T

∼
+ f

∼
= ρχ̈

∼
: I

≈
(44)

These equations have the same form as the Eulerian balance laws according to Germain’s general micro-

morphic theory, except that the present stress tensors T∼ ,T∼ ,M∼ ,M
≈

do not exhibit any symmetry property

in contrast to Germain’s ones.

3. Hyperelasticity of second order micromorphic media

The constitutive theory of hyperelastic second order micromorphic media is based on the objective

Helmholtz free energy potential per unit volume:

ψ(C∼ , Υ∼ , K
∼
, Υ

∼
, K

≈
) (45)

3.1. Derivation of the hyperelastic state laws

The local form of the Clausius–Duhem inequality for second order micromorphic media is:

Jp(i) − ψ̇ ≥ 0 (46)

Taking the expression (14) of the power of internal forces and the dependence (45) into account, it gives

(
Π∼
2
− ∂ψ

∂C∼

)
: Ċ∼ +

(
T∼ −

∂ψ

∂Υ∼

)
: Υ̇∼ +

(
M
∼
− ∂ψ

∂K
∼

)
... K̇

∼
+

(
T
∼
− ∂ψ

∂χ
∼

)
... Υ̇

∼
+

M
≈
− ∂ψ

∂K
≈

 :: K̇
≈
≥ 0 (47)

The positiveness of this linear form w.r.t. to the strain rates requires that the conjugate quantities vanish.

The hyperelastic laws follow:

Π∼ = 2
∂ψ

∂C∼
, T∼ =

∂ψ

∂Υ∼
, M

∼
=

∂ψ

∂K
∼

, T
∼

=
∂ψ

∂χ
∼

, M
≈

=
∂ψ

∂K
≈

(48)
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3.2. Consideration of internal constraints

Internal constraints are envisaged in the form of relations that must be fulfilled by kinematic quanti-

ties. As an example, two constraints are introduced:

f(Υ∼ ) = 0, g(Υ
∼
,K

∼
) = 0 (49)

where f and g are differentiable scalar functions. This specific example is motivated by the applications

in section 4, without loss of generality. Following the usual procedure, see for instance (Liu, 2002),

extended for gradient materials by (Bertram and Glüge, 2016), the only evolutions of the strain variables

compatible with the constraints are

∂f

∂Υ∼
: Υ̇∼ = 0,

∂g

∂Υ
∼

: Υ̇
∼

+
∂g

∂K
∼

: K̇
∼

= 0 (50)

Some state laws (48) must be amended as follows to enforce the internal constraints:

T∼ =
∂ψ

∂Υ∼
+ T∼

R, M
∼

=
∂ψ

∂K
∼

+M
∼
R, T

∼
=
∂ψ

∂χ
∼

+ T
∼
R, (51)

where the quantities with the label R are reaction stresses of the form:

T∼
R = λf

∂f

∂Υ∼
, M

∼
R = λg

∂g

∂K
∼

, T
∼
R = λg

∂g

∂Υ
∼

(52)

The reaction stresses involve the two Lagrange multipliers λf and λg. Their values must be determined

from the resolution of the boundary value problem.

3.3. Hyperelasticity based on the Gibbs free energy potential

The Gibbs free energy potential is obtained by the Legendre transform of the Helmholtz potential:

ψ?(Π∼ ,T∼ ,M∼ ,T
∼
,M

≈
) = Max{

C∼ ,Υ∼ ,K
∼
,Υ
∼
,K
≈

}
(
ψ(C∼ ,Υ∼ ,K∼ ,Υ∼ ,K≈ )−Π∼ :

C∼
2
− T∼ : Υ∼ −M∼

...K
∼
− T

∼

... Υ
∼
−M

≈
:: K

≈

)
(53)

The arguments of this constitutive function are the generalized stress tensors: (Π∼ , T∼ , M
∼
, T

∼
, M

≈
).

The dissipation inequality (46) transforms into

Jp(i) − ψ̇? −Π∼ :
Ċ∼
2
− T∼ : Υ̇∼ −M∼

... K̇
∼
− T

∼

... Υ̇
∼
−M

≈
:: K̇

≈

−Π̇∼ :
C∼
2
− Ṫ∼ : Υ∼ − Ṁ∼

...K
∼
− Ṫ

∼

... Υ
∼
− Ṁ

≈
:: K

≈
≥ 0 (54)

and consequently,

−ψ̇? − Π̇∼ :
C∼
2
− Ṫ∼ : Υ∼ − Ṁ∼

...K
∼
− Ṫ

∼

... Υ
∼
− Ṁ

≈
:: K

≈
≥ 0
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(
∂ψ?

∂Π∼
+
C∼
2

)
: Π̇∼ +

(
∂ψ?

∂T∼
+ Υ∼

)
: Ṫ∼ +

(
∂ψ?

∂M
∼

+K
∼

)
...Ṁ

∼
+

(
∂ψ?

∂T
∼

+ Υ
∼

)
... Ṫ

∼
+

 ∂ψ?

∂M
≈

+K
≈

 :: Ṁ
≈
≤ 0

(55)

from which the dual state laws are derived:

C∼ = −2
∂ψ?

∂Π∼
, Υ∼ = −∂ψ

?

∂T∼
, K

∼
= − ∂ψ

?

∂M
∼

, Υ
∼

= −∂ψ
?

∂T
∼

, K
≈

= − ∂ψ
?

∂M
≈

(56)

These constitutive laws must be amended in the presence of internal constraints. The consideration of

internal constraints is usually limited to kinematic constraints, see (Bertram and Glüge, 2016). Static

constraints can also be envisaged. As an example, let us consider a constraint linking two stress tensors:

f(Π∼ ,M≈ ) = 0 (57)

The stress increments must then be such that:

∂f

∂Π∼
: Π̇∼ +

∂f

∂M
≈

: Ṁ
≈

= 0 (58)

The state laws (56)1 and (56)5 must then be amended as follows:

C∼ = −2
∂ψ?

∂Π∼
+ 2λf

∂f

∂Π∼
, K

≈
= − ∂ψ

?

∂M
≈

+ λf
∂f

∂M
≈

(59)

where the Lagrange multiplier λf must be determined from the resolution of the boundary value problem.

4. Relation to strain and stress gradients theories

Specific internal constraints are now presented to retrieve the strain gradient and stress gradient

models as limit cases.

4.1. Strain gradient theory

The following constraints are considered:

f(Υ∼ ) = Υ∼ − 1∼ = 0, g(K
∼
,Υ

∼
) = Υ

∼
−K

∼
= 0 (60)

The relative deformation tensor is assumed to remain the identity during any motion, which means that

the microdeformation χ
∼

coincides with the deformation gradient itself. As a result,

χ
∼
≡ F∼ , K

∼
≡ F∼ ⊗∇0 (61)
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so that the theory includes the second gradient of displacement. The second order microdeformation is

forced to coincide with the gradient of the microdeformation:

χ
∼
≡ χ

∼
⊗∇0 ≡ F∼ ⊗∇0, K

≈
≡ F∼ ⊗∇0 ⊗∇0 (62)

The constrained second order micromorphic theory therefore reduces to the third displacement gradient

model, or equivalently second strain gradient theory of (Mindlin, 1965).

In this case, the reaction stresses (52) become:

T∼
R = λf1∼, M

∼
R = λg1∼, T

∼
R = −λg1∼ (63)

The constitutive equations therefore leave the spherical part of the coupling stress tensor T∼ indetermi-

nate. It will be shown explicitly in the linearized case how the three balance equations (24) to (26) can

be reduced to a single set of higher order partial differential equations for the unknown displacement

components, see section 5.3.

As noted by (Seppecher, 2000), enforcing internal constraints makes it possible to derive the balance

and constitutive equations in the bulk for gradient theories but it does not provide the corresponding

boundary conditions. The latter are rather sophisticated and must be derived from the direct formulation

of the grade n model, see (dell’Isola and Seppecher, 1995; Seppecher, 2000; dell’Isola et al., 2012; dell’Isola

et al., 2016). A further discussion of the reduction of the first order micromorphic model to Mindlin’s

strain gradient elasticity can be found in (Broese et al., 2016).

4.2. Stress gradient theory at finite deformation

The static stress gradient theory was proposed for the first time in (Forest and Sab, 2012) and shown

to be fundamentally distinct from the strain gradient approach. It was presented within the small strain

framework and the objective of this subsection and of the next one is to extend it to the general finite

deformation and dynamical cases. The theory is first introduced within the formalism of a constrained

second order micromorphic model and then a direct construction is presented enforcing the constraint.

However, it will become apparent that the mechanical meaning of the additional degrees of freedom

arising in the stress gradient theory differs from that of the microdeformation tensors regarded as relaxed

deformation gradients introduced in Section 2.1. As a result, alternative strain measures, different from

(11), are proposed in the following.

In (Forest and Sab, 2012), the stress gradient model was interpreted as a constrained and truncated

second order micromorphic medium where each material point is endowed with first and third rank

tensors of degrees of freedom: ui,ΦiJK , thus leaving aside first order additional degrees of freedom:

DOF = {u , Φ
∼
}, DOF = {ui, ΦiJK}
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GRAD = {u , u ⊗∇0, Φ
∼
, Φ

∼
⊗∇0}, GRAD = {ui, ui,L, ΦiJK , ΦiJK,L}

The first order microdeformation tensor being absent from this special theory, the Lagrangian strain

measures (11) must be reconsidered. The three Lagrangian constitutive variables proposed for the stress

gradient model are:

C∼ := F∼
T · F∼ , Υ

∼
:= F∼

T ·Φ
∼
, K

≈
:= F∼

T ·Φ
∼
⊗∇0 (64)

CIJ := F TIkFkJ , ΥIJK := F TIiΦiJK , KIJKL := F TIiΦiJK,L

The motivation for the pull–back by means of the F∼
T variable, instead of F∼

−1, is the relation to the

Boussinesq stress tensor, which will become apparent in the following. The conjugate stress tensors are

introduced in the virtual power density of internal forces which is formally a truncation of (14):

Jp(i) = Π∼ : F∼
T · δF∼ + T

∼

... δΥ
∼

+M
≈

:: δK
≈

(65)

The elastic dual potential is then: ψ?(Π∼ ,T∼ ,M≈ ).

An internal constraint linking the fourth rank stress tensor M
≈

to the Piola stress tensor is now

introduced:

f(Π∼ ,M≈ ) = M
≈
−Π∼ ⊗ 1∼ = 0 (66)

A consequence of this constraint is that M
≈

becomes symmetric w.r.t. the first two indices and last two

indices. It is equivalent to the constraint that the fourth rank Boussinesq stress tensor is directly related

to the Boussinesq second rank stress tensor:

M
≈
B = F∼ ·M≈ = S∼ ⊗ 1∼, MB

iJKL = SiJδKL (67)

It must be noted that the physical dimension implied for the stress tensor components MB
iJKL by the

constraint (67) is different from the one proposed in the previous section in the case of micromorphic

theory regarded as a relaxed strain gradient model: Pa instead of Pa.m2 = N . An internal length could

be introduced to restore the dimensional consistency but it is preferred to keep the proposed form (67)

which will be related to a stress gradient theory. Accordingly, the physical dimension of the additional

degrees of freedom, ΦiJK , is that of microdisplacements, in m, instead of microdeformations in the original

theory of section 2.1.

The presence of the internal constraint leads to the modification (59) of the constitutive equations in

the form:

C∼ = −2
∂ψ?

∂Π∼
− 2λf1∼, T

∼
= −∂ψ

?

∂Υ∼
, K

≈
= − ∂ψ

?

∂M
≈

+ λf1≈ (68)

where λf is a Lagrange multiplier to be determined from the boundary conditions.
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Due to this specific definition of the higher order stress tensors, and, as a consequence, to an alternative

definition of the Lagrangian strain measures different from (11), the generalized balance of momentum

equations must be derived anew. For that purpose, the constraint (67) is directly implemented in the

virtual power density of internal forces (65):

Jp(i) = Π∼ : F∼
T · δF∼ + T

∼

... (δF∼
T ·Φ

∼
+ F∼

T · δΦ
∼

) +M
∼

:: (δF∼
T ·Φ

∼
⊗∇0 + F∼

T · δΦ
∼
⊗∇0)

= ΠIJF
T
IkδFkJ + TIJK

(
δF TIkΦkJK + F TIkδΦkJK

)
+ ΠIJδKL

(
δF TIkΦkJK,L + F TIkδΦkJK,L

)
= Π∼ :

(
δC∼
2

+ δ(F∼
T ·Φ

∼
·∇0)

)
+ T

∼

... δ(F∼
T ·Φ

∼
) (69)

=
(
ΠIJF

T
Jk + ΠIJΦkJL,L + TIJKΦkJK

)
δuk,I + TIJKF

T
IkδΦkJK + ΠIJF

T
IkδΦkJL,L

= (SkIδuk + ΠIJΦkJL,Lδuk + TIJKΦkJKδuk),I − (SkI + ΠIJΦkJL,L + TIJKΦkJK),I δuk

+ TBkJKδΦkJK + (SkJδΦkJL),L − SkJ,LδΦkJK (70)

where the generalized Boussinesq tensor, T
∼
B := F∼ · T∼ , has been introduced. As a result, the virtual

power of internal forces of a subdomain D0 ⊂ Ω0 can be written as the sum of a volume and a surface

contribution:

P(i) =

∫
D0

δu ·
(
S∼ + (Φ

∼
·∇0) ·Π∼ + Φ

∼
: T

∼
T
)
·∇0 dV

−
∫
∂D0

δu ·
(
S∼ + (Φ

∼
·∇0) ·Π∼ + Φ

∼
: T

∼
T
)
·N dS

−
∫
D0

(
T
∼
B − S∼ ⊗∇0

) ... δΦ
∼
dV −

∫
∂D0

(S∼ ⊗N )
...δΦ

∼
dS (71)

where the transposition for third order tensors is taken as T TJKI = TIJK . The latter expression of the

power of internal forces dictates the form of the power of contact forces as:

P(c)(δu , δΦ
∼

) =

∫
D0

(
t · δu + t

∼

... δΦ
∼

)
dS (72)

where t∼ and t
∼

are generalized surface traction tensors.

The virtual power of external and acceleration forces are taken as:

P(e)(δu , δΦ
∼

) =

∫
D0

f · δu + f
∼

... δΦ
∼
dV (73)

P(a)(δu , δΦ
∼

) = −
∫
D0

ρ0

(
a · δu + (Φ̈

∼
: I

≈
)

... δΦ
∼

)
dV (74)

The resulting field equations are:

Div
(
S∼ + (Div Φ

∼
) ·Π∼ + Φ

∼
: T

∼
T
)

+ f = ρ0ü (75)

T
∼
B − S∼ ⊗∇0 + f

∼
= ρ0Φ̈∼ : I

≈
(76)
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The gradient of the classical Boussinesq stress tensor S∼ arises in the latter equation. In the static case

in particular and in absence of third rank body forces, the generalized stress tensor T
∼
B is nothing but

the stress gradient, hence the name of stress gradient theory.

The exploitation of the principle of virtual power at the boundary provides the expression of the

generalized traction tensors:

t =
((
F∼ + Φ

∼
·∇0

)
·Π∼ + Φ

∼
: T

∼
T
)
·N , ti = ((FiJ + ΦiJL,L)ΠJK + ΦiJLTJLK)NK (77)

t
∼

= S∼ ⊗N , tiJK = SiJNK (78)

The consideration of Eq. (75) and (77) leads to the definition of a new Boussinesq stress tensor for the

stress gradient theory:

S∼
B := S∼ + (Div Φ

∼
) ·Π∼ + Φ

∼
: T

∼
T =

(
F∼ + Div Φ

∼

)
·Π∼ + Φ

∼
: T

∼
T (79)

whose divergence balances volume and inertia forces and whose action on the normal vector at the

boundary delivers the generalized traction.

4.3. Hyperelastic stress gradient model and its linearization

The reduced hyperelastic laws of the stress gradient medium can be obtained by eliminating the

Lagrange multiplier in Eq. (68). For that purpose, note that:

K
≈

: 1∼ = F∼
T ·Div Φ

∼
(80)

so that

λf1∼ = F∼
T ·Div Φ

∼
+
∂ψ?

∂M
≈

: 1∼ (81)

Finally, it is found that:

C∼
2

+ F∼
T ·Div Φ

∼
= −

∂ψ?
∂Π∼

+
∂ψ?

∂M
≈

: 1∼

 = −∂Ψ?

∂Π∼
(82)

after recalling that M
≈

= Π∼ ⊗ 1∼ and introducing a reduced stress potential Ψ?(Π∼ ,T∼ ) such that

E∼ =
C∼
2

+ F∼
T ·Φ

∼
·∇0 = −∂Ψ?

∂Π∼
, Υ

∼
= F∼

T ·Φ
∼

= −∂Ψ?

∂T
∼

(83)

Accordingly, the dual potential Ψ(E∼ ,Υ∼ ) can be derived based on the reduced strain tensor E∼ and

the generalized strain measure Υ
∼

:

δΨ =
∂Ψ

∂E∼
: δE∼ +

∂Ψ

∂Υ
∼

: δΥ
∼

= Π∼ : δE∼ + T
∼

... δΥ
∼

(84)
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after identification of the conjugate stress tensors as they appear in the increment of virtual work of

internal forces, Eq. (69).

The linearization of the proposed theory is consistent with the linear stress gradient model presented

in the static case by (Forest and Sab, 2012), as it will be shown. The small deformation framework for

the stress gradient theory is characterized by:

‖F∼ − 1∼‖ � 1, L−1‖Φ
∼
‖ � 1, ‖Φ

∼
⊗∇‖ � 1 (85)

The generalized strain measures are linearized as:

E∼ − 1∼/2 = (C∼ − 1∼)/2 + F∼
T ·Φ

∼
' ε∼ + Φ

∼
·∇ ≡ e∼, Υ

∼
= F∼

T ·Φ
∼
' Φ

∼
(86)

where ε∼ is the infinitesimal strain tensor and e∼ is the generalized strain measure found in (Forest and

Sab, 2012). Regarding stresses, we obtain

Π∼ ' σ∼ , T
∼
' σ∼ ⊗∇ ≡ R

∼
(87)

where σ∼ is the Cauchy stress tensor and R
∼

was the name given to the infinitesimal stress gradient in

(Forest and Sab, 2012), in the static case. The linearization of the balance laws (75) and (76) proceeds

as follows:

S∼ + (Div Φ
∼

) ·Π∼ + Φ
∼

: T
∼
T ' σ∼ , since ‖S∼‖ � ‖(Div Φ

∼
) ·Π∼ ‖, ‖S∼‖ � ‖Φ∼ : T

∼
T ‖ (88)

As a consequence, the balance laws of the linear and static stress gradient theory by (Forest and Sab,

2012) are recovered:

divσ∼ + f = 0, R
∼
− σ∼ ⊗∇ + f

∼
= 0 (89)

After linearization of the stress and strain measures and their substitution into the hyperelastic laws (84),

the elastic laws proposed in (Forest and Sab, 2012) are also retrieved:

e∼ =
∂w?(σ∼ ,R∼ )

∂σ∼
, Φ

∼
=
∂w?(σ∼ ,R∼ )

∂R
∼

, σ∼ =
∂w(e∼,Φ∼ )

∂e∼
, R

∼
=
∂w(e∼,Φ∼ )

∂Φ
∼

(90)

It is worth considering now the linearization of the virtual power of contact forces taken from Eq. (71):

δu ·
(
S∼ + (Φ

∼
·∇0) ·Π∼ + Φ

∼
: T

∼
T
)
·N + (S∼ ⊗N )

... δΦ
∼
' σ∼ : (δu ⊗N + δΦ

∼
·N ) (91)

which is the expression found in (Forest and Sab, 2012). This structure of the virtual work of contact

forces allows to prescribe the full stress tensor along a boundary, which is a peculiar feature of the linear

stress gradient theory. Existence and uniqueness theorems were established by (Sab et al., 2016) for such

stress based boundary conditions. Corresponding existence theorems remain to be derived for the finite

deformation stress gradient model proposed in the present work.
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5. Applications

The proposed applications deal first with a combination of strain and stress gradient theories in the

static case and then with the one-dimensional dynamics of second order micromorphic and stress gradient

media. They are limited to the small strain case.

5.1. Combination of stress and strain gradient models

A second order micromorphic medium is considered that involves the following degrees of freedom

DOF = {u , χ
∼
, Φ

∼
} (92)

The following expression of the work of internal forces, combining the features of fist order micromorphic

and stress gradient theories, is adopted:

p(i) = σ∼ : (ε∼ + Φ
∼
·∇) +R

∼

... Φ
∼

+ s∼ : (χ
∼
− ε∼) +M

∼

...χ
∼
⊗∇ (93)

within the infinitesimal deformation framework. The field balance equations associated with such a

medium are threefold, as deduced from the earlier analyses:

div (σ∼ + s∼) = 0, R
∼

= σ∼ ⊗∇, divM
∼

+ s∼ = 0 (94)

in the static case and in the absence of body forces. Implementing the internal constraint χ
∼
≡ ε∼

corresponding to the strain gradient part of the model, the three previous equations reduce to 2:

div (σ∼ − divM
∼

) = 0, R
∼

= σ∼ ⊗∇ (95)

The linear constitutive laws for the stress gradient part of the model are as in (Forest and Sab, 2012):

σ∼ = C
≈

: e∼ = C
≈

: (ε∼ + Φ
∼
·∇), R

∼
= D∼∼∼

... Φ
∼

(96)

where C
≈

and D∼∼∼
are fourth and sixth rank tensors of generalized elastic moduli. In fact, for the purpose

of comparison with Eringen’s model, it is sufficient to consider the simplified law:

Φ
∼

= `2σC≈
−1 : R

∼
(97)

so that

σ∼ − `
2
σ∇2σ∼ = C

≈
: ε∼ (98)

which is identical to Eringen’s model involving the Laplacian of the stress tensor, see (Eringen, 1983). The

fact that Eringen’s model can be retrieved from a stress gradient theory was recognized by (Polizzotto,

2015).
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On the other hand, following (Forest and Aifantis, 2010), a simplified higher order elasticity law

linking the hyperstress tensor to the strain gradient is:

M
∼

= `2εC≈ : (ε∼⊗∇) (99)

which is similar to Eq. (97). This leads to a generalized elasticity law for the effective stress tensor, τ∼,

whose divergence vanishes under static conditions, according to (Germain, 1973a):

τ∼ = σ∼ − divM
∼

= σ∼ − `
2
εC≈ : ∇2ε∼ (100)

which coincides with Aifantis celebrated gradient elasticity model (Ru and Aifantis, 1993). Combining

the constitutive laws (98) and (100), the following partial differential equation for stress and strain tensors

is obtained:

τ∼ − `
2
σ∇2σ∼ = C

≈
: (ε∼− `

2
ε∇2ε∼) (101)

This equation involves the Laplacians of both stress and strain tensors. Note that both stress tensors σ∼

and τ∼ are present.

In the context of a combined stress and strain gradient theory, the question arises of the choice of

the proper stress tensor whose gradient should be incorporated in the model. Here, we have considered

σ∼⊗∇ but the theory could involve instead τ∼⊗∇. For that purpose, an alternative combination of stress

and strain gradient theories can be proposed from the following modification of the power of internal

forces (93):

p(i) = σ∼ : ε∼ + (σ∼ + s∼) : Φ
∼
·∇ +R

∼

... Φ
∼

+ s∼ : (χ
∼
− ε∼) +M

∼

...χ
∼
⊗∇ (102)

which leads to the following static balance equations:

div (σ∼ + s∼) = 0, R
∼

= (σ∼ + s∼)⊗∇, divM
∼

+ s∼ = 0 (103)

Eliminating the relative stress tensor s∼ provides the balance equations with respect to the effective stress

τ∼ = σ∼ − divM
∼

:

div τ∼ = 0, R
∼

= τ∼ ⊗∇ (104)

which shows that it is a theory for the effective stress gradient. Implementing again the internal constraint

χ
∼
≡ ε∼ corresponding to the strain gradient part of the model, the following constitutive equations are

retained:

τ∼ = C
≈

: e∼ = C
≈

: (ε∼ + div Φ
∼

), Φ
∼

= `2σC≈
−1 : R

∼
(105)

The following relation between stress and strain gradients is deduced

σ∼ − `
2
σ∇2τ∼ = C

≈
: (ε∼ + `2ε∇2ε∼) (106)
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This equation differs from (101) by the interchange of σ∼ and τ∼ on the left hand side and by the plus sign

on the right hand side.

Within the small strain framework, (Gutkin and Aifantis, 1999; Aifantis, 2003) proposed a gradient

elasticity constitutive law involving both strain and stress gradient variables in the form

(1− l2σ∇2)σ∼ = (1− l2ε∇2)(λ(trace ε∼)1∼ + 2µε∼) (107)

The equations (101) and (101) also involve Laplacians of both stress and strain tensors. They are

reminiscent of Aifantis generalized gradient elasticity model (107). In this equation, σ∼ is presented as

the usual stress tensor. Forest and Aifantis (2010) suggested however that it should be interpreted as the

effective stress τ∼ from the strain gradient model. The equation (107) is presented as a constitutive law.

In fact, it is rather a combination of balance and constitutive equations as in the derivation of Eq. (101)

and (106). The ambiguity on the nature of the stress tensor remains as long as the suitable balance,

boundary and constitutive equations are not provided.

The merits of a combined stress and strain gradient model are suggested by the recent work of (Tran,

2016) where the stress gradient model was shown to predict softening effects at small scales. In contrast,

stiffening effects are generally obtained with a strain gradient model. Depending on boundary or interface

conditions related to either stress gradient or strain gradient types, such stiffening and softening effects

may be competing in actual materials.

5.2. Higher order dynamics of linear micromorphic and strain gradient media

The dynamics of micromorphic media is derived in the case of linear elasticity. The obtained field

equations are then specialized in the presence of internal constraints linking the micromorphic deforma-

tions to strain gradients.

The generalized Hooke laws are given in the case of a centro-symmetrical second order micromorphic

material for the sake of brevity. The retained form is that proposed in (Cordero et al., 2016):

σ∼ = c
≈

: ε∼ (108)

T∼ = a
≈

: (u ⊗∇− χ
∼

) (109)

M
∼

= b∼∼∼

...K
∼

(110)

T
∼

= a∼∼∼

... (K
∼
− χ

∼
) (111)

M
≈

= b∼∼∼
:: K

≈
(112)

The relations (109) and (111) penalize the difference between the first (resp. second) order microdefor-

mation and the first (resp. second) gradient of the displacement fields. Very large values of the higher
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order moduli a
≈

and a∼∼∼
amount to prescribing the constraints (60) which reduce the second micromorphic

medium to a second strain gradient material. Odd rank tensors of elasticity are excluded in the previous

laws by the hypothesis of centrosymmetry (Auffray et al., 2013). The full classification of anisotropy

classes remains to be done for second order micromorphic media and is not discussed here (Olive and

Auffray, 2013).

It is shown now how the three linearized balance laws (42) to (44) can be combined, after substitution

of the constitutive equations (108) to (112) to derive a single partial differential equation involving all

degrees of freedom and in which internal constraints can be enforced. The derivation is essentially formal

due to the complexity of tensor combinations. Eliminating the coupling stress T∼ in Eq. (42) by means

of Eq. (43) yields

div (σ∼ + divM
∼
− ρIχ̈

∼
) = ρü

The third rank stress tensor can be eliminated from the previous expression using the constitutive law

(110) and the balance law (44):

M
∼

= b∼∼∼

...K
∼

= b∼∼∼

...

(
χ
∼

+ a∼∼∼

−1...T
∼

)
= b∼∼∼

...

(
χ
∼

+ a∼∼∼

−1...

(
divM

≈
− ρχ̈

∼
: I

≈

))
and finally

div

(
σ∼ + div

(
b∼∼∼

...

(
χ
∼

+ a∼∼∼

−1...

(
divM

≈
− ρχ̈

∼
: I

≈

)))
− ρIχ̈

∼

)
= ρü (113)

At this stage, the linearized internal constraints (60):

χ
∼
≡ u ⊗∇, χ

∼
≡ u ⊗∇⊗∇ (114)

are substituted into (113) to obtain the dynamical equations of second strain gradient media. This

equation is written in symbolic form in order to draw the attention on the order of the space and time

derivatives of the displacement variable in each term:

Au(2) +Bu(4) + Cu(6) − ρIü(4) −Dü(2) − ρü = 0 (115)

where the integers in parentheses denote the order of the spatial derivative and the coefficients symboli-

cally represent appropriate combinations of elastic moduli. It is remarkable that the dynamical equation

contains spatial derivatives of even order up to 6 and mixed space and time derivatives of order 2 to 6.

The fourth order terms are characteristic of Mindlin’s first strain gradient dynamics. The direct deriva-

tion of the mixed term ü(2) in the strain gradient model requires the introduction of an hypermomentum

tensor that is very often forgotten, especially in the dynamics of Euler–Bernoulli beams, see (Metrikine,

2006; Rosi and Auffray, 2016). It arises here as a natural consequence of the micromorphic dynamics.

The introduction of the second order microdeformation leads to the terms of sixth order. The previous
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equation represents one of the most general one for the analysis of the dispersion of waves in gradient

media (Mindlin, 1972; Askes and Aifantis, 2011). It contains terms that have been introduced heuris-

tically in several dynamical equations of the literature, see the discussions in (Engelbrecht et al., 2005;

Askes et al., 2008b,a; Papargyri-Beskou et al., 2009).

5.3. Dynamics of linear stress gradient media

Some specific aspects of the dynamical behavior of linear stress gradient media are now unraveled by

combining the linear balance and constitutive equations including inertia contributions. The linearized

dynamical equations of stress gradient media are deduced from Eq. (75) and (76) as follows:

divσ∼ = ρü , R
∼
− σ∼ ⊗∇ = ρIΦ̈

∼
(116)

in the absence of volume forces. Note that the inertia coefficient I in Eq. (116)2 has no physical dimension

since u and Φ
∼

share the same physical dimension of a length. The linearized elasticity laws are given by

Eq. (96). They relate the stress and stress gradients to the strain and microdisplacements. For the sake

of brevity, the derivation of the dynamic equation for displacement is presented in the one–dimensional

case. The Eq. (116) then reduce to

σ′ = ρü, R− σ′ = ρIΦ̈ (117)

where (•)′ denotes the one-dimensional derivative. The constitutive laws (96) become

σ = E(u′ + Φ′), R = DΦ (118)

where E and D are constitutive elasticity moduli, in Pa. Substitution of the constitutive laws into the

balance leads to the generalized Navier equations:

E(u(2) + Φ(2)) = ρü, DΦ− E(u(2) + Φ(2)) = ρIΦ̈ (119)

From the two previous equations, the following consequences are respectively deduced:

Φ(2) =
ρ

E
ü− u(2), DΦ(2) − ρü(2) = ρIΦ̈(2) (120)

Substitution of the former into the latter equation provides the linear differential equation for the dis-

placement variable:

Du(2) + ρ(1− I)ü(2) +
ρ2I

E
¨̈u− Dρ

E
ü = 0 (121)

The dispersion of one-dimensional elastic waves according to Eq. (115) and (121) should be analysed

in a way similar to the work done by Metrikine (2006) and Berezovski (2015) for other microstructured

continua. Metrikine (2006) examined the question of the causality of such equations. He postulates that a
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partial differential equation that governs the dynamical behaviour of a one–dimensional model must be of

the same order with respect to the spatial coordinate and with respect to time. This is not the case of Eq.

(115) due to the higher order spatial derivation. This feature is well–known in strain gradient media and

is encountered in the Euler-Bernoulli beam model. It corresponds to the possibility of waves travelling

with infinite speed. This paradoxon is solved by the use of a Timoshenko beam model. Equivalently,

the unconstrained micromorphic media can be used to regularize the wave behavior of gradient continua.

The postulated causality condition is not satisfied either for stress gradient continua, as it can be seen

from Eq. (121) but for a different reason. The highest time derivative is 4 whereas the spatial order is 2.

This is a remarkable feature distinguishing the stress gradient from the strain gradient models.

6. Conclusions

The main contributions of the present work are the following:

• A second order micromorphic model at finite deformation introducing generalized Boussinesq stress

tensors for balance and boundary conditions, and generalized Lagrangian strain measures for consti-

tutive laws. It is more general than the previous Green and Naghdi, Eringen and Germain theories.

The higher order microdeformations are introduced as relaxed deformation gradients of suitable

order.

• A reduction of the general micromorphic model to the grade n continuum model by suitable con-

straints on the microdeformations tensors. In strain gradient theories, the higher order stress tensor

is NOT equal to the gradient of the usual stress tensor. That is why strain and stress gradient

theories are distinct models of the continuum.

• A stress gradient theory at finite deformation including inertia terms. It involves a third order tensor

of additional degrees of freedom like the second order micromorphic model. However, its mechanical

meaning is different: it represents microdisplacements and NOT a relaxed strain gradient.

• A one-dimensional linearized dispersion equation for the stress gradient model that essentially differs

from the strain gradient prediction. The highest order in time (resp. space) derivation is two orders

larger than the spatial (resp. time) derivation order in linear stress (resp. strain) gradient media.

These new theories are excellent candidates for the study of wave dispersion in generalized continua, as

started in (Madeo et al., 2014, 2016b) for first order micromorphic continua. Micromorphic models are

necessary to overcome the paradoxon of the infinite wave speed of some elastic waves in gradient media

and to obtain both acoustic and optical branches in the dispersion diagrams (Papargyri-Beskou et al.,

2009).
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A central remaining question is the determination of the higher order elastic moduli arising in such

theories. Enhanced homogenization methods have been proposed recently to derive them from the mi-

crostructure of periodic heterogeneous material, see (Forest and Trinh, 2011; Trinh et al., 2012; Jänicke

and Steeb, 2012) for the construction of gradient and micromorphic models from the underlying het-

erogeneous Cauchy materials. Most approaches remain heuristic and the question is still largely open.

Nassar et al. (2016) and Reda et al. (2017) recently proposed alternative asymptotic methods for the

determination of dynamical properties of gradient and micromorphic media with application to composite

materials. The found properties are inevitably anisotropic which has implications for the dispersion of

waves, see (Rosi and Auffray, 2016).

The strain gradient and stress gradient models emerge as distinct and rather complementary ap-

proaches to material behavior. Stiffening effects are expected in strain gradient media at small scales,

whereas softening effects were derived in the recent homogenization results by Tran (2016). It seems that

both models should be combined in order to represent the competition of stiffening and softening effects

present in heterogeneous materials, as sketched in Section 5.1.

The proposed theories were presented within the finite deformation framework for application in the

size-dependent plasticity and fracture of metals that generally occur at large deformations. They could be

applied to the ductile fracture of porous materials as initiated in (Hütter, 2017a,b) or to the deformation

of metal polycrystals (Poh, 2013).
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