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Abstract

Under tension low carbon steel exhibits inhomogeneous plastic deformation. This instability called Piobert-

Lüders banding creates fronts of localized strain that propagate in the structure. To date, Lüders banding

has been studied experimentally and numerically only in simple geometries like sheets, tubes and normal-

ized fracture mechanics specimens. This paper focuses on architectured materials and specifically lattice

structures which can be defined as a tessellation of unit-cells periodically distributed in space. This class of

advanced materials draws new mechanical properties from its inner architecture.

We investigate the effect of the architecture on the global behavior of the structure. Especially, how bands

interact with the lattice and how to control initiation and propagation of localized strain using the archi-

tecture. An elastoplastic material model is used in order to simulate the Piobert-Lüders band formation

and propagation. The model also considers a large deformation framework for elastoplasticity with periodic

boundary conditions in order to represent the architectured material. Initiation and propagation of material

instabilities depend on the geometry as well as its on the relative orientation with respect to the loading di-

rection. Propagating and non-propagating behaviors are identified for the Piobert-Lüders bands and related

to the different types of geometry. Material instabilities affect the mechanical behavior of the structure as

far as they are governed by the architecture. These conclusions are compared to experimental results from

tensile tests on laser-architectured specimens made of ARMCO steel.

Keywords: Piobert-Lüders instabilities, Architectured materials, Computational mechanics, Experimental

testing, Finite Element Analysis, Elastoplasticity

1. Introduction

Architectured materials, in the sense given by Ashby and Bréchet (2003); Bouaziz et al. (2008); Bréchet

(2013); Bréchet and Embury (2013); Ashby (2013), are obtained from a design process aiming at fulfilling a

specific set of requirements through a given functionality, behavior, or performance, induced via a particular

morphological arrangement between multiple material phases. Among architectured materials, lattices are a

specific kind of cellular materials, i.e. a combination of material and space. Lattice structures are composed

of a connected network of struts, that may be organized periodically in space. They are generally used

in cases where there is a need for either high specific stiffness, or high specific strength, but are also the

basis of mechanical metamaterials Ashby (2006); Cêté et al. (2006); Zok et al. (2016); Nassar et al. (2016);

Combescure and Elliott (2017); Poncelet et al. (2018); Rosi et al. (2018); Latture et al. (2018); Turco

Preprint submitted to Elsevier February 13, 2020



et al. (2018); dell’Isola et al. (2018); Onal et al. (2018); Rosi and Auffray (2019). Modeling the mechanical

response of architectured materials, especially lattice structures, is of prime interest for enabling their use

in industrial applications. From an analytical viewpoint, models have been available for the description of

the elastic behavior of cellular and lattice materials based on a strength of materials approach. Beyond the

classical elastic behavior of cellular materials, Gibson and Ashby (1999) proposed a description based on

geometrical and material parameters for the nonlinear behavior of lattices, e.g. plastic buckling, toughness.

Following the seminal work by Gibson and Ashby, 2D topologies were widely studied using both analytical

and numerical models Wang and McDowell (2004, 2005); Fleck and Qiu (2007); Alonso and Fleck (2007) in

order to improve the description of elastoplasticity and failure of such materials. By taking into account the

deflection of inclined struts in lattices, i.e. extending the analytical model to large deformations, Guoming

et al. (2006) improved the description of elastic moduli in 2D cellular materials given in Gibson and Ashby

(1999).

In the same way, Tankasala et al. (2017) investigated the tensile response of lattices at finite strains.

A description of various regimes from buckling to fracture in lattices under tension was given. Using an

elastic perfectly-plastic material model, Bonfanti et al. (2016); Bonfanti and Bhaskar (2018) focused on

the nonlinear plastic response of cell walls in 2D lattices under combined loads. A study of geometrical

instabilities trough computational modeling completed by experimental testing in 2D cellular materials is

proposed by Niknam and Akbarzadeh (2018).

Most of the previous studies generally consider perfect elastoplastic models to study plasticity in lattices.

Another type of instabilities is related to the microstructure for some materials, e.g. mild steel, aluminum

alloy, etc. This is the so-called Piobert-Lüders (Piobert (1842); Lüders (1860)) phenomenon, which occurs

during the initiation of plasticity and causes localized plastic deformation as bands that propagate along the

specimen. The question arises of the interaction of such static strain ageing instabilities with the architecture

of the lattice. To the knowledge of the authors, this problem has never addressed for lattice structures. For

example, Kyriakides et al. (2008) studied, numerically and experimentally, the interaction between Lüders

banding and buckling of steel bars. Another example in which the architecture can alter the modes of

buckling of a structure has been presented by He et al. (2018) exploring different geometry for vertices in a

square lattice. Hallai and Kyriakides (2011) emphasized the role of the propagation of Piobert-Lüders bands

in the emergence of a propagating non-uniform curvature during the bending of steel tubes.

The localized nature of the Piobert-Lüders bands can lead to premature collapse if not properly accounted

in the design. On the other hand, one could take advantage of these instabilities for instance by controlling

them through the architecture.

In this article, we are interested in the interaction between the Piobert-Lüders phenomenon and 2D-

lattices with different topologies covering both bending- and stretch-dominated behaviors. The objective

of the present paper is to simulate the initiation and propagation of Piobert-Lüders bands within planar

architectured media and to study how such material instabilities affect the mechanical response of architec-

tured materials. This work aims at a classification of architectures enabling or impeding the propagation of

localized deformation modes induced by the Piobert–Lüders bands occuring in the struts.
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This paper is organized as follows: firstly, finite deformation elastoplastic model accounting for Piobert-

Lüders is presented. In the same section, three archetypal geometries are introduced for the subsequent

simulations and experiments. The initial boundary value problem including periodic boundary conditions is

formulated and finite element simulation results are reported in Section 3. The macroscopic behavior of each

lattice is analyzed in the light of accumulated plastic strain maps. Section 4 deals with the issue of the proper

volume element size to be considered in the presence of instabilities while considering periodic boundary

conditions. An experimental validation of the predicted instability propagation properties is proposed in

Section 5 for the considred architectured. For that purpose finite size samples with a limited number of cells

are tested to investigate the localization phenomena at the local and global scales. The experimental results

are compared to finite element simulations on the whole samples. A thorough discussion of the results is

presented in Section 6 and concluding remarks are provided in Section 7.

The following notations are used throughout: first, second and fourth order tensors are respectively

denoted by a , b
∼

and C
≈

. The double contraction is written a
∼

: a
∼

= aijaij .

2. Periodic media and material instabilities

2.1. Lattice structure

A lattice structure can be defined as a tessellation of unit-cells periodically distributed in space. In

the following, we are only interested in 2D lattices. Numerous studies focused on the behavior of these

architectures and they are classically divided into two different groups depending on their main deformation

mode: (i) bending-dominated or (ii) stretch-dominated, as shown in Figure 1.

(i) Bending-dominated: as in Figure 1, the first configuration (a) is a mechanism according to Deshpande

et al. (2001). When loaded, it can deform thanks to the rotation of pin-joints and induces bending in the

struts caused by rigidity of the joints. It exhibits low stiffness and low strength.

(ii) Stretch-dominated: as in Figure 1, the second configuration (b) is a structure as explained in the

work of Deshpande et al. (2001). When loaded, struts are either in tension or in compression thanks to the

higher connectivity between joints. Joints are mostly not rotating and the deformation is stretch-dominated.

Such structures usually exhibit higher stiffness and strength than bending-dominated lattices.

Fig. 1: (a) a mechanism; (b) a structure; (c) self-stressed state mechanism adapted from Deshpande et al. (2001)

This study focuses on the in-plane finite strain tensile response of three representative topologies: trian-

gular, square and hexagonal as shown in Figure 2. These ideal structures display a large variety of mechanical
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responses, which justifies the choice of those topologies.

(a) Triangular lattice (b) Square lattice

(c) Hexagonal lattice

Fig. 2: Lattice topologies and their corresponding unit cells employed for the FE simulation with their periodic vectors. (a)

triangular lattice, (b) square lattice and (c) hexagonal lattice.

The triangular and the hexagonal lattices are invariant by a 60◦ rotation, the square by a 90◦. As

explained in Auffray et al. (2015); Tankasala et al. (2017), the triangular and the hexagonal lattices are

isotropic in-plane for linear elasticity, but anisotropic for non-linear behavior. The triangular lattice is

stiff and belongs to the stretch-dominated structures while the hexagonal lattice is bending-dominated and

exhibits a more compliant behavior. On the contrary, the square lattice exhibits quadratic anisotropy in-

plane for linear elasticity. It displays a stretch-dominated behavior if loaded along its struts and a bending-

dominated behavior when struts are oriented by 45◦ with respect to the loading direction. Therefore, it is

interesting to study which direction and which geometry promote the propagation of plastic strain bands.

The three architectures will be loaded in all possible in-plane directions taking into account their symmetry.

Each unit cell is defined by the length and thickness of its struts. For each lattice, the relative density is

fixed to 30% and the length to 1. The corresponding thickness of the struts of each lattice reported in table

1 for each geometry.

Triangle Diamond Hexagon

Thickness 0.09 0.15 0.26

Table 1: Thickness of struts for a 30% relative density and a length of 1.

2.2. Phenomenological simulation of Piobert-Lüders phenomenon

The Piobert-Lüders instability in low carbon steel characterizes the transition from the elastic to the

plastic deformation regimes corresponding to the release of dislocations pinned by interstitial atoms. Macro-

scopically, it generally results in the emergence and subsequent propagation of plastic deformation bands.
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An elastoplastic material model is used in this work in order to simulate the Piobert-Lüders band for-

mation and propagation. The model accounts for large deformations as needed because of the high strain

levels experienced locally by the different geometries studied in Section 3.

The finite deformation formulation chosen in the present work for isotropic nonlinear material behavior is

based on a co-rotational transformation of the stress rate-strain rate problem making use of a local objective

frame. This framework developed in Ladevèze (1980); Dogui and Sidoroff (1986); Besson et al. (2009) allows

for the extension of constitutive laws from infinitesimal strain to large deformation without modification of

the form of the plastic flow and hardening rules. ė
∼

and s
∼

are the invariant strain rate and stress measures

defined by transport of the Eulerian strain rate D
∼

and the Cauchy stress T
∼

into the local objective frame

E’. The evolution from E to E’ is characterized by the rotation Q
∼

(x , t). The velocity gradient L
∼

defined

as L
∼

= Ḟ
∼
.F
∼

−1 where F
∼

is the usual deformation gradient. L
∼

is decomposed into its symmetric and skew

parts, D
∼

and Ω
∼

.






















ė
∼

= Q
∼

T .D
∼
.Q
∼

s
∼

= Q
∼

T .T
∼
.Q
∼

Q
∼

such that Q̇
∼

T
.Q
∼

= Ω
∼

(1)

The strain rate tensor ė
∼

is split into elastic and plastic parts. The yield function is f(s
∼
, R). The rate-

independent elastoplasticity model for large deformation is is finally written as :











































ė
∼

= ė
∼

e + ė
∼

p

f(s
∼
, R) = J2(s

∼
) −R(p)

ė
∼

p = ṗ
∂f

∂s
∼

, ṗ ≥ 0

s
∼

= C
≈

: ė
∼

e

(2)

where R(p) is the yield stress taken as a function of the the accumulated plastic strain p.

A von Mises criterion is chosen for f with J2(s
∼
) =

√

3
2s∼

dev : s
∼

dev, the second invariant of the stress tensor

and s
∼

dev is the deviatoric part of the stress tensor.

2.3. Numerical approach of the Piobert-Lüders phenomenon

Tsukahara and Iung (1998) introduced a local behavior modeling the Piobert-Lüders behavior by the

finite element method. It consists in a description of the work-hardening material function as linear soft-

ening branch followed by a linear hardening branch. Later, Ballarin et al. (2009) smoothened this behavior

hardening potentials evolving non linearly with p.

R(p) = R0 + Q1(1 − e−b1p) + Q2(1 − e−b2p) + Q3(1 − e−b3p) (3)

The elastic behavior is described by the Young modulus and the Poisson ratio, equal to 210 GPa and 0.3,

respectively. Regarding the plastic behavior, a softening term (Q2; b2) added to a Voce strain hardening law
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Fig. 3: Intrinsic consitutive law for Lüders phenomenon in-

tegrated on a single Gauss point (Volume element) compared

to the overall response of a plate endowed with this material

behavior. The accumulated plastic strain maps corresponding

to the points (1,2,3,4) marked on the plate response curve are

shown in Figure 4.

Fig. 4: Accumulated plastic strain map on a sample in tension

with propagation of a Lüders localization band.

R0 (MPa) Q1 (MPa) b1 Q2 (MPa) b2 Q3 (MPa) b3

100 400 10 -100 80 5 300

Table 2: Parameters for the phenomenological plasticity model

described by the initial yield stress R0 and the parameters (Q1; b1) with Q1 > 0 and Q2 < 0. Static strain

aging is modeled by the negative potential Q2. The third function (Q3; b3) is added to the initial modeled

to smooth out the peak stress for better convergence during finite element simulation (Marais et al. (2012)).

The corresponding values of the parameters are given in Table 2. These parameters are chosen to replicate

a 2% strain long stress plateau at 90 MPa and a stress peak at 100 MPa as shown in Figure 3. On the same

figure, the softening branch of the function R(p) is visible in the constitutive response of a material point.

It is well-known that such a softening branch is unstable and leads to the formation of a localization band

right after the peak stress (Mazière and Forest (2015)). This is illustrated by the finite element simulation

of a plate in tension with the corresponding overall stress (force divided by the initial section) and applied

overall strain curve in Figure 3. 3D-computation have been in order to minimize constraint on the behavior of

instabilities. The formation and propagation of Piobert-Lüders band in such a plate in tensions is illustrated

in Figure 4. This phenomenological approach is used to mimic the Piobert-Lüders effect in our simulations.

Macroscopically, it yields a stress plateau at a lower value than the peak, as shown in Figure 3. After the

propagation of the band throughout the specimen, homogeneous hardening starts taking place.
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3. Propagation of material instabilities in infinite periodic media

3.1. Periodic boundary value problem

Investigated lattices are periodic in plane. The homogenized behavior of the structure is found from the

unit-cell with appropriate periodic boundary conditions. The reference configuration of the unit cell is called

V0 whereas the current state at time t is V . The displacement field and the Cauchy stress tensor inside the

unit cell are respectively called u and σ
∼

. The macroscopic strain and Cauchy stress tensors are defined as

spatial averages over the unit cell:

E
∼

=
1

V0

∫

V0

Gradu dV0

Σ
∼

=
1

V

∫

V

σ
∼
dV

(4)

The gradient operator Grad is computed with respect to Lagrange coordinates. Note that the conjugate of E
∼

in the work of internal forces is the Boussinesq tensor, also called first Piola-Kirchhoff stress tensor. However

we will use the effective Cauchy stress Σ
∼

for post-processing the results of the finite element simulations.

The periodic boundary value problem over the unit cell aims at finding the local displacement field u as

the sum of a macroscopic part and a periodic fluctuation :

u = E
∼
·X + v (5)

where E
∼

is the prescribed macroscopic strain tensor and X denote the Lagrange reference coordinate.

Applying the macroscopic strain E
∼

, one computes the fluctuation vector on the unit cell. The uniform strain

distribution E
∼

would be the strain of the medium if it were homogeneous and v represents an in-plane

periodic fluctuation of the displacement due to local inhomogeneities of the material and in this present case

to the architecture. Thus, the strain and stress fields over the infinite structure vary in a periodic manner

around the mean values E
∼

and Σ
∼

with a periodicity equal to the unit cell size. The periodic boundary

conditions mean that the fluctuation v takes the same value at homologous points on opposite sides of the

cell, such that:

∀(x−;x+) ∈ (∂Ω−; ∂Ω+), v (x−) = v (x+) (6)

whereas the traction vector σ
∼
· n is anti-periodic:

∀(x−;x+) ∈ (∂Ω−; ∂Ω+), σ
∼

(x−).n (x−) = −σ
∼

(x+).n (x+) (7)

Our computational homogenization calculations will rely on the periodic finite element available in the

Zset finite element package, making it possible to prescribe mixed boundary conditions like in the tensile

tests considered in the following. For that purpose, the macroscopic strain E11 is prescribed and all the

macroscopic stress components Σij are fixed to zero, except Σ11.

A Newton algorithm is used to solve the global equilibrium equations based on the finite element method

with a total Lagrangian formulation. An implicit Newton method is used to solve the system of local con-

stitutive equations. Switching to an explicit Runge-Kutta scheme with automatic time-stepping is possible
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when the Newton scheme does not converge in the presence of strong instabilities. The total number of

degrees of freedom is reported for all three cells: 91122 dof for the square cell, 62130 dof for the triangle cell

and 132742 dof for the hexagon cell. Full field finite element (FE) solutions are reported for the elastoplastic

response of the three considered lattices considered. For each cell, the steel volume fraction is 30%. Se-

lected FE results are reported up to a macroscopic strain of 10% and the accumulated plastic strain (epcum

variable) evolution is given for most relevant orientations.

(a) No Piobert-Lüders instability (b) Triangle lattice

(c) Square lattice (d) Hexagon lattice

Fig. 5: Macroscopic stress-strain curve for studied lattices (a) without Piobert-Lüders instability (b, c, d) with Piobert-Lüders

instability

The macroscopic response of the three studied cells without Piobert-Lüders instability is reported in

Figure 5a for the most relevant orientation. The parameter Q2 in the original behavior law 2 is changed to

be positive with the same value. There is no localization in this case.
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Fig. 6: Accumulated plastic strain map in the triangle lattice 0◦-oriented unit cell.

Fig. 7: Accumulated plastic strain map in the triangle lattice 30◦-oriented unit cell.

3.2. Triangle lattice

The macroscopic mechanical response of the triangular lattice has a global shape similar for all loading

direction orientation, see Figure 5b. Stress levels differ depending on the orientation, from a plateau stress

at 50 MPa for 0◦ to 35 MPa for 30◦. The response exhibits an initial stiff and linear behavior corresponding

to the elastic regime of the material. The stress reaches a first maximum value, a peak stress, when plastic

strain localization starts. Then stress slowly decreases to reach a plateau, indicating that the propagation

of plastic strain in the branches of the lattice has begun. Finally a hardening behavior takes place after the

instability has finally crossed the whole structure. For the orientation 0◦, the peak-plateau stress phenomenon

is sharper. Besides, the triangular lattice is the only lattice to preserve the stress plateau in every loading

direction due to its stretch-dominated behavior. The stress level for the plateau depends on the orientation

of the lattice with respect to the loading.

The difference of stress level and the local instability which occur for the three tensile tests can be

explained through the analysis of the propagation of Piobert-Lüders instabilities through the triangle lattice.

Figures 6 and 7 represent the accumulated plastic strain for the triangle cell for two relevant orientations,
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0◦ and 30◦. Plastic localization initiates in the middle of the struts of the triangle. This nucleation depends

on the orientation. For orientation 0◦, plastic deformation starts in the two most loaded struts at the same

time. For the other configurations, plastic deformation begins, first, only in the best oriented strut with

respect to the loading direction of the cell. Then, as the macroscopic loading increases, the plastic instability

propagates along the struts symmetrically, see Figure 7.

Because of the high-connectivity of the cell, the struts are mainly loaded in tension thus promoting the

propagation of Piobert-Lüders bands. Whatever the loading direction, there are always struts subjected

to tension. This results in a macroscopic behavior which exhibits a peak-plateau stress as the instability

propagates throughout the lattice. The isotropic behavior of the triangle lattice is verified in the elastic

domain while it is lost when plastic instabilities appear. The higher level of stress for the 0◦-oriented

triangle cell is due to the quantity of material that undergoes plasticity in the lattice. For this orientation

in the end, 4 struts are plastic (see Figure 6) while for the 30◦-oriented cell there are only 2 (see Figure 7).

3.3. Square lattice

Square lattice behaves very differently from the triangular lattice and both its linear and non-linear be-

haviors are strongly anisotropic. From the macroscopic stress-strain curves of the square lattice in Figure

5c, two extreme mechanical responses can be identified. The first one, corresponding to the orientation 0◦, is

close to the localization-propagation behavior with a peak and a plateau stress. In contrast, the second one

for orientation 45◦, relies on the elastic then plastic bending of the struts and no peak nor plateau stresses

are observed.

Therefore, the analysis of the square lattice is divided into three parts: stretching-dominated regime when

struts are less than 5◦ misoriented with respect to the loading direction and a bending-dominated regime

from 5◦ to 45◦.

Stretching-dominated regime for 0◦

Cell walls are exactly aligned with the loading direction. No mechanism is active in the lattice, neither

bending of the walls nor plastic hinges. Conditions are the close to a tension test on a single plate made

of material undergoing Piobert-Lüders instability in Figure 3 and 4. Three zones are identified from the

macroscopic stress-strain curve in Figure 5c:

Zone 1 : Stress peak. The initial response of the lattice is linear until the yield stress is overcome while

plastic strain localizes in the thickness of the strut. Unlike the plate in tension, no defect is needed to

initiate the localization. Stress concentrations in the lattice are enough to trigger the localization in the

loaded struts.

Zone 2 : Stress plateau. The peak stress at 55 MPa is followed by a plateau at a stress level of 50 MPa

corresponding to the plateau stress value for the triangular lattice at 0◦ and last until 0.02 macroscopic
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Fig. 8: Accumulated plastic strain map in the square lattice 0◦-oriented unit cell.

strain.

Zone 3 : Hardening behavior of the lattice. After the Lüders instability has propagated through the

horizontal struts of the square lattice, the lattice undergoes a hardening behavior following the constitutive

model.

Figure 8 represents the accumulated plastic strain for the square cell at 0◦. Localized plasticity initi-

ates (zone 1) in the middle of the strut in tension into a single band. Then, it propagates along this strut

(zone 2) until the whole strut is plastic and it reaches the central joint (zone 3). The localization does

not take the shape of an inclined band as in the case of a sample in tension. The transverse struts of the

lattice connected with periodic boundary conditions prevent the strut with plastic localization to accom-

modate the macroscopic deformation. None of the two inclined possible bands is favored so they both coexist.

Stretching-bending regime for 4◦

The unit cell is now slightly rotated from the tensile loading direction. The strut oriented at 4◦ is loaded

in both tension and bending. The macroscopic behavior of the 4◦-configuration in Figure 5c is compared to

the 3 steps of 0◦-configuration.

Zone 1: Elastic bending of the struts. The FE analysis captures the elastic bending of each strut. The

effective Young modulus depends on the orientation of the strut with respect to the loading direction, which

shows the anisotropy of the square lattice in elastic regime. An analytical expression is given by Gibson and

Ashby (1999). Compared to the 0◦-oriented cell, there is no peak in this case. Because the strut is bent,

stress along the strut depends on the lever arm from the end of the strut. This is unlike tension where the

stress is uniform until plasticity occurs.
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Fig. 9: Accumulated plastic strain map in the square lattice 4◦–oriented unit cell.

Zone 2: Plastic bending of the struts. Plasticity propagates in the struts of the cell and elastic bending

becomes plastic bending. As a result of the variable stress, the stress plateau is replaced by an increasing

stress until 0.12 macroscopic strain.

Zone 3: Hardening behavior of the lattice. As for the 0◦-oriented lattice, the lattice undergoes a hard-

ening behavior after a local instability marking the end of the propagation phase.

The accumulated plastic strain map of the square cell oriented at 4◦ is represented in Figure 9. While

struts undergo elastic bending (zone 1), plasticity starts early in the corners at the joints where stress

concentration is maximum on the side in tension. From there, localized plasticity propagates towards the

border in tension of the bent struts. Plastic instability propagates along the half strut under tension (zone

2) until it is fully plastic. When the band reaches one end of the strut, it continues in the second half which

has not yet fully reached plasticity (zone 3).

Bending-dominated regime for 45◦

In the case of the square cell oriented at 45◦, the macroscopic behavior of the lattice is two-fold (see

Figure 5c). First, the response is linear with an effective Young modulus lower than for other orientations.

Then, the lattice enters the elastoplastic regime and hardening takes place.

The accumulated plastic strain maps of the square cell oriented at 45◦ are represented in Figure 10. While

struts undergo elastic bending, plasticity initiates early in the corners at the joints where stress concentration

is maximum. From there, localized plastic strain spreads but is still confined in the joints. Plasticity never

propagates through the struts. Neither a peak nor a plateau can be seen on the macroscopic stress-strain

curve. As the Young modulus increases when the struts tend to align with the loading direction, the plastic

behavior of the square lattice evolves gradually from the 45◦-oriented cell to the 5◦-oriented one.

The orientation of the square lattice modifies its mechanical behavior from stretching-dominated to
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Fig. 10: Accumulated plastic strain map of the square lattice 45◦-oriented unit cell.

bending-dominated but it also inhibits the propagation of Piobert-Lüders instabilities. In stretch-dominated

configuration, the square cell exhibits a propagative behavior for plastic instabilities following the peak-

plateau stress response observed for the triangular lattice. On the contrary, the bending-dominated config-

urations exhibit a hardening behavior without propagation of plastic instabilities.

3.4. Hexagonal lattice

Fig. 11: Accumulated plastic strain map of the hexagon lattice 0◦–oriented unit cell.

The comparison of the macroscopic behavior of the hexagon cell oriented at 0◦-degree with Piobert-

Lüders instability and without, respectively Figure 11 and 5a, highlights the effect of the softening in the

plastic region.

The in-plane isotropic behavior of the hexagonal cell in elasticity is verified while the behavior with plastic

instabilities become anisotropic. Because of the low connectivity of the hexagonal cell, this lattice acts like

a mechanism, i.e. it is bending-dominated. After an isotropic linear response of the material, deformation
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becomes plastic. The global behavior of the hexagonal lattice depends very little on the orientation. The

macroscopic stress-strain curves for 3 relevant orientations in Figure 5d differ only slightly in the plastic

domain. The behavior is characteristic of bending–dominated lattices. For the 0◦-oriented cell, a stress drop

is observed at 0.07 macroscopic strain. It is caused by Lüders localization in the single stretched strut. No

stress plateau is observed.

It is found that no propagation of the Piobert-Lüders instability can be observed in the hexagonal lattice

whatever the direction of loading, except for the 0◦-orientation (see Figure 11). For this orientation, some

struts are aligned with the tensile direction and a Piobert–Lüders band can form. This occurs at the same

overall stress level of 55 MPa as for the square and triangular lattices. However the propagation remains

limited, see Figure 11, so that no extended plateau is observed on the overall curve. Due to low connectiv-

ity, the inner mechanism, inducing the bending-dominated behavior of the hexagon, does not activate the

propagation of Piobert-Lüders instabilities regardless of the orientation.

A two-fold behavior, propagative or not propagative, has been identified for 2D periodic lattices char-

acterized by their either stretch- or bending-dominated mechanical behavior. Moreover, for each lattices

discrepancies appear in the plastic behavior instabilities due to different orientations. This validates that

plastic instabilities can be modified using both architecture and orientation. The propagative behavior of

Piobert–Lüders bands can be altered depending on the 2D lattice structure and loading direction. The

propagation of Piobert–Lüders bands along the struts of the lattice is found to take place mainly in stretch-

dominated lattices provided the struts are properly oriented with respect to the loading.

4. The role of the number of unit cells

It is well-known that the analysis of the stability of periodic structures cannot be limited to the study

of a single unit cell. This is due to the fact that instability modes can emerge, exhibiting a wavelength

larger than the unit cell size (Triantafyllidis and Bardenhagen (1996); Schraad and Triantafyllidis (1997)).

It is necessary to examine a larger volume element (VE) composed of more that one primitive unit cell.

It means that the periodic boudary conditions (PBC) are no more imposed on a single unit cell but on

the boundary of the larger volume element. Simulations of the previous section were carried out again for

VE sizes of 3 × 3 and 5 × 5 cells, named respectively 9-cell RVE and 25-cell RVE in the following. In

Figure 12 the macroscopic curves are plotted for the square lattice with the orientations 0◦(a) and 45◦(c),

for the 0◦-oriented triangular (b) and hexagon (d) lattices. For bending-dominated lattices as well as the

45◦-oriented square and hexagon, no discrepancy is observed between the one-cell and multiple cell VE

responses (see Figure 13 and 14). In the case of propagating instabilities during the loading of the lattice

(stretched-dominated or square 0◦-oriented), differences can be observed only when instabilities cross the

whole lattice (Figures 15 and 16). During the phase of instability propagation, localized plasticity occurs

in the struts in tension. Then two possible patterns of localization exist: as in Figure 16 at E11 = 0.003

where the five struts of a single column undergo plastic deformation or in Figure 16 at E11 = 0.0045 where

the plastically deforming struts are distributed on two columns. This cell to cell propagating behavior also
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(a) Square lattice oriented at 0◦ (b) Triangular lattice oriented at 0◦

(c) Square lattice oriented at 45◦ (d) Hexagonal lattice oriented at 0◦

Fig. 12: Macroscopic behavior of RVE with increasing number of cells
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occurs for the hexagon cell oriented at 0◦ in Figure 19 in the horizontal struts. Macroscopically, the number

of columns in the RVE, for example 5 for the 25-cell RVE, matches the number of stress drops on the

macroscopic curve of Figure 12 (d) which corresponds to the sequential localization of the stretched struts in

each column. Once the plastic instabilities have propagated through the whole lattice structure, the global

behavior is identical whatever the size of the RVE. The same conclusions are drawn for the triangular and

hexagon lattices both also simulated with 9 cell and 25 cell RVE which are respectively stretched-dominated

and bending-dominated. The global behaviors of these lattices are reported in Figure 12 (b) and (d). The

accumulated plastic strain maps are reported in Figure 17, 18 and 19.

Piobert-Lüders instabilities in periodic media are found to be non-propagative for bending-dominated

lattices. Each cell undergoes the same mode of plastic strain localization. On the contrary, stretched-

dominated lattices exhibit propagating localization through the lattice while two neighboring cells do not

undergo the same plastic strain localization during the propagation stage. Moreover in those last lattices,

several modes of localization exist involving one or more columns of struts perpendicular to the loading

direction. Changing the definition of the RVE changes the instability propagation mode. A primitive RVE

does not capture all possible modes of localization for material instabilities. New modes with two columns

of tensile struts involved in the propagation of instabilities are highlighted with higher number of cells in the

RVE. By increasing the size of the RVE, constraints on the cells are relaxed compared to the primitive cell

RVE.

Fig. 13: Plastic strain map in a 9-cell 45◦-oriented square lattice.
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Fig. 14: Plastic strain map in a 25-cell 45◦-oriented square lattice.

Fig. 15: Plastic strain map in a 9-cell 0◦-oriented square lattice.

5. Experimental analysis

A comparison between the numerical model and experimental results is proposed in this section. The

two specific types of lattice behavior, namely bending-dominated and stretch-dominated, with propagating
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Fig. 16: Plastic strain map in a 25-cell 0◦-oriented square lattice.

Fig. 17: Plastic strain map in a 9-cell 0◦-riented triangle lattice.

material instabilities have been tested in tension. In order to understand the propagation of Piobert–Lüders

bands in those lattices, different specimens have been architectured by laser cutting of steel sheets. The three

same geometries as for the numerical study are chosen: the triangle, square and hexagon. Those lattices are

representative of the mechanical behavior of the archetypal bending- and stretch-dominated behaviors. The
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Fig. 18: Plastic strain map in a 25-cell 0◦-riented triangle lattice.

Fig. 19: Plastic strain map in a 9-cell 0◦-oriented hexagonal lattice.

dimensions of the samples are limited by two opposite constraints. On the one hand, the number of cells

must be large enough to allow for a description of the transmission of local to global instabilities. On the

other hand, strain field measurements are necessary for quantitative analysis of the structural response at

the strut level. Due to these experimental constraints, a relative density equal to 50% has been retained.
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Struts have to be thick enough to track the localization by means of Digital Image Correlation (DIC). The

total number of cells is limited to ensure that observations of global and local strain fields are simultaneously

possible. The specimens used for the experiments are shown in Figure 20. Finally, the relevant dimensions

for the samples are the total width of 2 cm and the total length of 8 cm. The thickness of the specimens is

1 mm. For the square cell, the thickness of a strut is 1.5 mm and its length 3.45 mm. For the triangle cell,

the thickness of a strut is 1.5 mm and its length 5.3 mm. For the hexagon cell, the thickness of a strut is

1.8 mm and its length 2.8 mm. Figure 21 shows the sample at the end of the experiment.

Fig. 20: Speckled architectured samples for experimental com-

parison

Fig. 21: Speckled architectured samples broken after testing

The investigated material is an ARMCO low carbon steel alloy. ARMCO steel is know to be very

sensitive to static strain ageing. It exhibits the Piobert-Lüders phenomenon. The table 3 provides the

chemical composition of the experimented material for additional elements to a 99.85% Fe base.

C Mn P S Cr Cu N Ni

Chemical composition [%] 0.02 0.050 0.004 0.0027 0.017 0.007 0.005 0.016

Table 3: Chemical composition of ARMCO steel provided by the steel manufacturer.

5.1. Digital Image Correlation

Experiments are conducted on a MTS-10t servo-hydraulic tensile machine. The load cell measuring range

is 0−100 kN. No extensometer was used due to the heterogeneous architecture of the samples. Digital Image

Correlation (DIC) displacement field measurements were performed instead. The main features of the DIC

Set-up are: Dual camera system: 4.1 Mpixels each (Manta G419) with a maximum fequency acquisition of

27 images/second in high resolution and correlation software VIC-3D. The experimental set-up is shown in

Figure 22.

The full-field surface displacement of the sample is computed from a random pattern tracked during

the experiment. A subset is a collection of pixels values identified on the undeformed sample. The unique

grayscale pattern associated to this subset is its signature. The correlation algorithm tracked this subset

on every image of deformed sample taken during the experiment. Identification is made using a criterion of

maximum similarity with the reference image. Another possible strategy is updating the reference image by

the n− 1 image. The random pattern is obtained by spraying painting on the specimen surface.
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Fig. 22: Experimental set-up for digital image correlation. In red: cameras system, in green: tensile specimen.

Measurement uncertainty is evaluated by correlating two repeatedly acquired images without rigid body

motion. The error on the strain field is mainly due to the numerical noise of the cameras. The minimum in

strain between two images must be more than the strain resolution calculated this way.

5.2. Experimental results

Fig. 23: Tensile test response of a sheet material with propagation of plastic instabilities and comparison with the identified

model of Section 2.

Identification. Figure 23 shows the tensile response of the plain strip of steel subsequently analyses in

Figure 24. The effect of the propagation of plastic instabilities is clearly identifiable on this curve through

the peak and plateau stress. The identification of parameters for the model is delicate. Three features are
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important to replicate in this study. Since we are interested in the propagation of instabilities, it is important

to model properly the peak and the entire plateau stress. The two experimental curves obtained in the same

conditions highlight the complexity of identifying a single set of parameters. We focused on capturing the

strain of the peak and the rough stress level of the plateau with its length. The after-plateau behavior is

easily identifiable. Parameters are given in table 4.

R0 (MPa) Q1 (MPa) b1 Q2 (MPa) b2 Q3 (MPa) b3

259 360 33 -360 55 30 2000

Table 4: Experimentally Identified parameters for the phenomenological plasticity model

Numerically, this set of parameters which fits with the experiments introduces a premature necking after

the end of the plateau. This is due to the stress level of the peak which is too close from the stress level

plateau.

Piobert-Lüders instability propagation in the sheet material. A reference test has been per-

formed for the initial sheet material, i.e. without any inner architecture. The objective is to characterize the

Piobert-Lüders bands in the bulk material. Strain localization is found to occur at one end of the sample

in tension in the form of two symmetrical bands as shown in Figure 24 (b). Then, the two bands propagate

all along the sample and reach the other end. Figure 24 (c) shows that after the passage of the band the

strain level is about 10%. In the band front, the strain level ranges between 5% and 6%. The band front

width is between 0.8 cm where the two bands crossed and 1.2 cm at the largest. Once it passes the middle

of the specimen, the front band is not clearly defined any more and strain levels spread from 7% to 14%.

This experiment on a bulk sample allows us to characterize the propagation mode of the instability without

interaction with any architecture and will be necessary for the identification of the model later on. The

reader is referred to Mazière et al. (2017) for a direct comparison of numerical and experimental results in

the case of a C-Mn steel.

The tensile curve for the architectured samples is given in Figure 25. The macroscopic strain E11 is com-

puted for the machine displacement divided by the initial length of the sample, 8 cm. The strain is calculated

from the force divided by the total initial section, S0 = 1 × 15 mm. This definition for the strain does not

take into account the architecture since it is not possible to define a unique section along an architectured

sample. For each oriented architecture, 3 samples have been tested. The results being very comparable (less

than 5% discrepancies on the overall stress value), only one response of each sample is reported in Figure

25.

Stretch-dominated behavior for a square lattice oriented at 0◦. In the case of the square at 0◦,

localized plasticity starts in the middle of the struts under tension. During this regime, the activation of

plasticity in each strut occurs in a random way until they all reach the same level of accumulated plastic

strain, see Figure 26 (a) and (b). After plasticity has been activated in all the struts, Piobert–Lüders bands

22



(a) (b)

(c) (d)

Fig. 24: Bulk sheet in tension with propagation of Piobert-Lüders instability with digital image correlation results. On the left

is represented the strain e1 in the tensile direction for three different lines defined on Figure (a). On the right is represented

the map obtained by DIC of the strain e1
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Fig. 25: Experimental stress-strain curves of architectured samples.

propagate along the strut until accumulated plastic strain value of 0.06 is reached in every strut, as shown

in Figure 26 (c). We demonstrate with this 0◦-oriented square lattice specimen that, in stretch-dominated

lattices, plasticity initiates first in the struts in a random manner, i.e. all struts do not become plastic at

the same time. Material instabilities are globally propagating through the lattice. Locally, the propagation

of plastic instability in single struts is not easily visible. This is likely due to the width of the localization

band front being larger than the struts.

In addition, side effects can be observed in snaps of Figure 26 (c), struts in the middle column behave

differently that the ones on the edges. In the middle, plasticity propagates through the nodes of the lattices

while for the ones on the edges plastic strain increases up to 10%. Finally, strain equalizes in all struts.

Moreover, in a strut the localized plastic strain does not have sufficient space to propagate as a band. The

localization zone occupies one half of the struts. This effect can be modified by designing cells with longer

struts.

Bending-dominated behavior for a square lattice oriented at 45◦. In the case of the square at

45◦, plasticity localizes in the nodes of the lattice. In contrast to the 0◦-oriented lattice, there is no random

localization regime. We observe essentially the same distribution of strain along three different struts and

also on the strain map on the right side in every struts. No global band propagation at the scale of the

lattice can be observed. The level of strain rises in the same way in all cells at the same time.

We demonstrate that for a bending-dominated lattice, there is no material instability propagation through

the lattice. Plasticity develops in all cells at the same time. Edge effects are less significant than for the

specimen with 0◦-oriented lattice. Figure 21 shows a comparison between specimens before tension and after

failure. It also underlines the limitations of such testing. On the square oriented at 45◦, cells that break
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(a) (b)

(c) (d)

Fig. 26: Architectured sample with 0◦-oriented square architecture loaded in tension. On the left-hand side is the strain in the

loading direction for three different struts represented in (a). On the right-hand side is the map of the strain in the loading

direction, e1, computed from image correlation measurements.
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(a) (b)

(c) (d)

Fig. 27: Architectured sample with 45◦-oriented square architecture loaded in tension. On the left-hand side is the strain in

the loading direction for three different struts represented in (a). On the right-hand side is the map of the strain in the loading

direction, e1, computed from image correlation measurements.
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do not undergo the same boundary conditions than those in the middle of the sample. Those cells have

some struts that are not connected. For the hexagon, cells on the edge have only one neighboring cell, thus

their deformation is different from the ones in the middle of the sample. For a more complete analysis,

it would necessary to consider larger samples by adding more cells in the specimen. In the case of the

triangular lattice, premature failure of some struts modify the connectivity of the lattice, and, consequently

the mechanical behavior and the propagation of instabilities.

The question of the number of cells that are necessary in both X and Y directions to estimate quasi-perfect

periodic boundary conditions remains open.

5.3. Finite element modeling of the experiments

Fig. 28: Simulation of the architectured samples: stress-strain curves

From the identification of the parameters we can simulate the experiments on the architectured samples.

The calculations are performed within the large deformation framework with quadratic triangular elements

with reduced integration (6 nodes and 3 Gauss points). Finite element meshes of the 4 samples of Figure

20 were built and used for the simulation of their structural behavior in tension. Numerical samples are 3D.

Figure 28 shows the mechanical tensile response of the 4 tested architectured samples: triangle, hexagon,

square loaded at 0◦and square loaded at 45◦. The ranking of the 4 architectures is found to be in good

agreement with the experimental curves of Figure 25. From the strongest to the weakest responses, we

observe: the 0◦-oriented square lattice, the triangular lattice, the hexagon lattice and the 45◦-oriented

square lattice. The simulation results overestimate the stress levels for all 4 architectured, by 15 to 20%. In

the Figure 25, the initial apparent Young modulus is found to differ for all four lattices. This is also observed

numerically with apparent Young moduli equal to 94 GPa, 16 GPa and 26 GPa respectively for the square

at 0◦, the square cell at 45◦ and the hexagon 0◦.
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For each stretched- or bending-dominated architectures, the observed behavior of plastic instabilities

is in accordance with the numerical predictions. For the 0◦-oriented square cell and the triangle cell, we

observe the plateau stress even though it is less pronounced in the experiment. The numerous drops in the

simulation correspond to the localization/propagation phenomenon in each strut of the lattice. In the case

of the 0◦-oriented square cell, localization occurs in each row of the strips one after another. In contrast, in

the 45◦-oriented square and the hexagon samples there is no macroscopic manifestation of the propagation of

plastic instabilities as predicted by the periodic FE model. The hexagon simulation in Figure 28 highlights

load drops not visible in the experiment. In the simulation, those drops are the results of a plastic localization

in the struts oriented in the direction of the loading.

The decrease of the stress after more than 10% overall straining in the simulation curves of Figure 28 is

due to premature necking of the struts, which differs in the experiment. However, this premature necking

after the end of the stress plateau or after the propagation of plastic instabilities does not impact the

understanding of the propagation modes of instabilities.

The plastic strain maps of Figures 29 and 30 show comparisons between the experiments and simulation

for e1, the local strain in the tensile direction. They confirm the different scenarios of Piobert–Lüders band

propagation between stretch- and bending-dominated lattices, deduced from the computational homogeniza-

tion analysis. In the two stretch-dominated lattices, we observe propagation of strain localization bands at

the two scales: the scale of each unit cell and the scale of the whole lattice structure. The propagation of a

macroscopic horizontal localization band is clearly visible on the left side of Figure 29. This is also the case

in the experiment, see the right side of Figure 29, but to a lesser extent, meaning that several horizontal

bands are observed experimentally instead of a single one. This may explain the absence of marked serrations

on the experimental loading curve in contrast to the idealized simulation. No such propagative behavior is

observed for the hexagon lattice of Figure 30. In bending-dominated structures, plasticity initiates in all

cells simultaneously and similarly in each cell, i.e. the strain field is almost periodic. In the simulation of

Figure 30 (left), strain localization phenomena are observed in some struts in tension. This explains the few

stress drops in the red curve of Figure 28. While sharp localization is obtained in the simulation based on

an idealized geometry, the experiments reveal smoother responses due to the heterogeneous and imperfect

nature of the samples.

6. Discussion

We characterized the development of material instabilities in architectured material depending on the

geometrical features of the lattice, both numerically and experimentally. This study deals only with basic

geometries which tessellate the plane in a periodic and regular manner. Graded microstructures should

also be considered, combining bending- and stretch-dominated lattices with slowly varying evolution of the

geometry in the sample. Another important issue is to understand the mechanisms that drive localization

in the struts for stretch-dominated lattices and in the nodes for bending-dominated lattices in order to take

advantage of very localized or diffused plasticity in lattices.
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Fig. 29: e1 strain map in the tensile direction for the 0◦-oriented square lattice with comparison of the simulation on the left

to the experiment on the right.

Fig. 30: e1 strain map in the tensile direction for the 45◦-oriented square cell with comparison of the simulation on the left to

the experiment on the right.

Computational homogenization using periodic boundary conditions has been shown to be an appropriate

tool to investigate the development of instabilities in architectured materials. However, we have seen that

the choice of the number of primitive cells in the unit cell raise several issues during the propagation of

instabilities, and could lead to missing localization modes due to the constraining effect of periodic boundary

conditions. There is a dependence of the number of predicted instability modes on the number of cells in the

unit cell. As explained by Vigliotti et al. (2014) dealing with the buckling of lattices, increasing the volume

element size, i.e. increasing the cell number, leads to an increase of possible buckled configurations. They
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also analyzed the effect of the unit cell size on the homogenized model. Similar effects are expected in the case

of material instabilities like Piobert-Lüders banding. Al Kotob et al. (2017) proposed a systematic method

for the analysis of elastoplastic instabilities. This method perturbs the periodic boundary conditions and

makes it possible to compute elementary modes of localization. In Gong et al. (2005), the authors present a

method based on Bloch waves developed by Triantafyllidis and co-workers to discuss the RVE size necessary

to capture the buckling modes of a periodic column. Combescure and Elliott (2017) reported different

equilibrium configurations of honeycombs subjected to bi-axial compression computed on different volume

element sizes. Using Bloch wave theory, they report the identification of modes involving a higher number of

cells in the VE. It is necessary to identify the minimal number of cells to capture the most relevant instability

modes for the structural behavior. The previous methods were applied mainly to geometric instabilities. The

case of material instabilities associated with the softening constitutive branch is different in nature, but the

present work shows that the problem can be tackled by means of periodic nonlinear homogenization provided

that a large enough number of primitive cells are considered.

Geers et al. (2010) addressed the main issues of multi-scale computational homogenization. They pre-

sented computational homogenization of emerging and evolving localization bands as an open issue to be

tackled. First-order and second-order computational homogenization schemes present several limitations in

the presence of localization. Localization causes ill-posedness of the boundary value problem on the rep-

resentative RVE and questions the assumption of scale separation in continuous homogenization. Classical

homogenization cannot be used beyond the onset of strain localization. Coenen et al. (2012) developed

a computational homogenization-localization framework and overcame the violation of the separation of

scale by enriching the macro-scale continuum with a displacement discontinuity. The case of static strain

ageing instabilities is different in the sense that the softening branch is followed by subsequent hardening

restoring the well–posedness of the boundary value problem. These issues were discussed in (Mazière and

Forest (2015); Rezaee Hajidehi and Stupkiewicz (2017)) where a regularization method based on gradient

and micromorphic model enhancement was proposed to regularize the localization problem. The subsequent

hardening is responsible for the band front propagation in contrast to continuing localization or damage in

static bands. The issues about the size of the unit cell impact the mechanical behavior only during the phase

of instabilities propagation. After this transition, the behavior for all number of unit cells is the same.

The experiments presented in this paper confirmed partially the predictions of the numerical models

based on periodic homogenization on the one hand and on the full field simulation of the actual samples. In

stretch-dominated lattices, the formation of Piobert-Lüders bands in some struts trigger the formation of a

(or several) macroscopic band(s) that propagate through the whole sample. In bending-dominated lattices,

no macroscopic propagative band emerges. According to the last snaps of Figure 26(d) and Figure 27(d)

that represent the strain maps just before the failure of each specimen, additional conclusions can be drawn.

For the 0◦-oriented and the 45◦-oriented square lattices, the macroscopic strains at fracture respectively

are 0.067 and 0.112 whereas the maximum local strain values in the Y direction are 0.13 and 0.035. The

non-propagating behavior of bending-dominated may be explained by the fact that the local strain level
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is not high enough to trigger the propagation of the Piobert–Lüders band in the struts. In Figure 24(d),

the band has a strain level of 0.05 during its propagation. In other terms, the structure fails before the

Lüders strain has been reached at the nodes of the lattice. On the one hand, stretch-dominated lattices

experience higher plastic strain levels in the struts even at low macroscopic deformation, while, on the other

hand, bending-dominated lattices undergo much larger macroscopic deformation without high levels of local

plastic strain. Thus, one can choose bending-dominated structures for applications at large deformations or

stretched-dominated structures if a stiff behavior is wanted.

Results are calling for improvements to enhance the precision in the tracking of propagation of material

instabilities in lattices with higher number of cells and larger strut cross section. Moreover, side/edge effects

in the form of free–standing struts in the square lattice for instance are significant in the experimental results.

There is a competition between the size of the unit cell, large enough to be tracked with DIC and the number

of cells in the specimen in order to neglect the edge effects. Next samples should integrate more cells. It is

essential that boundary conditions should be well defined and side effects reduced to a minimum.

The comparison between theory and experiments regarding the stretch-dominated behaviour of the square

lattice requires additional comments. Theory predicts propagation in the lattice which is not observed

clearly in the experiments. Additional simulations have been run with a mildly tilted sample which show

less pronounced localization in the cross sections of the numerical sample. This may confirm that perfect

orientation of the sample is a necessary condition to observe relevant localization and macroscopic behavior.

The question of the sensibility to imperfections deserves a more detailed study, although it is not the purpose

of this work.

7. Concluding remarks

The uniaxial tensile response of 2D lattice with propagation of plastic instabilities known as Piobert-

Lüders bands has been analyzed for 4 geometries: triangle, square at 0◦ and 45◦ and hexagonal lattices.

We have demonstrated that the tensile response of each lattice depends on its either stretch- or bending-

dominated behavior. It is then possible to control the initiation and the propagation of material instabilities

through architectures.

For bending-dominated structures, the macroscopic strain-stress curve is characterized by 2 regimes: (i)

initial linear elastic regime and (ii) plastic strain starting in the plastic hinges of the lattice. It does not

exhibit any peak or plateau stress. Plasticity initiates at the same time, at all nodes and in the same

manner. Then, it spreads still identically from the plastic hinges. A single cell RVE is needed to simulate

this behavior. Those lattices do not propagate instabilities except for the orientation that align one strut

with the loading direction. It is the case for the hexagon oriented at 0◦. In this case, the aligned struts can

be stretched. A plastic band propagates in each well-oriented strut of the lattice.

For stretch-dominated lattices, the macroscopic stress-strain curve is characterized by 3 regimes: (i) initial

linear elastic regime, (ii) peak and plateau stress as a result of the initiation and propagation of Piobert-

Lüders bands in the main stretched struts and (iii) post-propagation hardening behavior with increasing

plastic strain. Between two neighboring cells, localization and propagation of plastic instabilities is different
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during the second regime. The behavior of plastic instabilities depends on the lattice geometry during its

initiation and propagation. Once all cells are plastic (iii), the behavior becomes identical in the whole lattice.

It is therefore necessary to have a volume element larger than a single primitive cell in order to observe the

propagative behavior from cell to cell. The triangle cell enhances the possibility to control the level of stress

for the propagation of plastic instability, i.e. the stress level of the plateau. This stretched-dominated lattice

allows to tune this stress level thanks to the orientation of the lattice to the loading direction. The more

struts can undergo plastic instability, the higher the stress plateau is.

Experimental testing on ARMCO steel specimens architectured by laser cutting essentially confirmed the

periodic homogenization predictions. In bending-dominated lattices plasticity develops at the nodes and no

further propagation of bands was observed. In stretch-dominated lattices plasticity develops in the struts

into propagating bands. Features of the band propagation, peak and stress, plateau in the structure could

not be well identified on the stress-strain curves due to important side effects and experimental imperfections.

Finally, those remarks seem to confirm that a well-chosen lattice architecture and orientation can control

the initiation and the propagation of Piobert-Lüders bands for a given mechanical load. The choice of the

architectures can be made to respond a specific objective. The two different behaviors of plastic instabilities

in bending-dominated or stretch-dominated and the possibility to combine those two in a single structure

open the path to materials instability-based architectured materials.
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