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CONVEXITY PROPERTIES OF THE DIFFERENCE OVER THE REAL
AXIS BETWEEN THE STEKLOV ZETA FUNCTIONS OF A SMOOTH
PLANAR DOMAIN WITH 2π PERIMETER AND OF THE UNIT DISK

ALEXANDRE JOLLIVET

Abstract. We consider the zeta function ζΩ for the Dirichlet-to-Neumann operator of
a simply connected planar domain Ω bounded by a smooth closed curve of perimeter 2π.
We prove that ζ ′′Ω(0) ≥ ζ ′′D(0) with equality if and only if Ω is a disk where D denotes the
closed unit disk. We also provide an elementary proof that for a fixed real s satisfying
s ≤ −1 the estimate ζ ′′Ω(s) ≥ ζ ′′D(s) holds with equality if and only if Ω is a disk. We
then bring examples of domains Ω close to the unit disk where this estimate fails to be
extended to the interval (0, 2). Other computations related to previous works are also
detailed in the remaining part of the text.

1. Introduction

Let Ω be a simply connected planar domain bounded by a C∞-smooth closed curve ∂Ω.
The Dirichlet-to-Neumann operator of the domain

ΛΩ : C∞(∂Ω)→ C∞(∂Ω)

is defined by ΛΩf = ∂u
∂ν

∣∣
∂Ω

, where ν is the outward unit normal to ∂Ω and u is the solution
to the Dirichlet problem

∆u = 0 in Ω, u|∂Ω = f.

The Dirichlet-to-Neumann operator is a first order pseudodifferential operator. Moreover,
it is a non-negative self-adjoint operator with respect to the L2-product

〈u, v〉 =

∫
∂Ω

uv̄ ds,

where ds is the Euclidean arc length of the curve ∂Ω. In particular, the operator ΛΩ has
a non-negative discrete eigenvalue spectrum

Sp(Ω) = {0 = λ0(Ω) < λ1(Ω) ≤ λ2(Ω) ≤ . . . },
where each eigenvalue is repeated according to its multiplicity. The spectrum is called
the Steklov spectrum of the domain Ω. Steklov eigenvalues depend on the size of Ω in the
obvious manner: λk(cΩ) = c−1λk(Ω) for c > 0. Therefore it suffices to consider domains
satisfying the normalization condition

Length(∂Ω) = 2π. (1.1)

Let S = ∂D = {eiθ} ⊂ C be the unit circle. The Dirichlet-to-Neumann operator of the
unit disk D = {(x, y) | x2 + y2 ≤ 1} will be denoted by Λ : C∞(S)→ C∞(S), i.e., Λ = ΛD.
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The alternative definition of the operator is given by the formula Λeinθ = |n|einθ for an
integer n. Then the Steklov eigenvalues of the disk are given by

λk(D) =

⌊
k + 1

2

⌋
, k ∈ N,

where bxc stands for the integer part of x ∈ R.
Under condition (1.1), Steklov eigenvalues of the domain Ω have the following asymp-

totics [2, Theorem 1]:

λk(Ω) = λk(D) +O(k−∞) as k →∞, (1.2)

Due to the asymptotics, the zeta function of the domain Ω

ζΩ(s) = Tr[Λ−sΩ ] =
∞∑
k=1

(
λk(Ω)

)−s
is well defined for <s > 1. Then ζΩ extends to a meromorphic function on C with the
unique simple pole at s = 1. The zeta function ζD of the unit disk is equal to 2ζR, where
ζR(s) =

∑∞
n=1 n

−s is the classical Riemann zeta function
Moreover, the difference ζΩ(s)− ζD(s) is an entire function [2]. Observe also that ζΩ(s)

is real for a real s.
The main result of the present paper is the following

Theorem 1.1. For a smooth simply connected bounded planar domain Ω of perimeter
2π, the inequality

∞∑
k=1

[
ln(λk)

2 − ln
( ⌊k + 1

2

⌋ )2
]

= (ζΩ − ζD)′′(0) ≥ 0 (1.3)

holds. Moreover equality in (1.3) holds if and only if Ω is a round disk.

Inequality (1.3) is a straighforward consequence of the identity ζΩ(0) = ζD(0) and of
the estimate (ζΩ− ζD) ≥ 0 on the real axis R [6, Theorem 1.1]. Equality in (1.3) trivially
holds if Ω is a round disk (in that case ζΩ = ζD). Hence the only statement that remains
to be proved is the “only if” part. The proof relies on the same deformation argument we
used to prove [6, Theorem 1.1].

The above result proves the strict convexity of ζΩ−ζD around 0 when the planar domain
Ω is not a disk. It is in fact easier to prove convexity of ζΩ − ζD on (−∞,−1]. We have
the following result.

Proposition 1.2. Let Ω be a smooth simply connected bounded domain with 2π perimeter.
Let s ∈ (−∞,−1]. We have

(ζΩ − ζD)′′(s) ≥ 0,

and there is equality if and only if Ω is a round disk.

Convexity near +∞ is also granted by Weinstock’s inequality [8] and we have the
following result.

Proposition 1.3. Let Ω be a smooth simply connected bounded domain with 2π perimeter.
Assume that Ω is not a round disk. Then there exists a positive real sΩ so that for any
s ∈ [sΩ,+∞) the inequality

(ζΩ − ζD)′′(s) > 0 (1.4)

holds.



CONVEXITY PROPERTIES OF THE DIFFERENCE ζΩ − ζD 3

It is then questionable whether one can extend the statement to the whole real axis.
We exhibit counterexamples in the following Proposition.

Proposition 1.4. There exist a smooth simply connected bounded planar domain Ω of
perimeter 2π and a real number s ∈ (0, 2) so that

(ζΩ − ζD)′′(s) < 0.

Now, we discuss an alternative approach to the same results which are of a more
analytical character.

For a function b ∈ C∞(S), we write b(θ) instead of b(eiθ) and use the same letter b for
the operator b : C∞(S)→ C∞(S) of multiplication by the function b.

Given a positive function a ∈ C∞(S), the operator Λa = a1/2Λa1/2 has the non-negative
discrete eigenvalue spectrum

Sp(Λa) = {0 = λ0(a) < λ1(a) ≤ λ2(a) ≤ . . . }

which is called the Steklov spectrum of the function a (or of the operator Λa).
Two kinds of the Steklov spectrum are related as follows. Given a smooth simply

connected planar domain Ω, choose a biholomorphism Φ : D→ Ω and define the function
0 < a ∈ C∞(S) by a(θ) = |Φ′(eiθ)|−1. Let φ : S → ∂Ω be the restriction of Φ to S.
Then Λa = a−1/2φ∗ΛΩ φ

∗−1a1/2 and Sp(Λa) = Sp(Ω). Two latter equalities make sense
for an arbitrary positive function a ∈ C∞(S) if we involve multi-sheet domains into our
consideration. See [4, Section 3] for details. Theorem 1.1 is true for multi-sheet domains
as well. The normalization condition (1.1) is written in terms of the function a as follows:

1

2π

2π∫
0

dθ

a(θ)
= 1. (1.5)

The biholomorphism Φ of the previous paragraph is defined up to a conformal transfor-
mation of the disk D, this provides examples of functions with the same Steklov spectrum.
Two functions a, b ∈ C∞(S) are said to be conformally equivalent, if there exists a confor-
mal or anticonformal transformation Ψ of the disk D such that b = |dψ/dθ|−1a ◦ψ, where
the function ψ(θ) is defined by eiψ(θ) = Ψ(eiθ) (Ψ is anticonformal if Ψ̄ is conformal). If
two positive functions a, b ∈ C∞(S) are conformally equivalent, then Sp(a) = Sp(b).

Under condition (1.5), Steklov eigenvalues λk(a) have the same asymptotics (1.2). The
zeta function of a is defined by

ζa(s) = Tr[Λ−sa ] =
∞∑
k=1

(
λk(a)

)−s
(1.6)

for <(s) > 1. It again extends to a meromorphic function on C with the unique simple
pole at s = 1 such that ζa(s)−2ζR(s) is an entire function. Here the Steklov zeta function
ζ1 of the constant function 1 (= the constant function identically equal to 1) is equal to
ζD(= 2ζR).

The analytical versions of Theorem 1.1, Propositions 1.2, 1.3 and 1.4 sound as follows:

Theorem 1.5. For a positive function a ∈ C∞(S) satisfying the normalization condition
(1.5), the inequality

(ζa − 2ζR)′′(0) ≥ 0 (1.7)

holds. Moreover equality in (1.7) holds if and only if a is conformally equivalent to the
constant function 1.
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Proposition 1.6. Let s ∈ (−∞,−1]. For a positive function a ∈ C∞(S) satisfying the
normalization condition (1.5), the inequality

(ζa − 2ζR)′′(s) ≥ 0 (1.8)

holds. Moreover equality in (1.8) holds if and only if a is conformally equivalent to the
constant function 1.

Proposition 1.7. Let a be a positive function a ∈ C∞(S) satisfying the normalization
condition (1.5). Assume that a is not conformally equivalent to 1. Then there exists a
positive real sa so that for any s ∈ [sa,+∞) the inequality

(ζa − 2ζR)′′(s) > 0 (1.9)

holds.

Proposition 1.8. Let U be an open neighborhood of 1 in C∞(S). There exist a smooth
positive function a ∈ U satisfying the normalization condition (1.5) and a real number
s ∈ (0, 2) so that

(ζa − 2ζR)′′(s) < 0.

Actually Proposition 1.8 is a strengthened version of Proposition 1.4.
The paper is organized as follows. We prove Propositions 1.6 and 1.7 in Section 2.

We prove Theorem 1.5 in Section 3. We prove Proposition 1.8 in Section 4. The last
Sections 5, 6 and 7 are apart from the convexity questions. We expand the quantities
〈ln(Λa + P0)φn, φn〉 in a C∞ neighborhood of the constant function 1. Here the Hilbert
space L2(S) is considered with the scalar product

〈u, v〉 =

∫
S
u(θ)v(θ)dθ,

and (φn)n∈Z is the orthonormal basis defined by

φn(θ) =
1√

2πa(θ)
ein

∫ θ
0 a
−1(s)ds, θ ∈ [0, 2π), n ∈ Z, (1.10)

and P0 is the orthogonal projection onto the kernel of Λa. In particular we prove that
the identity 〈ln(Λa + P0)φn, φn〉 = ln(|n|), n 6= 0, does not hold in general, which was the
impetus for the deformation argument that leads to [6, Theorem 1.1], see the concluding
remarks given in [6, Section 7].

2. Strict convexity on (−∞,−1] and near +∞: Proof of Propositions 1.6
and 1.7

In this Section we first recall some notations and properties and we then prove Propo-
sitions 1.6 and 1.7.

2.1. Notations, powers and logarithm of operators. We use the derivative

D = −i d
dθ

: C∞(S)→ C∞(S).

Operators D and Λ have the same one-dimensional null-space consisting of constant func-
tions.

We define the first order differential operator Da : C∞(S)→ C∞(S) by

Da = a1/2Da1/2.
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The orthonormal basis (φn)n∈Z defined by (1.10) is an eigenbasis for Da:

Daφn = nφn, n ∈ Z. (2.1)

We will denote |Da| = (D2
a)

1
2 . And we denote P0 the orthogonal projection of L2(S) onto

the one-dimensional space spanned by the function φ0.
Let f be a function from (0,+∞) to R with at most a polynomial growth at +∞:
|f(x)| = O(xN) as x → +∞ for some integer N . Let A be a positive pseudodifferential
operator of order one with a discrete eigenvalue spectrum: If {ψk}k∈N is an orthonormal
basis of L2(S) consisting of eigenvectors of A with associated eigenvalues λk > 0, then

f(A)u =
∑
k∈N

f(λk)〈u, ψk〉ψk for u ∈ C∞(S).

The operator f(A) : C∞(S)→ C∞(S) defines a (possibly unbounded) selfadjoint operator
in L2(S). In this paper we consider only the case when A = Λa + P0 or A = |Da| + P0

and f(x) = xs lnm(x) for s ∈ R and m = 0, 1, 2.
For instance equality (2.1) implies

f(|Da|+ P0)φn = f
(

max(|n|, 1)
)
φn n ∈ Z. (2.2)

When f is convex then we recall that

〈f(A)u, v〉 ≥ f(〈Au, v〉) (2.3)

for (u, v) ∈ C∞(S)2 so that 〈u, v〉 = 1 and 〈u, ψk〉〈ψk, v〉 ≥ 0 for every k ∈ N (see for
instance the proof of [6, Lemma 5.2]).

Let s ∈ R and m ∈ N. The difference

(Λa + P0)−s lnm(Λa + P0)− (|Da|+ P0)−s lnm(|Da|+ P0)

is a smoothing operator and

(−1)m
dm(ζa − 2ζR)

dsm
(s) = Tr

[
(Λa + P0)−s lnm(Λa + P0)− (|Da|+ P0)−s lnm(|Da|+ P0)

]
,

(2.4)
see [6, Lemmas 3.4 and 3.5] where the operator “H(τ, z)” is taken at τ = 0 and z = s.

2.2. Proof of Proposition 1.6. First we use (2.4) when m = 2:

(ζ ′′a − 2ζ ′′R)(−s) = Tr((Λa + P0)s ln(Λa + P0)2 − (|Da|+ P0)s ln(|Da|+ P0)2)),

and we expand the trace with respect to the basis (φn)n∈Z

(ζa − 2ζR)′′(−s) =
∑

n∈Z\{0}

(
〈(Λa + P0)s ln2(Λa + P0)φn, φn〉 − |n|s ln(|n|)2

)
. (2.5)

Let n ∈ Z\{0}. By Cauchy-Bunyakovsky-Schwarz inequality we have(
〈(Λa + P0)s ln(Λa + P0)φn, φn〉

)2
=
(
〈(Λa + P0)

s
2 ln(Λa + P0)φn, (Λa + P0)

s
2φn〉

)2

≤ 〈(Λa + P0)sφn, φn〉〈(Λa + P0)s ln2(Λa + P0)φn, φn〉 (2.6)

for s ∈ R. Now set s ≥ 1. We recall the estimate [5, Lemmas 2.1 and 2.4]

〈(Λa + P0)sφn, φn〉 ≥ |n|s ≥ 1. (2.7)
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We divide both sides of the inequality (2.6) by 〈(Λa + P0)sφn, φn〉 and we obtain

〈(Λa + P0)s ln2(Λa + P0)φn, φn〉 ≥
(
〈(Λa + P0)s ln(Λa + P0)φn, φn〉

)2

〈(Λa + P0)sφn, φn〉

=
1

s2

(
〈f(Λa + P0)s)φn, φn〉

)2

〈(Λa + P0)sφn, φn〉
(2.8)

where f is the convex function f(x) = x ln(x), x > 0. We used the identity ln(Λa +P0) =
s−1 ln((Λa + P0)s). Then we use (2.3):

〈f
(
(Λa + P0)s

)
φn, φn〉 ≥ f(〈(Λa + P0)sφn, φn〉) ≥ 0. (2.9)

The nonnegativity in (2.9) follows from (2.7). Then we combine (2.8) and (2.9) and we
obtain

〈(Λa + P0)s ln2(Λa + P0)φn, φn〉 ≥
1

s2

f
(
〈(Λa + P0)sφn, φn〉)

)2

〈(Λa + P0)sφn, φn〉

=
1

s2
〈(Λa + P0)sφn, φn〉 ln

(
〈(Λa + P0)sφn, φn〉

)2

≥ |n|s ln(|n|)2. (2.10)

We used (2.7) at the last line.
Inequality (1.8) follows from (2.5) and (2.10). Equality in (1.8) implies that each

summand in (2.5) is zero: 〈(Λa+P0)s ln2(Λa+P0)φn, φn〉 = |n|s ln(|n|)2 for n ∈ Z\{0}. In
particular it implies equalities in (2.10). Therefore 〈(Λa+P0)sφn, φn〉 = |n|s for n ∈ Z\{0}.
The identity for n = 1 is enough to conclude that a is conformally equivalent to 1 [5,
Lemma 2.5]. �

2.3. Proof of Proposition 1.7. Assume that a is not conformally equivalent to the
constant function 1. Weinstock’s inequality [8] tells us that

λ1(a) < 1.

And by definition

ζa(s)− 2ζR(s) =
∞∑
k=1

[
λk(a)−s −

(
bk + 1

2
c
)−s]

,

ζ ′′a (s)− 2ζ ′′R(s) = λ1(a)−s ln(λ1(a))2 + λ2(a)−s ln(λ2(a))2

+
∞∑
k=3

[
λk(a)−s ln(λk(a))2 −

(
bk + 1

2
c
)−s

ln
(
bk + 1

2
c
)2
]
.

Hence the leading order as s → +∞ in the above sum is λ1(a)−s ln(λ1(a))2. The
asymptotics makes obvious the existence of sa ∈ [0,+∞) so that

ζ ′′a (s)− 2ζ ′′R(s) > 0, s ≥ sa. (2.11)

�

3. The second derivative ζ ′′Ω at 0: Proof of Theorem 1.5

The proof of Theorem 1.5 relies on the same deformation argument used to prove [6,
Theorem 1.1]. We start this Section by recalling some definition of a variation of a function
a. We give a proof of Theorem 1.5 at the end.
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3.1. Deformation of a function a and the Hilbert transform H. Let l = 0 or
l = ∞ and let ε > 0. A real function α ∈ C l

(
[0, ε), C∞(S)

)
is called a C l-deformation

(or C l-variation) of a positive function a ∈ C∞(S) when it satisfies the 3 conditions:
α(0, θ) = a(θ); For any τ ∈ [0, ε) the function ατ = α(τ, ·) ∈ C∞(S) is positive and it
satisfies the normalization condition∫

S
α−1
τ (θ)dθ = 2π. (3.1)

The entire function ζατ has the following smoothness along the deformation α [6, Lemma
3.5]

ζατ − 2ζR ∈ C l([0, ε)τ ,F(C)). (3.2)

Here F(C) denotes the space of entire functions on the complex plane.
The Hilbert transform H is the linear operator on L2(S) defined by

H(1) = 0, Heinθ = sgn(n)einθ for an integer n 6= 0.

We will use the identities

D = HΛ = ΛH, Da = Λaa
−1/2Ha1/2. (3.3)

3.2. Preliminary Lemma.

Lemma 3.1. Let a ∈ C∞(S) be positive and satisfy the normalization condition (1.5).
Then

Tr(ln(Λa + P0)(Λa + P0)−1(Λ2
a −D2

a)) ≥ 0 (3.4)

with equality if and only if a is conformally equivalent to the constant function 1.

The operator inside the trace in (3.4) is trace class. Indeed it is the product of the
bounded operator ln(Λa + P0)(Λa + P0)−1 and of the smoothing operator Λ2

a − D2
a (see

Section 2.1).

Proof of Lemma 3.1. We expand the trace with respect to the orthonormal basis (φn):

Tr(ln(Λa + P0)(Λa + P0)−1(Λ2
a −D2

a))

=
∑

n∈Z\{0}

(
〈Λa ln(Λa + P0)φn, φn〉 − n2〈ln(Λa + P0)(Λa + P0)−1φn, φn〉

)
. (3.5)

We used the identity (Λa+P0)−1Λ2
a = Λa and we used (2.1). We prove that the summands

are nonnegative.
Let n ∈ N\{0}. First we use (2.9) for s = 1:

〈Λa ln(Λa + P0)φn, φn〉 ≥ 〈Λaφn, φn〉 ln(〈Λaφn, φn〉). (3.6)

In addition we use (2.1) and (3.3) and the identity (Λa +P0)−1Λa = I −P0 where I is the
identity operator and we obtain

n〈ln(Λa + P0)(Λa + P0)−1φn, φn〉 = 〈ln(Λa + P0)(Λa + P0)−1Daφn, φn〉
= 〈ln(Λa + P0)a−1/2Ha1/2φn, φn〉. (3.7)

Let

δn = n−1〈Λaφn, φn〉, u = δ−1
n a−1/2Ha1/2φn, v = φn.

We apply (2.3) when f(x) = − ln(x) and A = Λa + P0 (see details for the sign of
〈u, ψk〉〈ψk, v〉 in [6, Section 5, part 5]) and we obtain

〈ln(Λa + P0)δ−1
n a−1/2Ha1/2φn, φn〉 ≤ ln

(
〈Λaδ

−1
n a−1/2Ha1/2φn, φn〉

)
= ln

(
δ−1
n n
)
. (3.8)
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We combine (3.7) and (3.8) and we obtain

n2〈ln(Λa + P0)(Λa + P0)−1φn, φn〉 ≤ nδn ln
(
δ−1
n n
)

= 〈Λaφn, φn〉 ln
( n2

〈Λaφn, φn〉
)

≤ 〈Λaφn, φn〉 ln(n) ≤ 〈Λaφn, φn〉 ln(〈Λaφn, φn〉). (3.9)

We used the growth of the logarithm and we used the estimates

〈Λaφn, φn〉 ≥ n, δn ≥ 1,

see (2.7) for s = 1. We combine (3.6) and (3.9) and we obtain

〈Λa ln(Λa + P0)φn, φn〉 ≥ n2〈ln(Λa + P0)(Λa + P0)−1φn, φn〉, n ∈ N\{0}.
We obtain the same estimates for negative integers n by complex conjugation invariance.
Then we use again (3.5) and we obtain (3.4).

Now equality in (3.4) means equalities in the last line of (3.9). Hence

〈Λaφn, φn〉 = n, n ∈ N\{0}.
The identity for n = 1 is enough to conclude that a is conformally equivalent to 1 [5,
Lemma 2.5]. �

3.3. Proof of Theorem 1.5. The inequality

(ζa − 2ζR)(s) ≥ 0, s ∈ R,
holds by [6, Theorem 1.1]. Since (ζa − 2ζR)(0) = 0 we obtain the inequality (1.7). In
addition ζa = 2ζR when a is conformally equivalent to the constant function 1.

Hence we only have to prove that (ζa − 2ζR)′′(0) = 0 implies that a is conformally
equivalent to a constant function.

Consider the deformation α ∈ C∞([0,∞)τ , C
∞(S)) introduced in [6, Theorem 1.3]. It

satisfies the evolution equation

∂ατ
∂τ

= −ατΛατ +HατDατ , τ ≥ 0, (3.10)

with initial condition α0 = a, and by [6, Theorem 4.1]

∂ζατ
∂τ

(s) = sTr((Λατ + P0,τ )
−s−1(Λ2

ατ −D
2
ατ )), (3.11)

for s ∈ R and τ ∈ [0,∞). Here P0,τ is the orthogonal projection of L2(S) onto the
one-dimensional space spanned by the function (2πατ )

−1/2.
In addition ατ → 1 as τ →∞ in C∞-topology.
Let s ∈ R. Set N = |s| + 1. The operator (Λατ + P0,τ )

N(Λ2
ατ − D

2
ατ ) is a smoothing

operator, see Section 2.1, while (Λατ + P0,τ )
−σ−1−N is a family of bounded operators in

L2(S) that is smooth with respect to σ in a neighborhood of s. Hence we can intertwin the
trace on the right hand side of (3.11) and any derivative with respect to the s-variable.
We derive (3.11) with respect to s and we denote ′ or d

ds
the derivative with respect to

the real variable s and we have

∂ζ ′ατ
∂τ

(s) = Tr((Λατ + P0,τ )
−s−1(Λ2

ατ −D
2
ατ ))

+sTr(
d

ds
(Λατ + P0,τ )

−s(Λατ + P0,τ )
−1(Λ2

ατ −D
2
ατ ))

= Tr((Λατ + P0,τ )
−s−1(Λ2

ατ −D
2
ατ ))

−sTr(ln(Λατ + P0,τ )(Λατ + P0,τ )
−s−1(Λ2

ατ −D
2
ατ ))
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We derive once more in s and we obtain

∂ζ ′′ατ
∂τ

(s) = −2Tr(ln(Λατ + P0,τ )(Λατ + P0,τ )
−s−1(Λ2

ατ −D
2
ατ ))

+sTr(ln(Λατ + P0,τ )
2(Λατ + P0,τ )

−s−1(Λ2
ατ −D

2
ατ ).

Therefore
∂ζ ′′ατ
∂τ

(0) = −2Tr(ln(Λατ + P0,τ )(Λατ + P0,τ )
−1(Λ2

ατ −D
2
ατ )). (3.12)

We apply Lemma 3.1 to obtain that

ζ ′′ατ (0) is nonincreasing in τ. (3.13)

Moreover since ατ → 1 as τ →∞ in C∞-topology, we obtain that

ζ ′′ατ (0)→ 2ζ ′′R(0), as τ →∞. (3.14)

Indeed we consider the continuous path β ∈ C([0,∞)ε, C
∞(S)) defined by

β0 = 1, βε = α 1
ε

for ε > 0.

Then (3.2) yields

ζβε ∈ C([0,∞)ε, C
∞(C\{1})) and

djζβε
dsj

(0)→ 2
djζR
dsj

(0) as ε→ 0+

for any j ∈ N. Hence we proved statement (3.14).
Now assume that ζ ′′a (0) = 2ζ ′′R(0). Then we obtain by (3.13) and (3.14) (ζατ−2ζR)′′(0) =

0 for any τ and

Tr(ln(Λατ + P0,τ )(Λατ + P0,τ )
−1(Λ2

ατ −D
2
ατ )) = −1

2

∂ζ ′′ατ
∂τ

(0) = 0.

Therefore we apply again Lemma 3.1 and we obtain that ατ is conformally equivalent to
a constant valued function for any τ . In particular, a is conformally equivalent to 1. �

4. The difference ζa − 2ζR may not be convex everywhere on the real
axis: Proof of Proposition 1.8

We recall the following result [6, Proposition 3.8].

Proposition 4.1 (see [6]). Let ατ be a C∞-variation of the function a = 1. Then, for
every z ∈ C,

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= 0, (4.1)

∂2
(
ζατ (z)

)
∂τ 2

∣∣∣∣∣
τ=0

= 4z
∑

(n,p)∈N2

p>0, n>0, p6=n

n−z − p−z

p2 − n2
pn |β̂p+n|2 + 2z2

∑
n>0

n−z |β̂2n|2, (4.2)

where β(θ) = ∂ατ (θ)
∂τ

∣∣∣
τ=0

(and α0 = 1).

The proof of Proposition 1.8 relies on the analysis of the right hand side of (4.2). From
now on we consider only C∞-variation ατ of the function a = 1 so that

β(eiθ) = 2 cos((2r + 1)θ), θ ∈ R, (4.3)

for some large integer r. Take for instance the smooth variation

ατ (e
iθ) =

(
1− 2τ cos((2r + 1)θ)

)−1
, τ ∈ (−1/2, 1/2), θ ∈ R. (4.4)
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The right hand side of (4.2) becomes

∂2
(
ζατ (s)

)
∂τ 2

∣∣∣∣∣
τ=0

= −4s
∑

(n,p)∈N2

p>0, n>0, p+n=2r+1

p−s − n−s

p2 − n2
pn,

for a real s (we used β̂2r+1 = 1). Hence

∂2
(
ζατ (s)

)
∂τ 2

∣∣∣∣∣
τ=0

= −8s
∑

n>0, p>n, p+n=2r+1

p−s − n−s

p2 − n2
pn.

We derive with respect to s:

∂2
(
ζ ′ατ (s)

)
∂τ 2

∣∣∣∣∣
τ=0

=
8

2r + 1

2r∑
p=r+1

p(2r + 1− p)
2p− 2r − 1

(4.5)

×(p−s(−1 + s ln(p))− (2r + 1− p)−s(−1 + s ln(2r + 1− p))).

(We substitued n by 2r + 1− p.)
Let us make an asymptotic analysis as r →∞, 0 < s < 2.

2r∑
p=r+1

p(2r + 1− p)
2p− 2r − 1

(p−s(−1 + s ln(p))− (2r + 1− p)−s(−1 + s ln(2r + 1− p)))

= (2r + 1)1−s
2r∑

p=r+1

p
2r+1

(
1− p

2r+1

)
2 p

2r+1
− 1

(( p

2r + 1

)−s(− 1 + s ln
( p

2r + 1

))
−
(
1− p

2r + 1

)−s(− 1 + s ln
(
1− p

2r + 1

))
+s(2r + 1)1−s ln(2r + 1)

2r∑
p=r+1

p
2r+1

(
1− p

2r+1

)
2 p

2r+1
− 1

(( p

2r + 1

)−s − (1− p

2r + 1

)−s)
.

Therefore

2r∑
p=r+1

p(2r + 1− p)
2p− 2r − 1

(p−s(−1 + s ln(p))− (2r + 1− p)−s(−1 + s ln(2r + 1− p)))

= (2r + 1)2−s
[ ∫ 1

1/2

x(1− x)

2x− 1
(x−s(−1 + s ln(x))

−(1− x)−s(−1 + s ln(1− x)))dx+ o(1)
]

+s(2r + 1)2−s ln(2r + 1)
[ ∫ 1

1/2

x(1− x)

2x− 1
(x−s − (1− x)−s) + o(1)

]
(4.6)

as r → +∞. We used the following elementary statement for the singularity near x = 1,
see for instance [1, Section 2.12.7]: For a continuous function η ∈ C((0, 1),R) so that
η(x) = O(x−ρ), η(1− x) = O(x−ρ) as x→ 0+, 0 < ρ < 1, then∫ 1

0

η = lim
N→∞

1

N

N−1∑
i=1

η(
i

N
).
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Then the leading order is given by (2r+ 1)2−s ln(2r+ 1) as r → +∞ and the coefficient
in front of it is

s

∫ 1

1/2

x(1− x)

2x− 1
(x−s − (1− x)−s)dx < 0 (4.7)

since x > 1− x and x−s < (1− x)−s for x ∈ (1/2, 1) and s ∈ (0, 2).
Now we combine (4.5), (4.6) and (4.7) and we obtain that at fixed s ∈ (0, 2) there exists

a large integer rs so that

∂2
(
ζ ′ατ (s)

)
∂τ 2

∣∣∣∣∣
τ=0

< 0 (4.8)

for any integer r ≥ rs (let us remind that the path ατ is defined by the integer r).
From (4.1) it also follows that

∂
(
ζ ′ατ (s)

)
∂τ

∣∣∣∣∣
τ=0

= 0. (4.9)

At τ = 0, ζ ′ατ (s) = 2ζ ′R(s).
Therefore we make a Taylor expansion of ζ ′ατ (s) with respect to τ in a neighborhood of

0 and we obtain that there exists τs

ζ ′ατ (s) < 2ζ ′R(s)

for any integer r ≥ rs and any τ ∈ (0, τs).
Now we are ready to conclude the proof of Proposition 1.8. Take U any neighborhood

of 1 in C∞(S). Let s ∈ (0, 2). Then define the integer rs and the positive real number τs
as above and choose τ ∈ (0, τs) small enough so that

ατ ∈ U .
Such an ατ plays the role of a in the statement of Proposition 1.8. Indeed ζ ′ατ (s) < 2ζ ′R(s).
Since ζ ′ατ (0) = 2ζ ′R(0) (see [3, 6]) the function ζατ − 2ζR is not convex in (0, 2). �

We can go beyond the interval (0, 2). Now let s > 2

∂2
(
ζ ′ατ (s)

)
∂τ 2

∣∣∣∣∣
τ=0

=
8

2r + 1

2r∑
p=r+1

p(2r + 1− p)
2p− 2r − 1

×(p−s(−1 + s ln(p))− (2r + 1− p)−s(−1 + s ln(2r + 1− p)))

=
8

2r + 1

2r∑
p=1

(2r + 1− p)
2p− 2r − 1

p1−s(−1 + s ln(p))

(We make a change of variable “p”= 2r + 1− p at the last line.) Then

2r∑
p=1

(2r + 1− p)
2p− 2r − 1

p1−s(−1 + s ln(p))

=
2r∑
p=1

p1−s(1− s ln(p))−
2r∑
p=1

p2−s(1− s ln(p))

2p− 2r − 1

=
2r∑
p=1

p1−s(1− s ln(p))−
2r∑

p=b
√
rc+1

p2−s(1− s ln(p))

2p− 2r − 1
−
b
√
rc∑

p=1

p2−s(1− s ln(p))

2p− 2r − 1
.
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We conclude using the elementary facts: Note that

2r∑
p=1

p1−s(1− s ln(p))→ ζR(s− 1) + sζ ′R(s− 1) as r →∞,

(here the series is absolutely convergent) and

|
2r∑

p=b
√
rc+1

p−s+2

2p− 2r − 1
(1− s ln(p))| ≤ r1−s/2(1 + |s| ln(2r))

2r∑
p=b
√
rc+1

1

|2p− 2r − 1|

≤ 2r1−s/2(1 + |s| ln(2r))(1 +

∫ 2r

1

dt

t
) = 2r1−s/2(1 + |s| ln(2r))(1 + ln(2r))→ 0,

∣∣ b√rc∑
p=1

p2−s(1− s ln(p))

2p− 2r − 1

∣∣ ≤ (2r + 1− 2
√
r)−1

b
√
rc∑

p=1

p2−s(1 + |s| ln(p)) (4.10)

≤
√
r

2r + 1− 2
√
r

b
√
rc∑

p=1

p1−s(1 + |s| ln(p))→ 0, (4.11)

as r → +∞. Hence we finally obtain that

2r + 1

8

∂2
(
ζ ′ατ (s)

)
∂τ 2

∣∣∣∣∣
τ=0

→ ζR(s− 1) + sζ ′R(s− 1) as r →∞. (4.12)

We recall the formula [7, Chapter 2, Section 2.1]:

ζR(z) =
z

z − 1
− z

∫ ∞
1

u− buc
u1+z

du.

There is a single pole at z = 1 and there exists s0 ∈ (2,∞) so that

ζR(s− 1) + sζ ′R(s− 1) < 0, s ∈ (2, s0).

Note that s0 < +∞ since ζR(z)→ 1 and (z + 1)ζ ′R(z)→ 0 as <z → +∞.
Let s ∈ (2, s0) and for r large enough we again obtain (4.8). Repeating the proof of

Proposition 1.8 we obtained the following result.

Proposition 4.2. Let U be an open neighborhood of 1 in C∞(S) and let s ∈ (2, s0). There
exists a smooth positive function a ∈ U so that

(ζ ′a − 2ζ ′R)(s) < 0.

5. Addenda: Comments

We proved in [6] that

(ζa − 2ζR)(s) ≥ 0

for any s ∈ R and any smooth positive function a ∈ C∞(S) satisfying the normalizing
condition (1.5). We used a path of deformaton ατ (see Section 2). The estimate (ζa −
2ζR)(s) ≥ 0 was actually proved in an easier way when |s| ≥ 1 in [5]: The proof relied on
the estimates

〈(Λa + P0)sφn, φn〉 ≥ |n|s for (n, s) ∈ Z× (−∞,−1] ∪ [1,+∞).

In this Section we focus on the loss of these estimates for s in a neighborhood of 0.
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5.1. Main result. Let ατ ∈ C∞(S), τ ∈ [0, ε), be a C∞-variation of 1. We denote
P0,τ the orthogonal projection of L2(S) onto the one-dimensional space spanned by the
function (2πατ )

−1/2. We recall that the operator ln(Λατ + P0,τ ) − ln(|Dατ | + P0,τ ) is a
smoothing operator at each τ , see Section 2.1. Actually it defines a family of smoothing
operators which is smooth with respect to τ :

ln(Λατ + P0,τ )− ln(|Dατ |+ P0,τ ) ∈ C∞([0, ε)τ ,L(H l(S), H l′(S))), (5.1)

for any nonnegative real l, l′ where L(H l(S), H l′(S)) denotes the Banach space of bounded
operators from the Sobolev space H l(S) of order l to the one of order l′, see [6, Lemma
3.4] (“ln(Λατ + P0,τ )− ln(|Dατ |+ P0,τ ) = −∂H

∂z
(τ, 0)” there).

For each τ we consider the orthornomal basis (φm,τ )m∈Z of eigenvectors of |Dατ |:

φm,τ (θ) =
1√

2πατ (θ)
eim

∫ θ
0 α
−1
τ (s)ds, m ∈ Z, θ ∈ R.

We remind that ln(|Dατ |+ P0,τ )φm = ln |m|φm. By (5.1)

〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉 ∈ C∞([0, ε)τ ,R).

for m ∈ Z\{0}.
We expand 〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉 at order 2 in a neighborhood of τ = 0.

Theorem 5.1. Let m be a positive integer. We have

d

dτ
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉|τ=0 = 0, (5.2)

1

4

d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉|τ=0 =

∑
p>0, p 6=m

γ(p,m)|β̂m+p|2, (5.3)

where

γ(p,m) =
pm
(

2 ln(p/m)mp+ (p+m)(m− p)
)

(m− p)2(m+ p)2

for (p,m) ∈ (N\{0})2, p 6= m. Therefore the following Taylor expansion at 0 holds

〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉 = lnm+ 2τ 2
∑

p>0, p 6=m

γ(p,m)|β̂m+p|2 + o(τ 2), τ → 0+. (5.4)

5.2. Examples of smooth variations ατ . Let m be a positive integer. The sign of m
is not relevant since 〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉 has the same value when m is replaced by
its opposite.

When

ατ =
(
1− 2τ cos(rθ)

)−1

for a positive integer r > m then (5.3) gives

1

4

d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉|τ=0 = γ(r −m,m)

=
(r −m)m

(
2 ln( r−m

m
)m(r −m) + r(2m− r)

)
(2m− r)2r2

and
1

4

d2

dτ 2
〈ln(Λατ + P0,τ )φr−m,τ , φr−m,τ 〉|τ=0 = γ(m, r −m) = −γ(r −m,m).
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We consider the asymptotic regime when r →∞. In that case we have

γ(r −m,m) = −r−1m+ o(r−1) as r → +∞.
Therefore for r large enough with respect to m

d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉|τ=0 < 0,

and
d2

dτ 2
〈ln(Λατ + P0,τ )φr−m,τ , φr−m,τ 〉|τ=0 > 0,

Then the expansion (5.4) implies that for small enough positive τ

〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉 < lnm, 〈ln(Λατ + P0,τ )φr−m,τ , φr−m,τ 〉 > ln(r −m).

Hence for small enough positive real s and small enough positive τ

〈(Λατ + P0,τ )
sφm,τ , φm,τ 〉 < ms, 〈(Λατ + P0,τ )

−sφr−m,τ , φr−m,τ 〉 < (r −m)−s.

5.3. Consequence. We collect the example of deformations of the previous subsection
and we obtain the following result. In the statement given below m̃ is the integer r −m
of the previous subsection.

Corollary 5.2. Let U be an open neighborhood of 1 in C∞(S) and let m be a positive
integer. There exists a smooth positive function a ∈ U that satisfies the normalizing
condition (1.5) and there exist sm ∈ (0, 1) and a positive integer m̃ so that

〈(Λa + P0)sφm, φm〉 < ms, 〈(Λa + P0)−sφm̃, φm̃〉 < m̃−s

for any s ∈ (0, sm).

Section 6 is devoted to preliminary Lemmas for the proof of Theorem 5.1. We conclude
the proof of Theorem 5.1 in Section 7. Both Sections 6 and 7 consist mainly in elementary
and technical computations.

6. Preliminary Lemmas for the proof of Theorem 5.1

Let ατ , τ ∈ [0, ε), be a C∞-variation of 1 for some ε > 0. We recall the definition of the
smooth functions φm,τ ∈ C∞(S) and the definition of the operators P0,τ , Λατ : C∞(S)→
C∞(S) that depend smoothly on τ :

φm,τ (e
iθ) =

1√
2π
α−1/2
τ eim

∫ θ
0 α
−1
τ (eis)ds, m ∈ Z,

and
P0,τ = α−1/2

τ Pe0α
−1/2
τ , Λατ = α1/2

τ Λα1/2
τ .

Here Pe0 is the orthogonal projection onto the line spanned by e0 = (2π)−1/2.
Straightforward computations yield the following Lemma.

Lemma 6.1. Let m ∈ Z. We have( d
dτ
φm,τ

)
|τ=0

= (2π)−1/2
(1

2
f + im

∫ θ

0

f)eimθ, (6.1)

( d2

dτ 2
φm,τ

)
|τ=0

= (2π)−1/2
[(1

2
f + im

∫ θ

0

f
)2

+
1

2
F − 1

2
f 2 + im

∫ θ

0

F
]
eimθ, (6.2)

where f(θ) = ∂α−1
τ

∂τ |τ=0
(θ) = −β(θ) and F (θ) = ∂2α−1

τ

∂τ2 |τ=0
(θ). In addition

(Λατ )|τ=0 = Λ, (P0,τ )|τ=0 = Pe0 , (6.3)
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dτ

Λατ

)
|τ=0

= −1

2
(fΛ + Λf),

( d
dτ
P0,τ

)
|τ=0

=
1

2
(fPe0 + Pe0f), (6.4)( d2

dτ 2
Λατ

)
ε=0

= −1

2

(
FΛ + ΛF

)
+

1

4
(3f 2Λ + 2fΛf + 3Λf 2), (6.5)( d2

dτ 2
P0,τ

)
|τ=0

=
1

2

(
FPe0 + Pe0F

)
+

1

4
(−f 2Pe0 + 2fPe0f − Pe0f 2). (6.6)

Next we consider the operator ln(Λατ +P0,τ ) : C∞(S)→ C∞(S) that depends smoothly
on τ , see Section 5.1. Smoothness in τ is understood here as ln(Λατ +P0,τ )φ ∈ C∞([0, ε)τ×
S) for any φ ∈ C∞(S). We compute the first and second derivatives of ln(Λατ + P0,τ ) at
τ = 0. We introduce the function ρ : Z2 × (0,+∞)→ [0,+∞) defined by

ρ(n, p, s) =

∫ s

0

max(|n|, 1)t max(|p|, 1)s−tdt, (n, p, s) ∈ Z2 × (0,+∞).

In other words

ρ(n, p, s) = smax(|p|, 1)s when max(|n|, 1) = max(|p|, 1)

and

ρ(n, p, s) =
max(|n|, 1)s −max(|p|, 1)s

ln(max(|n|, 1))− ln(max(|p|, 1))
otherwise. (6.7)

We also introduce the function h : N\{0} × Z→ [0,+∞) defined by

h(m, p) =
1

2m2
when max(|p|, 1) = m,

and

h(m, p) =
ln(m)− ln(max(|p|, 1))

(m−max(|p|, 1))2
− 1

m(m−max(|p|, 1))
otherwise. (6.8)

Lemma 6.2. Let (n, p) ∈ Z2 and let m be a positive integer. We have

1

2π
〈 ∂
∂τ

ln(Λατ + P0,τ )|τ=0e
ipθ, einθ〉 =

1

2
ρ(n, p, 1)−1(−|n| − |p|+ δn + δp)f̂n−p, (6.9)

1

2π
〈
[ ∂2

∂τ 2
ln(Λατ + P0,τ )

]
|τ=0

eimθ, eimθ〉 = m−1
[3m

4π

∫
S
f 2 +

1

2

∑
p∈Z

|p||f̂m−p|2 +
1

2
|f̂m|2

]
−1

2

∑
p∈Z

h(m, p)(|m|+ |p| − δp)2|f̂m−p|2.(6.10)

Here δn is the Kronecker symbol: δn = 1 when n = 0 and δn = 0 otherwise.

Proof of Lemma 6.2. We recall that the operator (Λατ +P0,τ )
t−(|Dατ |+P0,τ )

t is a smooth-
ing operator at each τ and t ∈ R [6, Lemma 3.4]. Now we take into account that

(|Dατ |+ P0,τ )
tφ =

∑
l∈Z

(max(|l|, 1))t〈φ, φl,τ 〉φl,τ ∈ C∞([0, ε)τ × Rt × S,C),

and it follows that (Λατ + P0,τ )
tφ ∈ C∞([0, ε)τ × Rt × S,C) for any φ ∈ C∞(S). In

this Section any operator is considered as a linear operator from C∞(S) to C∞(S) and
smoothness with respect to either the t-variable or τ -variable refers to the pointwise
smoothness, i.e. when the operator is applied to any φ ∈ C∞(S).

Moreover
∂

∂t
(Λατ + P0,τ )

t = (Λατ + P0,τ )
t ln(Λατ + P0,τ ),
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and

∂

∂t

( ∂
∂τ

(Λατ + P0,τ )
t
)

=
( ∂
∂τ

(Λατ + P0,τ )
t
)

ln(Λατ + P0,τ ) + (Λατ + P0,τ )
t∂ ln(Λατ + P0,τ )

∂τ
.

Hence

∂

∂t

[( ∂
∂τ

(Λατ + P0,τ )
t
)
(Λατ + P0,τ )

1−t
]

= (Λατ + P0,τ )
t∂ ln(Λατ + P0,τ )

∂τ
(Λατ + P0,τ )

1−t.

We integrate over t ∈ [0, 1]∫ 1

0

(Λατ + P0,τ )
t ∂

∂τ
ln(Λατ + P0,τ )(Λατ + P0,τ )

1−tdt =
∂

∂τ
(Λατ + P0,τ ), (6.11)

for τ ∈ [0, ε).
Note that

(Λατ + P0,τ )
s
|τ=0e

ilθ = max(1, |l|)seilθ

for any l ∈ Z and any s ∈ R by (6.3). Therefore we set τ = 0 on the left hand side of (6.11)
and we apply it to the vector (2π)−1/2eipθ and we take the scalar product with (2π)−1/2einθ

and we obtain by linearity of the integral over t and selfadjointness of (Λατ + P0,τ )
t

(2π)−1〈
∫ 1

0

[
(Λατ + P0,τ )

t
]
|τ=0

[ ∂
∂τ

ln(Λατ + P0,τ )
]
|τ=0

[
(Λατ + P0,τ )

1−t]
|τ=0

dteipθ, einθ〉

= (2π)−1

∫ 1

0

max(1, |p|)1−t〈
[
(Λατ + P0,τ )

t
]
|τ=0

[ ∂
∂τ

ln(Λατ + P0,τ )
]
|τ=0

eipθ, einθ〉

= (2π)−1

∫ 1

0

max(1, |p|)1−t〈
[ ∂
∂τ

ln(Λατ + P0,τ )
]
|τ=0

eipθ, (Λατ + P0,τ )
teinθ〉dt

= (2π)−1

∫ 1

0

(max(1, |n|)t max(1, |p|))1−tdt〈 ∂
∂τ

ln(Λατ + P0,τ )|τ=0e
ipθ, einθ〉. (6.12)

Now set τ = 0 on the right hand side of (6.11) and apply it to the vector (2π)−1/2eipθ and
take the scalar product with (2π)−1/2einθ and use (6.4) to obtain

(2π)−1〈 ∂
∂τ

(Λατ + P0,τ )|τ=0e
ipθ, einθ〉 = −1

2
(|n|+ |p|)f̂n−p +

1

2
δpf̂n +

1

2
δnf̂−p. (6.13)

We equate (6.12) and (6.13) and this gives (6.9).
We prove (6.10). First we replace the operator Λατ +P0,τ by the operator (Λατ +P0,τ )

t

in (6.11) and we obtain that

∂

∂τ
(Λατ + P0,τ )

t =

∫ t

0

(Λατ + P0,τ )
r−t ∂

∂τ
ln(Λατ + P0,τ )(Λατ + P0,τ )

rdr.

We repeat the same reasoning as in (6.12) and we obtain

〈 ∂
∂τ

(Λατ + P0,τ )
t
|τ=0e

ipθ, einθ〉 = ρ(n, p, t)〈 ∂
∂τ

ln(Λατ + P0,τ )e
ipθ, einθ〉

=
1

2

ρ(n, p, t)

ρ(n, p, 1)
(−|n| − |p|+ δn + δp)f̂n−p. (6.14)
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Now we derive (6.11) with respect to τ and we obtain∫ 1

0

(Λατ + P0,τ )
t ∂

2

∂τ 2
ln(Λατ + P0,τ )(Λατ + P0,τ )

1−tdt

=
∂2

∂τ 2
(Λατ + P0,τ )−

∫ 1

0

∂

∂τ
(Λατ + P0,τ )

t ∂

∂τ
ln(Λατ + P0,τ )(Λατ + P0,τ )

1−tdt

−
∫ 1

0

(Λατ + P0,τ )
t ∂

∂τ
ln(Λατ + P0,τ )

∂

∂τ
(Λατ + P0,τ )

1−tdt. (6.15)

Set τ = 0 on the left hand side of (6.15) and apply it to the vector (2π)−1/2eimθ and
take the scalar product with eimθ:

(2π)−1〈
∫ 1

0

[
(Λατ + P0,τ )

t
]
|τ=0

[ ∂2

∂τ 2
ln(Λατ + P0,τ )

]
|τ=0

[
(Λατ + P0,τ )

1−t]
|τ=0

dteimθ, eimθ〉

= m〈
[ ∂2

∂τ 2
ln(Λατ + P0,τ )

]
|τ=0

eimθ, eimθ〉. (6.16)

Then we consider the first term on the right hand side of (6.15). We use (6.5) and (6.6)

and we use the identity 〈Feimθ, eimθ〉 =
∫
S F =

[
∂2

∂τ2

∫
S α
−1
τ

]
|τ=0

= 0 by the normalizing

condition (1.5), and we obtain

(2π)−1〈 ∂
2

∂τ 2
(Λατ + P0,τ )|τ=0e

imθ, eimθ〉 =
1

4
(
3m

π

∫
S
f 2 + 2

∑
p

|p||f̂m−p|2) +
1

2
|f̂m|2. (6.17)

(We also used that Pe0e
imθ = 0 for the positive integer m.)

Now we consider the second and third terms on the right hand side of (6.15). Set τ = 0
in the second term and use (6.9) and (6.14)

(2π)−1〈
∫ 1

0

[ ∂
∂τ

(Λατ + P0,τ )
t
]
|τ=0

[ ∂
∂τ

ln(Λατ + P0,τ )
]
|τ=0

(Λ + P0)1−tdteimθ, eimθ〉

= (2π)−2
∑
p∈Z

∫ 1

0

m1−t〈
[ ∂
∂τ

(Λατ + P0,τ )
t
]
|τ=0

eipθ, eimθ〉〈
[ ∂
∂τ

ln(Λατ + P0,τ )
]
|τ=0

eimθ, eipθ〉dt

=
m

4

∑
p∈Z

ρ−2(m, p, 1)(m+ |p| − δp)2|f̂m−p|2
∫ 1

0

ρ(m, p, t)m−tdt

=
m

4

∑
p∈Z

ρ̃(m, p)

ρ2(m, p, 1)
(m+ |p| − δp)2|f̂m−p|2. (6.18)

Here we introduced the function ρ̃ : N\{0} × Z→ [0,+∞) defined by

ρ̃(m, p) =

∫ 1

0

ρ(m, p, s)m−sds, m ∈ N\{0}, p ∈ Z.

From (6.7) it follows that

ρ̃(m, p) =
1

2
when max(|p|, 1) = m,

and

ρ̃(m, p) =
1

ln(m)− ln(max(|p|, 1))
+

max(|p|, 1)−m
m(ln(m)− ln(max(|p|, 1)))2

otherwise.
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From (6.8) it follows that

ρ̃(m, p)

ρ2(m, p, 1)
= h(m, p), p ∈ Z.

We similarly deal with the third term and we obtain

(2π)−1〈
∫ 1

0

[
(Λατ + P0,τ )

t
]
|τ=0

[ ∂
∂τ

ln(Λατ + P0,τ )
]
|τ=0

[ ∂
∂τ

(Λατ + P0,τ )
1−t]

|τ=0
dteimθ, eimθ〉

=
m

4

∑
p∈Z

h(m, p)(|m|+ |p| − δp)2|f̂m−p|2. (6.19)

We collect (6.15)–(6.19) and we use (6.7) and (6.8) and we obtain (6.10).
�

7. Proof of Theorem 5.1

First we write

d

dτ
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉 = 〈

( d
dτ

ln(Λατ + P0,τ )
)
φm,τ , φm,τ 〉

+2<〈ln(Λατ + P0,τ )
d

dτ
φm,τ , φm,τ 〉.

And we set τ = 0, and we use (6.1) and (6.9) and we use the identities φm,0 = (2π)−1/2eimθ,

2πf̂0 =
∫ 2π

0
f = 0 and we obtain (5.2). (The imaginary term im

∫ θ
0
f on the right hand

side of (6.9) is disregarded when we take the real part.)
Now we prove (5.3). We derive once more in τ the above formula and we obtain

d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

= 〈
( d2

dτ 2
ln(Λατ + P0,τ )

)
φm,τ , φm,τ 〉+ 4<〈 d

dτ
ln(Λατ + P0,τ )

d

dτ
φm,τ , φm,τ 〉 (7.1)

+2<〈ln(Λατ + P0,τ )
d2

dτ 2
φm,τ , φm,τ 〉+ 2<〈ln(Λατ + P0,τ )

d

dτ
φm,τ ,

d

dτ
φm,τ 〉

Let us compute the three last terms of the right hand side of (7.1) at τ = 0. We use
(6.1) for the fourth term and we obtain[
〈ln(Λατ + P0,τ )

d

dτ
φm,τ ,

d

dτ
φm,τ 〉

]
|τ=0

= (2π)−1
∑
p∈Z

ln(max(|p|, 1))|〈eipθ, d
dτ
φm,τ 〉|2τ=0

=
∑

p∈Z\{0}

ln(|p|)
∣∣∣1
2
f̂p−m + im

̂( ∫ θ

0

f
)
p−m

∣∣∣2. (7.2)

We use (6.2) for the third term and we obtain[
<〈ln(Λατ + P0,τ )

d2

dτ 2
φm,τ , φm,τ 〉

]
|τ=0

= (2π)−1/2 ln(|m|)<〈
( d2

dτ 2
φm,τ

)
|τ=0

, eimθ〉

= (2π)−1 ln(|m|)<
∫ 2π

0

[(1

2
f + im

∫ θ

0

f
)2

+
1

2
F − 1

2
f 2 + im

∫ θ

0

F
]
dθ

= (2π)−1 ln(|m|)
∫ 2π

0

[
− 1

4
f 2 −m2

( ∫ θ

0

f
)2
]
dθ. (7.3)
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(We used that
∫
S f =

∫
S F = 0). We use (6.1) and (6.9) for the second term and we obtain

<〈 d
dτ

ln(Λατ + P0,τ )
d

dτ
φm,τ , φm,τ 〉|τ=0

= (2π)−1<〈
( d
dτ

ln(Λατ + P0,τ )
)
τ=0

(
1

2
f + im

∫ θ

0

f)eimθ, eimθ〉

= (4π)−1<
∑
p∈Z

(−m− |p|+ δp)

ρ(m, p, 1)
f̂m−p〈(

1

2
f + im

∫ θ

0

f)eimθ, eipθ〉

=
1

2
<
∑
p∈Z

(−m− |p|+ δp)

ρ(m, p, 1)

(1

2
|f̂m−p|2 + imf̂m−p

̂( ∫ θ

0

f
)
p−m

)
. (7.4)

The first term on the right hand side of (7.1) is given by (6.10) at τ = 0.
We collect (7.1), (7.2), (7.3), (7.4) and (6.10) and we obtain

[ d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

]
|τ=0

= m−1
[3m

4π

∫
S
f 2 +

1

2

∑
p

|p||f̂m−p|2 +
1

2
|f̂m|2

]
− 1

2

∑
p∈Z

h(m, p)(m+ |p| − δp)2|f̂m−p|2

+2
∑

p∈Z\{0}

ln(|p|)
∣∣∣1
2
f̂p−m + im

̂( ∫ θ

0

f
)
p−m

∣∣∣2 + π−1 ln(m)

∫ 2π

0

[
− 1

4
f 2 −m2(

∫ θ

0

f)2
]
dθ

+2<
∑
p∈Z

(−m− |p|+ δp)

ρ(m, p, 1)

(1

2
|f̂m−p|2 + imf̂m−p

̂( ∫ θ

0

f
)
p−m

)
. (7.5)

From now on every computations intend to simplify the above formula. We introduce the
function G

G(θ) =

∫ θ

0

f, f̂k = ikĜk, k ∈ Z.

Then (7.5) becomes

[ d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

]
|τ=0

= m−1
[3m

4π

∫
S
f 2 +

1

2

∑
p

|p|(m− p)2|Ĝm−p|2) +
1

2
m2|Ĝm|2

]
−1

2

∑
p∈Z

h(m, p)(m+ |p| − δp)2(m− p)2|Ĝm−p|2

+
1

2

∑
p∈Z\{0}

(p+m)2 ln(|p|)|Ĝp−m|2 + π−1 ln(m)

∫ 2π

0

[
− 1

4
f 2 −m2G2

]
dθ

+
∑
p∈Z

m+ |p| − δp
ρ(m, p, 1)

(m− p)(m+ p)|Ĝm−p|2.
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Next we change p in −p and we use the identities
∫
S
f 2 = 2π

∑
p∈Z(m + p)2|Ĝm+p|2 and∫

S
G2 = 2π

∑
p∈Z |Ĝm+p|2 and we obtain[ d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

]
|τ=0

=
∑
p∈Z

(3

2
+

1

2m
|p|
)
(m+ p)2|Ĝm+p|2 +

1

2
m|Ĝm|2

−1

2

∑
p∈Z

h(m, p)(m+ |p| − δp)2(m+ p)2|Ĝm+p|2

+
1

2

∑
p∈Z\{0}

(m− p)2 ln(|p|)|Ĝm+p|2 − 2 ln(m)
∑
p∈Z

(1

4
(m+ p)2 +m2

)
|Ĝm+p|2

+
∑
p∈Z

m+ |p| − δp
ρ(m, p, 1)

(m− p)(m+ p)|Ĝm+p|2. (7.6)

The contribution over negative integers p is∑
p<0

|Ĝm+p|2
[(3

2
− 1

2m
p
)
(m+ p)2 − 1

2
h(m, p)(m− p)2(m+ p)2

+
1

2
(m− p)2 ln(|p|)− 1

2
ln(m)

(
5m2 + 2mp+ p2

)
+

(m− p)2(m+ p)

ρ(m, p, 1)

]
.

We sustitute the values for ρ and h (6.7), (6.8). The contribution over the negative
integers p becomes∑

p<0

|Ĝm+p|2
[(3

2
− 1

2m
p
)
(m+ p)2 − 1

2
(m− p)2(lnm− ln |p|)

+
1

2m
(m− p)2(m+ p) +

1

2
(m− p)2 ln(|p|)− 1

2
ln(m)

(
5m2 + 2mp+ p2

)
+(m− p)2(lnm− ln |p|)

]
= 2m(− ln(m) + 1)

∑
p<0

(m+ p)|Ĝm+p|2. (7.7)

Then we note that

0 =
1

2

∫ 2π

0

(G2)′ =

∫ 2π

0

fG

which is written in Fourier series as

m|Ĝm|2 +
∑
p<0

(m+ p)|Ĝm+p|2 +
∑
p>0

(m+ p)|Ĝm+p|2 = 0. (7.8)

Hence we combine (7.7) and (7.8) and the contribution in (7.6) over the negative integers
is given by

2m2(ln(m)− 1)|Ĝm|2 + 2m(ln(m)− 1)
∑
p>0

(m+ p)|Ĝm+p|2. (7.9)

Now let us look at the contribution when p = 0 in (7.6). We split this case in two:
When m = 1 and when m > 1. First when (m, p) = (1, 0) the contribution in (7.6) is

|Ĝ1|2(
3

2
+

1

2
) = 2|Ĝ1|2. (7.10)
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Next when p = 0 and m > 1 the contribution of p in (7.6) is given by

|Ĝm|2
[3
2
m2 +

1

2
m− 1

2
h(m, 0)(m− 1)2m2 − 5

2
ln(m)m2 +m2 m− 1

ρ(m, 0, 1)

]
.

We sustitute the value for h(m, 0) = ln(m)
(m−1)2− 1

m(m−1)
and ρ(m, 0, 1) = m−1

ln(m)
, see (6.7)–(6.8),

and the contribution becomes

|Ĝm|2
[3
2
m2 +

1

2
m− 1

2
ln(m)m2 +

1

2
m(m− 1)− 5

2
ln(m)m2 +m2 ln(m)

]
= 2m2(1− ln(m))|Ĝm|2. (7.11)

Then setting m = 1 in (7.11) yields the same contribution as (7.10).
Next we substitute (7.9), (7.11) into (7.6) and we obtain[ d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

]
|τ=0

= 2m(ln(m)− 1)
∞∑
p=1

(m+ p)|Ĝm+p|2 (7.12)

+
∞∑
p=1

|Ĝm+p|2
[
(
3

2
+

1

2m
p
)
(m+ p)2 − 1

2
h(m, p)(m+ p)4

+
1

2
(m− p)2 ln(p)− 2 ln(m)

(1

4
(m+ p)2 +m2

)
+

(m+ p)2

ρ(m, p, 1)
(m− p)

]
.

Let us look at the contribution of the m-th summand (when p = m): This is given by

|Ĝ2m|2
(
4m2(ln(m)− 1) + (

3

2
+

1

2

)
4m2 − 8h(m,m)m4 − 4 ln(m)m2

)
= |Ĝ2m|2

(
4m2(ln(m)− 1) + (

3

2
+

1

2

)
4m2 − 4m2 − 4 ln(m)m2

)
= 0.

Therefore we rewrite (7.12) as[ d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

]
|τ=0

=
∑

p∈N, p>0,p 6=m

|Ĝm+p|2
[
2m(ln(m)− 1)(m+ p) + (

3

2
+

1

2m
p)(m+ p)2

−1

2
h(m, p)(m+ p)4 +

1

2
(m− p)2 ln(p)

−2 ln(m)
(1

4
(m+ p)2 +m2

)
+

(m+ p)2

ρ(m, p, 1)
(m− p)

]
.

Then we replace ρ and h by their definitions (6.7) and (6.8) and we obtain[ d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

]
|τ=0

=
∑

p∈N, p>0,p 6=m

|Ĝm+p|2
[
2m(ln(m)− 1)(m+ p)

+(
3

2
+

1

2m
p)(m+ p)2 − 1

2
(
lnm− ln p

(m− p)2
− 1

m(m− p)
)(m+ p)4

+
1

2
(m− p)2 ln(p)− 2 ln(m)

(1

4
(m+ p)2 +m2

)
+ (lnm− ln p)(m+ p)2

]
.
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We regroup the 2 lonely terms in ln(m) and we obtain[ d2

dτ 2
〈ln(Λατ + P0,τ )φm,τ , φm,τ 〉

]
|τ=0

=
∑

p∈N, p>0,p 6=m

|Ĝm+p|2
[
− 2m(m+ p) + (

3

2
+

1

2m
p)(m+ p)2

−1

2
(
lnm− ln p

(m− p)2
− 1

m(m− p)
)(m+ p)4

+
1

2
(m− p)2(ln(p)− ln(m)) + (lnm− ln p)(m+ p)2

]
.

Further elementary computations give (5.3). In particular we regroup the terms in
ln(p) − ln(m) and we easily obtain that the coefficient in front of this difference is given
by

8p2m2

(m− p)2
|Ĝm+p|2 =

8p2m2

(m− p)2(m+ p)2
|f̂m+p|2 =

8p2m2

(m− p)2(m+ p)2
|β̂m+p|2.

Regrouping the others terms yields

4pm
m+ p

m− p
|Ĝm+p|2 = 4pm

(m+ p)(m− p)
(m− p)2(m+ p)2

|β̂m+p|2.

�
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