
HAL Id: hal-02918881
https://hal.science/hal-02918881

Submitted on 21 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A method to solve Hamilton-Jacobi type equation on
unstructured meshes

Alexandre Chiapolino, François Fraysse, Richard Saurel

To cite this version:
Alexandre Chiapolino, François Fraysse, Richard Saurel. A method to solve Hamilton-Jacobi type
equation on unstructured meshes. Journal of Scientific Computing, 2021, 88, pp.7. �10.1007/s10915-
021-01517-9�. �hal-02918881�

https://hal.science/hal-02918881
https://hal.archives-ouvertes.fr

A method to solve Hamilton-Jacobi type equation on unstructured

meshes

Alexandre Chiapolino1b, François Fraysse2b, Richard Saurel3a,b

aAix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
bRS2N, Chemin de Gaumin, Saint-Zacharie 83640, France

Abstract

A new method is developed to approximate a first-order Hamilton-Jacobi equation in the
context of an interface moving along its normal vector field. The interface is tracked with the
help of a “Level-Set” function approximated through a finite-volume Godunov-type scheme.
Contrarily to most computational approaches that consider smooth Level-Set functions, the
present one considers sharp “Level-Set”, the numerical diffusion being controlled with the help
of the Overbee limiter (Chiapolino et al., 2017). The method requires gradient computation that
is addressed through the least squares approximation. Multidimensional results on unstructured
meshes are provided and checked against analytical solutions. Geometrical properties such as
interfacial area and volume computation are addressed as well. Results show excellent agreement
with the exact solutions.

Keywords: Hamilton-Jacobi, Sharp Level-Set, interfaces, interfacial area, unstructured
meshes, hyperbolic systems, non-conservative, Godunov, Riemann, MUSCL.

1alexandre.chiapolino@rs2n.eu
2francois.fraysse@rs2n.eu
3richard.saurel@rs2n.eu

July 2020

mailto:alexandre.chiapolino@rs2n.eu
mailto:francois.fraysse@rs2n.eu
mailto:richard.saurel@rs2n.eu

1. Introduction

Many physical problems involve the motion of an interface moving along its normal vec-
tor field. A relevant example is the propagation of a combustion front in a solid propellant.
Numerical resolution of such problems has been a topic of rising interest for the last decades
and multiple algorithms approximating the equation of motion of propagating fronts have been5

designed.
More precisely the corresponding problem can be cast as a first-order Hamilton-Jacobi (HJ)

equation. When thinking to interface problems, the Level-Set method often comes to mind. This
method, developed originally by Osher and Sethian (1988) [1] consists in locating the interface
via a signed distance function at any time. The signed distance function provides the closest10

distance to the interface at every point. In a series of papers, [1], [2], [3], [4], [5], [6] to cite a few,
the Level-Set function has been used to solve numerically problems involving a front moving
along its normal vector field.

However, the use of a signed distance function may not be trivial with initially complex
interface shapes. The present contribution differs from the signed distance approach as a dis-15

continuous “Level-Set” function is considered. With such sharp function, a constant value is
assigned initially on either side of the interface separating two corresponding regions. The ini-
tialization of the present “Level-Set” function is consequently trivial regardless of the initial
shape.

Nevertheless this approach presents drawbacks as well. The first one is related to numerical20

smearing of the interface that may disappear if the HJ equation is solved with insufficient
accuracy. The second one is related to gradient computation of such sharp “Level-Set” function
on unstructured meshes. Gradient computation is indeed needed to solve the HJ equation as
will be seen further.

Sharp “Level-Set” approach may be used to numerically follow interfaces [7], [8], [9], [10].25

However, to the authors’ knowledge, the HJ equation has never been addressed with a sharp
“Level-Set” function.

The present paper is inspired by techniques from hyperbolic systems and particularly Godunov-
type schemes, Riemann solvers and diffuse interface methods widely used in two-phase flow
modeling (Saurel and Pantano (2018) [11]).30

The artificial dissipation, inherent to all capturing numerical methods, is essential for sta-
bility. Its control is of fundamental importance in the present context as excessive smearing
may result in geometrical detail loss. The Overbee limiter developed recently in Chiapolino et
al. (2017) [12] in the frame of the MUSCL (Monotonic Upwind Scheme for Conservation Laws)
numerical scheme is used in this aim. An interface is then diffused on a limited and controlled35

number of elements.
The present method also takes advantage of the numerical diffusion to ensure differentiability,

needed for the numerical approximation of gradients. Gradient computation is performed on
unstructured meshes with the help of the least squares approximation. This approach is used as
well in Chiapolino et al. (2017) [12] in the frame of diffuse interface methods for two-phase flow40

systems. However, some modifications are needed in the present HJ context and are addressed
in this paper.

The overall method allows to solve the HJ equation on structured and unstructured meshes
and provides accurate results with reasonable mesh resolutions. Computation of geometrical
properties such as interfacial area and volume is addressed as well.45

2

Interfacial area is of major importance for many applications involving interfaces, combustion,
phase change and many other physical effects. However, its accurate computation is an important
challenge as well and multiple directions have been investigated in the last decades, [13], [14],
[15], [16], [17], [18], [19] to cite a few. In the present contribution, a new method is developed
and shows excellent agreement with exact solutions.50

This paper is organized as follows. Section 2 presents some background of the Hamilton-
Jacobi equation and interfacial area computation. Numerical discretization of the HJ equation
is addressed in Section 3, along with a 1D analysis of the corresponding problem and its exten-
sion to multidimensional configurations. Numerical accuracy is addressed with the help of the
MUSCL-type reconstruction and the Overbee limiter presented in Section 4. Interfacial area55

and corresponding volume computations are addressed in Section 5. Multidimensional results
are then provided in Section 6 and compared to analytical solutions.

2. Hamilton-Jacobi equation

The present contribution addresses numerical treatment of a Hamilton-Jacobi type equation
in the context of an interface ∂Ω separating one region Ω+ from another Ω− and propagating60

along its normal direction. Tangential motion is not considered.
In the present approach, moving interfaces are tracked with the help of a “Level-Set” type

function. Many contributions are referred as “Level-Set” in the literature. However, multiple
types of equations use that denomination. For instance in Carmouze et al. (2018) [10] a sharp
“Level-Set” function is used to follow a solid body. In that case, the velocity of the solid is65

uniform in space and depends only on time. In this specific context, the transport equation for
the surface (and the volume) becomes a conservation equation where a flux can be defined. Its
resolution is not trivial due to numerical diffusion. However, very convincing results have been
obtained with the help of the gradient limiter Overbee developed recently in Chiapolino et al.
(2017) [12].70

In the present paper, motion of an interface along its normal vector field is of interest. In
that context, the main difficulty dwells in the definition of this normal vector. More precisely,
the equation of transport of the Level-Set function φ in the 1D configuration reads,

∂φ

∂t
+ u

∂φ

∂x
= 0, (2.1)

with,

φ > 0 in the first region Ω+,

φ < 0 in the second region Ω−,

φ = 0 on the interface ∂Ω.

(2.2)

Difficulties appear as soon as the propagation speed u applies along the normal of the interface,75

this normal being defined as,

~nF ·~i =
∂φ
∂x

|∂φ
∂x
|
. (2.3)

3

Vector ~i refers to x-axis of the 1D configuration. In this context, Eq. (2.1) becomes,

∂φ

∂t
+ u0

(
∂φ
∂x

)2

|∂φ
∂x
|

= 0, (2.4)

where u0 represents the module of the corresponding speed. In the present contribution, in-
terfaces move at a constant speed u0 normal to themselves. In three dimensions, Eq. (2.4)
transforms to,80

∂φ

∂t
+ u0

(
~∇φ
)2

|~∇φ|
= 0. (2.5)

It then appears that this equation is no longer a transport equation nor a conservation equation.
It is a first-order Hamilton-Jacobi equation.

Over the years, important efforts have been done to compute interfaces propagating normal
to themselves, [1], [2], [3], [4], [5], [6] to cite a few. However, most existing methods are designed
only for Cartesian grids. Besides, the Level-Set function φ is considered as a signed distance85

function (Osher and Sethian (1988) [1]) that provides the closest distance to the interface of any
mesh point, this interface being defined at φ = φI = 0.

The peculiarity of the signed distance function is the property: ~|∇φ| = 1. Let us take a
moment to analyze this situation. For more details the reader is referred to Osher and Fedkiw
(2003) [15].90

The HJ equation may be written under the following form,

∂φ

∂t
+ u0|~∇φ| = 0. (2.6)

However, according to the previous property in the context of the signed distance function, this
last equation reduces to,

∂φ

∂t
= −u0. (2.7)

The value of the Level-Set function φ either increases or decreases depending on the sign of u0.
A simple forward Euler time discretization yields,95

φn+1 = φn − u0∆t, (2.8)

where n denotes the current time iteration. When u0 > 0, the φn = 0 isocontour becomes the
φn+1 = −u0∆t isocontour after one time step ∆t. Similarly, the φn = u0∆t isocontour becomes
the φn+1 = 0 isocontour. Consequently, the φ = 0 isocontour covers distance u0∆t along the
normal vector field. Let us now take the gradient of the temporal discretization,

~∇φn+1 = ~∇φn − ~∇ (u0∆t) . (2.9)

Since the product u0∆t is spatially constant, it involves ~∇ (u0∆t) = 0 and consequently,100

~∇φn+1 = ~∇φn. (2.10)

4

It then appears that when the Level-Set function φ is initialized as a signed distance function

satisfying ~|∇φn| = 1, it remains a signed distance function as time goes on. In this specific
situation, the corresponding system to be solved reduces to ∂φ

∂t
= −u0.

This approach is appealing in appearance because this last equation is independent of space.
Its numerical resolution is then simple. However, the use of the signed distance function is not105

trivial for initially complex shapes.
Besides, additional procedures are needed to ensure that the Level-Set function remains a

signed distance function over time. Several methods have been developed with this aim such as
“Fast Marching” methods (Sethian (1996, 1999) [3], [5]) and reinitializing techniques (Sussman
et al. (1994) [20]).110

Interfacial area and volume computations have also been addressed with the help of the
Level-Set method and the signed distance function. For instance, Osher and Fedkiw (2003) [15]
determine the interfacial area AI as,

AI =

∫

V

δ (φ) |~∇φ|dV, (2.11)

with V the total volume of the domain: Ω+
⋃

Ω− and δ (φ) the Dirac delta function. In the
same reference, the corresponding volumes are computed as,115

VΩ+ =

∫

V

H (φ) dV and VΩ− =

∫

V

(1−H (φ)) dV, (2.12)

where H (φ) is the Heaviside function. Osher and Fedkiw (2003) [15] use a first-order accurate
smeared-out approximation of δ (φ) by defining the Heaviside function as,

H (φ) =

0 φ < −ǫ,
1

2
+
φ

2ǫ
+

1

2π
sin

(
πφ

ǫ

)
−ǫ ≤ φ ≤ ǫ,

1 ǫ < φ,

(2.13)

where ǫ is a tunable parameter that determines the size of the bandwidth of numerical smearing.
Osher and Fedkiw (2003) [15] suggest ǫ = 1.5∆x as a good value as it makes the interface width

equal to three grid cells when φ is normalized as a signed distance function with |~∇φ| = 1.120

The Dirac delta function is defined as the derivative of the Heaviside function and conse-
quently reads,

δ (φ) =

0 φ < −ǫ,
1

2ǫ
+

1

2ǫ
cos

(
πφ

ǫ

)
−ǫ ≤ φ ≤ ǫ,

0 ǫ < φ.

(2.14)

This Dirac delta function allows to evaluate the interfacial area (Eq. (2.11)) using a standard
sampling technique such as the midpoint rule [15].

Note that the choice of the discretization of the Dirac delta function is an open research topic125

and multiple directions are investigated, see for instance Engquist et al. (2005) [21], Smereka
(2006) [22].

5

Other approaches have been investigated to compute the interfacial area with the signed
distance function. For instance, Cavallinni (2010) [17] employed isosurface extraction and per-
formed a numerical quadrature of the extracted interface as proposed by Min and Gibou (2007)130

[23]. A stochastic method has been investigated as well in Sullwald (2014) [18] where the “Monte-
Carlo” integration technique is discussed. It is clear that this research area is active and that
various directions are still under investigation.

The present contribution differs from the above-mentioned methods, as a sharp “Level-Set”
function is used. The integration of the HJ equation (2.5) is considered on fixed unstructured135

meshes. A tetrahedral mesh allows to reproduce accurately complex initial geometries (shapes).
The “fluxes” and non-conservative terms are solutions of Riemann problems at each cell bound-
ary and must be determined.

In the present approach, the initial function φ associated with the first region Ω+ is a constant.
Similarly, the initial function φ associated with the second region Ω− is another constant. The140

interface ∂Ω is defined by the mean value of the two constants.
The equation to solve numerically is,

∂φ

∂t
+ u0

(
~∇φ
)2

|~∇φ|
= 0. (2.15)

This equation is hyperbolic [15] and may produce “shocks” or discontinuities even when the
initial conditions are smooth [2], [3], [4].

Besides, in 2D and 3D cases, additional difficulties appear regarding normal vector compu-145

tation. Let us suppose a sharp angle on the interface. On such an angle, the normal vector is
not defined. From the definition,

~nF =
~∇φ
|~∇φ|

, (2.16)

an infinite number of values is obtained in the zones where the surface is not regular.
The HJ equation requires consequently serious caution in order to perform its numerical

resolution and to overcome the problems that the literature and mathematical analysis reveal.150

3. Discretization of the Hamilton-Jacobi equation

3.1. Temporal discretization

In the present approach, a Heaviside profile is used to define (initially) a discontinuous
“Level-Set” function, for instance:

φ = 1 in the first region Ω+,

φ = 0 in the second region Ω−,

φ = 0.5 on the interface ∂Ω.

(3.1)

This type of function simplifies dramatically the initialization of the “Level-Set” function com-155

pared to the signed distance function approach. The first region Ω+ is now defined by φ > φI =
0.5 and the second one Ω− by φ < φI = 0.5.

Let us denote,

6

– i the center of the numerical element of interest;

– Vi the volume of this element;160

– ij the face separating element i and element j, a neighbor of element i;

– ~nij the outward normal vector of element i on face ij;

– Sij the surface of face ij;

– ~nF,ij the normal vector of a moving surface defined as ~nF,ij =
~∇φij

|~∇φij |
. Note that a negative

sign may be present here depending on the definition of the function φ.165

The equation to be solved reads,

∂φ

∂t
+ u0

(
~nF · ~∇φ

)
= 0, (3.2)

and can be considered under the following form,

∂φ

∂t
+ u0

(
~∇ · (φ~nF)− φ ~∇ · ~nF

)
= 0. (3.3)

The integration of Eq. (3.3) with respect to time and space of element i yields,

φn+1
i = φn

i −
∆t

Vi
u0
∑

ij

Sij

(
φ∗
ij − φn

i

)
~n∗
F,ij · ~nij , (3.4)

where the superscript n denotes the current temporal iteration and ∗ represents the solution of
the Riemann problem (Fig. 1).170

−→nij

φ(Pj)φ(Pi)

φR(Pij)φL(Pij)

Riemann

Figure 1: Schematic representation of 3D Godunov-type method applied to tetrahedron meshes. The method
is cell-centered (finite volumes) and the Riemann problem is solved at each face. • centers of the elements, N
centers of the faces.

Note that the present integration of the non-conservative terms φ ~∇·~nF supposes φn
i constant.

Note also that this Godunov-type method [24] (Eq. (3.4)) is stable under the conventional CFL
condition.

The determination of φ∗
ij is simple,

φ∗
ij =

{
φi if ~n∗

F,ij · ~nij > 0,

φj otherwise.
(3.5)

7

It is based on the Riemann problem as depicted in Fig. 2.175

x

t

i

(L)

j

(R)

ij

~n∗
F,ij · ~nij > 0

x

t

i

(L)

j

(R)

ij

~n∗
F,ij · ~nij < 0

Figure 2: Schematic representation in a (x, t) diagram of the present Riemann problem. • centers of the elements,
N centers of the faces. The Riemann problem is solved on each face of the elements. When the dot product
between the outward normal vector of the face and the normal vector of the moving surface is positive, the
interface moves to the right and the Riemann problem solution is the left state (L). The opposite situation
happens when the dot product is negative. The right state (R) is then solution.

The difficulty is then transferred to the determination of the local normal vector of the
moving interface,

~n∗
F,ij =

~∇φ∗
ij

|~∇φ∗
ij|
. (3.6)

It is important to note that a parameter ǫ → 0 is introduced in practice. When |~∇φ| > ǫ,
the Riemann problem is solved. Otherwise, the “flux” and the non-conservative term are set to
0, i.e.

(
φ∗
ij − φn

i

)
~n∗
F,ij · ~nij = 0 and φn+1

i = φn
i is then recovered. In the present work, ǫ is set to180

ǫ = 10−6.

3.2. Approximation of the normal vectors at cell boundaries

The normal vectors of the moving surfaces must be computed at each face of the elements
composing the mesh. As mentioned earlier, the proposed method is of finite-volume type and
based on Riemann problems.185

The determination of φ∗
ij is simple and is done via Eq. (3.5) (Fig. 2). It is computed as

the Riemann problem solution of a “transport” equation. Nevertheless, ~n∗
F,ij =

~∇φ∗
ij

|~∇φ∗
ij |

depends

directly on the gradient ~∇φ∗
ij that is still unknown at this level.

We will see in the following that ~∇φ∗
ij may also be computed as the Riemann problem solution

of a “transport” equation. A robust and accurate method for the computation of gradients is190

based on least squares approximation. This latter provides the gradient components at the
centers of the elements. The least squares method is introduced further (Section 4.1).

Note that the present approach supposes that gradient computation can be performed at
initial time, when no numerical diffusion is present. Nevertheless, computed results indicate
that this assumption is reasonable as will be seen later.195

Note also that a sharp color function may be used to locate the interface by defining two
different regions. This sharp color function field may be transformed to a smoothly varying

8

function within a finite width, see for example [25], [26], [27], [28]. However, the present work
attempts to offer a different alternative.

1D analysis200

For the sake of clarity, let us analyze the present problem with a 1D configuration. The
“transport” equation of the “Level-Set” function in 1D reads,

∂φ

∂t
+ u

∂φ

∂x
= 0, (3.7)

with,

u = u0 ~nF ·~i = u0

∂φ
∂x

|∂φ
∂x
|
. (3.8)

As introduced previously, the “Level-Set” function is a discontinuous function and the method
is of finite-volume type. On either side of a face of an element, the variables φ and u are205

discontinuous.
On a cell face, φL and uL are available on the left side and φR and uR are available on the

right side. The “speeds” uL and uR are defined by Eq. (3.8) and computed with the least squares
approximation as will be seen later (Section 4.1).

Let us now consider the gradient of Eq. (3.7),210

∂

∂x

(
∂φ

∂t
+ u

∂φ

∂x

)
= 0. (3.9)

This last equation transforms to,

∂

∂t

(
∂φ

∂x

)
+

∂

∂x

(
u
∂φ

∂x

)
= 0. (3.10)

A conservative equation is then found. Let us now examine the eigenvalues of the following
system, made out of the HJ equation and its gradient,

∂φ

∂t
+ u

∂φ

∂x
= 0,

∂

∂t

(
∂φ

∂x

)
+

∂

∂x

(
u
∂φ

∂x

)
= 0.

(3.11)

As u = u0
∂φ
∂x

| ∂φ
∂x

|
, the second equation of System (3.11) may be written, after some algebraic

manipulations, as:215

∂

∂t

(
∂φ

∂x

)
+ u0

∂φ
∂x

|∂φ
∂x
|
∂

∂x

(
∂φ

∂x

)
= 0. (3.12)

A “transport-like” equation for the gradient of the “Level-Set” function φ consequently appears,

∂

∂t

(
∂φ

∂x

)
+ u

∂

∂x

(
∂φ

∂x

)
= 0. (3.13)

9

Let us denote,

V =

(
φ
∂φ
∂x

)
. (3.14)

The corresponding system consequently reads,

∂V

∂t
+M (V)

∂V

∂x
= 0, (3.15)

with,

M (V) =

(
u 0
0 u

)
. (3.16)

The present system admits u as a double eigenvalue. System (3.15) is consequently considered220

as a multi-evaluated “hyperbolic” system that admits two values of u on a discontinuity.
This “hyperbolic” system is made out of two “transport-like” equations, one related to

the “Level-Set” function φ (Eq. (3.7)) and the other to its gradient ∂φ
∂x

(Eq. (3.13)). Those
“transport-like” equations are of great interest. As already mentioned, the “Level-Set” function
is solution of the Riemann problem. Its 1D reduction reads,225

φ∗
ij =

{
φi if ~n∗

F,ij ·~i > 0,

φj otherwise.
(3.17)

Besides, the gradient ∂φ∗

∂x
, required for the determination of the normal vector ~n∗

F,ij ·~i =
∂φ∗

∂x

| ∂φ
∗

∂x
|
,

may also be computed as,

∂φ∗
ij

∂x
=

{
∂φi

∂x
if ~n∗

F,ij ·~i > 0,
∂φj

∂x
otherwise.

(3.18)

The determination of the gradient is then itself based on the Riemann problem (Fig. 2).

Nevertheless, ~n∗
F,ij ·~i =

∂φ∗ij
∂x

|
∂φ∗

ij
∂x

|
, depends directly on the gradient

∂φ∗
ij

∂x
that is still unknown at

this level.230

However, Eqs. (3.17) and (3.18) reveal that only the sign of the dot product ~n∗
F,ij · ~i is

necessary to determine the “Level-Set” function φ∗
ij and its gradient

∂φ∗
ij

∂x
. Indeed, accurate

evaluation of the dot product is not crucial to determine the solution of the Riemann problem
related to the HJ equation (left or right state, Figs. 1 and 2).

Consequently, the sign of the dot product ~n∗
F,ij ·~i =

∂φ∗ij
∂x

|
∂φ∗

ij
∂x

|
·~i is sought in the following, in order235

to determine the “Level-Set” function φ∗
ij and its gradient

∂φ∗
ij

∂x
based on the Riemann problem

(Eqs. (3.17) and (3.18), Figs. 1 and 2) and consequently the normal ~n∗
F,ij ·~i (Eq. (3.6)).

HLL solver

As Eq. (3.10) is conservative, it is a good candidate to approximate
∂φ∗

ij

∂x
and consequently the

sought-after dot product via techniques from hyperbolic conservation laws (see LeVeque (2002)240

[29], Toro (2013) [30] for example).

10

System (3.15) involves another specific Riemann problem, schematically depicted in Fig.
3. Its only purpose is to determine the sign of the dot product ~n∗

F,ij ·~i, providing consequently
knowledge of the solution state (left or right) of the Riemann problem related to the HJ equation
(Eqs. (3.17) and (3.18), Fig. 2).245

x

t

SRSL

VRVL

V∗

Figure 3: Schematic representation in the (x, t) of the 1D specific Riemann problem, consequence of the eigen-
values of the multi-evaluated “hyperbolic” system (3.15).

This specific Riemann problem may be solved with the help of the conservative form (3.10).
Indeed, the HLL solver of Harten et al. (1983) [31] provides the solution state U∗ =

(
∂φ
∂x

)∗
,

U∗ =
FL − FR + SRUR − SLUL

SR − SL
, (3.19)

with,

U =

(
∂φ

∂x

)
and F = u

∂φ

∂x
. (3.20)

The wave speeds SL and SR may be determined with the help of the estimation of Davis (1988)
[32],250

SL = min (uL, uR) and SR = max (uL, uR) . (3.21)

The conservative equation (3.10) provides U∗ =
(
∂φ
∂x

)∗
. However, only the sign of U∗ is of interest

to determine the gradient. Indeed, the sign of U∗ provides knowledge of the state (left or right),
solution of the gradient “transport-like” equation (3.13). When U∗ > 0, the gradient solution of
the Riemann problem related to the HJ equation is the one of the left state. On the contrary,
when U∗ < 0, the gradient solution is the one of the right state. The corresponding situation is255

depicted in Fig. 2.
Hereby, the multi-evaluated “hyperbolic” system (3.15) (Fig. 3) provides an estimation of

the gradient
∂φ∗

ij

∂x
via Eq. (3.19) and consequently the sign of the dot product ~n∗

F,ij ·~i. According
to the sign of the dot product, the computed gradient is chosen in the left or right state (Fig.
2).260

11

The gradients ∂φi

∂x
and

∂φj

∂x
are determined with the least squares method as will be seen later

in Section 4.1. Its 1D analogue corresponds to the centered approximation,

∂φi

∂x
=

1

2∆x
(φi+1 − φi−1) . (3.22)

The solution evolves to the next time step with the help of the Godunov-type method, Eq.
(3.4), reducing to,

φn+1
i = φn

i −
∆t

∆x
u0

(
φ∗
i+1/2~n

∗
F,i+1/2 ·~i− φ∗

i−1/2~n
∗
F,i−1/2 ·~i

)
+

∆t

∆x
u0φ

n
i

(
~n∗
F,i+1/2 ·~i− ~n∗

F,i−1/2 ·~i
)
,

(3.23)

with ~n∗
F,i±+1/2 ·~i =

∂φ∗
i±1/2
∂x∣∣∂φ∗i±1/2
∂x

∣∣ in the 1D configuration. The indexes i and i ± 1/2 represent the265

center of element i and its corresponding boundaries. Figure 4 displays the present 1D situation.

i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3

i+ 1
2i− 1

2

∆x/2 ∆x/2

Figure 4: Schematic representation of a 1D mesh. The space step ∆x is constant. Symbols • represent the
centers of the elements. Symbols N represent the centers of the faces.

The method is now tested on a 1D configuration. The following test consists in a Heaviside
function regressing in the normal vector direction of the discontinuities as depicted in Fig. 5.

Ω+ Ω−Ω−

Figure 5: Schematic representation of a simple 1D regression test of a Heaviside profile. This later moves along
its normal vector field with speed u0.

Figure 6 shows the computed results. The exact solution is shown as well.

12

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Initial Numerical Exact

x (m)x (m)

φφ

Figure 6: Comparison of the computed solution with the present Godunov-type first-order scheme and corre-
sponding Riemann solver to the exact solution. The speed module along the normal direction of the front is
u0 = 1 m.s−1. The final time is t = 0.2 s and CFL= 0.8 is used. In the figure on the left, 100 cells are used. In
the figure on the right, 1000 cells are used. The full circle symbols • represent the corresponding results. The
dashed lines represent the initial condition. The full lines represent the exact solution (plotted with 1000 points).

The results are in agreement with the exact solution. The method is now extended to270

multidimensional configurations on unstructured meshes.

3.3. Multidimensional extension

The method is based on the solution of Riemann problem regarding two “transport-like”
equations, one for the “Level-Set” function φ and the other for its gradient ~∇φ,

φ∗
ij =

{
φi if ~n∗

F,ij · ~nij > 0,

φj otherwise,
and ~∇φ∗

ij =

{
~∇φi if ~n∗

F,ij · ~nij > 0,
~∇φj otherwise,

(3.24)

where the gradients ~∇φi and
~∇φj are determined with the least squares method as will be seen275

later in Section 4.1. However, Relations (3.24) require the sign of the dot product ~n∗
F,ij · ~nij.

The specific Riemann problem of Fig. 3 is now extended to multidimensional configurations
on unstructured meshes. Its solution allows to determine the sign of the dot product ~n∗

F,ij · ~nij

and consequently to choose the gradient computed in the left or right state, that is the solution
of the Riemann problem related to the HJ equation (Figs. 1 and 2).280

The “Level-Set” equation now reads,

∂φ

∂t
+ ~u · ~∇φ = 0, (3.25)

with,

~u = u0
~∇φ
|~∇φ|

. (3.26)

13

Let us consider the gradient of Eq. (3.25),

~∇
(
∂φ

∂t
+
(
~u · ~∇φ

))
= 0. (3.27)

A conservative equation is consequently found,

∂

∂t

(
~∇φ
)
+ ~∇ ·

(
~u · ~∇φ I

)
= 0. (3.28)

This last equation presents some similarities with the momentum equation in fluid mechanics.285

Indeed, let us denote,

~∇φ =

∂φ

∂x
~i+

∂φ

∂y
~j +

∂φ

∂z
~k = m~i+ n~j + o~k,

~u = u~i+ v~j + w~k.

(3.29)

Thereby Eq. (3.28) may be written as,

∂
(
m~i+ n~j + o~k

)

∂t
+ ~∇ ·

((
u~i+ v~j + w~k

)
·
(
m~i+ n~j + o~k

)
I
)
= 0. (3.30)

Hereby,

∂m

∂t
+
∂ (mu+ nv + ow)

∂x
= 0,

∂n

∂t
+
∂ (mu+ nv + ow)

∂y
= 0,

∂o

∂t
+
∂ (mu+ nv + ow)

∂z
= 0.

(3.31)

However, these last relations can only be used on Cartesian grids. On unstructured meshes, the
projection of Eq. (3.30) along the normal vector to a face ij reads,290

∂
(
m~i+ n~j + o~k

)
· ~nij

∂t
+
∂ (mu+ nv + ow)

∂η
= 0, (3.32)

where η is the coordinate of the normal of the face.
The specific Riemann problem (Fig. 3) directly applies to this last equation. The proposed

method consists in determining the sign of the dot product ~n∗
F,ij · ~nij in order to extract the

solution state of the Riemann problem related to the HJ equation (Figs. 1 and 2). With the

present notations, the corresponding term is
(
u~i+ v~j + w~k

)
· ~nij .295

However, the norm of the gradient being necessarily positive (the case |~∇φ| = 0 is omitted),

the determination of the sign of ~n∗
F,ij · ~nij = u0

~∇φ∗
ij

|~∇φ∗
ij |

· ~nij consists in determining the sign of

u0 ~∇φ∗
ij · ~nij . With the present notations, the corresponding term is

(
m~i+ n~j + o~k

)
· ~nij .

For each cell center, the following vector is available,

~u = u0 ~n = u0
~∇ (φ)

|~∇ (φ) |
= u~i+ v~j + w~k, (3.33)

14

as well as,300

~∇φ =
∂φ

∂x
~i+

∂φ

∂y
~j +

∂φ

∂z
~k = m~i+ n~j + o~k, (3.34)

determined with the help of the least squares method as will be seen in Section 4.1.

For a given face, the states UL =
((
m~i+ n~j + o~k

)
· ~nij

)

L
and UR =

((
m~i+ n~j + o~k

)
· ~nij

)

R
are available as well as the fluxes FL = (mu+ nv + ow)L and FR = (mu+ nv + ow)R.

The HLL relation (3.19),

U∗ =
FL − FR + SRUR − SLUL

SR − SL

,

directly applies and provides
((
m~i+ n~j + o~k

)
· ~nij

)∗
=
(
u0 ~∇φij · ~nij

)∗
. Note that the HLL305

relation (3.19) does not provide the normal vector ~n∗
F,ij nor the gradient

~∇φ∗
ij on a face but only

the scalar identity
(
u0 ~∇φij · ~nij

)∗
. The sign of this last term allows to determine the solution

state of the Riemann problem related to the HJ equation (Figs. 1 and 2).
In the next section, the proposed numerical scheme is extended to second order, a necessary

improvement in the present context. Indeed, numerical dissipation of the “Level-Set” function310

will make interfaces disappear prematurely. In order to avoid the use of too fine meshes, the
MUSCL-type extension used in Chiapolino et al. (2017) [12] is reminded and adapted to the
present context.

4. MUSCL-type scheme

The extension to second order is done via the MUSCL-type scheme presented hereafter.315

Denoting by Vi(Pi) and Vj(Pj) two elements with cell centers Pi and Pj delimited by the boundary
Sij (see Fig. 7), the space-time Taylor expansion of the “Level-Set” function φ at the point Pij,
barycenter of Sij , from the point Pi of the “Level-Set” function φ reads,

φL(Pij) ≃ φ(Pi) + ~rij. ~∇φ(Pi) + ∆t
∂φ(Pi)

∂t
, ~rij =

−−−→
PiPij . (4.1)

Similar expansion at Pij from Pj reads,

φR(Pij) ≃ φ(Pj) + ~rji. ~∇φ(Pj) + ∆t
∂φ(Pj)

∂t
, ~rji =

−−−→
PjPij. (4.2)

15

P3

P03

P0

P1

P2

P02 P01

φ(Pj)φ(Pi)

φR(Pij)φL(Pij)

Riemann

Figure 7: Schematic representation of an unstructured mesh made of triangles. • centers of the elements, N
centers of the faces. The Riemann problem is solved on each face of the triangles.

The gradients ~∇φL(Pij) and ~∇φR(Pij) are also expressed at the center of the face ij via320

similar Taylor expansions,

~∇φL(Pij) ≃ ~∇φ(Pi) + ~rij. ~∇
(
~∇φ(Pi)

)
+∆t

∂ ~∇φ(Pi)

∂t
, ~rij =

−−−→
PiPij.

~∇φR(Pij) ≃ ~∇φ(Pj) + ~rji. ~∇
(
~∇φ(Pj)

)
+∆t

∂ ~∇φ(Pj)

∂t
, ~rji =

−−−→
PjPij

(4.3)

The reconstructed solutions at left φL(Pij), ~∇φL(Pij) and at right φR(Pij), ~∇φR(Pij) are used
as initial conditions for the Riemann problems in order to obtain more accurate numerical results.
The MUSCL-type scheme takes into account both data reconstruction and time evolution with
the following sequence of computations.325

Spatial reconstruction at cell boundaries

The spatial reconstruction step uses the preceding formulas (4.1), (4.2), (4.3) without the
time derivative, this one being approximated in the next predictor step,

φn
L(Pij) ≃ φn(Pi) + ~rij. ~∇φn(Pi), ~rij =

−−−→
PiPij . (4.4)

Similar expansion at Pij from Pj reads,

φn
R(Pij) ≃ φn(Pj) + ~rji. ~∇φn(Pj), ~rji =

−−−→
PjPij. (4.5)

Spatial reconstruction of the gradient components are written with the help of the Hessian330

matrix,

∂φn
L(Pij)

∂x
≃ ∂φn(Pi)

∂x
+

(
~rx,i,ij

∂2φn(Pi)

∂x2
+ ~ry,i,ij

∂2φn(Pi)

∂x∂y
+ ~rz,i,ij

∂2φn(Pi)

∂x∂z

)
,

∂φn
L(Pij)

∂y
≃ ∂φn(Pi)

∂y
+

(
~rx,i,ij

∂2φn(Pi)

∂x∂y
+ ~ry,i,ij

∂2φn(Pi)

∂y2
+ ~rz,i,ij

∂2φn(Pi)

∂y∂z

)
,

∂φn
L(Pij)

∂z
≃ ∂φn(Pi)

∂z
+

(
~rx,i,ij

∂2φn(Pi)

∂x∂z
+ ~ry,i,ij

∂2φn(Pi)

∂y∂z
+ ~rz,i,ij

∂2φn(Pi)

∂z2

)
,

(4.6)

16

with ~rx,i,ij, ~ry,i,ij and ~rz,i,ij the projected distance
−−−→
PiPij along axes x, y and z. The same reasoning

applies to the right side,

∂φn
R(Pij)

∂x
≃ ∂φn(Pj)

∂x
+

(
~rx,j,ij

∂2φn(Pj)

∂x2
+ ~ry,j,ij

∂2φn(Pj)

∂x∂y
+ ~rz,j,ij

∂2φn(Pj)

∂x∂z

)
,

∂φn
R(Pij)

∂y
≃ ∂φn(Pj)

∂y
+

(
~rx,j,ij

∂2φn(Pj)

∂x∂y
+ ~ry,j,ij

∂2φn(Pj)

∂y2
+ ~rz,j,ij

∂2φn(Pj)

∂y∂z

)
,

∂φn
R(Pij)

∂z
≃ ∂φn(Pj)

∂z
+

(
~rx,j,ij

∂2φn(Pj)

∂x∂z
+ ~ry,j,ij

∂2φn(Pj)

∂y∂z
+ ~rz,j,ij

∂2φn(Pj)

∂z2

)
.

(4.7)

Superscript n denotes the current temporal iteration. During that step, the gradients ~∇φn(Pi)

and ~∇φn(Pj) are determined with the help of the least squares method presented in Section 4.1.335

The preceding relations yield a second-order-in-space discretization. At this time, reconstructed
variables at left φn

L(Pij), ~∇φn
L(Pij) and right φn

R(Pij), ~∇φn
R(Pij) of the cell faces are available.

Half-time step evolution

The cell-center “Level-Set” function φn
i is evolved during a half-time step with the Godunov

method, requiring Riemann problem resolutions at cell faces,340

φn+1
i = φn

i −
∆t

2Vi
u0
∑

ij

Sij

(
φ∗
ij − φn

i

)
~n∗
F,ij · ~nij with ~n∗

F,ij =
~∇φ∗

ij

|~∇φ∗
ij|
. (4.8)

Superscript ∗ denotes the solution of the Riemann problem. During this step, the states at left
φn
L(Pij), ~∇φn

L(Pij) and right φn
R(Pij), ~∇φn

R(Pij) (Eqs. (4.4), (4.5), (4.6) and (4.7)) of cell faces
come from the previous spatial-reconstruction-at-cell-boundary step and are used as initial data
of the Riemann problems providing φ∗n

ij at the cell faces. The normal vectors ~n∗
F,ij are required

as well and are determined with the method presented in the previous section.345

Full-time step evolution

The spatial reconstruction step is repeated with the help of the “Level-Set” function in the
n+1/2 state,

φ
n+1/2
L (Pij) ≃ φn+1/2(Pi) + ~rij . ~∇φn(Pi), ~rij =

−−−→
PiPij. (4.9)

Similar expansion at Pij from Pj reads,

φ
n+1/2
R (Pij) ≃ φn+1/2(Pj) + ~rji. ~∇φn(Pj), ~rji =

−−−→
PjPij. (4.10)

The gradients ~∇φn(Pi) and ~∇φn(Pj) come from the first spatial reconstruction step. Note that350

the gradients at left ~∇φn
L(Pij) and at right ~∇φn

R(Pij) may also be evolved into the n+1/2 state.
However, numerical experiments reveal that a second gradient reconstruction is not necessary.
Consequently, only one spatial reconstruction is done for the gradient whereas two are done
for the “Level-Set” function. This choice is made for the sake of simplicity. Indeed, computed
results with or without this second gradient reconstruction are in close agreement. However, for355

the sake of space restriction and clarity those results are not presented.

17

From the extrapolated variables at left φ
n+1/2
L (Pij) and right φ

n+1/2
R (Pij), a second Riemann

problem is solved yielding a more accurate φ∗
ij. The solution is then evolved during the full-time

step with the Godunov method,

φn+1
i = φn

i −
∆t

Vi
u0
∑

ij

Sij

(
φ
∗,n+1/2
ij − φn

i

)
~n∗
F,ij · ~nij with ~n∗

F,ij =
~∇φ∗,n

ij

|~∇φ∗,n
ij |

. (4.11)

This MUSCL-type scheme is thus summarized in three steps,360

– Spatial reconstruction at cell boundaries;

– Half-time step evolution (prediction);

– Full-time step evolution.

Figure 8 displays a schematic representation of the procedure. The MUSCL-type scheme pre-
sented previously requires to solve two Riemann problems per time step but only one gradient365

computation. This last point is addressed in the following section.

tn

tn+1/2

tn+1

φn
iφn

L(Pij) φn
R(Pij)

φ
n+1/2
i

φn+1
i

△t
2

t

φ
n+1/2
L (Pij)

φ
n+1/2
R (Pij)

Figure 8: Schematic representation of the MUSCL-type numerical scheme. At time tn, values at the faces
φn
L(Pij), ~∇φn

L(Pij) and φn
R(Pij), ~∇φn

R(Pij) (Eqs. (4.4), (4.6) (4.5), (4.7)) reconstructed via the gradients and
Hessian matrix, are used as initial data of a Riemann problem. The solution evolves at time tn+1/2 via the
Godunov-type scheme (Eq. (4.8)). At this intermediate time, the previous gradients are used to reconstruct the

solution at the faces φ
n+1/2
L (Pij) and φ

n+1/2
R (Pij), (Eqs. (4.9), (4.10)). Those states are used as initial data of a

second Riemann problem. Finally, values at cell center φn
i are updated to φn+1

i with the Godunov-type scheme
(Eq. (4.11)).

4.1. Gradients’ computation on unstructured meshes

A robust and accurate method for the computation of gradients is based on least squares
approximation. This method is more expensive than the direct use of Green-Gauss theorem but

18

provides more accurate results. It is based on multiple Taylor expansions about Pi and a cloud370

of neighboring cells,

φj = φi +∆xij
∂φi

∂x
+∆yij

∂φi

∂y
+∆zij

∂φi

∂z
+

(∆xij)
2

2

∂2φi

∂x2
+

(∆yij)
2

2

∂2φi

∂y2
+

(∆zij)
2

2

∂2φi

∂z2

+∆xij∆yij
∂2φi

∂x∂y
+∆xij∆zij

∂2φi

∂x∂z
+∆yij∆zij

∂2φi

∂y∂y
+O

(
‖−−→PiPj‖3

)
.

(4.12)

In the present context, the second partial derivatives are required as present in Eqs. (4.6), (4.7).
Using Eq. (4.12) with a set of neighbors results in the following system:

AX = B, (4.13)

with,

A =

∆xi1 ∆yi1 ∆zi1
1
2
(∆xi1)

2 1
2
(∆yi1)

2 1
2
(∆zi1)

2 ∆xi1∆yi1 ∆xi1∆zi1 ∆yi1∆zi1
...

...
...

...
...

...
...

...
...

∆xiN ∆yiN ∆ziN
1
2
(∆xiN)

2 1
2
(∆yiN)

2 1
2
(∆ziN)

2 ∆xiN∆yiN ∆xiN∆ziN ∆yiN∆ziN

 ,

X =
(

∂φi

∂x
∂φi

∂y
∂φi

∂z
∂2φi

∂x2

∂2φi

∂y2
∂2φi

∂z2
∂2φi

∂x∂y
∂2φi

∂x∂z
∂2φi

∂y∂z

)T
,

B =

φ1 − φi
...

φN − φi

 ,

(4.14)
where N is the number of neighboring elements.375

In three dimensions, a minimum of nine neighboring elements is necessary to solve the sys-
tem. When the number of available neighbors is greater than nine, the system becomes over-
determined and solution of minimum residual ‖AX −B‖ is addressed. A conventional way to
solve this over-determined system is to multiply both sides by the transpose matrix. A square
system (the so-called normal equations) is obtained: AX = B becomes ATAX = ATB, and380

the solution reads, X = (ATA)−1ATB.
The main issue regarding this methodology is linked with the condition number of the matrix

A, cond(A). If it is big (ill-conditioned) then the system of normal equations ATAX = ATB

yields a condition number even bigger, cond(A)2. A large condition number is highly undesirable
as its numerical solution may be very difficult to achieve accurately. A second approach is to385

use a QR decomposition as will be seen further. Note that other options such as the singular
value decomposition (SVD) are possible as well.

The use of a weight matrix W is necessary to determine the vector X composed of the
partial derivatives. This weight matrix allows to control numerical instabilities (division by
small numbers) when the mesh is skewed.390

The weight matrix commonly used in least squares problem is a left-preconditioning matrix,

W−1AX = W−1B, (4.15)

19

with

W =

w1 0
. . .

0 wN

 , (4.16)

and

wj =
1√

△x2ij +△y2ij +△z2ij
j = 1, · · · , N. (4.17)

It corresponds to a square and diagonal weight matrix of dimension corresponding to the
number of neighboring element N of the current stencil. The notion of stencil will be introduced395

later.
This left-preconditioning allows to narrow the amplitude between the lines of the matrix

system but not with the columns. This choice is made for instance in Chiapolino et al. (2017)
[12]. However, the second derivatives are not required in [12]. The previous weight matrix is
nonetheless useful in the present context. Indeed, the system may be under-determined and the400

second derivatives cannot be computed in that case. This situation may happen for instance on
a boundary element of a 2D numerical domain. On such elements, only the “Level-Set” function
φ is reconstructed at face centers with the least squares method detailed in Chiapolino et al.
(2017) [12].

In the present context, first and second partial derivatives are present in Matrix X. Those405

imply first (∆x) and second (∆x)2 order space steps in Matrix A. For this reason, a right-
preconditioning is preferred. Hereby, the corresponding system reads,

AW−1WX = B, (4.18)

where W is the new weight matrix. It is a square matrix of dimension 2 for a 1D problem, 6 for
a 2D problem and 9 for a 3D problem. This matrix is yet to be defined.

Let us now consider,410

Y = WX. (4.19)

The system to solve becomes,

AW−1Y = B ⇔ ÃY = B with Ã = AW−1. (4.20)

In this work, the matrix Ã is computed with the help of aQR decomposition. Q is an orthogonal
matrix (QTQ = I) and R is an upper triangular matrix,

ÃY = B becomes QRY = B, consequently RY = QTB, finally Y = R−1QTB.
(4.21)

In this framework, QR decomposition is performed using Gram-Schmidt algorithm. The equality
of Eqs. (4.19) and (4.21) yields,415

WX = R−1QTB, (4.22)

20

and finally,

X = W−1R−1QTB. (4.23)

It is important to note that for non-moving meshes, the factors W−1R−1QT are computed once
for all at the beginning of the computation, so that the whole least squares method only yields
one matrix-vector product per element.

The choice of the weight matrix W is now addressed. Multiple options are possible. In this420

work, the following form is proposed,

W =

dmax
i 0 0 0 0 0 0 0 0
0 dmax

i 0 0 0 0 0 0 0
0 0 dmax

i 0 0 0 0 0 0

0 0 0 (dmax
i)2 0 0 0 0 0

0 0 0 0 (dmax
i)2 0 0 0 0

0 0 0 0 0 (dmax
i)2 0 0 0

0 0 0 0 0 0 (dmax
i)2 0 0

0 0 0 0 0 0 0 (dmax
i)2 0

0 0 0 0 0 0 0 0 (dmax
i)2

, (4.24)

with dmax
i = max (dij), the maximum distance between the current cell center i and the center

of the cell j, part of the stencil of i. The following 1D analysis justifies the choice of Matrix W

(4.24).
Let us consider the 1D configuration depicted in Section 3.2, Fig. 5. The element i having425

only two neighbors (i± 1), the corresponding least squares system reduces to,

φi+1 = φi +∆x
∂φi

∂x
+

(∆x)2

2

∂2φi

∂x2
,

φi−1 = φi −∆x
∂φi

∂x
+

(∆x)2

2

∂2φi

∂x2
.

(4.25)

Matrix A then reads,

A =

(
∆x (∆x)2

2

−∆x (∆x)2

2

)
, (4.26)

and the weight matrix W is,

W =

(
∆x 0

0 (∆x)2

)
. (4.27)

Its inverse is consequently,

W−1 =

(1
∆x

0
0 1

(∆x)2

)
. (4.28)

The matrix product AW−1 yields,430

AW−1 =

(
∆x (∆x)2

2

−∆x (∆x)2

2

)(1
∆x

0
0 1

(∆x)2

)
=

(
1 0.5
−1 0.5

)
, (4.29)

21

where the components are of the same order of magnitude. No space step is present.

4.2. Notion of stencil

In this work, the stencil of an element gathers all neighboring elements having a common
face or vertex with the cell of interest.

When only faces are common between the element and its neighbors, the set will be denoted435

as “direct” stencil, also known as von Neumann neighborhood of range 1.
When faces and vertices are common between the element and its neighbors, the stencil will

be denoted as “extended”, also known as Moore neighborhood. This configuration is slightly
more complex but is sometimes necessary with unstructured meshes (Chiapolino et al. (2017)
[12]). The two configurations are depicted in Fig. 9.440

P3

P0

P1

P2

P3

P0

P1

P2

P9

P8

P4

P5

P6
P7

Figure 9: Schematic representation of the direct and extended stencil of the cell P0 on an unstructured mesh
made of triangles, for gradient computation. The cell of interest P0 is represented as the shaded cell. On the left,
only the direct neighbors are represented as the darker cells. On the right, the indirect neighbors are represented
in addition as the darkest cells.

In the present context, it is important to note that the extended stencil is mandatory in
order to ensure that the least squares system presents at least as many neighboring elements as
unknown variables (gradient components of the “Level-Set” function and second partial deriva-
tives).

4.3. Gradient limitation445

In the presence of discontinuities, that will be the case with the choice of the present sharp
“Level-Set” function, care is needed to avoid oscillations. With this aim the gradients are limited.

In this framework, the Barth and Jespersen (1989) [33] approach is employed. To avoid
reconstructed solution at the face exceeding minimum or maximum values at cell centers, the
gradient is scaled by factor Θ.450

The reconstruction at the center of the face separating Pi and Pj “to the left” becomes,

φL(Pij) ≃ φ(Pi) + Θi~rij. ~∇φ(Pi) + ∆t
∂φ(Pi)

∂t
, ~rij =

−−−→
PiPij . (4.30)

22

with

Θi = min (θ (ψij)) , j ∈ neigh(i), (4.31)

and

ψij =

φmax−φi

2(φn lim
ij −φi)

if
(
φn lim
ij − φi

)
> 0,

φmin−φi

2(φn lim
ij −φi)

if
(
φn lim
ij − φi

)
< 0,

1 if
(
φn lim
ij − φi

)
= 0,

(4.32)

with φn lim
ij = φi+~rij . ~∇φi, the unlimited reconstruction solution and φmax, φmin respectively the

maximum and minimum value between the current cell and all its direct neighbors. The same455

reasoning applies to the right side.
θ (ψij) is limiter dependent. For instance,

θ (ψij) = max
[
0, min(βψij , 1), min(ψij , β)

]
, (4.33)

gives the Minmod limiter [34] for β = 1 and the Superbee limiter [35] for β = 2.
However, those limiters result in excessive numerical dissipation. Indeed, the interface be-

comes significantly diffused, especially on unstructured meshes.460

Interface sharpening is then achieved. An efficient method is obtained with the THINC
approach, Shyue and Xiao, (2014) [36], Ii et al. (2014) [37]. This technique is based on a
hyperbolic tangent reconstruction.

More recently, the Overbee compressible limiter was introduced in Chiapolino et al. (2017)
[12] in the frame of two-phase flow modeling and diffuse interface methods. This limiter was465

precisely designed to lower numerical diffusion of the so-called “diffuse interfaces” by sharpening
volume fraction profiles. The Overbee limiter showed enhanced capturing properties with 2-3
cells only in the interface zone when used in the frame of MUSCL-type schemes that are quite
simple to implement in codes dealing with unstructured meshes.

The present contribution takes consequently advantage of the Overbee limiter. However, this470

limiter can only be used with Heaviside-type discontinuities, that is precisely the case with the
present sharp “Level-Set” function. In its most general form, the Overbee limiter reads,

θ (ψij) = max
[
0, min

[
2, 2ψij, max

[
min(2ψij , β), min{(2−β)φij+2(β−1), φij}

]]]
, 1 ≤ β ≤ 2.

(4.34)
For β = 1, the Overbee limiter reduces to the upper boundary of the second-order TVD region
corresponding to the Superbee limiter. For β = 2, it increases to the upper boundary of the
first-order TVD region (see Fig. 10).475

The parameter β controls the amount of artificial compression sharpening the discontinuity
while satisfying the TVD constraint. Its maximum value is β = 2. In this case Eq. (4.34)
simplifies to,

θ (φij) = max
[
0, min

[
2φij, 2

]]
. (4.35)

23

A graphical representation of the Overbee and Superbee limiters is depicted in Fig. 10. It
is based on the Total Variation Diminishing (TVD) theory, which is essential for the design of480

oscillation free numerical schemes. For details or discussions related to the TVD notion, the
reader is referred to [12], [29], [30], [38], [39], [40], [41], [42] for example.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

ψij

θ(
ψ
ij
)

O
ve
rb
ee

Su
pe
rb
ee

TVD 1st order

TVD 2nd order

Figure 10: Graphical representation of the Overbee and Superbee limiters. The dark gray shaded region represents
the region of first-order TVD methods. The light gray shaded region represents the region of second-order TVD
methods. The solid line represents the Overbee limiter that lies along the upper boundary of the first-order TVD
zone. The dashed line represents the Superbee limiter that lies along the upper boundary of the second-order
TVD zone. The upper first-order region can only be used with Heaviside-type discontinuities. This is exactly the
shape of the chosen discontinuous “Level-Set” function. The other regions (second-order and lower first-order)
can be used with continuous and discontinuous functions.

The following one-dimensional example of the transport of a Heaviside function, depicted in
Fig. 11, shows capabilities of the Overbee limiter. Note that the transport speed u0 is constant
and the 1D “Level-Set” equation transforms consequently to a conservative equation in this485

specific context,

∂φ

∂t
+
∂ (φu0)

∂x
= 0. (4.36)

Note also that the second partial derivatives are not required in this transport context. Only
the first derivatives are needed to perform the MUSCL-type reconstruction at cell faces. The
1D reduction of the least squares method corresponds to the centered approximation,

∂φi

∂x
=

1

2∆x
(φi+1 − φi−1) , (4.37)

with i denoting the current element and ∆x the space step (see Fig. 4).490

24

Ω+ Ω−Ω−

Figure 11: Schematic representation of a simple 1D test of a Heaviside profile, transported to the right with
speed u0. However, numerical diffusion results in a smoothing of the initial profile. The MUSCL-type scheme
and Overbee limiter allow to control this artificial dissipation.

Results are provided in Fig. 12 along with the exact solution.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Initial Num. Overbee Num. Superbee Exact

x (m)x (m)
φφ

Figure 12: Comparison of the Overbee (full circle symbols •) and Superbee (diamond symbols ⋄) limiters for the
transport of a Heaviside function. The advection speed is u0 = 100 m/s. The dashed lines represent the initial
condition. The full lines represent the exact solution (plotted with 1000 points). The final time is t = 4 ms and
CFL= 0.8 is used. In the figure on the left, 100 elements are used. In the figure on the right, 1000 elements are
used. Overbee captures the discontinuity with two points only for both mesh resolutions.

The Overbee limiter allows to capture the discontinuities with two mesh points. This is a
consequence of the upper first-order TVD zone (see Fig. 10). The Superbee limiter results in
much more numerical dissipation around the discontinuities. However, the Superbee limiter can
be used with discontinuous and smooth functions unlike the Overbee limiter that is designed495

only for Heaviside-type functions. For more details and illustrations about the Overbee limiter,
the reader is referred to Chiapolino et al. (2017) [12], Carmouze et al. (2018) [10] and Furfaro
et al. (2020) [27].

The properties of the Overbee limiter will therefore be used for the resolution of the HJ
equation.500

25

The extension of the proposed numerical scheme through the MUSCL-type method provides
reconstructed states (left and right) at face centers regarding the “Level-Set” function φ resulting
in more accurate results.

The gradients
(
~∇φL, ~∇φR

)
are also reconstructed at face centers in order to obtain a more

accurate normal vector of the moving interface ~n∗
F,ij. The gradient components are consequently505

scaled by factors Θ as well.
The reconstruction at the center of the face separating Pi and Pj “to the left” becomes,

∂φn
L(Pij)

∂x
=
∂φn(Pi)

∂x
+Θi,x

(
~rx,i,ij

∂2φn(Pi)

∂x2
+ ~ry,i,ij

∂2φn(Pi)

∂x∂y
+ ~rz,i,ij

∂2φn(Pi)

∂x∂z

)
,

∂φn
L(Pij)

∂y
=
∂φn(Pi)

∂y
+Θi,y

(
~rx,i,ij

∂2φn(Pi)

∂x∂y
+ ~ry,i,ij

∂2φn(Pi)

∂y2
+ ~rz,i,ij

∂2φn(Pi)

∂y∂z

)
,

∂φn
L(Pij)

∂z
=
∂φn(Pi)

∂z
+Θi,z

(
~rx,i,ij

∂2φn(Pi)

∂x∂z
+ ~ry,i,ij

∂2φn(Pi)

∂y∂z
+ ~rz,i,ij

∂2φn(Pi)

∂z2

)
,

(4.38)

with ~rx,i,ij, ~ry,i,ij and ~rz,i,ij the projected distance
−−−→
PiPij along axes x, y and z. The same reasoning

applies to the right side.
Basically, the method of Barth and Jespersen (1989) [33] is used for each component of the510

gradient. This demands to compute as many Θ factors as dimensions (1, 2 or 3).
Similarly to the reconstruction of the “Level-Set” function, the limitation factors are,

Θi,x,y,z = min (θ (ψij,x,y,z)) , j ∈ neigh(i), (4.39)

and

ψij,x =

∂φ
∂x

max
−

∂φi
∂x

2

(

∂φn lim
ij
∂x

−
∂φi
∂x

) if
(

∂φn lim
ij

∂x
− ∂φi

∂x

)
> 0,

∂φ
∂x

min
−

∂φi
∂x

2

(

∂φn lim
ij
∂x

−
∂φi
∂x

) if
(

∂φn lim
ij

∂x
− ∂φi

∂x

)
< 0,

1 if
(

∂φn lim
ij

∂x
− ∂φi

∂x

)
= 0,

(4.40)

ψij,y =

∂φ
∂y

max
−

∂φi
∂y

2

(

∂φn lim
ij
∂y

−
∂φi
∂y

) if
(

∂φn lim
ij

∂y
− ∂φi

∂y

)
> 0,

∂φ
∂y

min
−

∂φi
∂y

2

(

∂φn lim
ij
∂y

−
∂φi
∂y

) if
(

∂φn lim
ij

∂y
− ∂φi

∂y

)
< 0,

1 if
(

∂φn lim
ij

∂y
− ∂φi

∂y

)
= 0,

(4.41)

26

ψij,z =

∂φ
∂z

max
−

∂φi
∂z

2

(

∂φn lim
ij
∂z

−
∂φi
∂z

) if
(

∂φn lim
ij

∂z
− ∂φi

∂z

)
> 0,

∂φ
∂z

min
−

∂φi
∂z

2

(

∂φn lim
ij
∂z

−
∂φi
∂z

) if
(

∂φn lim
ij

∂z
− ∂φi

∂z

)
< 0,

1 if
(

∂φn lim
ij

∂z
− ∂φi

∂z

)
= 0,

(4.42)

with

∂φn lim
L (Pij)

∂x
=
∂φn(Pi)

∂x
+

(
~rx,i,ij

∂2φn(Pi)

∂x2
+ ~ry,i,ij

∂2φn(Pi)

∂x∂y
+ ~rz,i,ij

∂2φn(Pi)

∂x∂z

)
,

∂φn lim
L (Pij)

∂y
=
∂φn(Pi)

∂y
+

(
~rx,i,ij

∂2φn(Pi)

∂x∂y
+ ~ry,i,ij

∂2φn(Pi)

∂y2
+ ~rz,i,ij

∂2φn(Pi)

∂y∂z

)
,

∂φn lim
L (Pij)

∂z
=
∂φn(Pi)

∂z
+

(
~rx,i,ij

∂2φn(Pi)

∂x∂z
+ ~ry,i,ij

∂2φn(Pi)

∂y∂z
+ ~rz,i,ij

∂2φn(Pi)

∂z2

)
,

(4.43)

the unlimited reconstruction solutions and ∂φmax

∂x,y,z
, ∂φmin

∂x,y,z
respectively the maximum and minimum515

value between the current cell and all its direct neighbors.
This corresponds to Barth and Jespersen (1988) [33] approach applied to the gradient com-

ponents.
The present Heaviside “Level-Set” function φ takes advantage of the Overbee limiter. How-

ever, the gradient does not present a Heaviside profile. Consequently, the Overbee limiter cannot520

be used.
The choice of the limiter function is then reduced to the second-order TVD zone but not the

upper region of the first-order zone, see Fig. 10. The lower region of the first-order zone can be
used as well but provides too much numerical diffusion.

Hereby, the Superbee limiter is used for the gradient component reconstruction only. This525

limiter lies along the upper boundary of the second-order TVD region as seen in Fig. 10.
The use of the compressive Overbee function on variables presenting a Heaviside profile and

a conventional limiter such as Superbee on other variables does not cause specific difficulties.
This particular treatment has been used in Carmouze et al. (2018) [10] where transport of a
discontinuous “Level-Set” function is addressed in a two-phase flow context. In this framework,530

the Overbee limiter is used for the discontinuous “Level-set” function only and another limiter
is used for the other flow variables such as the density for example.

The 1D test case of fronts propagating along the normal vector depicted in Section 3.2 (Fig.
5) is now repeated with the present MUSCL-type method. The least squares method for gradient
computation reduces to the centered approximations,535

∂φi

∂x
=
φi+1 − φi−1

2∆x
,

∂2φi

∂x2
=
φi+1 − 2φi + φi−1

∆x2
.

(4.44)

Results are shown in Fig. 13 as well as the exact solution.

27

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Initial Numerical Exact

x (m)x (m)

φφ

Figure 13: Comparison of the computed solution with the present Godunov-type second-order scheme and
corresponding Riemann solver to the exact solution. The Overbee limiter is used for the “Level-Set” function φ
and the Superbee limiter is used for its gradient. The speed module along the normal direction of the front is
u0 = 1 m.s−1. The final time is t = 0.2 s and CFL= 0.8 is used. In the figure on the left, 100 elements are used.
In the figure on the right, 1000 elements are used. The full circle symbols • represent the corresponding results.
The dashed lines represent the initial condition. The full lines represent the exact solution (plotted with 1000
points).

Results are in excellent agreement with the exact solution and the Overbee limiter, used
with the discontinuous “Level-Set” function φ, allows to capture the discontinuities with 2 mesh
points only regardless of the mesh resolution.

5. Computation of the interfacial area and corresponding volume540

Interfacial area computation is important for many applications. The proposed method may
be used to determine this interfacial area as well as the corresponding volume with the help of
the interfacial normal vector ~nF .

5.1. Conventional relation

The determination of the interfacial area AI is a key problem in combustion and two-phase545

flow modeling (Drew and Passman (2006) [43]) as well as many other physical and technical
areas. It is usually defined as,

AI = −
∫

V

~∇χ · ~nFdV, (5.1)

where χ is a characteristic function defining presence of the media, i.e. χ = 1 in a given medium
and χ = 0 outside. Figure 14 presents a very simple 2D configuration allowing for easier analyses.

28

lx Lx

ly

Ly

x

y

~i

~j

Interface

Figure 14: Analysis of the interfacial area computation on a simple example. The domain is a square of dimensions
(Lx, Ly). An interface separates two media represented as the light and dark zones.

In the present context, Eq. (5.1) transforms to,550

∫

V

~∇χ · ~nFdV =

∫ Ly

0

∫ Lx

0

(
∂χ

∂x
~i+

∂χ

∂y
~j

)
· ~nFdxdy. (5.2)

After some algebraic manipulations, the interfacial area, corresponding to the perimeter in the
present 2D context, reads:

−
∫

V

~∇ (χ) · ~nFdV = lx + ly = AI . (5.3)

Equation (5.1) is thus analytically correct. Note that in a two-phase flow context, the interfacial

normal reads ~nF = − ~∇χ

|~∇χ|
. Consequently, Eq. (5.1) may be rewritten under the following form,

AI =

∫

V

|~∇χ|dV. (5.4)

A numerical approximation of Eq. (5.4) is,555

AI ≃
∑

i

|~∇χi|Vi, (5.5)

where i denotes the index of the elements on the whole numerical domain.
In the present context, the “Level-Set” function φ is the analogue of the characteristic func-

tion χ. The corresponding interfacial area consequently reads,

AI =

∫

V

|~∇φ|dV ≃
∑

i

|~∇φi|Vi. (5.6)

5.2. Another formulation

Another formulation is worth considering, more suitable for discrete approximations,560

AI =
∑

interfacial faces

|~n∗
F,ij · ~nij | × Sij =

∑

interfacial faces

∣∣∣∣∣
~∇φ∗

ij

|~∇φ∗
ij |

· ~nij

∣∣∣∣∣× Sij. (5.7)

29

Relation (5.7) consists in a projection of cell’s face’s surface Sij onto the interface ∂Ω, as shown

in Fig. 15. The dot product ~n∗
F,ij ·~nij =

~∇φ∗
ij

|~∇φ∗
ij |
·~nij corresponds to the dot product of the interface

vector ~n∗
F,ij and the cell face vector ~nij .

Interface ∂Ω

~n∗
F,ij

~nij

θ

α

β = θ
Lexact

ij /2

Lij/2

Faceij

Ω+

Ω−

Figure 15: Analysis of the interfacial area computation on a simple example. The interface is represented as
the light solid line. The faces of the elements separating one region from another are interfacial faces and are
represented as dark solid lines. The center of the face ij is represented by the symbol N. The dot product
|~n∗

F,ij · ~nij | projects the cell’s face’s surface Sij (Lij in 2D) onto the interface ∂Ω.

In Fig. 15, face ij separates an element i presenting a “Level-Set” function φi corresponding
to the fist region (Ω+) and an element j presenting a “Level-Set” function φj corresponding to565

the second one (Ω−). Face ij is consequently an “interfacial” face.
The situation depicted in Fig. 15 involves α = π

2
− θ and β = π

2
− α = θ. In the present

2D configuration, the dot product multiplied by the surface of the face ij, corresponding to its
length Lij , reads:

(
~n∗
F,ij · ~nij

)
× Sij = |~n∗

F,ij| × |~nij | × cos (θ)× Sij = cos (θ)× Lij . (5.8)

Besides, the cosine function expresses in the present situation as,570

cos (θ) = cos (β) =
Lexact
ij /2

Lij/2
=
Lexact
ij

Lij

. (5.9)

Inserting the cosine function (5.9) into the dot product relation (5.8) yields,

(~nF,ij · ~nij)× Sij = Lexact
ij . (5.10)

The exact interfacial area corresponding to the perimeter in the 2D configuration is then recov-
ered. Note that the present situation (Fig. 15) is schematic and tends to an ideal configuration
(the center of the face ij separates half of the exact length). However, practical situations are
expected to tend to Fig. 15, especially under mesh refinement. As it is shown in the following575

section, results obtained with this approach are in excellent agreement with analytical solutions.
We then have in hands two relations (Eqs. (5.6) and (5.7)) to compute the interfacial

area. The determination of the volume of the medium of interest is easier to compute and may

30

be obtained as the sum of all the volumes of the elements presenting a “Level-Set” function
corresponding to the region of interest.580

Indeed, when medium 1 is the one of interest, its volume is given by:

V1 =

∫

V

χ1dV. (5.11)

The direct application of this last relation with the situation depicted in Fig. 14 yields,

V1 =

∫

V1

1 dV +

∫

V2

0 dV = V1. (5.12)

In the present HJ context, the “Level-Set” function φ is initialized as a Heaviside function. The
corresponding volume of interest is consequently directly approximated as,

VΩ± ≃
∑

φi∈ Ω±

Vi. (5.13)

In relation (5.13), the volume Ω+ is determined with the help of the elements presenting φi > φI .585

This relation is then an approximation of the exact volume.
Before providing computed results, it is worth highlighting the analogy between the surface

and volume relations, Eqs. (5.4) and (5.11), and those used in the signed-distance-function
context, Eqs. (2.11) and (2.12), see Section 2. Despite the advantage of the signed-distance
function related to gradient computations, a Heaviside and Dirac delta functions are necessary590

to compute the corresponding interfacial area and volume.

6. Multidimensional results

The proposed method is now tested on both 2D and 3D test cases. A common example of
an interface moving along its normal vector appears in the propagation of a combustion front.
Among the straightforward examples is the regression of a propellant grain, reminiscent of595

interior ballistic or rocket engineering. Knowledge of its burning surface is of utmost importance
for the aforementioned applications [44].

Grain regressions appear as excellent tests to assess the present method, solving the HJ
equation and computing the interfacial area and volume. Indeed, propellant grains are made
from very simple geometries [45] and analytical interfacial areas and volumes are available [46].600

Besides, time evolution of the interfacial area and volume presents multiple and different stages,
making relevant benchmarks to assess.

The following multidimensional test cases consist in a cylinder of initial radius R0 presenting
multiple perforations. The perforations are cylindrical as well and of initial radius r0. Such
geometries are known as the B7T (7 perforations) and B19T (19 perforations) solid propellants605

[47], [48]. The web thickness, that defines the smallest thickness of the initial propellant grain
reads: w0 = (R0 − 3r0) /2 for the B7T and w0 =

(
1 +

√
2−

√
3
)
(R0 + r0) /2−2r0 for the B19T.

The respective geometries are generated with Gmsh [49], a software provided under the
terms of the GNU General Public License (GPL). Unstructured meshes made of triangular or
tetrahedral elements are used. The interface speed remains u0 = 1 m.s−1 and the CFL number610

is 0.8. The computations are done with the MUSCL-type scheme. The Overbee limiter is used
for the Level-function φ and the Superbee limiter is used for its gradient ~∇φ.

31

6.1. Two-dimensional results

In Fig. 16, the method is applied to a 2D regression/combustion of the B7T grain. The
computed interfacial areas (Eq. (5.7) referred as “Geometry” and Eq. (5.6) referred as “Con-615

ventional”) are compared to the analytical solution (referred as “Exact”) in Fig. 17. The
computed solid volume (Eq. (5.13)) is compared to the exact solution as well.

Figure 16: 2D regression of the B7T grain. The φ = 0.5 isocontour corresponding to the interface level φI is
presented. The front propagates at speed u0 = 1 m.s−1 along its normal vector field. The grain consists in a
cylinder of initial radius R0 = 1.75 mm. The perforations are cylindrical as well and of initial radius r0 = 0.2
mm. The initial web is w0 = 0.575 mm. The solutions are given at times t = 0.05 ms, t = 0.0976 ms, t = 0.145
ms, t = 0.193 ms, t = 0.240 ms, t = 0.288 ms, t = 0.338 ms, t = 0.386 ms and t = 0.433 ms. The mesh is
composed of about 50.000 triangular elements in the grain, generated by the “Delaunay” algorithm of the Gmsh
software. The computation is done with the MUSCL-type scheme. The Overbee limiter is used for the Level-Set
function φ and the Superbee limiter is used for its gradient ~∇φ. The CFL number is 0.8.

32

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Conventional

Geometry

Exact

0

0.2

0.4

0.6

0.8

1

10
-5

Numerical

Exact

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0

0.2

0.4

0.6

0.8

1

10
-5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
-4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
-4

0

0.2

0.4

0.6

0.8

1

10
-5

t (s)t (s)

A
I
(m

)

S
(m

2
)

A
I
(m

)

S
(m

2
)

A
I
(m

)

S
(m

2
)

50, 000 elem. 50, 000 elem.

200, 000 elem. 200, 000 elem.

800, 000 elem. 800, 000 elem.

Figure 17: Comparison of the computed interfacial area (perimeter in 2D) and volume versus the exact solutions
during the regression of the 2D B7T grain (Fig. 16). Three mesh resolutions are used in this figure, generated
by the “Delaunay” algorithm of the Gmsh software. The volume (surface in 2D) computed with Eq. (5.13) is
presented in the graphs on the right. In the graphs on the left, the interfacial area computed with the geometry-
based relation (Eq. (5.7)) and with the conventional relation (Eq. (5.6)) is presented.

Figure 17 indicates that the proposed method and corresponding interfacial area and volume
computations converge towards the analytical solutions. The results are indeed in excellent
agreement with the exact solutions. However, interfacial area computation converges much620

faster with the geometry-based relation (Eq. (5.7)). Indeed, computed interfacial area from
the convention of Relation (5.6) converges slowly while the interfacial area computed by the
geometry-based relation (Eq. (5.7)) yields excellent results with the coarsest mesh. This feature
is important with 3D computations, reducing significantly the number of elements required to
obtain reasonable results.625

6.2. Three-dimensional results

In Fig. 18, 3D results are provided. Those consist in the regression of the B19T solid
propellant grain.

33

Figure 18: Regression of the B19T grain. The φ = 0.5 isocontour corresponding to the interface level φI is
presented. The front propagates at speed u0 = 1 m.s−1 along its normal vector field. The grain consists in a
cylinder of initial radius R0 = 7.155 mm. The perforations are cylindrical as well and of initial radius r0 = 0.155
mm. The grain is initially 16.1 mm long. The initial web is w0 = 2.18 mm. The solutions are given at times
t = 0.16 ms, t = 0.32 ms, t = 0.48 ms, t = 0.64 ms, t = 0.80 ms, t = 0.96 ms, t = 1.12 ms, t = 1.28 ms
and t = 1.44 ms. The mesh is composed of about 2.5 million tetrahedral elements in the grain, generated by
the “Frontal” algorithm of the Gmsh software. The computation is done with the MUSCL-type scheme. The
Overbee limiter is used for the Level-Set function φ and the Superbee limiter is used for its gradient ~∇φ. The
CFL number is 0.8.

Figure 19 provides the corresponding burning surface and solid volume over time.

34

0

0.5

1

1.5

2

2.5

3
10

-3

Conventional

Geometry

Exact

0

0.5

1

1.5

2

2.5

3

10
-6

Numerical

Exact

0

0.5

1

1.5

2

2.5

3
10

-3

0

0.5

1

1.5

2

2.5

3

10
-6

0 0.25 0.5 0.75 1 1.25 1.5

10
-3

0

0.5

1

1.5

2

2.5

3
10

-3

0 0.25 0.5 0.75 1 1.25 1.5

10
-3

0

0.5

1

1.5

2

2.5

3

10
-6

t (s)t (s)

A
I
(m

2
)

V
(m

3
)

A
I
(m

2
)

V
(m

3
)

A
I
(m

2
)

V
(m

3
)

500, 000 elem. 500, 000 elem.

1, 000, 000 elem. 1, 000, 000 elem.

2, 500, 000 elem. 2, 500, 000 elem.

Figure 19: Comparison of the computed interfacial area and volume versus the exact solutions during the
regression of the B19T grain (Fig. 18). Three mesh resolutions are used in this figure, generated by the “Frontal”
algorithm of the Gmsh software. The volume computed with Eq. (5.13) is presented in the graphs on the right.
In the graphs on the left, the interfacial area computed with the geometry-based relation (Eq. (5.7)) and with
the conventional relation (Eq. (5.6)) is presented.

The geometry-based relation (Eq. (5.7)) provides one more time very reasonable results with630

the coarsest mesh (top graphs of Fig. 19). The agreement with the analytical solution becomes
very good when the mesh is refined (middle and bottom graphs of Fig. 19), illustrating the
capabilities of the present method and interfacial area computation. The volume is also in very
good agreement with the exact solution.

However, surface computation with the conventional relation (Eq. (5.6)) presents convergence635

difficulties.
In Fig. 20, the mesh is refined two more times.

35

0

0.5

1

1.5

2

2.5

3
10

-3

Conventional

Geometry

Exact

0

0.5

1

1.5

2

2.5

3

10
-6

Numerical

Exact

0 0.25 0.5 0.75 1 1.25 1.5

10
-3

0

0.5

1

1.5

2

2.5

3
10

-3

0 0.25 0.5 0.75 1 1.25 1.5

10
-3

0

0.5

1

1.5

2

2.5

3

10
-6

t (s)t (s)

A
I
(m

2
)

V
(m

3
)

A
I
(m

2
)

V
(m

3
)

5, 700, 000 elem. 5, 700, 000 elem.

10, 000, 000 elem. 10, 000, 000 elem.

Figure 20: Comparison of the computed interfacial area and volume versus the exact solutions during the
regression of the B19T grain (Figs. 18, 19). The mesh is refined two more times. The interfacial area computed
via the geometry-based relation (Eq. (5.7)), and volume computed with Eq. (5.13) are in excellent agreement
with the exact solution. The conventional interfacial area computation (Eq. (5.6)) tends to converge towards
the analytical solution but is still perfectible despite the fine mesh resolutions.

The interfacial area computed via the geometry-based relation (Eq. (5.7)) is in excellent
agreement with the exact solution. The volume, computed with Eq. (5.13), is excellent as well.

The interfacial area provided by conventional relation (Eq. (5.6)) tends to converge towards640

the analytical solution but is still perfectible despite the fine mesh resolutions. The proposed
geometry-based relation (Eq. (5.7)) is consequently of great interest.

Mesh convergence analysis has been carried out with meshes ranging from 500, 000 elements
to 10 million elements. The error is defined by Relation (6.1),

Error % =
1

tend

∫ tend

0

(Error %) dt =
1

tend

∫ tend

0

(
100× |Numerical− Exact|

Exact

)
dt, (6.1)

where tend is the last simulation time considered (slightly below the final time in order to ensure645

a defined error percentage (Error %)). The numerical integration is done with the help of the
trapezoidal rule. Corresponding results are reported in Fig. 21.

36

10
6

3.10
6

6.10
6

10
7

1

2

3

4

5

6

7

8
9

10

20

Surf. Conventional

Surf. Geometry

Volume

1st order

2nd order

1
t e

n
d

∫ t
e
n
d

0
(E

rr
or

%
)
d
t

Number of elements

Error%

Figure 21: Mean error percentages of the computed interfacial areas (Eq. (5.6), ◦ and Eq. (5.7) �) and volume
(Eq. (5.13) ⋄) for the regression of the B19T grain (Figs. 19 , 20). The first and second order theoretical
convergence rates are plotted in dotted and dash dotted lines respectively for easier analysis. The error related to
the interfacial area decreases for both formulations (conventional and geometrical) when the mesh is refined and
the corresponding convergence rates are first-order. However, errors obtained with the geometry-based relation
(Eq. (5.7)) are systematically smaller than the ones provided by Eq. (5.6). The mean error percentage related
to the volume computation (Eq. (5.13), ⋄) is superior to the interfacial area (Eq. (5.7)) but remains quite
reasonable. Besides, the observed order of accuracy is two.

Figure 21 indicates that the proposed interfacial area computation with the geometry-based
relation (Eq. (5.7)) provides a mean error percentage of about 3.5% with the coarsest mesh
whereas the conventional relation (Eq. (5.6)) yields a mean error percentage of about 17% for650

the same mesh resolution.
With the finest mesh, the geometry-based relation (Eq. (5.7)) leads to an error of about

0.88%. The error related to the conventional relation (Eq. (5.6)) is around 5%.
The error decreases for both formulations when the mesh is refined and the corresponding

convergence rates are first-order.655

However, errors obtained with the geometry-based relation (Eq. (5.7)) are systematically
smaller than the ones provided by Eq. (5.6) as already observed in Figs. 17, 19 and 20. Those
results show one more time the capabilities of the proposed geometry-based relation (Eq. (5.7)).

The mean error percentage related to the volume computation (Eq. (5.13)) is superior to
the interfacial area (Eq. (5.7)) but remains quite reasonable. The error is around 12% with the660

coarsest mesh and is about 1.4% with the finest mesh. Besides, the observed order of accuracy
is two.

37

7. Conclusion

A “Level-Set” type method has been developed to approximate a first-order Hamilton-Jacobi
equation on unstructured meshes in the context of an interface moving along its normal vector665

field.
The present “Level-Set” function is sharp and the method relies on the resolution of the

Riemann problem and a Godunov-type scheme. Numerical diffusion is used to compute the
corresponding gradients with the help of the least squares approximations. However, thanks to
the Overbee limiter, this artificial smearing is controlled and limited, providing results of high670

accuracy.
The method is also used to compute the corresponding interfacial area. A new formula-

tion is proposed and multidimensional computations show results in very good agreement with
analytical solutions with reasonable mesh resolutions.

Acknowledgments675

The authors are very grateful to Jeaniffer Vides for numerous helpful discussions that defi-
nitely helped to improve the quality of this work.

This work has been funded by Eurenco that is gratefully acknowledged.

38

References

[1] S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based680

on Hamilton-Jacobi formulations, Journal of Computational Physics 79 (1) (1988) 12–49.

[2] J. Sethian, Curvature and the evolution of fronts, Communications in Mathematical Physics
101 (4) (1985) 487–499.

[3] J. Sethian, A fast marching level set method for monotonically advancing fronts, Proceed-
ings of the National Academy of Sciences 93 (4) (1996) 1591–1595.685

[4] J. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations
and conservation laws, Journal of differential geometry 31 (1) (1990) 131–161.

[5] J. Sethian, Level set methods and fast marching methods: evolving interfaces in computa-
tional geometry, fluid mechanics, computer vision, and materials science, Vol. 3, Cambridge
university press, 1999.690

[6] N. Morgan, J. Waltz, 3D level set methods for evolving fronts on tetrahedral meshes with
adaptive mesh refinement, Journal of Computational Physics 336 (2017) 492–512.

[7] E. Olsson, G. Kreiss, A conservative level set method for two phase flow, Journal of Com-
putational Physics 210 (1) (2005) 225–246.

[8] E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow II,695

Journal of Computational Physics 225 (1) (2007) 785–807.

[9] R. Shukla, C. Pantano, J. Freund, An interface capturing method for the simulation of
multi-phase compressible flows, Journal of Computational Physics 229 (19) (2010) 7411–
7439.

[10] Q. Carmouze, F. Fraysse, R. Saurel, B. Nkonga, Coupling rigid bodies motion with single700

phase and two-phase compressible flows and unstructured meshes, Journal of Computational
Physics 375 (2018) 1314–1338.

[11] R. Saurel, C. Pantano, Diffuse Interfaces and Capturing Methods in Compressible Two-
Phase Flows, Annual Review of Fluid Mechanics 50 (2018) 105–130.

[12] A. Chiapolino, R. Saurel, B. Nkonga, Sharpening diffuse interfaces with compressible fluids705

on unstructured meshes, Journal of Computational Physics 340 (2017) 389–417.

[13] E. Dalla, M. Hilpert, C. Miller, Computation of the interfacial area for two-fluid porous
medium systems, Journal of Contaminant Hydrology 56 (1-2) (2002) 25–48.

[14] F. Dauch, D. Ribereau, A software for SRM grain design and internal ballistics evaluation,
PIBAL, in: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002,710

p. 4299.

[15] S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, Vol. 153, Springer
Science & Business Media, 2003.

39

[16] M. Willcox, M. Brewster, K. Tang, D. Stewart, Solid propellant grain design and burnback
simulation using a minimum distance function, Journal of Propulsion and Power 23 (2)715

(2007) 465–475.

[17] E. Cavallini, Modeling and numerical simulation of solid rocket motors internal ballistics,
Ph.D. thesis, Sapienza Università di Roma (2010).

[18] W. Sullwald, Grain regression analysis, Ph.D. thesis, University of Stellenbosch (2014).

[19] D. Gueyffier, F. Roux, Y. Fabignon, G. Chaineray, N. Lupoglazoff, F. Vuillot, J. Hijlkema,720

F. Alauzet, Accurate computation of grain burning coupled with flow simulation in rocket
chamber, Journal of Propulsion and Power 31 (6) (2015) 1761–1776.

[20] M. Sussman, P. Smereka, S. Osher, A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow, Journal of Computational Physics 114 (1) (1994) 146–
159.725

[21] B. Engquist, A. Tornberg, R. Tsai, Discretization of Dirac delta functions in level set
methods, Journal of Computational Physics 207 (1) (2005) 28–51.

[22] P. Smereka, The numerical approximation of a delta function with application to level set
methods, Journal of Computational Physics 211 (1) (2006) 77–90.

[23] C. Min, F. Gibou, Geometric integration over irregular domains with application to level-set730

methods, Journal of Computational Physics 226 (2) (2007) 1432–1443.

[24] S. Godunov, A finite difference scheme for numerical computation of the discontinuous wave
solutions of equations of fluid dynamics, Math. Sb. 47 (1959) 271–306.

[25] J. Brackbill, D. Kothe, C. Zemach, A continuum method for modeling surface tension,
Journal of Computational Physics 100 (2) (1992) 335–354.735

[26] S. Le Martelot, R. Saurel, B. Nkonga, Towards the direct numerical simulation of nucleate
boiling flows, International Journal of Multiphase Flow 66 (2014) 62–78.

[27] D. Furfaro, R. Saurel, L. David, F. Beauchamp, Towards sodium combustion modeling with
liquid water, Journal of Computational Physics 403 (2020) 109060.

[28] F. Denner, B. van Wachem, Fully-coupled balanced-force VOF framework for arbitrary740

meshes with least-squares curvature evaluation from volume fractions, Numerical Heat
Transfer, Part B: Fundamentals 65 (3) (2014) 218–255.

[29] R. LeVeque, Finite volume methods for hyperbolic problems, Vol. 31, Cambridge University
Press, 2002.

[30] E. Toro, Riemann solvers and numerical methods for fluid dynamics: A practical introduc-745

tion, Springer Science & Business Media, 2013.

[31] A. Harten, P. Lax, B. van Leer, On Upstream Differencing and Godunov-Type Schemes for
Hyperbolic Conservation Laws, SIAM Review 25 (1) (1983) 35–61.

40

[32] S. Davis, Simplified second-order Godunov-type methods, SIAM Journal on Scientific and
Statistical Computing 9 (3) (1988) 445–473.750

[33] T. Barth, D. Jespersen, The design and application of upwind schemes on unstructured
meshes, Proceedings of the AIAA 27th Aerospace Science Meeting (Reno, Nevada), (1989).

[34] P. Sweby, M. Baines, Convergence of Roe’s scheme for the general non-linear scalar wave
equation, University of Reading. Department of Mathematics, 1981.

[35] P. Roe, Some contributions to the modelling of discontinuous flows, in: Large-scale compu-755

tations in fluid mechanics, 1985, pp. 163–193.

[36] K. Shyue, F. Xiao, An Eulerian interface sharpening algorithm for compressible two-phase
flow: The algebraic THINC approach, Journal of Computational Physics 268 (2014) 326–
354.

[37] S. Ii, B. Xie, F. Xiao, An interface capturing method with a continuous function: The760

THINC method on unstructured triangular and tetrahedral meshes, Journal of Computa-
tional Physics 259 (2014) 260–269.

[38] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computa-
tional Physics 49 (3) (1983) 357–393.

[39] P. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,765

SIAM Journal on Numerical Analysis 21 (5) (1984) 995–1011.

[40] A. Harten, On a class of high resolution total-variation-stable finite-difference schemes,
SIAM Journal on Numerical Analysis 21 (1) (1984) 1–23.

[41] B. van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and
conservation combined in a second-order scheme, Journal of Computational Physics 14 (4)770

(1974) 361–370.

[42] E. Tadmor, Convenient total variation diminishing conditions for nonlinear difference
schemes, SIAM Journal on Numerical Analysis 25 (5) (1988) 1002–1014.

[43] D. Drew, S. Passman, Theory of multicomponent fluids, Vol. 135, Springer Science & Busi-
ness Media, 2006.775

[44] Z. Xiao, W. He, F. Xu, Emulation and Calculation of the Burning Surface of 3D Grains of
Partially Cut Multi-Perforated Stick Propellant using the Level Set Method, Propellants,
Explosives, Pyrotechnics 41 (1) (2016) 148–153.

[45] J. Horst, W. Albert, F. Robbins, Programmed-splitting solid propellant grain for improved
ballistic performance of guns, US Patent 4,581,998 (1986).780

[46] J. Stals, Form-Functions for Multi-Component Propellant Charges Including Inhibited
Grains and Sliver Burn, Tech. rep., MATERIALS RESEARCH LABS ASCOT VALE (AUS-
TRALIA) (1975).

41

[47] H. Krier, M. Summerfield, Interior ballistics of guns, Vol. 66, Progress in astronautics and
aeronautics, 1979.785

[48] D. Carlucci, S. Jacobson, Ballistics: theory and design of guns and ammunition, CRC Press,
2013.

[49] C. Geuzaine, J. Remacle, P. Dular, Gmsh: a three-dimensional finite element mesh genera-
tor, International Journal for Numerical Methods in Engineering 79 (11) (2009) 1309–1331.

42

	Introduction
	Hamilton-Jacobi equation
	Discretization of the Hamilton-Jacobi equation
	Temporal discretization
	Approximation of the normal vectors at cell boundaries
	Multidimensional extension

	MUSCL-type scheme
	Gradients' computation on unstructured meshes
	Notion of stencil
	Gradient limitation

	Computation of the interfacial area and corresponding volume
	Conventional relation
	Another formulation

	Multidimensional results
	Two-dimensional results
	Three-dimensional results

	Conclusion
	References

