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ABSTRACT

We present a new mixed variable symplectic (MVS) integrator for planetary systems that fully resolves close encounters. The method is
based on a time regularisation that allows keeping the stability properties of the symplectic integrators while also reducing the effective
step size when two planets encounter. We used a high-order MVS scheme so that it was possible to integrate with large time-steps far
away from close encounters. We show that this algorithm is able to resolve almost exact collisions (i.e. with a mutual separation
of a fraction of the physical radius) while using the same time-step as in a weakly perturbed problem such as the solar system. We
demonstrate the long-term behaviour in systems of six super-Earths that experience strong scattering for 50 kyr. We compare our
algorithm to hybrid methods such as MERCURY and show that for an equivalent cost, we obtain better energy conservation.
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1. Introduction

Precise long-term integration of planetary systems is still a chal-
lenge today. The numerical simulations must resolve the motion
of the planets along their orbits, but the lifetime of a system is
typically billions of years, resulting in computationally expen-
sive simulations. In addition, because of the chaotic nature of
planetary dynamics, statistical studies are often necessary, which
require running multiple simulations with close initial condi-
tions (Laskar & Gastineau 2009). This remark is particularly true
for unstable systems that can experience strong planet scattering
caused by close encounters.

There is therefore considerable interest in developing fast
and accurate numerical integrators, and numerous integrators
have been developed over the years to fulfill this task. For
long-term integrations, the most commonly used are symplectic
integrators. Symplectic schemes incorporate the symmetries of
Hamiltonian systems, and as a result, usually conserve the energy
and angular momentum better than non-symplectic integrators.
In particular, the angular momentum is usually conserved up to
a roundoff error in symplectic integrators.

Independently, Kinoshita et al. (1991) and Wisdom &
Holman (1991) developed a class of integrators that are often cal-
led mixed variable symplectic (MVS) integrators. This method
takes advantage of the hierarchy between the Keplerian motion
of the planets around the central star and the perturbations indu-
ced by planet interactions. It is thus possible to make accurate
integrations using relatively large time-steps.

The initial implementation of Wisdom & Holman (1991) is
a low-order integration scheme that still necessitates small time-
steps to reach machine precision. Improvements to the method
have since been implemented. The first category is symplectic
correctors (Wisdom et al. 1996; Wisdom 2006). They consist of
a modification of the initial conditions to improve the scheme

accuracy. Because it is only necessary to apply them when an
output is desired, they do not affect the performance of the inte-
grator. This approach is for example used in WHFAST (Rein &
Tamayo 2015). The other approach is to consider higher order
schemes (McLachlan 1995b; Laskar & Robutel 2001; Blanes
et al. 2013). High-order schemes permit a very good control of
the numerical error by fully taking advantage of the hierarchi-
cal structure of the problem. This has been used with success
to carry out high-precision long-term integrations of the solar
system (Farrés et al. 2013).

The principal limitation of symplectic integrators is that they
require a fixed time-step (Gladman et al. 1991). If the time-step
is modified between each step, the integrator remains symplec-
tic because each step is symplectic. However, the change in
time-step introduces a possible secular energy drift that may
reduce the interest of the method. As a consequence, classi-
cal symplectic integrators are not very adapted to treat the case
of systems that experience occasional close encounters where
very small time-steps are needed.

To resolve close encounters, Duncan et al. (1998) and
Chambers (1999) provided solutions in the form of hybrid sym-
plectic integrators. Duncan et al. (1998) developed a multiple
time-step symplectic integrator, SYMBA, where the smallest
time-steps are only used when a close encounter occurs. The
method is limited to an order two scheme, however. The hybrid
integrator MERCURY (Chambers 1999) moves terms from the
perturbation step to the Keplerian step when an interaction
between planets becomes too large. The Keplerian step is no
longer integrable but can be solved at numerical precision
using a non-symplectic scheme such as Burlisch–Stoer or
Gauss–Radau. However, the switch of numerical method leads
to a linear energy drift (Rein & Tamayo 2015). Another solution
to the integration of the collisional N-body problem has been
proposed in (Hernandez & Bertschinger 2015; Hernandez 2016;
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Dehnen & Hernandez 2017). It consists of a fixed time-step
second-order symplectic integrator that treats every interaction
between pairs of bodies as Keplerian steps.

Another way to build a symplectic integrator that correctly
regularises close encounters is time renormalisation. Up to an
extension of the phase space and a modification of the Hamilto-
nian, it is indeed always possible to modify the time that appears
in the equations of motion. As a result, the real time becomes
a variable to integrate. Providing some constraints on the renor-
malisation function, it is possible to integrate the motion with
a fixed fictitious time-step using an arbitrary splitting scheme.
Here we show that with adapted time renormalisation, it is
possible to resolve close encounters accurately.

While time renormalisation has not been applied in the con-
text of close encounters of planets, it has been successful in
the case of perturbed highly eccentric problems (Mikkola 1997;
Mikkola & Tanikawa 1999; Preto & Tremaine 1999; Blanes &
Iserles 2012), see Mikkola (2008) for a general review. We here
adapt a time renormalisation proposed independently by
Mikkola & Tanikawa (1999) and Preto & Tremaine (1999). We
show that it is possible to use the perturbation energy to monitor
close encounters in the context of systems with few planets with
similar masses. We are able to define a MVS splitting that can be
integrated with any high-order scheme.

We start in Sect. 2 by briefly recalling the basics of the
symplectic integrator formalism. In Sect. 3 we present the time
renormalisation that regularises close encounters, and we then
discuss the consequence of the renormalisation on the hierarchi-
cal structure of the equations (Sect. 4). In Sect. 5 we numerically
demonstrate over short-term integrations the behaviour of the
integrator at close encounter. We then explain (Sect. 6) how our
time regularisation can be combined with the perihelion regular
isation proposed by Mikkola (1997). Finally, we show the results
of long-term integration of six planet systems in the context
of strong planet scattering (Sect. 7) and compare our method
to a recent implementation of MERCURY described in Rein
et al. (2019), to SYMBA, and to the non-symplectic high-order
integrator IAS15 (Sect. 8).

2. Splitting symplectic integrators

We consider a Hamiltonian H(p,q) that can be written as a sum
of two integrable Hamiltonians,

H(p,q) = H0(p,q) + H1(p,q). (1)

A classical example is given by H0 = T (p) and H1 = U(q),
where T (p) is the kinetic energy and U(q) is the potential energy.
In planetary dynamics, we can split the system as H0 = K(p,q),
where K is the sum of the Kepler problems in Jacobi coordinates
(e.g. Laskar 1990) and H1 = Hinter(q) is the interaction between
the planets.

Using the Lie formalism (e.g. Koseleff 1993; Laskar &
Robutel 2001), the equation of motion can be written
dz
dt

= {H, z} = LHz, (2)

where z = (p,q), {·, ·} is the Poisson bracket1 , and we note L f =
{ f , ·}, the Lie differential operator. The formal solution of Eq. (2)
at time t = τ + t0 from the initial condition z(t0) is

z(τ + t0) = exp(τLH)z(t0) =

+∞∑
k=0

τk

k!
Lk

Hz(t0). (3)

1 We use the convention { f , g} =
∑

i
∂ f
∂pi

∂g

∂qi
−

∂ f
∂qi

∂g

∂pi
.

In general, the operators LH0 and LH1 do not commute,
so that exp(τLH) , exp(τLH0 ) exp(τLH1 ). However, using the
Baker-Campbell-Hausdorff (BCH) formula, we can find the
coefficients ai and bi such that

exp(τ(LH + LHerr )) = S(τ) =

N∏
i=1

exp(aiτLH0 ) exp(biτLH1), (4)

where Herr = O(τr) is an error Hamiltonian depending on H0,
H1, τ and the coefficients ai and bi.

Because H0 and H1 are integrable, we can explicitly compute
the evolution of the coordinates z under the action of the maps
exp(τLH0 ) and exp(τLH1 ). The map S(τ) is symplectic because
it is a composition of symplectic maps. Moreover, S(τ) exactly
integrates the Hamiltonian H + Herr.

If there is a hierarchy in the Hamiltonian H in the sense that
|H1/H0| ' ε � 1, we can choose the coefficients such that the
error Hamiltonian is of the order of

n∑
i=1

O(τriεi), (5)

(see McLachlan 1995b; Laskar & Robutel 2001; Blanes et al.
2013; Farrés et al. 2013). For small ε and τ, the solution of
H + Herr is very close to the solution of H. In particular, it is
thought that the energy error of a symplectic scheme is bounded.
Because Herr depends on τ, a composition of steps S(τ) also
has this property if the time-step is kept constant. Otherwise,
the exact integrated dynamics changes at each step, leading to a
secular drift of the energy error.

In planetary dynamics, we can split the Hamiltonian such
that H0 is the sum of the Keplerian motions in Jacobi coordinates
and H1 is the interaction Hamiltonian between planets, which
only depends on positions and thus is integrable (e.g. Laskar
1990). This splitting naturally introduces a scale separation ε
given by

ε =

∑N
k=1 mk

m0
(6)

where N is the number of planets, mk is the mass of the kth
planet, and m0 is the mass of the star. If the planets remain far
from each other, H1 is always ε small with respect to H0.

The perturbation term is of the order of ε/∆, where ∆ is the
typical distance between the planets in units of a typical length of
the system. During close encounters, ∆ can become very small,
and the step size needs to be adapted to ε/∆min Here ∆min is the
smallest expected separation between planets normalised by a
typical length of the system.

3. Regularised Hamiltonian

3.1. General expression

In order to construct an adaptive symplectic scheme that regu-
larises the collisions, we extend the phase space and integrate
the system with a fictitious time. Let s be such that

dt = g(p, pt,q)ds, (7)

where g is a function to be determined and pt is the conju-
gated momentum to the real time t in the extended phase space.
In order to have an invertible function t(s), we require g to be
positive. We consider the new Hamiltonian Γ defined as

Γ(p, pt,q, t) = g(p, pt,q) (H(p,q) + pt) . (8)
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Γ does not depend on t, therefore pt is a constant of motion. The
equations of motion of this Hamiltonian are

dt
ds

= {Γ, t} = g(p, pt,q) +
∂g

∂pt
(p, pt,q) (H(p,q) + pt) , (9)

and for all function f (z)

d f (z)
ds

= {Γ, f (z)} = g(p, pt,q){H, f } + (H + pt) {g, f (z)}. (10)

In general, H is not a constant of motion of Γ. We have

dH
ds

= {Γ,H} = (H + pt) {g,H}. (11)

If we choose initial conditions z0 such that pt = −H(z0),
we have Γ|t=0 = 0. Because Γ is constant and g is positive, we
deduce from Eq. (3) that we have at all times

H + pt = 0. (12)

Because pt is also a constant of motion, H is constant for all
times. We can simplify the Eqs. of motion (9) and (10) into

dt
ds

= g(p, pt,q)

d f
ds

(z) = g(p, pt,q){H, f (z)}. (13)

On the manifold pt = −H(t0), Eq. (13) describe the same
motion as Eq. (2). We call them the regularised equations.

We now wish to write Γ as a sum of two integrable
Hamiltonians such as in Sect. 2. Based on previous works
(Preto & Tremaine 1999; Mikkola & Tanikawa 1999; Blanes &
Iserles 2012), we write

H + pt = (H0 + pt) − (−H1), (14)

for H = H0 + H1 and we define g as

g(p, pt,q) =
f (H0 + pt) − f (−H1)

H0 + pt + H1
, (15)

where f is a smooth function to be determined. g is the difference
quotient of f and is well defined when H0 + pt + H1 → 0. We
have

g(p, pt,q)|H+pt=0 = f ′(H0 + pt) = f ′(−H1). (16)

With this choice of g, the Hamiltonian Γ becomes

Γ = f (H0 + pt) − f (−H1) = Γ0 + Γ1, (17)

where we note Γ0 = f (H0 + pt) and Γ1 = − f (−H1). We remark
that Γ0 (resp. Γ1) is integrable because it is a function of H0 + pt
(resp. H1), which is integrable. Moreover, we have

LΓ0 = f ′(H0 + pt)LH0+pt ,

LΓ1 = f ′(−H1)LH1 . (18)

Because H0 + pt (resp. H1) is a first integral of Γ0 (resp. Γ1),
we have

exp(σLΓ0 ) = exp(σ f ′(H0 + pt)LH0+pt ) = exp(τ0LH0+pt ),
exp(σLΓ1 ) = exp(σ f ′(−H1)LH1 ) = exp(τ1LH1 ), (19)

where

τ0 = σ f ′(H0 + pt) and τ1 = σ f ′(−H1). (20)

The operator exp(σLΓ0 ) (exp(σLΓ1 )) is equivalent to the
regular operator exp(τ0LH0+pt ) (exp(τ1LH1 )) with a modified
time step. The operator exp(σLΓ) can be approximated by a
composition of operators exp(σLΓk )

SΓ(σ) =

N∏
i=1

exp(aiσLΓ0 ) exp(biσLΓ1 ). (21)

With the BCH formula, SΓ(σ) = exp(σ(LΓ + LΓerr ), where
Γerr is an error Hamiltonian that depends on σ. The symplectic
map SΓ(σ) exactly integrates the modified Hamiltonian Γ + Γerr.
The iteration of SΓ(σ) with fixed σ is a symplectic integrator
algorithm for Γ.

When the timescale σ is small enough, the numerical val-
ues of H0 and H1 do not change significantly between each step
of the composition. We have SΓ(σ) ' S(τ) with τ ' σ f ′(−H1).
In other words, SΓ behaves as S with an adaptive time-step
while keeping the bounded energy properties of a fixed time-step
integrator.

3.2. Choice of the regularisation function

We wish the step sizes (20) to become smaller when planets
experience close encounters. These time-steps are determined by
the derivative of f . For nearly Keplerian systems, Mikkola &
Tanikawa (1999) and Preto & Tremaine (1999) studied renor-
malisation functions such that f ′(x) ∝ x−γ, where γ > 0 (this
corresponds to power-law functions and the important case of
f = ln).

However, these authors considered splitting of the type H0 =
T (p) and H1 = U(q). As pointed out in Blanes & Iserles (2012),
when the Hamiltonian is split as the Keplerian part plus an inte-
grable perturbation, it appears that both terms K(p,q) + pt and
−H1 can change signs, resulting in large errors in the integration.

We remark that the use of f = ln gives the best result when
two planets experience a close encounter, but it leads to large
energy errors far away for collision when H1 is nearly 0. Based
on these considerations, we require f to verify several proper-
ties to successfully regularise the perturbed Keplerian problem
in presence of close encounters:

– f ′ should only depend on the magnitude of the perturbation
H1, therefore we require f ′ even (and f odd).

– As already pointed out, t must be an increasing function of
s, therefore f ′ > 0.

– f ′ should be smooth, therefore we exclude piecewise renor-
malisation functions.

– We require that the regularisation vanishes in absence of
perturbation i.e. f ′(0) = 1. It results that for vanishing
perturbation, σ = τ.

– Let E1 be a typical value of H1 far from close encounters
that we determine an expression for below. f ′ should only
depend on H1/E1 in order to only track relative changes in
the magnitude of the perturbation.

– For high values of the perturbation (e.g. during close
encounters), we require f ′(H1) ∼ |E1/H1| such that we pre-
serve the good properties pointed out by previous studies
(Preto & Tremaine 1999; Mikkola & Tanikawa 1999).

– To reduce the computational cost of the integrator, f ′ has to
be numerically inexpensive to evaluate.

These properties lead to a very natural choice for f ′ (see in
Fig. 1). We choose

f ′(h) =
1√

1 +
(

h
E1

)2
. (22)
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1

2 f(h)/E1

Fig. 1. Upper panel: f ′, Eq. (22) as a function of h/E1. The asymptotic
value for h/E1 → +∞ is given in green. Lower panel: f /E1, Eq. (23) as
a function of h/E1.

Taking the odd primitive of Eq. (22), we find

f (h) = E1 arcsinh
(

h
E1

)
. (23)

For now on, f always refers to definition (23). With this
choice of the function f , the Hamiltonian Γ takes the form

Γ = E1 arcsinh
(

H0 + pt

E1

)
+ E1 arcsinh

(
H1

E1

)
, (24)

where we used the oddity of f .
We need to define E1 more explicitly. When planets are far

from each other, their mutual distance is of the same order as the
typical distance between the planets and the star. Using the same
idea as in Marchal & Bozis (1982); Petit et al. (2018), we define
a typical length unit of the system based on the initial system
energy E0. We have

atypical = −
GM∗

2E0
, (25)

where M∗ =
∑

0≤i< j mim j. The typical value for the perturbation
Hamiltonian far away from collision can be defined as

E1 =
Gm∗

atypical
=

2|E0|m∗

M∗
, (26)

where m∗ =
∑

1≤i< j mim j. We note that we have E1/E0 = O(ε).
The behaviour of the higher order derivative of f is useful

for the error analysis, and in particular, their dependence in ε.
The kth derivative of f has for expression

f (k)(h) = E1−k
1 arcsinh(k)

(
h

E1

)
= O(ε1−k). (27)

4. Order of the scheme

4.1. Analytical error estimates

As explained in Sect. 2, most of the planet dynamics simula-
tions are made with a simple a second-order scheme such as
the Wisdom–Holman leapfrog integrator (Wisdom & Holman
1991). It is indeed possible to take advantage of the hierarchy

between H0 and H1. This can be done by adding symplectic
correctors (Wisdom et al. 1996; Rein & Tamayo 2015) or by can-
celling the term of the form ετk up to a certain order (Laskar &
Robutel 2001).

Hierarchical order schemes such as SABA(10, 6, 4) (Blanes
et al. 2013; Farrés et al. 2013) behave effectively as a tenth-order
integrator if ε is small enough. Cancelling only selected terms
reduces the number of necessary steps of the scheme, which
reduces the numerical error and improves the performances.

Unfortunately, this property cannot be used for the regu-
larised Hamiltonian because Γ0 and Γ1 are almost equal in
magnitude. Nevertheless, it should be noted that the equations of
motion (13) and the Lie derivatives (18) keep their hierarchical
structure. The Poisson bracket of Γ0 and Γ1 gives

{Γ0,Γ1} = f ′(H0 + pt) f ′(H1){H0,H1}. (28)

Because f ′ does not depend directly on ε (by choice, f ′ only
tracks relative variations of H1), {Γ0,Γ1} is of the order of ε.
However, for higher order terms in σ in Herr, it is not possible
to exploit the hierarchical structure in ε. We consider the terms
of the order of σ2 in the error Hamiltonian for the integration
of Γ using the leapfrog scheme. We have (e.g. Laskar & Robutel
2001)

Γerr =
σ2

12
{{Γ0,Γ1},Γ0} +

σ2

24
{{Γ0,Γ1},Γ1} + O(σ4). (29)

In order to show the dependence in ε, we develop the Poisson
brackets in Eq. (29)

Γerr =
σ2

12
f ′(H0 + pt)2 f ′(H1){{H0,H1},H0}

−
σ2

12
f ′(H0 + pt)2 f ′′(H1) ({H0,H1})2 (30)

+
σ2

24
f ′(H1)2 f ′(H0 + pt){{H0,H1},H1}

+
σ2

24
f ′(H1)2 f ′′(H0 + pt) ({H0,H1})2 + O(σ4).

The first and third terms only depend on f ′ and nested Pois-
son brackets of H0 and H1. Their dependency on ε is thus
determined by the Poisson brackets as in the fixed time-step case.
The first term is of the order of εσ2 and the third of the order of
ε2σ2. On the other hand, the second and last terms introduce the
second derivative of f as well as a product of Poisson bracket
of H0 and H1. Equation (27) shows that they are of the order of
εσ2.

In order to cancel all terms of the order of εσ2, it is necessary
to cancel both terms by σ2 in Eq. (29). Thus, the strategy used in
Blanes et al. (2013) does not provide a scheme with a hierarchical
order because every Poisson bracket contributes with terms of
the order of ε to the error Hamiltonian.

It is easy to extend the previous result to all orders in σ. We
consider a generic error term of the form

Γgen = σn−1{{Γk0 ,Γk1 }, . . . ,Γkn }, (31)

where k j is either 0 or 1 and k0 = 0 and k1 = 1. The development
of Γgen into Poisson brackets of H0 and H1 contains a term that
has for expression

σn−1 f (n0)(H0 + pt) f (n1)(H0 + pt) f ′n0
1 f ′n1

0 ({H0,H1})n−1, (32)

where n j is the number of Γ j in Γgen, and f ′1 = f ′(H1). Because
n = n0 + n1, we deduce from Eq. (27) that the term Eq. (32) is of
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the order of εσn−1. Thus, the effective order of the Hamiltonian
is always εσrmin , where rmin is the smallest exponent rk in Eq. (5).
The error is still linear in ε. Hence, it is still worth using the
Keplerian splitting.

We use schemes that are not dependent on the hierarchy
between H0 and H1. McLachlan (1995a) provided an exhaustive
list of the optimal methods for fourth-, sixth-, and eighth-order
integrators. Among the schemes he presented, we select a sixth-
order method consisting of a composition of n = 7 leapfrog steps
introduced by Yoshida (1990) and an eighth-order method that
is a combination of n = 15 leapfrog steps. A complete review
of these schemes can be found in Hairer et al. (2006). The
coefficients of the schemes are given in Appendix B.

In order to solve the Kepler step, we adopt the same approach
as Mikkola (1997); Rein & Tamayo (2015). The details on this
particular solution as well as other technical details are given in
Appendix A.

4.2. Non-integrable perturbation Hamiltonian

When the classical splitting of the Hamiltonian written in canon-
ical heliocentric coordinates is used, H1 depends on both posi-
tions and momenta. We can write H1 as a sum of two integrable
Hamiltonian H1 = T1 + U1, where T1 is the indirect part that
only depends on the momenta and U1 is the planet interaction
potential, only depending on positions (Farrés et al. 2013). We
thus approximate the evolution operator (19) by

exp(σLΓ1 ) = exp
(
τ1

2
LT1

)
exp

(
τ1LU1

)
exp

(
τ1

2
LT1

)
+ O(ε3τ3

1).

(33)

The numerical results suggest that heliocentric coordinates
give slightly more accurate results at constant cost. It is possi-
ble to use an alternative splitting that is often called democratic
heliocentric splitting (Laskar 1990; Duncan et al. 1998). With
this partition of the Hamiltonian, the kinetic and the potential
part of the perturbation Hamiltonian commute. Therefore, the
step exp(σLΓ1 ) is directly integrable using the effective step size
τ1 Eq. (20). In the following numerical tests, we always use the
classical definition when we refer to heliocentric coordinates.

5. Error analysis near the close encounter

5.1. Time-step and scheme comparison

In this section, we test how a single close encounter affects the
energy conservation. To do so, we compare different integra-
tion schemes for a two-planet system, initially on circular orbits,
during an initial synodic period

Tsyn =
2π

n1 − n2
=

2π
n2(α−3/2 − 1)

, (34)

where ni is the mean motion of planet i and α is the ratio of the
semi-major axis.

Because the time-step is renormalised, we need to introduce
a cost function that depends on the fictitious time s as well as on
the number of stages involved in the scheme of the integrator. We
define the cost of an integrator as the number of evaluations of
exp(aσLΓ0 ) exp(bσLΓ1 ) that are required to integrate for a given
real time period Tsyn

C =
ssynn
Tsynσ

, (35)
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Fig. 2. Comparison between various schemes detailed in the body of the
text for the integration of a single synodic period for a system of equal-
mass planets initially on planar circular orbits with ε = 2m/m0 = 10−5

and α = 0.8. The solid lines represent the integrations using a fixed
real time-step and the dots the adaptive time-steps. The closest planet
approach is 0.19992 AU.

where ssyn is the fictitious time after Tsyn, σ is the fixed fictitious
time-step, and n is the number of stages of the integrator. We
also compare the renormalised integrators to the same scheme
with fixed time-step. For a fixed time-step, the cost function is
simply given by Cfixed = n/τ, where τ is the time-step (Farrés
et al. 2013). We present different configurations in Figs. 2–4.

In the two first sets, we integrate the motion of two equal-
mass planets on circular orbits, starting in opposition with
respect to the star. In both simulations, we have ε = (m1 +
m2)/m0 = 10−5, the stellar mass is 1 M�, and the outer planet
semi-major axis is 1 AU. In both figures, we represent the
averaged relative energy variation

Γ

E0
' f ′(H1)

∆E
E0

. (36)

as a function of the inverse cost C−1 of the integration for various
schemes:

– the classical order 2 leapfrogABA(2, 2),
– the schemeABA(8, 2) from Laskar & Robutel (2001),
– the schemeABA(10, 6, 4) from Blanes et al. (2013),
– the sixth- and eighth-order schemes from McLachlan

(1995a) that we introduced in the previous section.
For each scheme, we plot with a solid line the result of the
fixed time-step algorithm and with dots the results of the adap-
tive time-step integrator. In the results presented in Figs. 2
and 3, the systems are integrated in Jacobi coordinates. In Fig. 4
we integrate in heliocentric coordinates. For the three cases,
the integrations were also carried out with the other set of
coordinates with almost no differences.

In Fig. 2 the initial semi-major axis ratio α is 0.8 and the
closest approach of the two planets is 0.19992 AU. In this case, a
fixed time-step algorithm provides accurate results, and when a
generalized order scheme such as ABA(8, 2) or ABA(10, 6, 4)
is used, the performances are better with a fixed time-step than
with an adaptive one. However, we see no sensitive differ-
ences in accuracy between the fixed and adaptive versions of
the ABA(6∗) and ABA(8∗) schemes. For the most efficient
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Fig. 3. Same as Fig. 2 for a system of two equal-mass planets initially on
planar circular orbits with ε = 2m/m0 = 10−5 and α = 0.97. The closest
planet approach is 3.68 × 10−5 AU.
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Fig. 4. Same as Fig. 2 for a system of two equal-mass planets initially on
planar circular orbits with ε = 2 m/m0 = 10−3 and α = 0.9. The closest
planet approach is 1.7 × 10−2 AU. This system is integrated in heliocen-
tric coordinates to demonstrate that we obtain similar results to the case
of Jacobi coordinates.

schemes, machine precision is reached for an inverse cost of a
few 10−3. This case illustrates the point made in Sect. 4 that there
is no advantage in using the hierarchical structure of the original
equation in the choice of the scheme.

In Fig. 3 the initial semi-major axis ratio α is 0.97 and the
closest approach of the two planets is 3.68× 10−5 AU. The radius
of a planet of mass 5 × 10−6 M� with a density of 5 g cm−3,
denser than Earth, is 5.21 × 10−4 AU, that is, ten times greater.
We can compute the density that corresponds to a body of mass
5 × 10−6 M� and radius half the closest approach distance. We
obtain a density of 1.1 × 105 g cm−3, which is close to the white
dwarf density. In this case, the fixed time-step algorithm is
widely inaccurate while the performance of the adaptive time-
step algorithm remains largely unchanged. This demonstrates
how powerful this new approach is for the integration of systems
with a few planets.
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Fig. 5. Mutual distance of the planets as a function of the fictitious time
for 1000 initial conditions chosen as described in the body of the text.
On the upper axis, we give the real time for the initial condition that
reached the closest approach.

We also give an example with higher mass planets in Fig. 4.
We plot the relative energy error as a function of the inverse cost
for a system of two planets of mass 5 × 10−4 M� that correspond
to the case of ε = 10−3. The initial semi-major axis ratio is 0.9 to
ensure a closest-approach distance of 1.7 × 10−2 AU.

For this particular close encounter, it is still possible to reach
machine precision with a fixed time-step at the price of a very
small time-step. On the other hand, the close encounter is per-
fectly resolved for the adaptive time-step, even if ε is larger by
two orders of magnitude. Because of the higher masses, it is
necessary to take smaller time-steps to ensure that the relative
energy error remains at machine precision.

5.2. Behaviour at exact collision

To demonstrate the power of our algorithm in resolving close
encounters, we considered the case of two planets that almost
exactly collide (as if the bodies were material points). We take
two planets of mass m = 10−5 M�, the first on an orbit of eccen-
tricity 0.1 and semi-major axis 0.95 AU, and the second on a
circular orbit of semi-major axis 1 AU. We then fine-tuned the
mean longitudes of the two planets to ensure that we approach
the exact collision. We integrated 1000 initial conditions for
which we linearly varied λ1 between −0.589 and −0.587, and
we took λ2 = −1.582.

In Fig. 5 we represent for each initial condition the mutual
distance of the planets as a function of the fictitious time s. In
the upper axis, we give the real time of the particular initial con-
dition that gave the closest approach. In this simulation, all initial
conditions reached a mutual distance smaller than 1.1× 10−4 AU
and the closest approach is 5.5×10−9 AU. For the chosen masses,
we can compute the physical radius of such bodies assuming a
particular bulk density. We have

Rp = 5.21 × 10−2
(

ρ

1 g cm−3

)−1/3 (
mp

1M�

)1/3

, (37)

where ρ is the bulk density of the planet. The radius is only a
weak function of the density over the range of planet bulk densi-
ties. When we assume a very conservative value of ρ = 6 g cm−3,
we obtain a planet radius of 6.17 × 10−4 AU, that is, well above
the close encounters considered here.
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Fig. 6. Relative energy error as a function of the closest mutual approach
reached during a close encounter of super-Earths in a two-planet sys-
tem and in a six-planet system. The particular initial conditions are
described in the text. In the upper part, we give the mutual distance
in units of planet radii for a planet of density ρ = 6 g cm−3.

We plot the energy error as a function of the closest approach
distance in Fig. 6. We also considered a more practical case
where four other planets were added to the system. The addi-
tional planets were located on circular orbits, had the same
masses of 10−5 M� and were situated outside of the orbit of the
second planet, with an equal spacing of 0.15 AU. Their initial
angles are randomly drawn but were similar in every run.

In both set-ups, we used the heliocentric ABA(8∗) scheme,
and the fictitious time-step was σ = 10−2. In the case of the two-
planet system, machine precision is reached even for an approach
of approximately 10−6 AU, which corresponds to a planet radius
of about 10−3. When planets are added, it is more difficult to
reach very close encounters because the other planets are per-
turbed. Nonetheless, approaches up to 6 × 10−7 AU are reached,
and the close encounter is resolved at machine precision up to a
closest distance of 3 × 10−5 AU or a planet radius of 5 × 10−2.

6. Pericenter regularisation

When planet–planet scattering is studied, the closest distance
between the planet and the star may be reduced. As a result, the
fixed time-step becomes too large and the passage at pericenter
is insufficiently resolved. In order to address this problem, we
can combine the close-encounter regularisation of Sect. 3 with a
regularisation method introduced by Mikkola (1997).

We first detail Mikkola’s idea. When integrating a few-body
problem Hamiltonian, a time renormalisation dt = g(q)du can be
introduced, where

g(q) =

 N∑
i=1

Ai

qi

−1

. (38)

Here Ai are coefficients that can be chosen arbitrarily. In this
article, we define them as

Ai =
miatypical∑N

j=1 m j
, (39)

where atypical, defined in Eq. (25), is the typical length scale of
the system. The new Hamiltonian Υ in the extended phase space
(q, t,p, pt) is

Υ = Υ0 + Υ1 = g(q)(H0 + pt) + g(q)H1. (40)

As in Sect. 3, in the sub-manifold {pt = H(0)}, Υ and H have
the same equations of motion up to the time transformation. If H1
only depends on q (using Jacobi coordinates, e.g.), Υ1 is trivial
to integrate.

6.1. Kepler step

It is also possible to integrate Υ0 as a modified Kepler motion
through the expression of g (Mikkola 1997). We denote υ0 =
Υ0(0) and H̃0 = g−1(q)(Υ0 − υ0). H̃0 has the same equations of
motion as Υ0 up to a time transformation dt̃ = g−1(q)du. We have

H̃0 = H0 + pt − υ0

N∑
i=1

Ai

qi

= pt +

N∑
i=1

‖pi‖
2

2mi
−
µimi + υ0Ai

qi
= pt +

N∑
i=1

K̃i, (41)

where K̃i is the Hamiltonian of a Keplerian motion of planet i
with a modified central mass

µ̃i = µi

(
1 +

υ0Ai

µimi

)
= µi

1 +
υ0atypical

µi
∑N

j=1 m j

 . (42)

However, the time equation must be solved as well. We inte-
grate with a fixed fictitious time-step ∆u. The time ∆t̃(u) is
related to u through the relation

∆u =

∫ ∆t̃

0
g−1(q(t̃))dt̃ =

N∑
i=1

Ai

∫ ∆t̃

0

1
ri(t̃))

dt̃, (43)

where ri(t̃) follows a Keplerian motion. We can rewrite Eq. (43)
with the Stumpff formulation of the Kepler equation (Mikkola
1997; Rein & Tamayo 2015, see Appendix A.1). Because∫ ∆t̃

0
1

ri(t̃))
dt̃ = Xi, we have

∆u =

N∑
i=1

AiXi. (44)

As a consequence, the N Stumpff–Kepler equations

∆t̃ = r0iXi + η0iG2(β0i, Xi) + ζ0iG3(β0i, Xi) = κi(Xi), (45)

must be solved simultaneously with Eq. (44). To do so, we used
a multidimensional Newton-Raphson method on the system of
N + 1 equations consisting of the N Kepler Eqs. (45) and (44)
of unknowns Y = (X1, . . . , XN ,∆t̃). The algorithm is almost as
efficient as the fixed-time Kepler evolution because it does not
add up computation of Stumpff’s series. At step k, we can obtain
Y (k+1) through the equation

Y (k+1) = Y (k) − dF−1(Y (k))(F(Y (k))), (46)

where

F =


κ1(X1) − ∆t̃

...
κN(XN) − ∆t̃∑N
i=1 AiXi − ∆u

 , (47)

and

dF =


κ′1(X1) 0 · · · −1

0
. . . 0 −1

· · · 0 κ′N(XN) −1
A1 · · · AN 0

 , (48)
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with κ′i being the derivative with respect to Xi of κi (Eq. (45)).
Equation (46) can be rewritten as a two-step process where a

new estimate for the time ∆t̃ (k+1) is computed and is then used to
estimate X(k+1)

i . We have

∆t̃ (k+1) =

∆u +

N∑
i=1

Ai

(
κi(X

(k)
i ) − κ′i (X

(k)
i )X(k)

i

)
κ′i (X

(k)
i )

 /  N∑
i=1

Ai

κ′i

 , (49)

and

X(k+1)
i =

∆t̃ (k+1) + κ′i (X
(k)
i )X(k)

i − κi(X
(k)
i )

κ′i (X
(k)
i )

. (50)

6.2. Heliocentric coordinates

In heliocentric coordinates, HH
1 depends on p as well. As a result,

gHH
1 cannot be easily integrated, and it is not even possible write

it as a sum of integrable Hamiltonians. To circumvent this prob-
lem, we can split gHH

1 into gUH
1 and gT H

1 . The potential part
gUH

1 is integrable, but a priori, gT H
1 is not integrable.

The integration of gT H
1 can be integrated using a logarithmic

method as proposed in Blanes & Iserles (2012). The evolution of
gT H

1 during a step ∆t is the same as the evolution of log gT H
1 =

log g + log T H
1 , which is separable, for a step T1∆t where T1 =

gT H
1 |t=0. Therefore, we can approximate log gT H

1 using a leapfrog
scheme, and the error is of order ∆u2ε3 as well.

Then, we can approximate the heliocentric step using the
same method as in Sect. 4.2. In this case, it is necessary to
approximate the step even when democratic heliocentric coor-
dinates are used because g(q) does not commute with T H

1 .

6.3. Combining the two regularisations

We showed that the Hamiltonian Υ is separable into two parts
that are integrable (or nearly integrable for heliocentric coordi-
nates). Therefore we can simply regularise the close encounters
by integrating the Hamiltonian

Γ̃ = f (Υ0 + pu) + f (Υ1) = f (g(q)(H0 + pt) + pu) + f (g(q)H1),
(51)

where pu is the momentum associated with the intermediate time
u used to integrate Υ alone. The time equation is

dt
ds

=
∂Γ̃

∂pt
= f ′(Υ0)g(q). (52)

We need to place ourselves on the sub-manifold such that
Υ0 + pu + Υ1 = 0 and H0 + pt + H1 = 0, in order to have the same
equations of motion for Γ̃, Υ and H . Both of these conditions are
fulfilled by choosing pt = −E0 and pu = 0.

7. Long-term integration performance

So far, we only presented the performance of the algorithm for
very short integrations. In this section, we present the long-
term behaviour of the integrator for systems with a very chaotic
nature. We consider two different configurations, a system com-
posed of equal planet masses on initially circular, coplanar and
equally spaced orbits, used as a test model for stability analysis
since the work of Chambers et al. (1996). The second is a similar
system but with initially moderate eccentricities and inclinations.
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Fig. 7. Evolution of the relative energy error for 100 systems composed
of six planets on initially circular orbits. The light curves represent indi-
vidual systems, and the thicker blue curves show the average over the
100 systems. The orange straight line is proportional to

√
t in order to

show that the integrator follows Brouwer’s law. The orange line is the
same in all energy error figures for comparison.

7.1. Initially circular and coplanar systems

We integrated 100 systems of six initially coplanar and circular
planets. The planet masses were taken to be equal to 10−5 M⊕,
and the semi-major axis of the outermost planet was fixed to
1 AU, while the semi-major axis ratios of the adjacent planets
were all equal to 0.88. These valus were chosen to ensure that
the lifetime of the system was of the order of 300 kyr before
the first collision. The fixed fictitious time-step was σ = 10−2 yr.
Because of the renormalisation, this approximately corresponds
to a fixed time-step of 6.3 × 10−3 yr in terms of computational
cost. The initial period of the inner planet was of the order of
0.38 yr, that is, we have about 50 steps per orbit.

The simulations were stopped when two planet centres
approached each other by less than half the planet radii, assum-
ing a density of 6 g cm−3. This stopping criterion is voluntarily
nonphysical as it allows for a longer chaotic phase that leads to
more close encounters. We also monitored any encounters with
an approach closer than 2 Hill radii at 1 AU (0.054 AU) and
recorded its time, the planets involved, and the closest distance
between the two planets.

For the majority of the integrations, we observe moderate
semi-major axis diffusion without close encounters. About 1 kyr
before the final collision, the system enters a true scattering
phase with numerous close encounters. The integrations lasted
on average 353 kyr, the shortest was 129 kyr long and the longest
824 kyr. On average, we recorded 557 close encounters, and 68%
occurred during the last 10 000 yr. On average, 6.4 approaches
below 0.01 AU per system were recorded. Of these very close
encounters, 95% occurred during the last 1000 yr.

The relative energy error evolution is shown in Fig. 7. We
observe that the integrator follows the Brouwer (1937) law
because the energy error behaves as a random walk (the error
grows as

√
t). The scattering phase does not affect the energy

conservation: no spikes of higher error values occur towards the
end of the integrations.

7.2. Planet scattering on inclined and eccentric orbits

Our second long-term test problem was a set of planetary sys-
tems with moderate eccentricities and inclinations. The goal is
here to test the integrator in a regime where strong scattering
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Table 1. Summary of the main statistics and specifications of the spatial and eccentric runs.

Run J1 J2 H1 H2

Coordinates Jacobi Jacobi Heliocentric Heliocentric
Pericenter No Yes No Yes
Equivalent fixed time-step 2.6 × 10−3 yr−1 2.6 × 10−3 yr−1 2.9 × 10−3 yr−1 2.9 × 10−3 yr−1

Time-step per shortest orbit 112 112 102 102
Average lifetime 53.3 kyr 53.0 kyr 52.6 kyr 46.3 kyr
Average number of close encounters 1.26 × 104 1.17 × 104 1.20 × 104 1.07 × 104

Average number of very close encounters 458 415 426 384
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Fig. 8. Evolution of the semi-major axis, periapsis, and apoapsis for a
typical initial condition. The bold curve is the semi-major axis, and the
filled region represents the extent of the orbit. The mutual inclinations
are not represented.

occurs on long timescales with a much higher frequency in very
close encounters (shorter than 0.01 AU). In addition, this case
helps to demonstrate the advantage of the pericenter regularisa-
tion. The initial conditions were chosen as follows:

– Similarly to the previous case, we considered systems of six
planets with an equal mass of 10−5 M�.

– The semi-major axis ratio of adjacent pairs was 0.85.
– The Cartesian components of the eccentricities (e cos ($),

e sin ($)) and inclinations (i cos (Ω), i sin (Ω)) were drawn
from a centred Gaussian distribution with a standard devia-
tion of 0.08. The average eccentricities and inclinations were
about 0.11.

– The mean longitudes were chosen randomly.
We also kept the same stopping criterion and recorded the close
encounters (smaller than 2 Hill radii).

The integrations were performed with two sets of coor-
dinates, Jacobi and heliocentric; with and without pericenter
regularisation. The main statistics from the runs are summarised
in Table 1. For all integrations, we used the eighth-order scheme
and a fictitious time-step σ = 4 × 10−3. The systems on average
experience a close encounter every 5 yr. A typical evolution is
presented in Fig. 8. In this particular run, we see numerous planet
exchanges, almost 35 000 close encounters occur, and the system
experiences more than 1200 very close encounters. Nevertheless,
the final relative energy error is 6.8 × 10−15.

We plot in Figs. 9a–d the relative energy errors of runs J1,
J2, H1, and H2, respectively. We plot in light colours the rel-
ative energy error of individual systems and in thicker blue the
median of the relative energy error. The choice to use the median
was made because some initial conditions lead to a worse energy

conservation, which makes the average less informative. For
the longer times, the median is no longer reliable because the
majority of the simulations had already stopped.

Despite the extreme scattering that occurs, the energy is con-
served in most systems within the numerical round-off error
prescription. We also remark that the heliocentric coordinates
seem to provide a more stable integrator even though the interac-
tion step is approximated. In the two cases without the pericenter
regularisation, J1 and H1, it seems that the energy error is no
longer proportional to

√
t but linear in t.

As explained above, because of the high eccentricities, the
innermost pericenter passage is not very well resolved, and
therefore the step-to-step energy variation is no longer close
to machine precision. This effect has been confirmed by the
detailed analysis of the time-series close to energy spikes by
restarts of the integration from a binary file. We observed that
the energy did not change during the close encounter, but shortly
after, when the inner planet passed closer to the star because of
the scattering.

We also observe an initial condition well above the machine-
precision level in all four runs. In this particular system, we have
e5(t = 0) = 0.81, which gives an initial pericenter at 0.15 AU.
In this extreme case, the pericenter regularisation leads to an
improvement by two orders of magnitude of the error in Jacobi
coordinates. The heliocentric coordinates remain more efficient,
however, and we do not see an improvement in this particular
case.

In all runs, the time distribution of the close encounters
appears to be rather uniform. Moreover, the probability distri-
bution function (PDF) of the closest approach during a close
encounter is linear in the distance, as shown in Fig. 10. This
proves that the systems are in a scattering regime where the
impact parameters for the close encounters are largely random
(see also Laskar et al. 2011, Fig. 5).

8. Comparison with existing integrators

We ran the same eccentric and inclined initial conditions
using the REBOUND (Rein & Liu 2012) package integrators
IAS15 (Rein & Spiegel 2015) and MERCURIUS (Rein et al.
2019). IAS15 is an adaptive high-order Gauss-Radau integra-
tor, and MERCURIUS is a hybrid symplectic integrator simi-
lar to MERCURY (Chambers 1999). This choice is motivated
because the REBOUND team made recent and precise compar-
isons with other available integrators (Rein & Spiegel 2015;
Rein & Tamayo 2015). Moreover, we used a very similar imple-
mentation of the Kepler step. We also ran the same tests with
the multi-time-step symplectic integrator SYMBA (Duncan et al.
1998).

We plot in Fig. 11 the energy error median that results
from the integration. Our integrator performs similarly to the
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(a) J1: Jacobi coordinates, no pericenter regularisation.
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(b) J2: Jacobi coordinates, pericenter regularisation.
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(c) H1: heliocentric coordinates, no pericenter regularisation.
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(d) H2: heliocentric coordinates, pericenter regularisation.

Fig. 9. Evolution of the energy error for the four runs detailed in the text and Table 1. The light curves represent individual systems, and the thicker
blue curves show the medians over the 100 systems. The orange filled lines are proportional to

√
t and are the same in all energy error figures for

comparison. The dashed orange lines represents a linear error in time to show the deviation from the Brouwer law. We discuss the outliers in the
main text.
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Fig. 10. PDF of the closest approach during close encounters. The PDFs
of the four runs are almost identical.

non-symplectic integrator IAS15 and better than MERCURIUS
and SYMBA. Our integrator runs at the same speed as MERCURIUS
and SYMBA with a time-step of ∆t = 10−4. However, IAS15
is much faster on this particular problem (by a factor 10 on
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Fig. 11. Comparison of the different adaptive integrator runs presented
in Table 1 to other codes: IAS15, MERCURIUS, and SYMBA. The same
initial conditions were integrated. We plot the median of the energy
error.

average). MERCURIUS and SYMBA are not designed to work effi-
ciently at such low-energy errors. However, our motivation for
this work was to find a precise symplectic integrator for close
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encounters. We thus tried to obtain the best precision from
MERCURIUS and SYMBA to make the comparison relevant.

9. Discussion

We showed that time renormalisation can lead to very good
results for the integration of highly unstable planetary systems
using a symplectic integrator (Sect. 3). The algorithm can use
a scheme of arbitrary order, however, we have not been able to
take advantage of the hierarchical structure beyond the first order
in ε. This is due to the non linearity of the time renormalisation
as explained in Sect. 4. It is possible, however, to cancel every
term up to arbitrary order in the time-step using non-hierarchical
schemes.

Our time renormalisation uses the perturbation energy to
monitor when two planets encounter each other. The algorithm is
thus efficient if the two-planet interaction contributes to a signif-
icant part of the perturbation energy. As a result, this integrator
is particularly well adapted for systems of a few planets (up to
a few tens) with similar masses (within an order of magnitude).
Moreover, it behaves extremely well in the two-planet problem
even when one planet mass is significantly lower than the other.

However, the algorithm is not yet able to spot close encoun-
ters between terrestrial planets in a system that contains giant
planets, such as the solar system. In the case of the solar system,
the perturbation energy is dominated by the interaction between
Jupiter and Saturn. We plan to address this particular problem in
the future.

References
Blanes, S., & Iserles, A. 2012, Celest. Mech. Dyn. Astron., 114, 297
Blanes, S., Casas, F., Farrés, A., et al. 2013, Appl. Num. Math., 68, 58
Brouwer, D. 1937, AJ, 46, 149
Chambers, J. E. 1999, MNRAS, 304, 793
Chambers, J., Wetherill, G., & Boss, A. 1996, Icarus, 119, 261
Dehnen, W., & Hernandez, D. M. 2017, MNRAS, 465, 1201

Duncan, M. J., Levison, H. F., & Lee, M. H. 1998, AJ, 116, 2067
Farrés, A., Laskar, J., Blanes, S., et al. 2013, Celest. Mech. Dyn. Astron., 116,

141
Gladman, B., Duncan, M., & Candy, J. 1991, Celest. Mech. Dyn. Astron., 52,

221
Hairer, E., Lubich, C., & Wanner, G. 2006, Geometric Numerical Integration:

Structure-Preserving Algorithms for Ordinary Differential Equations (Berlin:
Springer Science & Business Media)

Hernandez, D. M. 2016, MNRAS, 458, 4285
Hernandez, D. M., & Bertschinger, E. 2015, MNRAS, 452, 1934
Kahan, W. 1965, Commun. ACM, 8, 40
Kinoshita, H., Yoshida, H., & Nakai, H. 1991, Celest. Mech. Dyn. Astron., 50,

59
Koseleff, P. V. 1993, in Applied Algebra, Algebraic Algorithms and Error-

Correcting Codes, eds. G. Cohen, T. Mora, & O. Moreno, Lecture Notes
in Computer Science (Berlin: Springer Berlin Heidelberg), 213

Laskar, J. 1990, in Les Méthodes Modernes de La Mécanique Céleste. Modern
Methods in Celestial Mechanics, 89

Laskar, J., & Gastineau, M. 2009, Nature, 459, 817
Laskar, J., & Robutel, P. 2001, Celest. Mech. Dyn. Astron., 80, 39
Laskar, J., Gastineau, M., Delisle, J.-B., Farrés, A., & Fienga, A. 2011, A&A,

532, L4
Marchal, C., & Bozis, G. 1982, Celest. Mech., 26, 311
McLachlan, R. 1995a, SIAM J. Sci. Comput., 16, 151
McLachlan, R. I. 1995b, BIT Num. Math., 35, 258
Mikkola, S. 1997, Celest. Mech. Dyn. Astron., 67, 145
Mikkola, S. 2008, in Dynamical Evolution of Dense Stellar Systems (Cambridge:

University Press), 246, 218
Mikkola, S., & Innanen, K. 1999, Celest. Mech. Dyn. Astron., 74, 59
Mikkola, S., & Tanikawa, K. 1999, Celest. Mech. Dyn. Astron., 74, 287
Petit, A. C., Laskar, J., & Boué, G. 2018, A&A, 617, A93
Preto, M., & Tremaine, S. 1999, AJ, 118, 2532
Rein, H., & Liu, S.-F. 2012, A&A, 537, A128
Rein, H., & Spiegel, D. S. 2015, MNRAS, 446, 1424
Rein, H., & Tamayo, D. 2015, MNRAS, 452, 376
Rein, H., Hernandez, D. M., Tamayo, D., et al. 2019, MNRAS, 485, 5490
Stiefel, E. L., & Scheifele, G. 1971, Linear and Regular Celestial Mechanics.

(Berlin: Springer)
Stumpff, K. 1962, Himmelsmechanik, Band I (Berlin: VEB Deutscher Verlag der

Wissenschaften)
Wisdom, J. 2006, AJ, 131, 2294
Wisdom, J., & Holman, M. 1991, AJ, 102, 1528
Wisdom, J., Holman, M., & Touma, J. 1996, Fields Inst. Commun., 10, 217
Yoshida, H. 1990, Phys. Lett. A, 150, 262

A32, page 11 of 13

http://linker.aanda.org/10.1051/0004-6361/201935786/1
http://linker.aanda.org/10.1051/0004-6361/201935786/2
http://linker.aanda.org/10.1051/0004-6361/201935786/3
http://linker.aanda.org/10.1051/0004-6361/201935786/4
http://linker.aanda.org/10.1051/0004-6361/201935786/5
http://linker.aanda.org/10.1051/0004-6361/201935786/6
http://linker.aanda.org/10.1051/0004-6361/201935786/7
http://linker.aanda.org/10.1051/0004-6361/201935786/8
http://linker.aanda.org/10.1051/0004-6361/201935786/8
http://linker.aanda.org/10.1051/0004-6361/201935786/9
http://linker.aanda.org/10.1051/0004-6361/201935786/9
http://linker.aanda.org/10.1051/0004-6361/201935786/10
http://linker.aanda.org/10.1051/0004-6361/201935786/10
http://linker.aanda.org/10.1051/0004-6361/201935786/11
http://linker.aanda.org/10.1051/0004-6361/201935786/12
http://linker.aanda.org/10.1051/0004-6361/201935786/14
http://linker.aanda.org/10.1051/0004-6361/201935786/14
http://linker.aanda.org/10.1051/0004-6361/201935786/15
http://linker.aanda.org/10.1051/0004-6361/201935786/15
http://linker.aanda.org/10.1051/0004-6361/201935786/16
http://linker.aanda.org/10.1051/0004-6361/201935786/16
http://linker.aanda.org/10.1051/0004-6361/201935786/17
http://linker.aanda.org/10.1051/0004-6361/201935786/18
http://linker.aanda.org/10.1051/0004-6361/201935786/19
http://linker.aanda.org/10.1051/0004-6361/201935786/19
http://linker.aanda.org/10.1051/0004-6361/201935786/20
http://linker.aanda.org/10.1051/0004-6361/201935786/21
http://linker.aanda.org/10.1051/0004-6361/201935786/22
http://linker.aanda.org/10.1051/0004-6361/201935786/23
http://linker.aanda.org/10.1051/0004-6361/201935786/24
http://linker.aanda.org/10.1051/0004-6361/201935786/25
http://linker.aanda.org/10.1051/0004-6361/201935786/26
http://linker.aanda.org/10.1051/0004-6361/201935786/27
http://linker.aanda.org/10.1051/0004-6361/201935786/28
http://linker.aanda.org/10.1051/0004-6361/201935786/29
http://linker.aanda.org/10.1051/0004-6361/201935786/30
http://linker.aanda.org/10.1051/0004-6361/201935786/31
http://linker.aanda.org/10.1051/0004-6361/201935786/32
http://linker.aanda.org/10.1051/0004-6361/201935786/33
http://linker.aanda.org/10.1051/0004-6361/201935786/34
http://linker.aanda.org/10.1051/0004-6361/201935786/35
http://linker.aanda.org/10.1051/0004-6361/201935786/36
http://linker.aanda.org/10.1051/0004-6361/201935786/37
http://linker.aanda.org/10.1051/0004-6361/201935786/38


A&A 628, A32 (2019)

Appendix A: Implementation

We give technical details on our implementation choices in this
appendix.

A.1. Kepler equation

The key step in any Wisdom–Holman algorithm is the numerical
resolution of the Kepler problem,

HKepler =
v2

2
−
µ

r
, (A.1)

where µ = GM and M is the central mass in the set of coordi-
nates used in the integration. Because this is the most expensive
step from a computational point of view, it is particularly impor-
tant to optimise it. Here, we closely followed the works by
Mikkola (1997) and Mikkola & Innanen (1999) and refer to them
for more details. Rein & Tamayo (2015) presented an unbi-
ased numerical implementation that can be found in the package
REBOUND2.

We consider a planet with initial conditions r0 and v0. The
goal is to determine the position of the planet r and its veloc-
ity v along the Keplerian orbit after a time t. In order to avoid
conversions from Cartesian coordinates into elliptical elements,
we use the Gauss f - and g-function3 formalism (e.g. Wisdom &
Holman 1991). We have

r = f r0 + gv0,

v = ḟ r0 + ġv0, (A.2)

where the values of f , g, ḟ and ġ depend on t, r0, and v0
and are given in Eq. (A.7). When two planets encounter each
other, their orbits may become hyperbolic. To be able to resolve
these events as well as ejection trajectories, we use a formu-
lation of the Kepler problem that allows hyperbolic orbits.
In order to do so, Stumpff (1962) developed a general for-
malism that contains the hyperbolic and elliptical case in the
same equations. Moreover, this approach avoids the singular-
ity for an eccentricity close to 1. Stumpff introduced special
functions

cn(z) =

+∞∑
j=0

(−z) j

(n + 2 j)!
. (A.3)

The c-functions allows us to compute the so-called
G-functions (Stiefel & Scheifele 1971), which are defined as

Gn(β, X) = Xncn(βX2). (A.4)

In this formalism, the Kepler equation takes the form
(Stumpff 1962)

2 https://rebound.readthedocs.io/en/latest/
3 These functions are different from the time-renormalisation functions
used in this article.

t = r0X + η0G2(β, X) + ζ0G3(β, X), (A.5)

of unknown X =
∫ t

0 dt/r and where

β =
2µ
r0
− v2

0,

η0 = r0 · v0, (A.6)
ζ0 = µ − βr0.

In Eq. (A.5), X plays a similar role to the eccentric anomaly
in the classical form. Equation (A.5) can be solved by the Newton
method (Rein & Tamayo 2015). The new position and velocity
are then obtained with Eq. (A.2) and

f = 1 − µ
G2(β, X)

r0
, ḟ = −

µG1(β, X)
r0r

,

g = t − µG3(β, X), ġ = 1 − µ
G2(β, X)

r
, (A.7)

where r = r0 + η0G1 + ζ0G2.

A.2. Computing the effective time-step

In both the Kepler and the perturbation step, it is important to
precisely compute the effective time-step (20). For the Kepler
step in particular, τ0 depends on the difference H0 − E0, where
H0 and E0 are similar. To avoid numerical errors, we compute
the initial energy with compensated summation (Kahan 1965).
We save the value and the associated error. We then evaluate the
Keplerian energy H0 using compensated summation and then
derive the difference. Compensated summation is also used to
update the positions and velocities, and to integrate the real time
equation.

During the numerical tests, we realised that in Jacobi coor-
dinates, the perturbation energy H1 is most of the time lower
by almost an order of magnitude than the typical planet energy
interaction E1. On the other hand, H1 and E1 are roughly of the
same order for heliocentric coordinates. This shows that the algo-
rithm is less efficient in the detection of an increase in interaction
energy (that monitors the close encounters). To circumvent this
problem, we slightly modify Eq. (20) for Jacobi coordinates. The
effective step sizes are computed with

τ0 = σ f ′(H0 − E0 + E1) and τ1 = σ f ′(−(H1 − E1)). (A.8)

The total energy sum is still zero,

(H0 − E0 + E1) + (H1 − E1) = 0, (A.9)

which preserves the equation of motion according to Eq. (13).
With this modification, the results between Jacobi and heliocen-
tric coordinates are comparable.
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Appendix B: MacLachlan high-order schemes

In McLachlan (1995a), the scheme coefficients wi are the coef-
ficients for a symmetric composition of second-order steps. We
list in Table B.1 the corresponding coefficients ai and bi for the

schemes that we used, ABA(6∗) and ABA(8∗). McLachlan
provided 20 significant digits, therefore we made the compu-
tation in quadruple precision and truncated to the appropriate
precision.

Table B.1. Coefficients of the schemes used in this article.

Scheme Order Stages ai bi

ABA(6∗) 6 7 a1 = 0.39225680523877863191 b1 = 0.78451361047755726382
a2 = 0.51004341191845769875 b2 = 0.23557321335935813368
a3 = −0.471053385409756436635 b3 = −1.17767998417887100695
a4 = 0.068753168252520105975 b4 = 1.3151863206839112189

ABA(8∗) 8 15 a1 = 0.370835182175306476725 b1 = 0.74167036435061295345
a2 = 0.166284769275290679725 b2 = −0.409100825800031594
a3 = −0.109173057751896607025 b3 = 0.19075471029623837995
a4 = −0.191553880409921943355 b4 = −0.57386247111608226666
a5 = −0.13739914490621317141 b5 = 0.29906418130365592384
a6 = 0.31684454977447705381 b6 = 0.33462491824529818378
a7 = 0.324959005321032390205 b7 = 0.31529309239676659663
a8 = −0.240797423478074878675 b8 = −0.79688793935291635398

References. The values are computed from McLachlan (1995a).
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