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ABSTRACT

Aims. This study is carried out in the context of data processing of the solar coronagraph ASPIICS of the future formation-flying
mission Proba-3, which is expected to provide images of the corona very close to the limb. There will be a transition zone of the order
of 100 arcsec close to the limb, where the telescope aperture suffers a strong vignetting by the external occulter (a disc of 1.42 m at
144 m). The instrument response in this region will vary rapidly both in shape and in integrated intensity, the latter being particular
to the external occultation. The aim of this paper is to propose a technique to recover as much as possible of the image of the corona
very close to the limb in the vignetting zone.
Methods. The object image relationship in this zone is not defined by the usual convolution but by the more general Fredholm integral
of the first kind. Theoretical aspects of the problem are detailed in the context of a matrix formalism for the inversion of the Fredholm
integral, formalism that we maintain up to the end of the numerical simulations, which is specific to the present work.The iterative
Richardson-Lucy algorithm, specially written for the non-constant integrated intensity of the responses is used here for reconstruction.
A study of the effect of noise on a photodetected image is made.
Results. An important part of the work consisted in calculating the elements of the transfer matrix between the object and the image
for a simulation on a small region of size 100 × 100 arcsec sampled over 128 × 128 pixels. This is obtained propagating the light
through the system using a previously published approach. On a toy object, the reconstruction is excellent down to about 60 arcsec
from the limb, corresponding to a vignetting of 50%. The drawback is that the recovery of a N × N object requires the handling of
a N2 × N2 matrix, i.e. a 16384 × 16384 transfer matrix here. However, taking into account radial symmetries of the experiment, we
propose the use of a transformation from Cartesian to polar coordinates which allows to apply the same procedure all around the sun
as for a small region.

Key words. techniques: high angular resolution – methods: numerical – techniques: image processing – Sun: corona

1. Introduction

The visual photometer imagined by Evans (1948) to measure
the brightness of the sky near the sun is the precursor of exter-
nally occulted solar coronagraphs that are coupled with a classi-
cal Lyot (1939)’s coronagraph. The photometer contains some of
the principal elements of these hybrid instruments: the external
occulter; the internal occulter, the function of which is to inter-
cept some of the brilliant edge of the external occulter; and a
diaphragm that operates as a Lyot stop. Evans (1948) was well
aware of vignetting effects inherent to externally occulted instru-
ments and the difficulty of observing the sky brightness very
close to the solar limb.

Efficient externally occulted coronagraphs were later
developed for space-borne coronagraphy, as described by
Purcell & Koomen (1962) and Newkirk & Bohlin (1965). An
excellent review of these techniques is made by Koutchmy
(1988). The SOHO/LASCO mission (Brueckner et al. 1995) was
strongly affected by effects of vignetting and corresponding
loss of resolution. Considering geometrical optics, the efficient
aperture is what is left inside the telescope aperture and out-

side the projected image of the occulter; see for example
Bayanna et al. (2011).

A clear presentation of the problem can be found in
Llebaria et al. (2006). They described the variation in the field
of the point spread function (PSF) of stellar sources with the
LASCO-C2 coronagraph. The response depends on the direc-
tion of the point source on the sky, and, as they noticed, is further
modified by the propagation inside the Lyot coronagraph itself.
For LASCO-C2, the effect of vignetting is extremely strong
since it occurs for the whole field, due to the closeness of the
occulter to the entrance aperture.

A large occulter is needed to perform an observation close to
the solar disc, and that is the objective of the ASPIICS corona-
graph, which will fly on the Formation Flying mission Proba-3
(Lamy et al. 2010). The external occulter will be a disc of 1.42 m
located at about 144.3 m from a second spacecraft bearing a Lyot
coronagraph. The observation will be made in a narrow domain
of wavelength around 550 nm. The entrance aperture of the Lyot
coronagraph is 5 cm, giving a theoretical resolution of about
2.3 arcsec on the solar corona. These conditions (a large occul-
ter and a small aperture) are favourable to reduce the effect of
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vignetting. However, ASPIICS is not exempt from these effects,
the vignetting leading to a loss of observation very close to the
solar limb.

The response begins to deteriorate at about 100 arcsec from
the solar limb, and completely disappears at about 20 arcsec
from the solar limb, as was already shown in Fig. 14 of
Rougeot et al. (2017). The objective of the present study is to
describe a method to recover as much of the image as possi-
ble in this severely disrupted region. To establish the corona-
graph responses, we use the same computational technique as
Rougeot et al. (2017). It is clear that the difficulty of reconstruct-
ing the image close to the limb increases with the vanishing of
the PSF towards the limb.

The problem to solve is known as the inversion of the Fred-
holm integral equation of the first kind. It is a delicate problem
that has given rise to a significant amount of literature (see e.g.
Landweber 1951; Hanson 1971; Strand & Westwater 1968 and
others). As described by these authors, the solution to the Fred-
holm integral, that is the image reconstruction, strongly depends
on the ill-posedness of the problem and, classically, the problem
of image reconstruction is solved by minimizing an adequate
cost function composed of a data fidelity and a regularization
term (Titterington 1985; Demoment 1989). In this preliminary
work, the regularization is not considered and the cost function is
only composed of the data fidelity term. Due to the ill-posedness
of the problem, it is essential to use an iterative algorithm and
to stop the iterations before the occurence of noisy unstable
solutions. This procedure is called early stopping and we pro-
pose to use the well-known Richardson Lucy (RL) algorithm,
(Richardson 1972; Lucy 1974, 1994), slightly modified for a
variant PSF (Lantéri et al. 2006).

The varying PSF, once the problem is discretized, gives rise
to a high computational load. A solution proposed in the con-
text of adaptive-optics imaging, is to partition the image into
regions where the PSF is considered to be invariant, to treat
them independently, and to synthesize the image at the end
(La Camera et al. 2015; Denis et al. 2015; Thiébaut et al. 2016;
Flicker & Rigaut 2004). In the present study, the variation of the
PSF, both in shape and integrated intensity, is too fast within
a small zone to allow for the use of any approximation as we
discuss below. A fundamental advantage over adaptive optics
work is that here the variation of the response is determinis-
tic. Point-spread functions can be calculated numerically for any
point in the field, and it is not necessary to use interpolation.
The drawback is that one has to handle very large matrices and
it is not possible to use Fourier transforms. Vignetting is quite
specific to external occulter coronagraphs; it does not exist in
the case of a classical Lyot coronagraph where the response is
either fully suppressed or merely equal to the telescope Airy
pattern.

The paper is organised as follows: in Sect. 2, we intro-
duce the physical considerations of image formation for an
externally occulted coronagraph, and the problem of aperture
vignetting. Examples of space-variant PSFs are given for ASPI-
ICS. Section 3 is devoted to theoretical aspects. The Fredholm
relationship is quickly established, the discretized problem and
its formulation in a matrix formalism are given. The RL algo-
rithm is expressed in the case of a variant point source response.
It is shown that the recovery of an N × N image requires an
N2 × N2 matrix to be handled, and the illustration is made for
N = 128 in Sect. 4 on a toy object made of a series of nar-
row Gaussian spots. A study of noise effect is given for Pois-
son statistics. In Sect. 5 it is shown how the symmetries of the
occulter-coronagraph responses make it possible to simplify the

problem using a Cartesian to polar transformation. This will be
key to processing large, future solar coronal images. Conclusions
are given in Sect. 6.

2. Physical considerations: the space-variant
response of ASPIICS

As indicated in the introduction, in the ASPIICS experiment, the
vignetting effect is limited to a small angular region of about
100 arcsec around the solar limb. Nevertheless, it is worth the
effort to gain a few tens of arcsecs towards the limb, which was
one of the main goals of ASPIICS. Since the external occulter is
far away (at z = 144.348 m), geometrical considerations are not
enough, and the Fresnel diffraction becomes very strong in the
vignetting region and must be taken into account, as described
in Rougeot et al. (2017).

An illustration of the vignetting effect produced by the exter-
nal occulter for the observation of the solar corona is presented
in Fig. 1. This is a concise illustration that requires some descrip-
tion. Instead of keeping the telescope fixed and scrolling the
wave for several directions, we kept the diffraction pattern fixed
and move the telescope, which results in the same figures for
waves inside the aperture.

For regions such as (A), the light coming from the solar disc
is fully obscured by the external occulter. For regions such as
(C), the aperture is fully illuminated, although a residual effect of
diffraction fringes remains there. The transition regions, such as
(B), correspond to a strong vignetting. The main variation occurs
over ∼70 arcsec, which corresponds to the angle covered by the
pupil of the telescope at the distance of 144.3 m.

The wavefront crossing the telescope aperture therefore
propagates through ASPIICS’s Lyot coronagraph. Details of the
computation of this propagation can be found in Rougeot et al.
(2017). The numerical implementation of the propagation is
done for the same conditions (number of points 8192 × 8192).
The size of the internal occulter used in the present study has
an over-occultation of 1.0028 with respect to the external occul-
ter (this corresponds to a disc of 1424 mm onto the occul-
ter) and a Lyot stop reducing the aperture to 48 mm (instead
of 50 mm). These diaphragms change the shape of the PSF,
but do not introduce a vignetting effect. New numerical com-
putations will have to be performed once the exact parame-
ters of the true experiment are frozen (currently, Proba-3 is
expected to fly in 2021). We note that possible defaults or mis-
alignments are not taken into account in the present study (see
Shestov & Zhukov 2018). Figure 2 gives responses for point
sources at three distances from the solar limb (the centre of
the Sun being at 960 arcsec from it), over a region limited to
30 × 30 arcsec. Intensities in the Lyot stop plane (referred to as
plane C in Rougeot et al. 2017) are also given. A careful exam-
ination of these figures, in comparison with the occulter diffrac-
tion pattern of Fig. 1, shows how the wave has already been
altered in the propagation through the Lyot coronagraph. The
left-right inversion is real and due to the propagation inside the
coronagraph.

Point-spread functions evolve both in shape and integrated
intensity, as shown in Fig. 3. An example is given for five
point sources plotted together (top of Fig. 3).The intensity trans-
mission curve is obtained computing 128 PSFs equally spaced
from 19.5 to 114 arcsec. The integrated PSF, integration com-
puted over a region of 96 × 96 arcsec around the photocentre of
each PSF, is normalized to 1 for the shift-invariant PSF. Below
20 arcsec a point source is almost completely obscured, while
the transmission joins the nominal level beyond approximately
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95 arcsec. The Strehl ratio, which quantifies the quality of the
image, is also shown in this figure.

Equivalent widths of the PSFs are also drawn (in blue) in this
figure. To account for the anisotropy of the response h(x, y) in the
vignetting zone, we compute the 1D equivalent widths Φ1Dr in
the radial direction (here along x) and in the transverse direction
Φ1Dt (here along y) as a function of the distance from the limb.
These quantities are determined as follows, the response h(x, y)
is integrated in the y or x directions (here also for a 96×96 arcsec
region), respectively, to get the 1D functions:

Fr(x) =

∫
h(x, y)dy, Ft(y) =

∫
h(x, y)dx (1)

For the 1D functions, equivalent widths are the widths of the
rectangles, which have the same surface (width × height) as the
integrals of the functions Fr, Ft, and for heights the maximal
values of these functions. For the 2D function, we compute the
volume Σ under the function and take the width Φ2D to be the
diameter of the cylinder with the same volume Σ. The height of
the cylinder is here also the maximal value of the function. The
following relations connect these quantities:

Σ =
π

4
Φ2

2D max (h(x, y))

= Φ1Dr max (Fr(x)) = Φ1Dt max (Ft(y)) (2)
Figure 3 clearly shows that the degradation is worse in the radial
Φ1Dr direction than in the transverse Φ1Dt direction, as expected
from the vignetting of the aperture by the external occulter. The
circular averaged equivalent width stands in between. Beyond
90 arcsec from the limb, the response becomes isotropic, and
Φ1Dr and Φ1Dt merge to the same value, which is not Φ2D, simply
because of the differences between the definitions of the 1D and
2D widths.

A 3D illustration of the Fredholm problem is given in Fig. 4,
in opposition to the convolution case. This is another represen-
tation of the top panel of Fig. 3, illustrating the rapid varia-
tion of the PSF. It would be impossible to partition the image
into very small regions to model smooth changes, as evoked by
Denis et al. (2015) in their consideration of vignetting in adap-
tive optics. In its general form, given in Eq. (3) of Sect. 3, the
response h(α, ξ, β, η) is a function of four variables. However, in
the particular case of the externally occulted Lyot coronagraph,
the variation of the response only depends on the radial distance
ρ =

√
α2 + β2 of the point source from the solar centre. This

property, that is further used in Sect. 4, makes it possible to rep-
resent h(α, ξ, β, η) as a function of three variables, ρ, ξ and η.

Figure 5 shows in the Fourier space the rapid variation of
the responses. It represents the modulus of the Fourier trans-
form of the space variant PSFs (called pseudo-MTF) of Fig. 4
for the positions b, c, and d corresponding to point sources in
the solar corona at 48.8, 71, and 93.3 arcsec. All pseudo-MTFs
are normalized to 1 at the zero frequencies of the u × v plane
to better highlight the variation of the spectral coverage of these
responses. The transfer function for the PSF at the position d
is almost that of the un-vignetted aperture, while it practically
disappeared for the position a, which was not figured here. In
addition to the curves in Fig. 3, this representation is another
illustration in the Fourier plane of how fast the variation of the
image PSF occurs.

3. Theoretical aspects: the matricial formalism and
the inversion of the Fredholm integral

With such a variant point response, the relation that connects the
object X(α, β), the observation Y(α, β), and the point responses

Fig. 1. Illustration of the vignetting effect produced by the external
occulter. The diffraction pattern of the circular external occulter for an
incident plane wave (region: x-axis from 600 mm to 800 mm, y-axis by
±30 mm, origin at the occulter centre) is shown in the background. The
geometric edge of the occulter is marked “Oc”, (radius 710 mm), while
the stenope image of the Sun is marked “S” (radius of 671 mm). The
three circles delimitate intensity beams going through the 50 mm Lyot
coronagraph entrance aperture. These correspond to point sources at
914 arcsec (A, occulted), 1000 arcsec (B, vignetting) and 1085 arcsec
(C, full illumination) from the solar centre.
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Fig. 2. Left panels: illumination of the image of the aperture in the
Lyot stop plane of the coronagraph, with corresponding PSFs (right
panels) for unit point sources originating from the corona at 48, 72, and
96 arcsec from the solar limb, or 1008, 1032, and 1056 arcsec from the
solar centre. The image in this plane is inverted with respect to the pupil
of Fig. 1 and the wave begins to be altered by the propagation through
the coronagraph. The PSF degrades faster in the radial direction than in
the transverse direction (see Fig. 3 for numerical values).

analysed above is no longer the usual convolution relationship,
but a more complex integral that is known as the Fredholm inte-
gral of the first kind, (Landweber 1951). In the following, we
use the notations of Theys & Aime (2016) to derive that relation.
For that, we have to denote with different symbols the angu-
lar coordinates in the object and image planes. We use (ξ, η)
to denote the angular direction in the object plane, and (α, β)
in the image plane. Coordinates (ξ, η) play the role of dummy
integration variables. An elementary angular region dξdη around
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Fig. 3. Top panel: responses to unit point sources situated at 33.6,
52.3, 70.9, 89.5, and 108 arcsec from the solar limb for ASPIICS. A
non-linear greyscale (intensity to the power 0.2) is used to make the
responses more visible. Bottom panel: blue curves, left y axis, resolu-
tions in terms of 1D (radial and transverse) widths, and 2D integrated
widths, and red curves, right y axis, integrated PSFs normalized to 1
for the invariant response. The black curve gives the Strehl ratio. Points
(black squares) are at positions of the PSFs shown in the top panel.

the object X(ξ, η) produces an elementary intensity X(ξ, η)dξdη.
This intensity is distributed in the image plane according to the
instrument response h(α, ξ, β, η), a function of four variables (see
Figs. 2 and 3 for illustrations). The object being incoherent,
intensities coming from all directions are added together, and we
obtain

Y(α, β) =

∫ ∫
X(ξ, η)h(α, ξ, β, η)dξdη (3)

which is a 2D Fredholm integral of the first kind. Recovering
X(α, β) from Y(α, β) is the problem we seek to solve. As already
indicated, this problem is more complex to solve than the usual
deconvolution problem where the point spread response is shift
invariant:
Ycv(α, β) = X(α, β) ∗ hcv(α, β)

=

∫ ∫
X(ξ, η)hcv(α − ξ, β − η)dξdη (4)

Equation (3) does not allow the use of Fourier transforms as
Eq. (4) does.

In a general manner, the discretized model of the Fredholm
relation, Eq. (3), leading to the observed process can be written
as
y(m, n) =

∑
i, j

x(i, j)h(m, i, n, j) (5)

where y(m, n), x(i, j) and h(m, i, n, j) are the values of the corre-
sponding arrays.

The values of the image given by Eq. (5) can be put in the
matrix form:

y = Hx (6)

Fig. 4. Three-dimensional illustration showing PSFs in the two cases
of invariant (top panel) and space variant (bottom panel) cases. Vertical
axes ( ρ) correspond to positions of points sources in the object at four
radial distances from the limb: a = 26.6, b = 48.8, c = 71, and d = 93.3
(in arcsec). The horizontal rectangles show PSF responses in the image
plane (a region of η = 43.7 × ξ = 94 arcsec). A non-linear greyscale is
used to make the curves more visible.

where y and x are vectors containing the discretized values of the
image and the object. Here, H is the matrix containing elements
h(m, i, n, j). A detailed description of the elements of matrix H
for both cases of shift-invariant and shift-variant PSFs are given
for a numerical example in Sect. 4 relative to numerical illustra-
tions.

The estimation of x, given y and H from the matrix form
Eq. (6), is a so-called ill-posed problem and its direct inver-
sion gives poor results since H is very ill-conditioned. The clas-
sical solution is then to use iterative methods to estimate x,
which amounts to performing a partial inversion of H. The algo-
rithm used here is a slightly modified version for a variant PSF,
Lantéri et al. (2006), of the so-called RL algorithm :

xk+1
r = xk

r

[
HT

( y.
Hxk

)]
r
×

1
[HT1N]r

(7)

This writing clearly highlights the term related to the flux varia-
tion of the PSF, [HT1N]r, that is the sum of the values of the PSF,
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Pseudo-MTF at 3 positions

b:48.8"

v

u

v

u

v

u

c:71" d:93.3"

Fig. 5. Modulus of the Fourier transform of the space variant PSFs
(called pseudo-MTF) of Fig. 4 for the planes b, c, and d correspond-
ing to point sources in the solar corona at 48.8, 71, and 93.3 arcsec. The
spatial frequency u is in the limb direction.

which varies with r; see the red curve in Fig. 3. In the case of a
constant and normalized PSF, the term [HT1N]r =

∑
i

hir = 1,∀r

and Eq. (7) simplifies in the RL algorithm; in the context of ill-
posed problems, instability in the solution appears as the number
of iterations increases. The problem is then to determine the opti-
mal iteration number and to stop the iterative process there, for
obtaining a physically satisfactory solution, (Lucy 1994). A clas-
sical alternative is to introduce an explicit regularization which
is left for future work.

4. Numerical illustrations

4.1. Matrix implementation

According to Eqs. (5) and (6), a given value of the image y(m, n)
depends on the N × N weighting array :

h(m, 1, n, 1) h(m, 1, n, 2) . . . h(m, 1, n,N)
h(m, 2, n, 1) h(m, 2, n, 2) . . . h(m, 2, n,N)

...
...

...
...

h(m,N, n, 1) h(m,N, n, 2) . . . h(m,N, n,N)

 (8)

where y and x are vectors containing the discretized values of
the image and the object is lexicographically stored. The term
“lexicographic” infers that the values of each table of dimension
N×N read from left to right and from top to bottom are arranged
in this order in a vector. An image of size N × N then yields a
vector y of length N2.

y =
[
y(1, 1)y(1, 2) . . . y(2, 1) . . . y(N,N)

]T

x = [x(1, 1)x(1, 2) . . . x(2, 1) . . . x(N,N)]T (9)

Consequently the matrix H is of dimensions N2 × N2.
The array values of each weighting function h(m, i, n, j) are

ordered lexicographically on a line of H to form with x the data
y(m, n):

H =



h(1, 1, 1, 1) h(1, 1, 1, 2) . . . h(1, 2, 1, 1) . . . h(1,N, 1,N)
h(1, 1, 2, 1) h(1, 1, 2, 2) . . . h(1, 2, 2, 1) . . . h(1,N, 2,N)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

h(2, 1, 1, 1) h(2, 1, 1, 2) . . . h(2, 2, 1, 1) . . . h(2,N, 1,N)
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

h(N, 1,N, 1) h(N, 1,N, 2) . . . h(N, 2,N, 1) . . . h(N,N,N,N)


(10)

We note that each column of H corresponds to one of the PSFs
shown in Fig. 2, ordered lexicographically. In the space-invariant
case, the matrix H has a Toeplitz-block-Toeplitz structure and
some lines can be added to form a circulant matrix. Subse-
quently, matricial products with H can be advantageously per-
formed in the Fourier space using 2D discrete Fourier Trans-
forms (DFT) on the N × N arrays. This however is not the case
here and we have to use very large matrices.

4.2. Illustration on a test object in the vignetting zone

We considered the processing of objects and images of size
96×96 arcsec, sampled over N×N = 128×128 points. Each PSF
is taken as being the same size as the object, that is 96×96 arcsec,
around the photocentre response. This is not mandatory, and
a smaller dimension could have been chosen. These dimen-
sions were a trade-off between adequate representation of the
vignetting zone and an N value of reasonable size, that is, not
too large to be handleable with our computers. The size of the
matrix H is therefore 16384 × 16384.

The first and most difficult task is to compute 16384 PSFs.
This was done using the same computer program and machine
(with two 14-core Intel Xeon processors and 512 GB of RAM)
as in Rougeot et al. (2017). As already indicated in Sect. 2, the
computation involves the Fresnel diffraction from the external
occulter to the entrance telescope aperture and the propagation
through the Lyot coronagraph. Obtaining all 16384 PSFs would
have taken days of computing time, which is not impossible but
finally not necessarily essential, as we see below. A reasonable
approximation was obtained considering that for the small region
of 96×96 arcsec, the variation of the response is essentially in the
radial direction. Indeed, in the transverse direction, responses are
affected by a small rotation that is less than 3 degrees at the most.

The procedure we used was the following. We exactly com-
puted 128 radial responses. Each of them was given in an array
of 8192×8192 points of which we extracted regions of 256×256
points. The responses in the transverses directions are obtained
by translating sub-arrays of 128×128 points inside the 256×256
array. This is also what was previously done to obtain the PSF
parameters drawn in Fig. 3. Using a larger array was neces-
sary not to be affected by edge effects. Each of the 128 × 128
point responses was then lexicographically scanned to become
a column of the matrices H shown in Fig. 6, for the shift-
invariant response, denoted there H(convolution) and the shift-
variant response, denoted there H(Fredholm).

As it is not possible to represent the 268 million points of each
matrix; in Fig. 6, only a central part of 600× 600 points is shown
in a representation in levels of false colours. We note that the sym-
metric behaviour of the convolution matrix (except for sparse edge
effects) becomes disrupted in the case of the Fredholm matrix. The
variable level of intensity already shown in Fig. 3 is also clearly
visible here. Figure 7 represents examples for two given rows and
columns (here 6655 and 12929) that clearly show the symmetry
of the convolution case (to a given shift) and the absence of sym-
metry of the Fredholm case. In the present computations, the con-
dition numbers for the matrices are 1020 for the convolution case
and 6.7 × 1022 for the Fredholm case.

Computations are made on a toy object with the parameters
of ASPIICS. Figure 8 shows, from top to bottom, the true object
xt and the result of the product Hxt, giving the image y and a
noisy image resulting from a Poisson transform of Hxt with a
mean of 163840 photons in the whole image, that is, a mean
number of ten photons by pixel. Figure 9 shows the obtained
reconstructions at the iteration k̂ corresponding to the minimum
of the reconstruction error εk with the RL algorithm, Eq. (7), for
the noiseless and the noisy cases. The reconstruction error εk is
defined as

εk =
||xt − xk||

||xt||

k̂ = arg(min(εk)), (11)

where xt is the true object, which is not known in practice.
In the noiseless case, it is interesting to observe that there is
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a substantial improvement to the recovery of information very
close to the solar limb, here some 30 or 40 arcsec towards the
limb for this toy object. The RL algorithm produces a minimum
reconstruction error of 0.40 for an early stopping of k̂ = 2000
iterations. In the noisy case considered, which corresponds to a
very high level of noise for a solar observation, the RL algorithm
produces a minimum reconstruction error of 0.4888 for an early
stopping of k̂ = 27 iterations. It is a well-known result, the nois-
ier the image, the higher the reconstruction error for a smaller
iteration number. It can however be noted that the reconstruc-
tion remains very good until 45–50 arcsec towards the limb. For
a more accurate view of the reconstructions, a cut of the arrays
is given in Fig. 10. The cut is made in the middle, where the dots
are circular and equally spaced. The reconstructed object is for
an iteration number k̂ = 2000 for the noiseless case and k̂ = 27
for the noisy case.

In the noiseless case, the reconstruction is excellent down to
about 60 arcsec from the limb. There, the integrated intensity has
already fallen to 54% of its initial value, the Strehl ratio to 0.3,
and the longitudinal PSF width has increased by 83%, as can be
seen in Fig. 3. Between 60 and 45 arcsec from the limb, the algo-
rithms start to experience difficulties. In that zone, reconstructed
images remain similar to the original object, but the photometry
is not preserved, the reconstructed level fluctuates depending on
the iteration number. In the example of Fig. 8, one of the peaks
is higher, and the other lower than expected. At 45 arcsec from
the limb, the transmission has fallen to 27%, the Strehl ratio is
less than 0.08, and the longitudinal width has been multiplied by
three. Beyond that limit, the reconstruction becomes ineffective
and the signal almost disappears below 25 arcsec.

In the noisy case, the behaviour of the algorithm is the
same with lower values, the reconstruction is excellent down
to about 60 arcsec from the limb with more fluctuating values
of the reconstructed intensity. From 60 arcsec the reconstructed
intensity falls gradually and the longitudinal width of the peaks
increases. The signal disappears below 35 arcsec.

A brief study of the influence of noise on the algorithm is
given in Fig. 11. This figure gives the normalized reconstruc-
tion error (black curve) and computation time (red curve) for
the reconstruction as a function of the mean number of photons
by pixel, in logarithmic scale. Results on noisy data, shown in
the bottom panel of Fig. 9, correspond to the minimum num-
ber of photons of Fig. 11, that is, ten photons per pixel. In this
case the reconstruction error is 0.488 and the computation time
is less than 10 s. Obviously, the reconstruction error decreases
as the number of photons increases and in parallel the computa-
tion time increases since the corresponding number of iterations
for the early stopping increases. We note that these curves are
obtained by stopping the algorithm as soon as the reconstruction
error increases. The first three values correspond to low numbers
of photons and the results are irregular. It can be noted that the
calculation time is at most equal to 10 min, which remains very
small compared to that of PSFs, which is spread over several
hours but calculated once.

5. Reconstructing the entire vignetting zone using a
Cartesian to polar transform

The reconstruction of the vignetted zone described above has
been done for a small area of N × N points, with N = 128.
Since the size of the matrix H is N2 × N2 points, here with N2 =
16384, it is almost impossible to envisage the inverse Fredholm
procedure for an image with N much greater than that. Moreover,
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Fig. 6. Transform matrices H. A central part (600 × 600 points out of
16384 × 16384 points) is represented for (top panel) the shift invariant
PSF of the convolution case, denoted H(Convolution), and for (bottom
panel) the Fredholm case, denoted H(Fredholm), where the PSF varies
from one point to another.

considering a large region, no approximation can be made for the
PSF that must then be computed for all point sources, making the
calculation even more difficult.

As we have already discussed it, the method proposed for
space varying PSF in the context of adaptive optics imaging,
(La Camera et al. 2015; Thiébaut et al. 2016) cannot be used
here.

In the particular case of coronagraphy with an external occul-
ter, a very interesting alternative can be imagined considering
that a PSF depends solely on the distance to the centre of the
occulter and rotates identical to itself around the solar limb.
To take advantage of this property we apply to the vignetted
region a transformation that we denote as T, giving the value of
the observed image from Cartesian coordinates (α, β) into polar
coordinates (ρ, θ). This transformation is illustrated in Fig. 12.
It changes the ring of the vignetted region into a rectangle. The
figure is not to scale and only half of the solar image and corona
is represented here so as not to take up space. The inner dashed
half-circle of radius OM corresponds to the solar surface masked
by the occulters (external and/or internal). The outer dashed half-
circle of radius OM’ delimits the vignetted region. A simple
drawing (in red) is made to schematize the lower solar corona
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Fig. 7. An example of rows and columns of the transform matrix H
shown in Fig. 6 showing the different behaviour between Fredholm and
convolution cases. The symmetry of the rows and columns of the con-
volution case is lost in the Fredholm case, as expected. Due to the lex-
icographic order for the image of 128 × 128 points, there is a pseudo
periodicity of 128 elements of the matrices H (except for edge effects).
Each row and column is made of 16384 points, which makes it difficult
to draw.

there. This drawing can be followed in the rectangle after the
transformation T.

A block diagram of the operations to apply is given in Fig. 13.
We note that after the T transformation, the responses themselves
are transformed. It would not be interesting to use this transfor-
mation outside the vignetting domain, because then the response,
naturally invariant there, would become variable in ρ.

An illustration of the rotation of the responses is given in
Fig. 14. The direct image Y(α, β) (Fig. 14, top) corresponds
to points sources positioned along radial directions from the
solar centre. The solar disc is on the left, represented there in
greyscale. The curvature is that of a circle of about 960 arcsec.
The representation covers a region of 180×210 arcsec, sufficient
to bring out the rotation of the features of the PSF; it makes use
of the parameters of ASPIICS, assuming that all optical parts
and settings are perfect.

The transformed image Y ′(ρ, θ) (Fig. 14, bottom) is now a
function of ρ, in arcsec, and θ in degrees (or in radians). In the
figure the rectangle is represented for θ varying from 0◦ to 11◦. In
this representation, the circle corresponding to the solar limb is
now a vertical line. The way the transformation has been imple-
mented is by interpolating from a Cartesian to a polar grid.

For that we use a new array of K × L equispaced points
in ρ and θ. A point Pk,l is defined there by its radial coor-
dinates ρk = ρ0 + k∆ρ and θl = θ0 + l∆θ, where the val-
ues of ρ0,∆ρ, θ0,∆θ,K and L are chosen to fit the region of
interest for the transformation. Cartesian coordinates of Pk,l are
( ρk cos(θl), ρk sin(θl)) which appear as an interior point of the
grid square inside (m, n) and (m + 1, n + 1) of the known array
y(m, n). Defining u = ρk cos(θl) − m and v = ρk sin(θl) − n the
distances to m and n, with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, a bilinear
interpolation gives the value of y′(ρk, θl):

y′(ρk, θl) = y(m + u, n + v) = (1 − v)(1 − u) y(m, n)+

uv y(m + 1, n + 1) + (1 − u)v y(m, n + 1) + (1 − v)u y(m + 1, n) (12)

which has the advantage of preserving positivity. As described
by Press et al. (1988-1992), the bilinear interpolation is the
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Fig. 8. From top to bottom panels: toy object made of an ensemble of
Gaussian point sources, observed noiseless image, and noisy image with
163840 photons in the whole image, i.e a mean number of 10 photons
by pixel.

simplest one in two dimensions, is sufficient for an array with
smooth variations of values and is currently used in image trans-
formations such as the ones described in Russ (1995). It can be
seen that this linear combination will not modify the nature of
a Gaussian additive noise. If we now consider a Poisson trans-
formation of the image, as in the numerical examples proposed,
since the coefficients are not integers, the noise in the polar coor-
dinate system will change in nature. Another point to note is
that the transformation T will introduce a correlation between
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Fig. 9. Reconstructed object using RL at optimal iteration number k̂ =
2000 for the noiseless image (top panel) and at k̂ = 27 for the noisy
image (bottom panel).

the pixels and the RL algorithm will no longer be theoretically
applicable in this case. However, we can anticipate that solar
observations will be high flux and the effect of the noise will
be negligible.

We note that if the ρ axis is in arcsec, the θ axis is in degrees.
Due to the choice of sampling points used for the transformation
T (here we oversampled the image with 1000×1000 points), the
figure still resembles a direct space.

The main result is that now the responses have become inde-
pendent of θ. It therefore becomes sufficient to calculate the
responses along a radial line. This is exactly what we have done
to establish the transform matrix H used in Sect 4. What we have
previously considered as an approximation allowed by the treat-
ment of a small area is now the exact computation to perform,
thanks to the Cartesian to polar T transform.

Let us estimate in round figures the gain obtained by this
operation. Suppose that for the resolution of 2.3 arcsec of the
telescope, we take a PSF every 1 arcsec squared. In direct pro-
cessing, without using the T transformation, it would be neces-
sary to calculate every PSF included in a ring of about 100 arcsec
around the limb, which is roughly 2π × RSun × 100, or about
6 million points sources ( since RS un = 960 arcsec), instead of
just 100 using the T transform. The gain in computing time,
simply to get the PSFs is more than a factor of 6000, and also
requires less computer memory space. We note that in Sect. 4
we adopted a slightly tighter sampling (128 points for 96 arcsec,
or 0.75 arcsec/point), and numbers obtained for the gain in com-
puter time were a lower limit.
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Fig. 10. Cuts of the noiseless observed image y, the object xt and the
reconstructed object using the RL algorithm. Top panel: noiseless image.
Bottom panel: noisy image. See comments in the body of the paper.
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Fig. 11. Black curve, left y axis, reconstruction error as a function of the
mean number of photons. Red curve, right y axis, computation time in
seconds as a function of the mean number of photons, for a MacBook
Pro 2018, i9 processor.

Let us denote X′( ρ, θ) and Y ′( ρ, θ) the object and image
after application of the transformation T, respectively. The point
response h(ξ, η, α, β) then becomes a new function h′(ξ′, η′, ρ, θ),
which is now invariant in θ. The Fredholm equation analogous
to Eq. (3) can now be written as

Y ′( ρ, θ) =

∫ ∫
X′(ξ, η)h′( ρ, ξ, θ, η)dξdη

=

∫ ∫
X′(ξ, η)h′( ρ, ξ, θ − η)dξdη (13)
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Fig. 12. Schematic drawing of the transformation T from the (α, β)
cartesian space to the (ρ, θ) polar space. In this transform, the ring cor-
responding to the vignetting region becomes a rectangle (here only half
the corona region is shown). The drawing is not to scale, since OM cor-
responds to the Sun radius (about 960 arcsec) and the width (MM’) is
the vignetted region (about 100 arcsec).

Y(a,b)

H

T Y’(r,q)

Inverse
Fredholm

X’(r,q)

T

T -1 X(a,b)

H’

Fig. 13. Block diagram of the proposed procedure to reconstruct the
vignetted zone using one and a single H matrix transform. T is the (α, β)
to ( ρ, θ) transform, and T−1 the ( ρ, θ) to (α, β) transform.

The matrix H, here H′, can be limited to a reasonable size to
reconstruct X′( ρ, θ) in several pieces that can be stacked on top
of each other. An inverse transformation T−1 will have finally
to be applied to recover the image, as described in the block
diagram of Fig. 13.

6. Conclusion

We have proposed a procedure to recover strongly blurred
images in the vignetting zone of the externally occulted solar
coronagraph ASPIICS. Close to the limb, the PSF varies rapidly
in shape and in integrated intensity, which is specific to the exter-
nal occultation. The object image relationship in this zone is then
defined by a Fredholm integral of the first kind. We proposed to
invert this problem using a complete matrix formalism and the
used method is the non-simplified form of the RL algorithm for
a non-constant PSF. This PSF was modelled using the approach
of Rougeot et al. (2017).

Simulations were made for a simple toy object made of
Gaussian point sources. The object is of size 128 × 128 points.
Results are very positive since inversion of Fredholm integral
gives satisfactory results up to a vignetting of 50% of the aper-
ture. The drawback of the matrix approach is that the recovery
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Fig. 14. Illustration of the transformation T (Cartesian to polar) from
the image Y(α, β) (top panel) to its transform Y ′( ρ, θ). See details in the
main text.

of an N × N object requires the handling of an N2 × N2 matrix,
which in the present study is a 16384 × 16384 matrix. Going
beyond this dimension becomes difficult.

To overcome this difficulty, we proposed the use of a trans-
formation from Cartesian to polar coordinates that makes it pos-
sible to handle the vignetting region of the whole solar image.
This was obtained taking into account radial symmetries of
the experiment. This transformation changes the ring of the
vignetting zone with a variable PSF into a rectangle with a PSF
that varies with ρ, the distance to the limb, but which is invariant
in θ around the limb. This greatly facilitates both PSF calcula-
tions and Fredholm’s inversion.

Future work remains to be done on more realistic images
of the solar corona. Such images should show real structures
of the solar corona, for example obtained during a true solar
eclipse, (Druckmüller et al. 2014), and should be contaminated
by the diffraction halo of the solar chromosphere, as computed in
Rougeot et al. (2017). This image should also take into account
noise sources specific to real observations. Moreover, the trans-
formation T remains to be implemented for an entire image of
the solar corona. This will also require a special treatment of
the continuity of the image between Fredholm and convolution
zones.

A212, page 9 of 10

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833843&pdf_id=12
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833843&pdf_id=13
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833843&pdf_id=14


A&A 622, A212 (2019)

A rapid analysis of noise effects is given in Sect. 5. To make
these effects visible, a very small number of ten photons per pixel
is used in the illustrations. This is certainly a very low num-
ber of photons because the area of vignetting corresponds to the
brightest zone of the solar corona. The dominant effect in the
vignetting zone remains the degradation of the shape of the PSF.

In addition, a reconstruction algorithm adapted to the real
data model will have to be developed. A regularization term must
be added to overcome early stopping that requires knowledge of
the object to be reconstructed.

The technique presented here can be extended to a corona-
graph using a serrated external occulter. In this case, the variation
of the PSF is no longer only radial, but it also varies angularly
with a periodicity of 2π/Nt, where Nt is the number of teeth.
Such coronagraphs have been proposed since precursors projects
of Newkirk & Bohlin (1965) and Purcell & Koomen (1962). A
recent study by Rougeot & Aime (2018) has shown that these
serrated occulters can indeed outperform that the sharp-edged
disc, provided that the number of teeth is high (e.g. Nt = 1000).
In this case, the number of PSFs to be computed to establish
the matrix H becomes larger, of the order of ten times larger
for Nt = 1000, which remains quite feasible. Work on this
point is being developed and will be the subject of a future
contribution.

Finally, a study should be done to investigate whether or not
the T technique could find applications in other areas of astron-
omy where the PSF also suffers from radial variation.
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