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ABSTRACT

Context. Magnetohydrodynamic interactions between plasma flows and magnetic fields is fundamental to the origin and sustenance
of the 11-year sunspot cycle. These processes are intrinsically three-dimensional (3D) in nature.
Aims. Our goal is to construct a 3D solar dynamo model that on the one hand captures the buoyant emergence of tilted bipolar sunspot
pairs, and on the other hand produces cyclic large-scale field reversals mediated via surface flux-transport processes – that is, the
Babcock-Leighton mechanism. Furthermore, we seek to explore the relative roles of flux transport by buoyancy, advection by merid-
ional circulation, and turbulent diffusion in this 3D dynamo model.
Methods. We perform kinematic dynamo simulations where the prescribed velocity field is a combination of solar-like differential
rotation and meridional circulation, along with a parametrized turbulent diffusivity. We use a novel methodology for modeling mag-
netic buoyancy through field-strength-dependent 3D helical up-flows that results in the formation of tilted bipolar sunspots.
Results. The bipolar spots produced in our simulations participate in the process of poloidal-field generation through the Babcock-
Leighton mechanism, resulting in self-sustained and periodic large-scale magnetic field reversal. Our parameter space study varying
the amplitude of the meridional flow, the convection zone diffusivity, and parameters governing the efficiency of the magnetic buoy-
ancy mechanism reveal their relative roles in determining properties of the sunspot cycle such as amplitude, period, and dynamical
memory relevant to solar cycle prediction. We also derive a new dynamo number for the Babcock-Leighton solar dynamo mechanism
which reasonably captures our model dynamics.
Conclusions. This study elucidates the relative roles of different flux-transport processes in the Sun’s convection zone in determining
the properties and physics of the sunspot cycle and could potentially lead to realistic, data-driven 3D dynamo models for solar-activity
predictions and exploration of stellar magnetism and starspot formation in other stars.
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1. Introduction

The solar magnetic cycle and the magnetized sunspots that it
generates eventually determine many aspects of solar activ-
ity such as flares and coronal mass ejections, solar irradiance,
solar wind, and heliospheric open flux variations (Ossendrijver
2003). These physical processes are major contributors to what
is now commonly called space weather and can significantly
impact our space environment and planetary atmospheres. Apart
from long-term observations obtained both through ground- and
space-based telescopes which constrain the spatio-temporal evo-
lution of solar surface magnetic fields, theoretical insights and
numerical simulations based on magnetohydrodynamic (MHD)
dynamo models have proven to be very effective in understand-
ing the origin and evolution of magnetic fields in the interior of
the Sun.

The toroidal component of magnetic fields that generate
sunspots are understood to be produced by stretching of poloidal

? This work is dedicated to the memory of Rohit Kumar, the first
author of this paper.

field lines by the differential rotation of the Sun (Parker 1955a).
Strong toroidal flux tubes become magnetically buoyant (Parker
1955b) and rise through the solar convection zone producing
bipolar pairs which are tilted due to the action of the Corio-
lis force on the rising flux tubes (D’Silva & Choudhuri 1993).
Although a variety of mechanisms have been proposed for
regeneration of the poloidal component of the Sun’s magnetic
field (Charbonneau 2005), observational analysis of solar-cycle
properties support the Babcock-Leighton (BL) mechanism as
the dominant poloidal field source (Dasi-Espuig et al. 2010;
Muñoz-Jaramillo et al. 2013). The Babcock-Leighton mecha-
nism (Babcock 1961; Leighton 1969) involves the action of near-
surface flux-transport mechanisms on buoyantly emerged tilted
bipolar sunspot pairs, which results in cross-equatorial flux can-
celation of leading polarity sunspots and migration of the fol-
lowing polarity flux towards the poles to reverse the large-scale
solar polar field (associated with the poloidal component). The
newly generated poloidal field is then subducted by a variety
of flux transport processes and subject to shearing by differen-
tial rotation which produces the toroidal field of the subsequent
sunspot cycle. These models are amenable to solar surface data
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assimilation and can be used in predictive modes to make pre-
dictions of future solar activity.

Solar dynamo modeling is carried out by adopting mainly
two types of approaches: two-dimensional (2D) kinematic
mean-field models (Moffatt 1978; Rädler et al. 1990) in which
for a prescribed velocity field, the evolution of the large-
scale magnetic field is studied (Dikpati & Charbonneau 1999;
Nandy & Choudhuri 2001; Jouve & Brun 2007) and three-
dimensional (3D) global MHD models where the full set of
MHD equations is self-consistently solved (Nelson et al. 2013;
Miesch & Toomre 2009; Brun et al. 2015). In the 2D mean-
field kinematic models, a Babcock-Leighton source term can
be added to the poloidal field evolution equation to model the
rise of flux tubes from the base of the convection zone to the
solar surface where sunspot pairs are produced. However, in
these axisymmetric models, the rise of flux tubes is treated
as instantaneous. Various levels of treatment have evolved in
sophistication, starting from the direct addition of a net effec-
tive azimuthally averaged poloidal field close to the near-surface
layer to placing double-rings in terms of the axisymmetric vec-
tor potential for the poloidal field at near-surface layers to
mimic the eruption of bipolar sunspot pairs (Durney 1995,
1997; Nandy & Choudhuri 2001; Muñoz-Jaramillo et al. 2010).
Although these models reproduce large-scale solar-cycle fea-
tures reasonably well, they do not adequately capture the actual
production of non-axisymmetric tilted bipolar magnetic regions
(BMRs) or how they result in this effective poloidal flux – pro-
cesses that are intrinsically 3D. We note that new models have
been developed recently coupling a 2D axisymmetric dynamo
model to a 2D surface flux-transport model (Lemerle et al.
2015; Lemerle & Charbonneau 2017). This new idea now indeed
enables the production of BMRs from the toroidal field of
the dynamo simulation and allows for their evolution through
the surface flux-transport code to be followed. In 3D global
MHD models, naturally buoyant twisted magnetic structures
do start to be self-consistently produced in the convection
zone (Nelson et al. 2013; Fan & Fang 2014), but their density
deficit is still erased too quickly to maintain coherent struc-
tures rising all the way to the top of the domain to create
active regions. These models do not produce systematically
tilted BMRs satisfying the observed Joy’s law distribution of tilt
angles. Moreover, 3D global MHD models are computationally
expensive for these types of studies and do not easily allow for
a parametric study to be performed. Therefore there is a need
to further develop these approaches to overcome some of these
deficiencies.

One crucial element in this context is a relatively more
sophisticated modeling of the buoyant emergence of tilted flux
tubes within the framework of the Babcock-Leighton mecha-
nism. Recently, kinematic 3D flux-transport models have been
developed (Miesch & Dikpati 2014; Yeates & Muñoz-Jaramillo
2013). These models are obviously more realistic than 2D
axisymmetric ones since non-axisymmetric tilted bipolar mag-
netic regions are created and can actively participate in the
production of a net poloidal magnetic flux at the surface.
The resultant surface magnetic flux gets advected by the sur-
face flows and transported by diffusion towards the poles
to reverse their polarities. Cameron & Schüssler (2015) have
demonstrated analytically the connection between the generation
of the toroidal flux in the two hemispheres and the shearing and
amplification of the surface poloidal flux. In their 3D dynamo
models, Miesch & Dikpati (2014) and Miesch & Teweldebirhan
(2016) adapted a double-ring algorithm in which BMRs are
directly placed at the solar surface. In these types of models

however the flux emergence in the convection zone is miss-
ing, which is believed to be an important aspect of the solar
magnetic cycle. On the other hand, Yeates & Muñoz-Jaramillo
(2013) adopted a different approach where they employed an
additional radial velocity in the convection zone that transports
the toroidal flux from the base of the convection zone to the
surface to produce bipolar spots. However, they focussed only
on one magnetic cycle, and did not demonstrate the ability of
their model to achieve sustained long-term cyclic dynamo action.
In a new 3D flux-transport solar dynamo model, Kumar et al.
(2018) implemented a magnetic buoyancy algorithm similar to
that by Yeates & Muñoz-Jaramillo (2013) with the potential of
sustaining long-term dynamo action. In this paper, we develop
and refine this model with 3D helical flows to model the flux
emergence process and show that this model produces self-
sustained dynamo action fed by flux-transport processes such as
magnetic buoyancy, meridional circulation, and turbulent diffu-
sion. We perform an extended parametric study of this model
to assess the dependence of magnetic cycle properties on the
parameters governing the efficiency of various flux transport
processes.

Long-term sunspot observations (Hathaway 2010) show
variations in the duration and amplitude of the solar cycle,
including grand minima episodes whose origin may be in
fluctuations of the dynamo source term (Passos et al. 2014;
Hazra et al. 2014) or flux transport parameters. While some
studies infer that meridional circulation variations may play
an important role in this (Charbonneau & Dikpati 2000;
Hathaway et al. 2003), other studies indicate that turbu-
lent pumping may also sustain similar cycle dynamics
(Hazra & Nandy 2016). The propagation of these fluctuations
to the next cycles through flux-transport processes is an emer-
gent issue with critical relevance for solar-cycle predictions
(Yeates et al. 2008; Karak & Nandy 2012). In an attempt to
anticipate the strength of cycle 24, Dikpati & Gilman (2006)
used an advection-dominated model (strong meridional circula-
tion and low turbulent diffusion) and showed that the toroidal
field of cycle n is produced by the combined poloidal fields of
cycles n − 3, n − 2, and n − 1 and predicted that cycle 24 would
be a very strong cycle (Dikpati et al. 2006). On the other hand,
Choudhuri et al. (2007) used a diffusion-dominated model and
showed that the toroidal field of cycle n is generated mainly
by the poloidal field of cycle n − 1 and that cycle 24 would
be a very weak cycle. Yeates et al. (2008) explained the dif-
fering dynamical memory of these models and the consequent
diverging predictions on the basis of the relative roles of flux-
transport by meridional circulation and turbulent diffusion and
they demonstrated in their 2D dynamo model that the dynamo
behave very differently in these regimes. Inspired by these stud-
ies, we perform a detailed parameter-space study to under-
stand magnetic fields dynamics in our 3D Babcock-Leighton
dynamo model. Specifically, we vary the amplitude of the merid-
ional circulation, the convection zone diffusivity, and, in addi-
tion, parameters related to BMR emergence, and study how
these variations affect the magnetic cycle. We also present a
new dynamo number which may be suitable for characterizing
dynamo action in Babcock-Leighton dynamo models of the solar
cycle.

The paper is organized as follows: In Sect. 2, we present
the 3D flux-transport kinematic dynamo model. Results of
dynamo simulations and the magnetic cycle are shown in
Sect. 3. In Sect. 4, effects of various parameters on the mag-
netic cycle are discussed. Finally, in Sect. 5, we summarize our
results.
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Fig. 1. Axisymmetric velocities: (panel a) differential rotation and (panel b) meridional circulation (dashed lines: anti-clockwise, solid lines:
clockwise), and (panel c) the latitudinal velocity (Vθ) with normalized radius (at θ = 45◦) in the convection zone.

2. The 3D flux-transport dynamo model

2.1. The numerical framework

We solve the magnetic induction equation for our kinematic
dynamo simulation, which is as follows (Davidson 2001).

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B), (1)

where B is the magnetic field, u is the prescribed velocity field,
and η is the magnetic diffusivity. In our simulations, the pre-
scribed velocity field is a combined effect of the solar-like dif-
ferential rotation and the meridional circulation, and a velocity
corresponding to the magnetic buoyancy in the convection zone.
Here, the velocity field is defined as

V = Vrer + Vθeθ + r sin θΩeφ + Vb, (2)

where (Vr,Vθ) is the axisymmetric meridional flow, Ω is the spa-
tially dependent rotation rate, and Vb is the buoyancy velocity.
Each of these velocity field components is described below.

We solve the magnetic induction equation in a spherical shell
using the publicly available pseudo-spectral solver MagIC (Wicht
2002; Gastine & Wicht 2012)1. MagIC uses a poloidal/toroidal
decomposition both for the magnetic field and the mass flux to
ensure the divergence constraint. MagIC employs spherical har-
monic decomposition in the azimuthal and latitudinal directions,
and Chebyshev polynomials in the radial direction. For time-
stepping, it employs semi-implicit Crank-Nicolson scheme for
the linear terms and Adams-Bashforth for the nonlinear terms.
The inner and outer radii of computational shell are [0.65, 1.0] R�,
where R� is the solar radius. We choose Nr = 64 grid-points in
the radial, Nθ = 128 points in the latitudinal, and Nφ = 256
points in the longitudinal directions. Simulations are performed
by considering insulating boundaries of the spherical shell.
As an initial condition, we employ a dipolar magnetic field.

2.2. Axisymmetric velocity field

We prescribe an axisymmetric velocity profile which is a combi-
nation of a differential rotation and a meridional circulation. The
rotation profile is similar to that observed in the Sun through

1 https://github.com/magic-sph

helioseismology (Schou et al. 1998). The normalized rotation
rate is defined as

Ω(r, θ) = Ωc +
1
2

[
1 + erf

(
r − rc

d1

)] (
1 −Ωc − c2 cos2 θ

)
, (3)

where Ωc = 0.92, c2 = 0.2, rc = 0.7 R� (the tachocline), and
d1 = 0.15 R�. The rotation is strongest in the equatorial region,
and it decreases as we move towards the poles (see Fig. 1a). A
similar rotation profile was used by Jouve et al. (2008).

In addition, the flow also consists of a single-cell merid-
ional circulation (MC) per hemisphere, which is poleward near
the outer surface and equatorward near the base of the con-
vection zone (shown in Fig. 1b). The meridional circulation
plays an important role in BL flux-transport models where it
advects the effective magnetic flux of the trailing spots towards
the poles to reverse the polarities of the polar field (Wang et al.
1989; Dikpati & Choudhuri 1994, 1995; Choudhuri & Dikpati
1999). We use a meridional circulation profile similar to that of
Dikpati & Charbonneau (1999) with a deeply penetrating compo-
nent of the flow to just beneath the base of the convection zone as
suggested by Nandy & Choudhuri (2002). Such a flow achieves
adequate coupling of various layers of the convection zone and
ensures low latitude activity which is otherwise very difficult to
achieve. For the normalized density profile in the convection zone
defined as ρ(r) = [(R�/r) − 0.95]m, the normalized radial and
latitudinal components of the meridional flow are as follows

Vr(r, θ) =

(R�
r

)2 [
−

1
m + 1

+
l1

2m + 1
ξm −

l2
2m + p + 1

ξm+p
]

× ξ (2 cos2 θ − sin2 θ), (4)

Vθ(r, θ) =

(R�
r

)3 [
−1 + l1 ξm − l2 ξm+p] sin θ cos θ, (5)

where

l1 =
(2m + 1)(m + p)

(m + 1)p
ξ−m

b , (6)

l2 =
(2m + p + 1)m

(m + 1)p
ξ
−(m+p)
b , (7)

ξ(r) =
R�
r
− 1, (8)

ξb = 0.54, m = 0.5, and p = 0.25.
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Fig. 2. The two-step magnetic diffusivity as a function of normal-
ized radius in the convection zone. Here the core diffusivity η0 = 4 ×
108 cm2 s−1, the convection zone diffusivity ηc = 7 × 1010 cm2 s−1, and
the surface diffusivity ηs = 1012 cm2 s−1.

The observations suggest that the magnitude of the rota-
tional velocity at the equator is around 2 km s−1 and the
peak meridional flow at the solar surface is approximately
20 m s−1 (Roudier et al. 2012). Considering these values, we fix
the maximum longitudinal velocity to 2 km s−1 (at the surface
at the equator) and vary the peak surface latitudinal velocity in
the range 7.5−20 m s−1 in different cases since the MC is a much
more fluctuating flow and we want to assess the effects of a vary-
ing the MC amplitude on the magnetic field evolution. The vari-
ation of latitudinal velocity with radius is illustrated in Fig. 1c,
where the maximum surface velocity is 12.5 m s−1 at latitudes
θ = ±45◦.

2.3. Magnetic diffusivity

The magnetic diffusivity is chosen as a two-step function such
that the diffusivity near the inner core is small, larger in the con-
vection zone, and maximum near the outer surface, similar to
that of Yeates & Muñoz-Jaramillo (2013). The magnetic diffu-
sivity is defined as

η(r) = η0 + (ηc − η0) ×
[
1 + erf

(
r−R5

d6

)]
+(ηs − ηc − η0) ×

[
1 + erf

(
r−R6

d7

)]
, (9)

where the inner core diffusivity η0 = 4× 108 cm2 s−1, the
surface diffusivity ηs = 1012 cm2 s−1, and the convection zone dif-
fusivity ηc is varied in different simulations. The other param-
eters are fixed to r5 = 0.71 R�, r6 = 0.95 R�, d6 = 0.03 R�, and
d7 = 0.025 R�. The profile of the magnetic diffusivity with
radius in the convection zone is illustrated in Fig. 2, where
ηc = 7× 1010 cm2 s−1.

Having described the prescribed axisymmetric velocity field,
the initial conditions, and the diffusivity profile for the simula-
tions, we now discuss the buoyancy algorithm in the convection
zone.

2.4. Magnetic buoyancy algorithm

In this section, we present the magnetic buoyancy algorithm
implemented in our model which is crucial for BMR genera-

tion at the surface. For this purpose, we employ a buoyancy
velocity field in the convection zone that acts in the radially
outward direction. The buoyancy velocity transports the toroidal
flux from the bottom of the convection zone to the outer surface.
The buoyancy velocity as a function of longitude and latitude
(φ, θ) is described as in Yeates & Muñoz-Jaramillo (2013) and
in our previous work (Kumar et al. 2018) by

Vb = Vb0 exp

−

(
φ − φ̄

σφ

)2

+

(
θ − θ̄

σθ

)2

, (10)

where (φ̄, θ̄) corresponds to the apex of the rising flux tubes,
which moves with the local rotation rate, and the extension of the
buoyant parts of the flux tubes are chosen to be σθ = σφ = 5◦.
This is motivated by studies of magnetic buoyancy instabilities
of flux sheets which produce tube-like structures of relatively
small scale when triggered (Parker 1955a; Cattaneo & Hughes
1988; Matthews et al. 1995; Jouve et al. 2013). The amplitude
of the buoyancy velocity, Vb0, is uniform in all runs except the
one discussed in Sect. 4.5 and is set to 94.5 m s−1 such that it
takes about one month to transport the toroidal field from the
bottom of the convection zone to the surface. In our model, the
values of (φ̄, θ̄) are chosen randomly so that φ̄ can take any value
in the range [0◦−360◦] longitude, but θ̄ lies in the latitudinal
region [−35◦,+35◦], the latitudes of observed bipolar spots at
the solar surface (Maunder 1922). As an effect of the buoyancy
velocity, the toroidal flux ropes at the bottom of the convection
zone start to emerge in the radially outward direction to produce
the bipolar magnetic regions at the surface. The additional buoy-
ancy velocity field acting at a particular (φ̄, θ̄) is applicable only
if the toroidal magnetic field Bφ > Bl

φ (=4 × 104 gauss), which
is in agreement with the physics of magnetic buoyancy insta-
bilities. Indeed, it is thought that below this value, the field is
either too small to be affected by the magnetic buoyancy or if
buoyant enough, strongly influenced by the Coriolis force, and
hence rises parallel to the rotation axis (Choudhuri & Gilman
1987). As we are working with a kinematic dynamo model,
we suppress the effects of the magnetic buoyancy for Bφ > Bh

φ

(= 1.4× 105 gauss) in order to achieve energy saturation. This is
physically justified by the fact that stronger fields are expected
to rise briskly to the surface without being affected by the Cori-
olis force and as a result, the produced BMRs would not be
tilted enough and hence would not participate in the polar field
reversals. To avoid additional complexities we do not include
any radial dependence that precludes flux-tube expansion. This
is done with the understanding that it is the total flux content
rather than field strength of emerged bipoles that is relevant for
the BL mechanism.

To include the effect of the Coriolis force on toroidal
fields between Bl

φ and Bh
φ, we then apply an additional vorti-

cal velocity, which imparts spatial twist in the emerging mag-
netic flux ropes. The vortical velocity (Vω) is the combination of
a latitudinal and a longitudinal velocity component, defined as
(Yeates & Muñoz-Jaramillo 2013)

V t
θ =

V t
θ0

2
r cos θ̄ sin θ̄ e−ζ

2/δ2
sin(φ − φ̄), (11)

V t
φ = −

V t
φ0

2
r cos θ̄ e−ζ

2/δ2

× [sin θ cos θ̄ − cos θ sin θ̄ cos(φ − φ̄)], (12)

where V t
θ0 and V t

φ0 are the amplitudes of the latitudinal and the
longitudinal velocities, respectively,
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vω

r

Fig. 3. Schematic diagram for the radial velocity corresponding to buoy-
ancy (Vb) and vortical velocity (Vω).

ζ =

√
r2 + r̄2 − 2rr̄(sin θ sin θ̄ cos(φ − φ̄) + cos θ cos θ̄), (13)

which is the Euclidean distance of a spatial point (r, θ, φ) from

the center (r̄, θ̄, φ̄), δ = δ0

√
R�/r̄0−0.95
R�/r̄−0.95 , and δ0 = (5π/18)(0.7R�).

Here δ represents the radius of the velocity components V t
θ and

V t
φ, and δ0 is the initial radius at r̄ = r̄0. In Fig. 3, we illus-

trate a schematic diagram for radial and vortical velocities: Vb,
Vω(V t

θ,V
t
φ).

The combination of these radial and vortical velocity fields
effectively yields a helical flow which mimics or models the
buoyant emergence of tilted toroidal flux tubes from the solar
interior.

The emergence of twisted magnetic flux ropes results in the
production of tilted bipolar magnetic regions at the surface. The
vortical velocity is tuned so that the tilt in BMRs is with respect
to the east-west direction. Also, the tilt is clockwise in the north-
ern hemisphere and anti-clockwise in the southern hemisphere
where the tilt corresponds to values observed at the solar surface
(between 4◦ and 14◦ Wang & Sheeley 1989). The tilt in the bipo-
lar regions is crucial for the Babcock-Leighton mechanism. We
therefore tune the amplitudes V t

θ0 and V t
φ0 of the vortical veloc-

ity such that the produced BMRs obey Joy’s law (Hale et al.
1919) for tilt angle and latitude. We do not introduce any fluc-
tuations in the tilt angle of BMRs and then limit the variabil-
ity of the magnetic solutions we obtain. In Fig. 4, we show one
BMR emerging at two different latitudes where the BMR at a
higher latitude (30◦) has a larger tilt angle as compared to the
BMR at a lower latitude (10◦). In our model we allow 32 BMRs
to emerge every month. Observations suggest that on average
around 100 sunspots emerged every month during cycle 22,
around 80 sunpots during cycle 23, and around 60 sunspots dur-
ing cycle 24 (SILSO World Data Center 1985–2014). The total
sunspots emerging during a sunspot cycle in our model is smaller
than that observed in the Sun. However, the size of an individual
spot in our case is large as compared to that of sunspots such that
one individual spot in our model is equivalent to an observed
sunspot group (containing 3–4 small-size spots). The selection
of the sites of BMR emergence is random, as described earlier.
The randomness in the selection of the sites of emerging BMRs
is the only mechanism which can introduce variability in the
dynamo solution. For example, if during half a magnetic cycle
more BMRs emerge near the equator, then the leading spots of
those BMRs would participate more in cross-equatorial cancella-
tion, which would contribute more to the net poloidal field pro-

Fig. 4. Production of tilted bipolar regions at the surface: for higher
latitude (30◦) the tilt angle is larger (panel a), whereas for lower latitude
(10◦) it is smaller (panel b).

duced through the BL mechanism and hence the amplitude of
that half cycle would be slightly higher. On the other hand, more
BMRs emerging at higher latitudes would reduce the amplitude
of a particular half cycle. However, if the number of emerging
BMRs is large, then the BMRs at the solar surface would be
evenly distributed (in the latitudinal region [−35◦,+35◦]), reduc-
ing the variability of the cycle amplitude.

3. Dynamo solution and the magnetic cycle

In this section, we present the results of a typical dynamo sim-
ulation performed for the peak meridional flow Vθp = 12.5 m s−1

and convection zone diffusivity ηc = 7× 1010 cm2 s−1. The initial
condition and the other velocity and diffusivity parameters are
the ones described in Sect. 2.

In Fig. 5, we illustrate the time-evolution of the mean
toroidal and the mean poloidal magnetic energies, which shows
an initial exponential growth of the magnetic energy followed by
the saturation of energy. We note that the poloidal energy is dom-
inated by its nonaxisymmetric part, which is mainly due to the
emergence of tilted BMRs that are nonaxisymmetric in nature.
The magnetic energy attains saturation due to the lower and
upper cutoffs on the buoyantly emerging toroidal field. These
cutoffs limit the magnetic flux reaching the surface and act as
the quenching effect in this kinematic dynamo.

In Fig. 6, we show the snapshots of longitudinally averaged
toroidal field during half a magnetic cycle. At the beginning of
the magnetic cycle, the northern hemisphere convection zone is
dominated by a strong toroidal field with a positive polarity (see
Fig. 6a). Afterwards, the toroidal field diffuses and gets advected
by the meridional flow towards the equator (see Fig. 6b), which
then becomes buoyantly transported to the surface to produce
BMRs. Later, we observe the production of a toroidal field (with
negative polarity) in the subsequent cycle (see Fig. 6c), which
is again subject to advection by the meridional flow towards the

A54, page 5 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834705&pdf_id=3
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834705&pdf_id=4


A&A 623, A54 (2019)

0 10 20 30 40 50 60
10-1

101

103

105

107

109

1011

M
a

g
n

e
ti

c
E

n
e

rg
y 

(e
rg

 c
m

-3
)

Epol

Etor

Eax
pol

Eax
tor

Time (Years)

Fig. 5. Time-evolution of poloidal and toroidal components of the
magnetic energy (Epol and Etor, respectively) showing a self-sustained
saturated dynamo in the system. Here Eax

pol and Eax
tor represent the

axisymmetric parts of poloidal and toroidal energies, respectively. The
poloidal energy is mainly dominated by its nonaxisymmetric part.

equator (see Fig. 6d). Figure 7 illustrates the snapshots of the
longitudinally averaged radial component of the (poloidal) mag-
netic field at the same instances as the toroidal field of Fig. 6.
At the beginning of the magnetic cycle, the dominant positive
toroidal field in the convection zone (see northern hemisphere
of Fig. 6a) produces BMRs with positive trailing spots. Hence
in the northern hemisphere a net positive poloidal flux is pro-
duced and advected towards the poles (see Figs. 7a,b), to end
up with the reversal of the polar field of the previous cycle (see
Fig. 7d). Later, the dominant toroidal field is of negative polar-
ity (see northern hemisphere of Fig. 6d), which produces BMRs
with negative trailing spots, which then results in a net negative
poloidal flux being produced and transported towards the pole to
initiate the next polar field reversal (see Fig. 7d). We note that
the small-scale numerical artefacts appearing in Figs. 6 and 7
at the very bottom of the simulation domain do not affect the
overall dynamics, which is initiated and mostly limited to the
convection zone. Expensive numerical computation time limits
our ability to explore much-higher-resolution simulations in this
exhaustive parameter space study.

In Fig. 8a, the surface magnetic field (Br) shows a large num-
ber of bipolar spots and the presence of a large-scale polar cap. In
the northern hemisphere, the BMRs with positive trailing polar-
ity seen at mid-latitudes are produced by the positive toroidal
field in the convection zone (see Fig. 6a). If we take the longi-
tudinal average of the surface magnetic field, then due to the tilt
of BMRs, we obtain a nonzero magnetic flux of the polarity of
the trailing spots, which is clearly visible at mid and high lati-
tudes in both hemispheres. In Fig. 8b we see a relatively small
number of BMRs at the surface close to the equator, which rep-
resents here a sunspot minimum. We note however that in this
case we do not obtain a proper sunspot minimum with only a
few BMRs at the surface. Indeed in our model, we observe over-
laps between two consecutive cycles which results in a situation
where BMRs of the previous cycle linger at the surface along
with the BMRs of the next cycle. This is one of the shortcom-
ings of our dynamo model and future work will be devoted to
finding the appropriate parameters enabling this cycle overlap
to be reduced. At a later stage, we observe a large number of
tilted BMRs emerging at the surface (see Fig. 8c), which pro-
duce a significant amount of net magnetic flux of polarity oppo-

site to that of the polar field. The net magnetic flux then gets
advected, due to surface flows, towards the poles to reverse the
polar field, which is precisely the Babcock-Leighton mechanism.
The polar field reversal happens near the sunspot maximum, con-
sistent with the solar-cycle observations. Later, the newly gener-
ated poloidal field produces a toroidal field of polarity opposite
to the previous one (see Fig. 6d), which then produces BMRs of
opposite polarity (negative trailing spots in the northern hemi-
sphere), as shown in Fig. 8d at mid-latitudes. The polarities of
produced bipolar spots change along with the polarity of the
toroidal field in the convection zone.

One of the shortcomings of our dynamo model is that the
strength of an individual BMR and hence the polar field strength
are quite high (103 gauss) as compared to those observed in
the Sun (polar field strength ≈2 gauss Muñoz-Jaramillo et al.
2012). We note that in our model, the toroidal fields of magni-
tude (4 × 104, 1.4 × 105) gauss are subject to magnetic buoy-
ancy in the convection zone and emerge at the surface to
produce BMRs. These emerging toroidal fluxes, after diffusion
in the convection zone, produce BMRs with a field strength
of the order of a kilogauss. If we increase the lower cutoff
or decrease the upper cutoff on buoyantly emerging Bφ sig-
nificantly, then it results in the continuous decay of the mag-
netic field, due to a high surface magnetic diffusivity, killing
the dynamo in the system. Therefore, we keep the aforemen-
tioned cutoff on the emerging toroidal field in order to obtain
a self-sustained dynamo. Miesch & Teweldebirhan (2016) have
also reported strong magnetic fields in their dynamo model. In
our model, the magnetic flux of an individual spot is of the order
of 1022 Mx, which is quite high compared to that of an individ-
ual sunspot (1020−5 × 1021 Mx Cheung et al. 2010). A possible
explanation for such high polar fields in kinematic dynamo sim-
ulations and their consistency with observations of unipolar kilo-
gauss flux tubes in the polar regions is alluded to in Nandy et al.
(2011).

We plot maps of the mean radial magnetic field at the surface
(Fig. 9a) and the mean toroidal field at the base of the convec-
tion zone (Fig. 9b), which shows regular polarity reversals of the
polar field as well as the toroidal field. The polar field reversals
happen near the peak of the toroidal field in the convection zone
that corresponds to maximum of BMRs at the surface. The aver-
age time for the polar field reversals is 8.5 years. As we see in the
following section, the duration of half a magnetic cycle is highly
sensitive to the meridional flow amplitude, we then do get an
11-year cycle (as observed in the Sun) when we choose the peak
meridional flow speed to be 7.5 m s−1. We estimate the amplitude
of the magnetic cycle by computing the poloidal magnetic flux
Φ(Br) of the polar cap (at r = 0.95 R�), and the toroidal magnetic
flux Φ(Bφ) near the tachocline; which are defined as

Φ(Br) =

∫ 20◦

θ=0◦

∫ 2π

φ=0
Br r2 sin θ dθ dφ, (14)

Φ(Bφ) =

∫ 90◦

θ=40◦

∫ 0.725 R�

r=0.7 R�
Bφ r dθ dr, (15)

where θ represents the colatitudes. In Fig. 10, we illustrate
the time-evolution of the amplitude of the magnetic cycle. The
toroidal flux peaks when the poloidal flux is minimum, and
vice versa. Hence the toroidal and poloidal fluxes are in anti-
phase, which is consistent with the solar observations (Hathaway
2010) where the sunspot number-strength is a manifestation of
the strength of the toroidal flux in the convection zone. In our
simulation, we observe a small degree of variability in the mag-
netic cycle, that is, the cycle amplitude varies for different cycles.
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Fig. 6. Snapshots of the longitudinally averaged toroidal magnetic field (Bφ) at different stages during half a magnetic cycle. Subfigures show the
polarity reversals of the field in the two hemispheres.
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Fig. 7. Snapshots of the longitudinally averaged radial magnetic field (Br) at different stages during half a magnetic cycle. Subfigures show the
polarity reversals of the polar field.

In our model, BMRs emerge at random longitudes and latitudes,
which may contribute different amounts of magnetic flux to the
net surface magnetic flux generated through the BL process, and
hence the amplitude of the magnetic cycle may vary accordingly.
However, the level of variability will be small compared to sim-
ulations where the tilt angle is also allowed to fluctuate around
a mean value. Further studies with this model would include
tilt angle fluctuations and anti-Hale regions which are shown to
have significant impact on cycle amplitudes in 2D surface flux-
transport models (Nagy et al. 2017).

4. Parameter-space study

In the previous section, we discussed the results of a typical (i.e.,
our standard) dynamo simulation which was obtained by fix-
ing various parameters such as the peak meridional flow speed,
the convection zone diffusivity, and the frequency of BMR
emergence. In this section, we vary these parameters and study
their effects on the magnetic cycle to explore solar cycle dynam-
ics under the dominance of diverse flux-transport regimes.

4.1. Effect of meridional circulation and convection zone
diffusivity on cycle duration

We examine the effect of meridional flow on the magnetic cycle
by changing the peak value of the meridional flow speed in the
convection zone, keeping the flow profiles the same as shown
in Fig. 1. For this purpose, we chose the peak meridional flow
speed to be Vθp = 7.5, 10, 12.5, 15, 20 m s−1.

For a fixed convection zone diffusivity, we observe that the
cycle duration is highly sensitive to the peak meridional flow
speed. The duration of half a magnetic cycle, that is, the sunspot
cycle (T1/2) decreases with the peak meridional flow speed fol-
lowing the relationship: T1/2 ∝ V−0.67

θp (here T1/2 is in years and
Vθp is in meters per second) for the convection zone diffusivity
ηc = 2 × 1010 cm2 s−1, and T1/2 ∝ V−0.62

θp for ηc = 1011 cm2 s−1.
This suggests that for a large ηc the cycle duration depends
less on the meridional flow, because in this case the diffu-
sion plays an important role in the transport of magnetic flux.
In Fig. 11, we plot the length of half a magnetic cycle (the
time duration between two consecutive polarity reversals) as a
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Fig. 8. Snapshots of the radial magnetic field (Br) at the surface show-
ing tilted BMRs and large-scale polar magnetic field (panel a) before
reversals, (panel b) during sunspot minimum, (panel c) during sunspot
maximum and field reversals, and (panel d) after the polarity reversals
through the BL mechanism.

function of Vθp at different values of ηc. At a fixed Vθp, T1/2
slightly decreases as we increase ηc. The decrease is not very
significant for large Vθp, but it is higher for the smaller values
of Vθp. This is explained by the fact that for large Vθp the flux-
transport in the convection zone is mostly advection driven and
cycle duration is mainly governed by the meridional circulation.
On the other hand, for small values of Vθp, the diffusion also con-
tributes to flux-transport in the convection zone, which in turn
affects the cycle duration in a significant way.

4.2. Effect of meridional circulation and convection zone
diffusivity on cycle amplitude

To understand the impact of meridional circulation and convec-
tion zone diffusivity on the cycle amplitude, we compute the

Fig. 9. Maps of the mean radial magnetic field (Br) at the surface and
the mean toroidal field (Bφ) at the base of the convection zone show-
ing cyclic field reversals. The toroidal field gets advected towards the
equator with time (panel b) due to the meridional circulation in the con-
vection zone.

toroidal magnetic flux Φ(Bφ) (discussed in Sect. 3). In Fig. 12,
we illustrate the cycle amplitude as a function of peak meridional
flow speed at different values of ηc. The toroidal flux plotted in
the figure represents the averaged peak values for several mag-
netic cycles in the steady state of the dynamo run. We observe
that for a fixed ηc the cycle amplitude first increases and then
decreases with Vθp. In Fig. 13, we plot the cycle amplitude as
a function of ηc at different values of Vθp. For low meridional
flows (Vθp = 10, 12.5 m s−1), the cycle amplitude decreases with
increasing ηc. On the other hand, for high peak meridional flows
(Vθp = 15, 20 m s−1), the cycle amplitude first increases and then
decreases with increasing ηc.

To explain the aforementioned trends we follow Yeates et al.
(2008) and define a low diffusivity and high meridional circu-
lation speed regime as the advection-dominated regime, and a
high diffusivity and low meridional circulation speed regime
as the diffusion-dominated regime. In the advection-dominated
regime (low ηc and high Vθp), we observe a lower cycle ampli-
tude as the circulation speed is increased (see Fig. 12), because
a high circulation speed allows less time for toroidal field to be
amplified near the tachocline. In this regime, for a fixed merid-
ional speed, the cycle amplitude increases with increasing ηc
(see Fig. 13). This kind of trend is observed because of a sig-
nificant direct diffusive flux-transport of the poloidal field across
the convection zone, as suggested by Yeates et al. (2008). In the
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Fig. 10. Time-evolution of the poloidal magnetic flux [Φ(Br)] and the
toroidal magnetic flux [Φ(Bφ)] showing periodic field reversals. There
is a 90◦ phase difference between the toroidal and poloidal fluxes.
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Fig. 11. Duration of half a magnetic cycle (T1/2) with peak meridional
flow speed (Vθp) at different values of the convection zone diffusivity
(ηc). Length of half a magnetic cycle decreases with increasing Vθp for
all ηc.

diffusion-dominated regime (high ηc and low Vθp), the cycle
amplitude increases with the circulation speed and the increase
is more significant for high ηc (see Fig. 12). In this regime when
the circulation speed is increased, the time available for diffusive
decay of the poloidal field being transported in the convection
zone is less, which then allows the production of higher toroidal
field generated through shearing of stronger poloidal field.

4.3. Evolution of the magnetic field in the advection- and
diffusion-dominated regimes

Here we study the evolution of toroidal and poloidal magnetic
fields in the advection- and diffusion-dominated regimes. In
order to distinguish between advection- and diffusion-dominated
regimes, we compute the ratio (ReM) of the diffusion timescale
(τDiff = L2

c/ηc, where Lc = 0.3 R� is the radial distance across
the convection zone) and the advection time-scale (τAdv =

πR�
2Vθp

,
the time taken by the meridional flow to advect a fluid parti-
cle from the equator to the pole at the surface), which indicates
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Fig. 12. Dependence of the cycle amplitude on the peak meridional flow
speed (Vθp) at different values of the convection zone diffusivity (ηc).
The cycle amplitude first increases and then decreases with increasing
Vθp.
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Fig. 13. Dependence of the cycle amplitude on the convection zone dif-
fusivity (ηc) at different peak meridional flow speeds (Vθp). For high
peak meridional flow speed (Vθp = 15, 20 m s−1), the cycle amplitude
first increases and then decreases with increasing ηc, whereas for low
peak meridional flow speed (Vθp = 10, 12.5 m s−1), the cycle amplitude
continuously decreases with increasing ηc.

that above (below) ReM ≈ 75 we have an advection-dominated
(diffusion-dominated) regime. In Fig. 14, we illustrate the time
evolution of the toroidal field during half a magnetic cycle for
Vθp = 12.5 m s−1, ηc = 2 × 1010 cm2 s−1 (ReM = 246, advection-
dominated convection zone: Fig. 14a–e) and for Vθp =12.5 m s−1,
ηc = 1011 cm2 s−1 (ReM = 49, diffusion-dominated convection
zone: Fig. 14f–j). In an advection-dominated regime, the toroidal
field generated in the convection zone gets advected, by the
meridional circulation, towards the equatorial region. On the
other hand, in a diffusion-dominated regime, the generated
toroidal field gets diffused quickly before being advected by the
meridional flow. In an advection-dominated regime, when the
toroidal field with positive polarity gets amplified in the con-
vection zone (cycle n), we observe the residual toroidal field of
cycle n − 1 (negative polarity) near the tachocline, and below
that a thin layer of a positive toroidal field of cycle n − 2 (see
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Fig. 14. Snapshots of the longitudinally averaged toroidal magnetic
field (Bφ) at different stages during half a magnetic cycle, with peak
meridional circulation Vθp = 12.5 m s−1. Left column: represents the evo-
lution of the toroidal field for the advection-dominated convection zone
(ηc = 2 × 1010 cm2 s−1) where the field is significantly advected in the
convection zone. Right column: corresponds to the diffusion-dominated
convection zone (ηc = 1011 cm2 s−1) where the diffusion of the field is
significant. In the advection-dominated case, the toroidal fields of pre-
vious few cycles are also present near the tachocline.

Figs. 14c,d). This suggests that the toroidal fields of cycles n,
n−1, and n−2 participate in the production of bipolar regions of
cycle n. Therefore the advection-dominated case produces mag-
netic cycles with memories of the previous two cycles. On the
other hand, in the diffusion-dominated regime, the toroidal field
quickly diffuses, leaving a weak residual toroidal field of only
cycle n−1 (see Fig. 14i), which suggests that the magnetic cycle
retains memory of only the previous cycle. This is in agreement
with previous studies such as Yeates et al. (2008).

Figure 15 illustrates the evolution of the poloidal field during
half a magnetic cycle for the advection-dominated (Figs. 15a–e)
and diffusion-dominated cases (Figs. 15f–j). At an instance when
a clockwise poloidal field of cycle n dominates, we observe
layers of the anti-clockwise field of cycle n − 1 near the
tachocline, and below that a very thin layer of clockwise field
of cycle n − 2 (see Fig. 15b). This shows that the toroidal field
of cycle n + 1 gets produced by the poloidal fields of the pre-
vious few cycles. For the diffusion-dominated system, however,
we do not observe many different layers of the poloidal field. The
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Fig. 15. Snapshots of the longitudinally averaged radial magnetic field
(Br) at different stages during half a magnetic cycle, with peak merid-
ional circulation Vθp = 12.5 m s−1. Left column: illustrates the evolu-
tion of the poloidal field for the advection-dominated convection zone
(ηc = 2 × 1010 cm2 s−1), whereas the right column is for the diffusion-
dominated convection zone (ηc = 1011 cm2 s−1). The solid lines repre-
sent clockwise, while the dashed lines anti-clockwise poloidal fields,
respectively.

time-evolution of poloidal field is in agreement with the under-
standing that for an advection-dominated convection zone the
memories of the previous few cycles propagate to the subsequent
cycle. The propagation of memories of earlier cycles plays an
important role in determining the amplitude of the future sunspot
cycle and is therefore important for solar-cycle predictions.

4.4. Effect of number of emerging BMRs

The results presented so far were from the dynamo simula-
tions in which 32 BMRs were allowed to emerge every month
in the latitudinal region of [−35◦,+35◦]. Now we examine
the effect of the number of emerging BMRs on the magnetic
cycle by fixing all the other parameters (Vθp = 12.5 m s−1 and
ηc = 2 × 1010 cm2 s−1). For this purpose, we perform simulations
with 8 BMRs or 1 BMR emerging every month, compute the
cycle amplitude in these cases, and then compare them with that
of the case with 32 BMRs emerging. In Table 1, we present cycle
duration, poloidal flux, and toroidal flux for different numbers
of emerging BMRs. The table contains the averaged values of
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Table 1. Duration and amplitude of the magnetic cycle with number of
emerging BMRs every month.

BMRs T1/2 Φ(Bφ) Φ(Br)
(years) (1025 Mx) (1025 Mx)

32 9.1 1.9 0.4
8 9.0 1.5 0.3
1 − − −

the aforementioned quantities for several magnetic cycles in the
dynamo steady state. When we allow 8 BMRs to emerge every
month, the duration of half a magnetic cycle remains almost
the same as for 32 BMRs. However, the amplitude of the mag-
netic cycle is smaller. It is evident that when the total number of
emerging BMRs is small, the magnitude of the resultant poloidal
flux produced by the trailing spots is small, which leads to the
generation of a smaller toroidal field for the subsequent cycle
and hence the overall cycle amplitude is smaller. If we further
decrease the number of emerging BMRs to one per month, the
surface poloidal flux generated through the BL mechanism is
not sufficient to reverse the polar field and hence we do not
observe cyclic polar field reversals (see Fig. 16a). We note how-
ever that in this case a toroidal field of polarity opposite to that
of the polar cap gets produced in the convection zone. There-
fore, we still get a strong toroidal field of a particular polarity at
lower latitudes (see Fig. 16b), which is due to the transport and
winding of the strong polar field. However, not enough flux is
taken up to the surface to reverse the polar field and the dynamo
stays stationary, that is, it does not produce cycles. The dynamo
fails when the number of BMRs emerging at the surface is fur-
ther decreased. Therefore, it is important to have an adequate
number of emerging BMRs in the system to sustain a proper
magnetic cycle, which in our case is around eight BMRs every
month.

4.5. Field-strength-dependent nonlinear buoyancy model

In the earlier sections the velocity corresponding to the magnetic
buoyancy was kept constant (Vb0 = 94.5 m s−1) for toroidal fields
satisfying Bl

φ < Bφ < Bh
φ. Here we implement a buoyancy veloc-

ity which varies with the amplitude of the toroidal field. Indeed,
stronger flux tubes are supposed to be more buoyant and will thus
rise faster, as confirmed by 3D numerical simulations of rising
flux tubes in convective shells (e.g., Jouve & Brun 2009). The
main purpose of employing this type of magnetic buoyancy is to
observe if this nonlinearity introduces variability in the amplitude
and the duration of the magnetic cycle, as previous mean-field
calculations suggested (Jouve et al. 2010). In the present case,
Vb ∝ B2

φ, that is, the buoyancy becomes more effective for a strong
toroidal field and less effective for a weak toroidal field. For these
simulations, we take Vθp = 12.5 m s−1 and ηc = 2 × 1010 cm2 s−1.
We compute parameters related to the magnetic cycle and present
them in Table 2. In the first row, we show the cycle duration
and amplitudes for a constant Vb (Vb0 = 94.5 m s−1), whereas in
the second and third rows, we present results with variable Vb.
The cycle duration and amplitude change with the amplitude
of the buoyancy velocity. When Vb0 ranges in [7.8−94.5] m s−1

(rise time: 1 month–1 year), the cycle amplitude is slightly lower
as compared to that for constant Vb0 at 94.5 m s−1. On the other
hand, when Vb0 varies in [12.3−153.0] m s−1 (rise times: 0.6
months–7.5 months), we observe a slightly higher cycle ampli-
tude compared to that for Vb0 = 94.5 m s−1. Our study suggests
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Fig. 16. For one BMR emerging every month: maps of the mean radial
magnetic field (Br) at the surface and the mean toroidal field (Bφ) at the
base of the convection zone.

that when buoyancy is stronger (large Vb0), more toroidal flux
gets buoyantly transported to the surface to produce BMRs which
then generate a stronger poloidal field through the BL mechanism,
which in turn produces a stronger toroidal field for the subsequent
cycle. Therefore, a stronger buoyancy produces magnetic cycles
with higher amplitudes. The results of these two simulations with
variable magnetic buoyancy suggest that the cycle amplitude and
the cycle strength do not change significantly for different cycles
as compared to the case when the magnetic buoyancy is indepen-
dent on the toroidal field strength. Therefore, our 3D kinematic
model either seems to rule out field-strength-dependent buoyancy
velocity as a strong source of amplitude modulation (or quench-
ing), or our algorithm fails to adequately capture the full physics
of nonlinearity in the process.

4.6. Effect of frequency of BMR emergence

In the earlier simulations, a set of 32 new BMRs were made to
emerge every month. Here we examine the impact of frequency
of BMR emergence on the magnetic cycle at Vθp = 12.5 m s−1

and ηc = 2 × 1010 cm2 s−1. In Table 3, we present cycle duration
and amplitude for cases where 32 BMRs emerge every month,
every 6 months, or every 12 months. We observe that the dura-
tion of half a magnetic cycle anti-correlates with the frequency of
emergence, that is, when there is a delay in the BMR emergence,
the cycle duration becomes longer. If the BMRs emerge once in
a 6- or 12-month period, we have less BMRs (or poloidal flux)
at the surface and hence it takes longer for a sufficient amount
of opposite magnetic flux to be advected towards the poles to
reverse the polar field. On the other hand, the cycle amplitude is
higher when the frequency of emergence is every 6 or 12 months.
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Table 2. Duration and amplitude of the magnetic cycle for a buoyancy
velocity dependent on the toroidal field strength.

Vb0 T1/2 Φ(Bφ) Φ(Br)
(m s−1) (years) (1025 Mx) (1025 Mx)

94.5 9.1 1.9 0.4
7.8−94.5 9.0 1.8 0.5

12.3−153.0 8.7 2.1 0.6

Table 3. Duration and amplitude of the magnetic cycle with different
frequencies of BMR emergence.

Time between emergence of BMRs T1/2 Φ(Bφ) Φ(Br)
(months) (years) (1025 Mx) (1025 Mx)

1 9.1 1.9 0.4
6 9.4 2.1 0.5

12 10.2 3.1 0.7

If the BMRs emerge less frequently, the toroidal field in the con-
vection zone has a longer time available to amplify before get-
ting buoyantly transported to the surface to produce BMRs with
larger field strengths, which is the reason we observe a stronger
cycle amplitude in these cases. We observe that the BMR field
strength is higher in the cases when the frequency of emergence
is once in every 6 or 12 months than in cases where the fre-
quency of emergence is once a month. Also, the BMR field
strength is higher when the frequency of emergence is once every
12 months as compared to when the frequency of emergence is
once every 6 months. This result is somewhat counter intuitive
but suggests that buoyant removal of toroidal flux has a limit-
ing role on the cycle amplitude, as observed in earlier works
(Nandy & Choudhuri 2000).

4.7. A dynamo number characterizing the Babcock-Leighton
dynamo

Here we propose an empirical dynamo number characterizing
the Babcock-Leighton dynamo process (DBL) that determines
whether our model would produce self-sustained dynamo action
or not. Based on the parameter-space study presented in the pre-
vious sections, we observe that for a given rotation profile, fixed
magnetic diffusivities at the top and bottom of the convection
zone and fixed frequency of BMR emergence, the dynamo num-
ber would depend mainly on the convection zone diffusivity,
strength of the meridional flow, and number of emerging BMRs
at the surface. If the convection zone diffusivity is small, the
dynamo will be more efficient, but if we go into the diffusion-
dominated regime, the magnetic field will diffuse before get-
ting significantly transported in the convection zone and hence
the dynamo will likely fail. If the meridional circulation is very
strong, it will also cause the decay of the magnetic field. The
emerging BMRs play a crucial role in the magnetic cycle through
their participation in the BL mechanism. If we do not have
enough BMRs at the surface, then we do not observe cyclic field
reversals. In addition, the tilt angle of a particular BMR decides
how much flux the trailing spots contribute to the total surface
poloidal flux. Considering all the aforementioned parameters, we
define a Babcock-Leighton dynamo number

DBL =
BeffLM
√
µ0 ρ ηc

, (16)

which corresponds to a magnetic Reynolds number calculated
with an Alfvén velocity and a well-chosen characteristic length
scale. Here we define Beff =

Φeff

APolarCap
(Φeff is the magnitude of

the total magnetic flux at the polar cap or the effective flux of
all the trailing spots that get transported towards the poles to
cancel the polar flux, and APolarCap is the surface area covered by
the region [0◦−20◦] colatitudes) and ηc is the convection zone
magnetic diffusivity. We also define an effective flux transport
length-scale LM =

√
ηs tM, where tM =

πR�
2Vθp

is the time it takes
for a fluid particle to be advected from the equator to the pole by
the meridional flow at the surface. This length scale is simply the
convection-zone length scale when the diffusion and advection
timescales are equal, but is shorter in the advection-dominated
regime compared to the diffusion-dominated regime (i.e., when
the advection timescale is shorter than the diffusion timescale).
Finally, we consider here that

√
µ0 ρ = 1. Hence,

DBL =
Φeff

APolarCap

√
ηs tM
ηc

· (17)

In our simulations, the length of half a solar cycle is

τ1/2 ≈ 50.0 V−0.65
θp . (18)

Therefore, the total number of BMRs at the surface in τ1/4 (time
available for polar field reversal)

NBMR(τ1/4) ≈ 25.0 V−0.65
θp NBMRFrBMR

= 300 V−0.65
θp NBMR, (19)

where NBMR is the number of BMRs emerging at one instance
and FrBMR is the frequency of emerging NBMR BMRs (once
every month or 12 times per year).

As the trailing spots are at slightly higher latitudes, we
assume that only the magnetic flux of the higher-latitude section
of a trailing spot gets transported towards the poles and that the
rest gets annihilated due to the cross-equatorial cancellation and
by the local opposite-polarity magnetic flux through diffusion.
We define the magnetic flux of the section of a trailing spot
which is at higher latitudes as the effective flux of one BMR. To
make things simple, we consider the average tilt angle of BMRs
to be 10◦. The average effective flux of one BMR comes out to
be 4.29 × 1021 Mx and therefore the dynamo number becomes

DBL = 2.33 × 1014 NBMR

V−1.15
θp

ηc
, (20)

where Vθp is in the units of cm s−1 and ηc in cm2 s−1. For
example, if NBMR = 32, Vθp = 12.5 m s−1 (or 1250 cm s−1), and
ηc = 2.0 × 1010 cm2 s−1, we obtain DBL ≈ 103. Below a critical
value of DBL the system would not be able to sustain the dynamo
and hence the magnetic cycle through flux-transport in the con-
vection zone. In our model the estimated value of Dc

BL is approx-
imately 5. It is apparent that dynamo action may not be sustained
for a very strong meridional circulation or for a highly diffusive
convection zone or for a very small number of emerging BMRs
at the surface. In our model, dynamo works for (a) NBMR = 8,
Vθp = 12.5 m s−1, ηc = 2.0 × 1010 cm2 s−1, and (DBL ≈ 25.6), and
(b) NBMR = 32, Vθp = 40 m s−1, ηc = 2.0 × 1010 cm2 s−1, and
(DBL ≈ 26.9). On the other hand, dynamo fails for (a) NBMR = 1,
Vθp =12.5 m s−1, and ηc = 2.0×1010 cm2 s−1, (DBL ≈ 3.2), and (b)
NBMR = 32, Vθp = 80 m s−1, and ηc = 1011 cm2 s−1 (DBL ≈ 2.4).
We thus confirm that this evaluation of the dynamo number in
our particular model is well adapted to anticipate the growth of
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magnetic energy when the meridional flow speed, convection-
zone diffusivity, and number of BMRs are given. We note that
for the calculation of the dynamo number, we considered a uni-
form tilt angle for all the bipolar spots. The effect of tilt angle
is included in the calculation of the average effective flux of
one BMR where for simplicity we considered the average tilt
angle of all the BMRs to be 10◦. If we were to consider a larger
(smaller) tilt angle, we would have a higher (lower) effective flux
and hence a larger (smaller) dynamo number. It is important to
note that this dynamo number determination should be taken as
specific to this model and has scope for reformulation for models
with diverse physics.

5. Discussion and conclusions

In this paper, we present a global 3D kinematic solar dynamo
model to explore flux transport processes that sustain the
Babcock-Leighton dynamo. We have used a solar-like differen-
tial rotation and meridional circulation as the prescribed velocity
field for the kinematic dynamo simulations and a parametrized
turbulent diffusivity to characterize the solar interior. We have
implemented a 3D magnetic buoyancy algorithm in the convec-
tion zone which transports strong toroidal magnetic fields from
the base of the convection zone to the surface to produce tilted
BMRs. The erupted BMRs subsequently generate a poloidal
field at near-surface layers which reverse the old cycle poloidal
field. This newly generated poloidal field is then subducted to
deeper layers of the convection zone, where differential rotation
then stretches it to generate the toroidal field of the next sunspot
cycle. Magnetic flux-transport plays an important role in these
different processes resulting in long-term cyclic polarity rever-
sals driven by the active participation of tilted, bipolar sunspot
pairs. We note that our relatively more realistic methodology
of modeling active-region emergence through an effectively 3D
helical flow – consequent BMR formation, and self-sustained
cyclic reversal over multiple cycles – provides critical advances
over 2D kinematic dynamo models and complements 3D global
MHD models of the solar cycle.

There are various flux-transport parameters involved in the
solar dynamo which affect the nature of the magnetic cycle,
especially their duration and amplitudes. To understand these
aspects of the solar dynamo, we varied the strength of the merid-
ional circulation, convection zone diffusivity, and parameters
related to BMR emergence. The major findings of our parameter-
space studies are as follows.

The duration of the magnetic cycle is highly sensitive to the
strength of the meridional circulation where cycle duration is
shorter for a stronger meridional flow. However, for a diffusion-
dominated regime (large convection zone diffusivity ηc and small
peak meridional speed Vθp), the cycle duration depends less
on the meridional circulation, because in this case the mag-
netic diffusion also plays an important role in the flux-transport
process.

For an advection-dominated situation (low convection zone
diffusivity ηc and high peak meridional speed Vθp), we observe
a lower cycle amplitude as the circulation speed is increased.
This is because a stronger meridional flow drags the poloidal
component quickly through the generating layer of the toroidal
component, inducing a weaker toroidal field.

In the diffusion-dominated regime, however, the cycle ampli-
tude is higher for stronger meridional flow. This is because for a
higher circulation speed, the poloidal field being subducted in to
the convection zone suffers less diffusive decay, which results in
a larger source for the toroidal field in the rotational shear layers.

In the advection-dominated regime, the poloidal field of
cycles n − 2, n − 1, and n combine to produce the toroidal field
of cycle n + 1, which suggests that the memories of the previous
few cycles propagate to the subsequent cycle. We do not observe
this kind of memory propagation in the diffusion-dominated case
where the memory is limited to only one cycle. This feature is
in agreement with previous 2D calculations and is important for
forecasting future solar activity.

The cycle duration does not change with the number of
emerging BMRs, but the cycle amplitude depends on it. If the
number of emerging BMRs is less, then the amplitudes of the
magnetic cycles are smaller. The dynamo fails when the number
of emerging BMRs is too small as this results in a very weak seed
for the poloidal field in the context of the BL mechanism. The
resultant weak poloidal field is insufficient to reverse the polar
field and sustain new cycles.

The amplitude of the buoyancy velocity affects the cycle
amplitude. Faster buoyancy velocity in the convection zone pro-
duces magnetic cycles with slightly higher amplitudes. This is
because toroidal flux is transported to the surface at a faster rate.
The resultant BMRs are stronger, less diffused, and more coher-
ent, producing stronger poloidal fields through the BL process.

If the BMRs emerge less frequently, the cycle duration as
well as the cycle amplitude increases. It takes longer for a suf-
ficient number of BMRs to emerge and hence poloidal flux to
appear at the surface, which would then participate in polar-field
reversals. This is the reason why we observe a longer cycle dura-
tion. Also, if the frequency of emergence is small, the toroidal
field near the base of the convection zone gets amplified for a
longer time before being buoyantly transported to the surface
and therefore we observe a stronger cycle amplitude in these
cases. Thus magnetic buoyancy may play a role as an amplitude-
limiting mechanism under certain conditions.

We have defined a (empirical) dynamo number for our
Babcock-Leighton model which depends on the strength of the
meridional circulation, convection zone diffusivity, and number
of emerging BMRs. There is a critical dynamo number below
which the BL dynamo action becomes unsustainable. Our exten-
sive numerical simulations show that dynamo action cannot be
excited for too strong a meridional circulation, very large con-
vection zone diffusivity, very few emerging BMRs, or a combi-
nation of these. The determined BL dynamo number enables us
to anticipate whether or not dynamo action will indeed be sus-
tainable for various governing parameters in this model.

In conclusion, the 3D kinematic Babcock-Leighton dynamo
model presented here demonstrates many aspects of solar mag-
netism and in particular the role of flux-transport processes in
the sustenance of the sunspot cycle.

A comparative assessment of this study vis-a-vis under-
standing gained from previous studies may be illuminative. On
the one hand, some of the conclusions drawn from this 3D
model are in broad agreement with results from 2D models in
the context of advection- versus turbulent-diffusion-dominated
convection zones with profound implications for solar-cycle
memory and predictions (Yeates et al. 2008). This is reassuring.
On the other hand, some of the model elements are impor-
tant, additional insights: for example the effective 3D helical
flows utilized in modelling magnetic buoyancy and tilted bipo-
lar sunspot pair formation, the impact of buoyant-flux-transfer
rate (i.e., amplitude of effective buoyancy velocity), and the fre-
quency of emergence in determining the sunspot-cycle prop-
erties. The ideal parameter defining the efficiency of diverse
solar dynamo models is the dynamo number. However, in the
context of Babcock-Leighton dynamos, it is not immediately
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apparent what this should be because the source is modeled dif-
ferently from in traditional mean-field dynamos. We have made a
first attempt at empirically defining a dynamo number specific to
the flux transport Babcock-Leighton solar dynamo model which
reasonably captures our model dynamics. We also note that as
compared to Yeates & Muñoz-Jaramillo (2013) who simulated
only one cycle, we successfully excite self-sustained multi-cycle
dynamo action with a field-strength-dependent buoyancy algo-
rithm modeled through helical upflows.

We note a few shortcomings of our model. For example, we
observe a significant overlap between two consecutive cycles
which prohibits us from achieving proper solar minimum-like
conditions in between cycles. In our model, the surface mag-
netic field is high compared to the observations. These are typi-
cal, known issues in 2D flux-transport models that seem to carry
over to 3D global models, implying that their solution necessi-
tates other considerations.

Our detailed parameter-space studies reveal the charac-
teristics of magnetic cycles in the advection- and diffusion-
dominated regimes, which is crucial to understanding variations
in solar-cycle amplitude, solar-cycle duration and memory prop-
agation from one cycle to another. The latter in particular is
deemed crucial for solar-cycle predictions and for determining
the nature of poloidal field input for driving predictive dynamo
models. We note that the surface radial magnetic field produced
in our 3D flux-transport dynamo model can be directly used to
study the evolution of coronal structures (see e.g., Nandy et al.
2018) and the solar wind (see e.g., Kumar et al. 2018) over
solar-cycle timescales and is amenable to observational correc-
tions. This 3D global dynamo model is also amenable to data-
assimilation-based prediction of future solar activity through
direct forcing at the solar surface with observed flows and
observed poloidal field. This model can also be adapted to study
stellar magnetic activity and magnetized starspot formation in
other stars with different internal structures and plasma flow
profiles. The versatile nature of this model may be useful for
addressing these diverse practical applications in the future.
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