

Application of AFMM/RCWA for bent waveguides

D. Bucci, A. Morand, J. Michallon

November 21, 2012

IMEP-LAHC, Grenoble

- Introduction/historical
- Developments of the method
- Test and comparison with FDTD
- Conclusion

~1980: Rigorous Coupled Wave Analysis

Fourier series of E, H, ε, μ [K. Knop, JOSA. (1978)]

Moharam, Gaylord, Nevière...

TE: OK, problems in TM

- 1996: TM convergence issue solved [Lalanne, Morris, JOSA A(1996)] [Li, JOSA A(1996)]
- 2001: Application to integrated optics: Aperiodic Fourier Modal Method [Silberstein et al., JOSA A 2001]

Bent waveguides

Basic structure
 Coordinate system

Cylindrical coordinates

Maxwell eq.

Transverse components

$$\begin{cases} \nabla \wedge \vec{E} = -j\omega \bar{\bar{\mu}} \vec{H} \\ \nabla \wedge \vec{H} = j\omega \bar{\bar{\epsilon}} \vec{E} \end{cases}$$

Propagation axis: θ

$$\begin{cases} \frac{\partial E_r}{\partial \theta} = & \frac{\partial}{\partial r} \left[\frac{r}{\omega \epsilon_{\theta}} \left(\frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r} \right) \right] + \omega \mu_z r H_z \\ \frac{\partial E_z}{\partial \theta} = & r \frac{\partial}{\partial z} \left[\frac{1}{\omega \epsilon_{\theta}} \left(\frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r} \right) \right] - \omega \mu_r r H_r \\ \frac{\partial H_r}{\partial \theta} = & \frac{\partial}{\partial r} \left[-\frac{r}{\omega \mu_{\theta}} \left(\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right) \right] - \omega \epsilon_z r E_z \\ \frac{\partial H_z}{\partial \theta} = & r \frac{\partial}{\partial z} \left[-\frac{1}{\omega \mu_{\theta}} \left(\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right) \right] + \omega \epsilon_r r E_r. \end{cases}$$

$$\nabla \wedge \vec{E} = \hat{r} \left(\frac{1}{r} \frac{\partial E_z}{\partial \theta} - \frac{\partial E_\theta}{\partial z} \right) + \hat{\theta} \left(\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right) + \hat{z} \left(\frac{\partial (rE_\theta)}{\partial r} - \frac{\partial E_r}{\partial \theta} \right)$$

2D periodization

Original structure
 Artificial periodization

[E. Silberstein et al., JOSAA (2001)]

Matrix operators

Blue: vector Red: (block) diagonal matrix Green: (block) Toeplitz matrix

Calculation of [[r]]

• Fourier coefficients *r_k*:

$$r_k = \begin{cases} r_0 & \text{if } k = 0, \\ j \frac{r_{\max} - r_{\min}}{2\pi k} & \text{if } k \neq 0. \end{cases}$$

[[*r*]]: Toeplitz matrix formed by *r_k*.

➔ Matrix operator

AFMM Convergence

AFMM: constant calculation time FDTD: calculation time increases with r_0

Good agreement FDTD-AFMM

Current work...

 "Normal field" vectors • Convergence $(r_0=1 \mu m)$ [Schuster et al., JOSA A 2007] 1.5 Semi-empirical Normal field 1 - I_{21,21}) But I_{21,21} is not the same... 0.5 abs(I_{Sr,Sz} · 0.1 z/μm 0 -0.5 0.01 12 6 8 10 14 16 -1 4 Number of harmonics $S_r = S_z$ -1.5 ... still some test to do... -0.5 0.5 -1 0 r/µm

Conclusion

- Perspectives:
 - Convergence issue
 - Asymmetric PMLs
 - Mathematical implications
 - Symmetry
 - Parallelization
 - Testing...

. . .

- To conclude...
 - Advantages:
 - Rigorous
 - Full vectorial approach
 - Complementary to FDTD and BPM
 - Disadvantages:
 - Black box approach
 - Memory requirements

Thank you!

Convergence issues for discontinuous field

$$-\mathrm{j}\beta_{s}[H_{r}] = K_{r}\left[-\frac{1}{\mathrm{j}\omega}[r][\mu_{\theta}^{-1}](K_{z}[E_{r}] - K_{r}[E_{z}])\right] - \mathrm{j}\omega[\epsilon_{z}][r][E_{z}]$$

- If ε_z is discontinuous:
 - Field E_z discontinuous
 - $D = \varepsilon_z E_z$ continuous!
- Pb. with truncated Fourier series!

 $\llbracket \epsilon_z \rrbracket [E_z]$

[P. Lalanne JOSA A (1996)]

Solution: inverse rule (Lalanne, Li, 1996)

- Direct (Laurent) rule:
 - $[\![\epsilon_z]\!][E_z]$
- Inverse (Li) rule:

• The same for an infinite number of harmonics

• Not the same for truncated series:

Need to know where the field is discontinuous!

Propagation

• Structure: sequence of "layers"

- Each layer:
 - Invariant in the z axis
 - Can be treated as seen before!

A_{zi}: propagator operator layer *i*

Eigenvalues/vectors A_{zi}: Diagonalization via W!

S-matrix formalism

Representation

- Steps:
 - E.vectors + E, H continuity: S_i for each layer
 - 2. Iterative calculation: total S matrix
 - Calculation of s^{+,-} for each layer
 - 4. Field propagation inside each layer

PML strategies

I. Anisotropic material

- Th. no reflection
- Absorption
- [E. Silberstein et al., JOSA A (2001)]

II. Coordinate transform

Ring resonator: full vectorial 2D

 Silicon micro-ring in silica

[Armaroli et al., JOSA A 2008]

 $- n_c = 3.48, n_s = 1.44, r_0 = 1.1 \ \mu m$

- Goals
 - Mode solver: n_{eff}
 - Find resonance; integer azimuthal order *m*

$$m = \frac{2\pi}{\lambda} r_0 \mathbb{R}\{n_{\text{eff}}\}$$

Quality factor at the resonance:

$$Q = -\frac{\mathbb{R}\{n_{\text{eff}}\}}{2\mathbb{I}\{n_{\text{eff}}\}}$$

Mode calculation

- General setup
 - Calculation window: 4 μ m x 2 μ m
 - Coordinate transform
 PMLs (each side):
 750 nm on r
 100 nm on z
 - $\gamma = 0.5 j0.5$

[Hugonin and Lalanne, JOSA A 2005]

- Convergence study
- "naïve" matrix developments

High Q resonances

Quasi-TM, m=14

- **3D-FDTD[*]AFMM** $\lambda = 1.1770 \, \mu m$ $\lambda = 1.7929 \, \mu m$
- Q = 11369 Q = 12856

*[Armaroli et al., JOSAA 2008]

• Observations:

 Trade off: calculation window size

number of harmonics

– PMLs are critical!

 Q factors of ~12,000 attainable
 [Bucci, Martin, Morand SPIE PW2010]

DEP-LAHC 2D example: solar cells

- IMEP-LAHC
 - A. Kaminski
 - D. Roulier (Phelma)
 - J Michallon
- ARCES-UNIBO (RCWA+finite diff.)
 - M. Zanuccoli
 - C. Fiegna

• Microstructured solar cell (2D nanowires)

[Courtesy of M. Zanuccoli]

• Good agreement!

Exemple: mode solver for ion-exchange on glass

- At $\lambda = 600$ nm,
 - 3 quasi-TE modes
 - 3 quasi-TM modes

