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When dealing with the construction of a bridge or the assessment of an existing bridge to 

traffic loads, one important point is the prediction of reliability levels for critical details to the 

expected traffic loads in its remaining lifetime: this is done here for details of a steel-orthotropic 

bridge deck based on limited traffic monitoring data. 

A comparison of results from different statistical approaches is made by analyzing the 

recorded data for the traffic actions: to do that, the work begins with the writing of limit state 

functions for the ultimate limit state using various probability distributions, to evaluate the 

corresponding reliability indexes. Indeed, three methods to assess extreme values, Generalized 

Extreme Value, Peaks-over-Threshold and Level Crossing Counting, are applied. 

Therefore, one of the extrapolation methods that have been used in the background 

works for the European Norms (Eurocode 1) is treated here. Moreover, the comparison with the 

European design load model and the corresponding ultimate limit state is made. 

 

   Keywords— Extreme load effects, limit state function, reliability, FORM, SORM, traffic actions, steel 

orthotropic deck. 

 

1  Introduction 
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Several long-span bridges with steel orthotropic decks are currently under re-assessment 

in Europe, as they are exposed to increased traffic loads to which they are sensible. Moreover, to 

evaluate if such a structure operates safely, it is possible to use measured data, both for the 

actions (traffic, climatic, …) and for the structure itself. Using extrapolation methods, the 

reliability analysis for a reference period covering the entire operational life of the critical details 

of a structure can be achieved. 

Several methodologies for reliability analysis exist currently, each of them adapted for 

different domains of application and different shapes of limit state functions. Therefore, choosing 

correctly the most proper reliability approach is related to the studied object, initial conditions, 

input data, and computational efforts [10]. This kind of approach is being used for various 

domains of expertise [19, 20]: As bridge engineering point of the view, First and Second-Order 

Reliability Methods (FORM and SORM) is the most frequently used reliability method [8]. 

Moreover, it has been shown recently [7,21] not merely fatigue limit state, but also extreme 

values, serviceability, and durability have to be investigated for the bridges the reliability 

computation. 

This work will compare the assessed reliability levels of a given structure at the end of its 

design life, using Limit State Functions (LSF) whose variables are assessed using various 

extrapolation methods. For bridges with a steel orthotropic deck, as studied here, details of the 

deck may be more critical than structural elements [9], which is why the current research is 

designated for details of the orthotropic deck of the Millau bridge: these details are the welds at 

the junction deck/longitudinal stiffener which are under the path of the wheels of the trucks. 

Their equivalent stresses are calculated by using a finite element model and applying the traffic 

loads corresponding to a 180 days Weigh-in-Motion (BWIM) data on a bridge, and then they are 

extrapolated to their characteristic values by using several extrapolation methods: Block Maxima 

(BM), Peaks-over-Threshold (POT) and Level Crossing Counting (LCC).  

 

2  Methodology 

 

To assess the reliability of detail, the LSF has to be written and assessed. Generally, an LSF 
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is expressed as:  

 𝐺(𝑥) = 𝑅(𝑥) − 𝐿(𝑥) > 0, (1) 

where 𝐿(𝑥) denotes the probabilistic model of a load effect – equivalent stress in the critical 

welding between a rib and the deck plate – and 𝑅(𝑥) represnts the probabilistic model for the 

welding resistance. In this work, as we will focus on the modeling of the loading, we will consider 

the resistance as remaining constant and equal to with initial resistance, so 𝑅(𝑥) = 𝑓(𝑅0) with 

𝑅0 the initial resistance of the material. Here 𝑅0 indicates by the ultimate strength of steel, 

described using a lognormal distribution associated with the assumed covariance 𝐶𝑜𝑉 = 0.05. 

The probabilistic model of the load effect 𝐿(𝑥) will be based on the calculed load effects of the 

recorded traffic data and extrapolated in time by one of the various approaches of the Extreme 

Value Theory (EVT).  

Therefore, the reliability index 𝛽 is computed for the given probability of failure 𝑃𝑓 (as 

shown in Eq. (2))  concerning the probability density function 𝑓𝑥(𝑥) of the load distribution 𝑥 

and the probability cumulative distribution function (CDF) of the standard normal distribution 

Φ−1 (see Eq. (3)) : 

 𝛽 = −Φ−1(𝑃𝑓) = −Φ−1 (∫
𝐺(𝑥)≤0

𝑓𝑥(𝑥)𝑑𝑥), (2) 

  

 𝑤ℎ𝑒𝑟𝑒 Φ(𝑥) =
1

√2𝜋
∫

𝑥

−∞
𝑒−𝑥2/2𝑑𝑥. (3) 

 

2.1  Block Maxima method 

 

The BM approach established based on a limit theorem referring that the Generalized 

Extreme Value Distribution (GEVD) is an estimation to explain sample maxima for sample sizes. 

This holds for the status of the BM being independent examens with identical distributions [2]. A 

BM series is presented by splitting the time history 𝑋 of load influnce into intervals of a well-

chosen size and determining the maxima in each interval. Various modifications of the BM 

method are available to handle inhomogeneities or dependence of events in the data-set, 

targeting at the approximated given idealized conditions of independent and identically 

distributed data in a residual subset to be utilized for the model fit. 
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One possibility [1] is to fit the BM series to a composite distribution model that describes 

the load influence of bridge based on a mixture of various loading scenarios, denoting the various 

number of trucks on the bridge having a contribution to a maximal value of the LE. The model 

considers the real loading scenarios of the bridge. Hence it concludes to greater accuracy for 

extreme value [13]. Based on separate GEVD fits 𝐺𝑗(𝑧) with model parameters [𝜇𝑗 , 𝜎𝑗 , 𝜉𝑗] to 

the corresponding BM series for each of the different loading event types, the distribution of load 

effects 𝐺𝐶(𝑧) resulting from the mixture of these loading scenarios asymptotically methodes 

the following composite distribution [22-23]:  

 𝐺𝐶(𝑧) = ∏𝑁
𝑗=1 𝐺𝑗(𝑧) = exp {− ∑𝑁

𝑗=1 [1 + 𝜉𝑗 (
𝑧−𝜇𝑗

𝜎𝑗
)]

−
1

𝜉𝑗}. (4) 

because of the small effect of the considered load influence in the current case study (see 

Section 3), it was detected that the main contribution for extreme values of LE results from events 

with one single vehicle. Hence, there is no need for further classification for this study. The LSF 

(1) based on the BM takes the following form (with a reference block size 𝑑𝑟𝑒𝑓 and return period 

𝑑𝑟𝑒𝑡𝑢𝑟𝑛):  

 𝐺𝑏𝑚 = 𝑅 − 𝑆𝑏𝑚
𝑟𝑒𝑡𝑢𝑟𝑛(𝜇𝑏, 𝜎𝑏, 𝜉𝑏) = 𝑅 − (

𝜇𝑏 −
𝜎𝑏

𝜉𝑏
[1 − (𝑑𝑟𝑒𝑓/𝑑𝑟𝑒𝑡𝑢𝑟𝑛)−𝜉𝑏], 𝜉𝑏 ≠ 0,

𝜇𝑏 − 𝜎𝑏log(𝑑𝑟𝑒𝑓/𝑑𝑟𝑒𝑡𝑢𝑟𝑛), 𝜉𝑏 = 0,
 (5) 

 where 𝜇𝑏 ∼ 𝒩(𝜇𝜇𝑏
; 𝑠𝜇𝑏

), 𝜎𝑏 ∼ ℒ(𝜇𝜎𝑏
; 𝑠𝜎𝑏

), 𝜉𝑏 ∼ 𝒩(𝜇𝜉𝑏
; 𝑠𝜉𝑏

) are location, scale, and shape 

parameters of the fitted GEVD, and where 𝒩 and ℒ are respectively the Normal and the Log-

Normal distributions. 

The model is presented in Figure 2 for the block of a week (five working days). It should 

be stated that working days are only considered to ignore the effects of weekends & holidays, 

while a less number of the heavy vehicles transfer the bridge: these LEs are therefore not 

imperative when measuring the constraints of the LSF as they are less/no damaging, and these 

do not follow the same probability of distribution.   
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Figure  2: Model fit, Block Maxima, 1 week. 

  2.2  Peaks-over-threshold approach 

The POT method has been recently demonstrated an acceptable resolution to predict 

extreme traffic events [17], [18]. As a time-series process, "peak" values of load effect (LE) that 

fall overhead a given threshold, are matched with the Generalized Pareto Distribution (GPD). It 

has been recently determined [16] that the efficiency of this method is rational concerning the 

assumption of the normal distribution of return level estimators. The conditional cumulative 

distribution function (conditional CDF) of 𝑌 given 𝑋 > 𝑢, denoted by 𝐹𝑢(𝑦), can be expressed 

as:  

 𝐹𝑢(𝑦) = 𝑃[𝑌 ≤ 𝑦|𝑋 > 𝑢] =
𝐹(𝑦+𝑢)−𝐹(𝑢)

1−𝐹(𝑢)
, (6) 

in which 𝑌 = 𝑋 − 𝑢 , where 𝐹(𝑢)  is the CDF of random variable 𝑋 . The threshold 

overindulgences are shown by 𝑌𝑖  so that 𝑌𝑖 = 𝑋𝑖 − 𝑢. The approach is effective only if 𝑌𝑗 =

𝑋𝑗 − 𝑢 ≥ 0 , 𝑋𝑗 ≥ 𝑢  for 𝜉 ≥ 0  and 𝑢 ≤ 𝑌𝑗 ≤ 𝑢 − 𝜎/𝜉  for 𝜉 < 0 . Moreover, the following 

conventions are made: (i) distinguished probability distribution of the random variables 𝑋𝑖, (ii) 

the random variables 𝑋𝑖  are independent, (iii) the threshold 𝑢 is adequate.  

Based on the general principle of the POT method, which has been established a few 

decades earlier [14], the (CDF) of threshold exceedances inclines to the upper tail of a GPD, 

associated with the shape and scale parameters like (𝜎 > 0 and 𝜉), see Figure 1 (left). 
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 𝐺(𝑌𝑗; 𝜉; 𝜎; 𝑢) = (
1 − [1 + 𝜉 (

𝑌𝑗

𝜎
)]

−1/𝜉

, 𝜉 ≠ 0,

1 − 𝑒𝑥𝑝 (−
𝑌𝑗

𝜎
), 𝜉 = 0.

 (7) 

 

 

 

  

Figure  1: Model fit, Peaks-over-threshold approach. 

   

For a long period, estimates can be related to the CDF of extreme values associated with 

a shorter period [4]. In other words, the monitored values of a LE for a limited period can be used 

for extrapolation of the LE in time. The value of the 𝑝-observation return level 𝐿𝑟(𝑝) for the 

probability 𝑃[𝑋 ≤ 𝑋𝑖|𝑋𝑖 > 𝑢]  with the Probability of Exceedance (PE) 𝜁𝑢 = 𝑃{𝑋𝑖 > 𝑢} , is a 

quantile that exceeds once every 𝑝 observations, see Figure 1 (middle). Figure 1 (right) shows 

also the goodness of fit, where empirical values (crosses) should form a straight line to fit the 

theoretical model (dashed line). The procedure for selecting an optimized threshold has been 

described [11]. Therefore, for a fixed period 𝑝, the LSF (1) based on the GPD takes the following 

form:  

 𝐺𝑝𝑜𝑡 = 𝑅 − 𝑆𝑝𝑜𝑡
𝑟𝑒𝑡𝑢𝑟𝑛(𝑝; 𝑢, 𝜎, 𝜉, 𝜁𝑢) = 𝑅 − (

𝑢 +
𝜎

𝜉
[(𝑝𝜁)𝜉 − 1], ξ ≠ 0,

𝑢 + 𝜎log(𝑝𝜁), ξ = 0,
 (8) 

 

where 𝜁𝑢 ∼ ℬ(𝜇𝜁𝑢
; 𝑠𝜁𝑢

) is the number of load effects that surpass the threshold, over a 

total expanse of monitored events, 𝜎 ∼ ℒ(𝜇𝜎 , 𝑠𝜎)  and 𝜉 ∼ 𝒩(𝜇𝜉 ; 𝑠𝜉)  are statsitical 
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parameters of a fitted GPD (see Equation (7)), ℬ is Binomial distribution. 

 

 

2.3  Level crossing counting 

 

Rice formula [15] explained the mean rate 𝜈(𝑥)  of up-crossings for a given level 𝑥 

during the reference period 𝑑𝑟𝑒𝑓. The LCC method, where Rice’s formula is fitted to the upper 

tail of an out-crossing rate histogram (ORH) corresponds to the assumption of a stationary 

Gaussian process relating the time variations of load effects on bridges [3]. The number of times 

is taken at the positive values that are overlapped upwardly in a LE time-history. 

Using the normalization of the obtained results from the crossing histogram for a give 

reference period 𝑑𝑟𝑒𝑓, the ORH is computed, in lieu of each level the mean rate of its up-crossing 

𝜈(𝑥) during 𝑑𝑟𝑒𝑓. This mean rate as a function of load effect level can be defined by Rice formula 

using the parameters of model [𝑎0 = 𝑙𝑛(𝜈0) − 𝑚2/2𝜎2, 𝑎1 = 𝑚/𝜎2, 𝑎2 = −1/2𝜎2]. It is fitted 

to the significant tail regions of the ORH, see Figure 3. 

 

Figure  3: Model fit, Level Crossing counting. 

   

The proper selection of the initial point to fit with Rice’s formula is central. It must be as 

low as feasible, to confirm the adequate representativeness for extrapolation of the data. Herein 

study, optimal initial points are recognized corresponding to the goodness-of-fit using a modified 
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Kolmogorov test [3]. The LSF (1) ith consideration of the LCC is expressed as follows:  

 𝐺𝑙𝑐𝑐 = 𝑅 − 𝑆𝑙𝑐𝑐
𝑟𝑒𝑡𝑢𝑟𝑛(𝑑𝑟𝑒𝑡𝑢𝑟𝑛 , 𝑎0, 𝑎1, 𝑎2) = −

𝑎1

2𝑎2
+ √−

𝑎0

𝑎2
+ (

𝑎1

2𝑎2
)

2

−
𝑙𝑛(𝑑𝑟𝑒𝑡𝑢𝑟𝑛/𝑇𝑟𝑒𝑓)

𝑎2
, (9) 

 where 𝑑𝑟𝑒𝑡𝑢𝑟𝑛  is the desired return period. 

 

3  Application to the Millau Bridge 

 

3.1  Instrumentation 

 

Millau bridges is a cable-stayed bridge consisting of 8 spans with a total length of 2460 m. 

The stiff orthotropic steel deck is suspended by 11 steel cables for each span. Each span length is 

about 342 m. The cross-section of the deck is shown in Figure 4 [12], which illustrates that the 

bridge includes two lanes for both directions including slow-speed lane, where traffic is mainly 

dedicated to the heavy vehicles and fast speed lane. 

 

  

  

(a) (b) 

  

Figure  4: Cross-section of the deck of the Millau Bridge : (a) Whole cross-section, and (b) focus 

on the considered welds under the wheel loads of the heavy trucks on the slow lane.   

   

The data on traffic actions were provided from the BWIM system that was located in the 

middle of the first span of the bridge. It includes axle weights [kN] and spacing [m], vehicle speed 

[m/s], axles configuration, pavement temperature. Recordings were made between October 

2016 and June 2017 with a total of 180 days of recorded traffic. 
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3.2  Effects of traffic actions 

 

In this current study, the dangerous detail is selected concerning the stress connection on 

the welded area between a longitudinal stiffener and the plate of the orthotropic deck, which is 

located underneath of the truck wheels assuming that the vehicles are transferring from the 

middle of the slow lane. The stresses’ results are obtained using the Finite Element Model (FEM) 

performed on the deck section. The model considers the self-weight of the bridge deck with its 

asphalt wearing cover, the type of passing vehicle, and amplitudes of axle loads from each axle 

are taken from reference [11], see Figure 5.  

 

 

Figure 5: Geometry for the FE model analyzed with ANSYS software. 

 

The statistical parameters of the given random variables for each LSF corresponding to the 

explained methods are shown in Table 1. 

  

Table  1: Random Variables for reliability modeling 

Case Random variable 
Distribu

tion 
Mean CoV 

Resistance 
steel 

strength 
𝐹𝑢 

Log-

Normal 

400 

MPa 
0.05 

POT threshold 𝑢 Normal 102 0.05 
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shape 𝜉 Normal -0.3 0.12 

scale 𝜎 
Log-

Normal 
25.35 0.06 

PE 𝜁𝑢 
Binomi

al 
8.2 × 10−4 0.045 

BM 

location 𝜇 Normal 100.07 0.059 

scale 𝜎 Normal 23.57 0.198 

shape 𝜉 Normal −1.36 × 10−2 17.503 

* LCC 

parameter 𝑎0 Normal 8.23 0.028 

parameter 𝑎1 Normal −1.03 × 10−2 0.798 

parameter 𝑎2 Normal −8.06 × 10−4 0.087 

 

    

 

3.3  Comparison between various statistical approaches 

 

To accomplish the reliability analysis, limit state functions are constructed for all described 

methods in Section 2.  Accordingly, the UQLab software is utilized to compute reliability indexes 

using the SORM meth [24], according to the models' distributions for given load conditions 

explained in Section 3. The results of each method are tabulated in Table 2. The table represents 

the results for three-time references associated with one year, 50, and 120 years. The second 

column of Table 2 displays the calculated reliability index 𝛽𝑝𝑜𝑡  using POT approach, the third 

columsn shows the computed reliability index 𝛽𝑏𝑚 using on the BM method with considertion 

of th reference block corresponding to one week block (5 working days), and lastly, the fourth 

column of Table 2 denotes the obtained reliability index 𝛽𝑙𝑐𝑐  using level up-crossings and Rice 

formula. The first three columns present the comparison of three extreme values methods for 

calculation of the reliability index concerning the load model. Also, the last column of Table 2 is 

related to the minimum values of 𝛽 based on European standards [5]. 

As can be observed from this graph, two methods, POT and LCC, give similar curves, 
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resulting from the smaller reliability indexes in comparison with the BM curve concerning a 

weekly block. This may construe that the BM approach, in this case, is pretty sensitive to the 

selected size of the block in addition to "extreme" data per block. Another point is that the 

application of the LCC methods, which is one of the approaches considered in the literature 

efforts of the European Code, which leads to the same reliability indices as taken from the POT 

method. Furthermore, it fits as well as the value calculated from the design load model LM1 for 

traffic load [6]. 

  

Table  2: Reliability index 𝛽 for different studied cases 

  

𝛽, 

reference 
POT BM LCC EN, LM1 [6] 𝛽, EN [5] 

1 year 9.8 19.7 9.6 - 4.7 

50 years 7.6 12.5 8.0 8.0 3.8 

120 years 7.4 11.4 7.7 - - 

 

 

4  Conclusions 

 

This work was supported out based on the monitored traffic data given from the Millau 

bridge. Three extreme value methods were applied to measure the reliability of a susceptible 

detail, specifically the connection between a longitudinal stiffener and the steel plate of the 

orthotropic deck. The results of reliability are estimated for one year return period, for the 50-

year as the reference period to relate with the European design models, at the end of the lifetime 

of the bridge. 

Based on the obtained result of the performed analysis, the results of methods display 

that during the lifetime the reliability index of the most critical region of the deck is greater than 

the minimum required provision in the EN. 

Also, the POT method and Rice formula demonstrated parallel outcomes that are closed 
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enough to obtained results of the design load model (LM1). The reliability index obtained using 

the BM approach is far greater than the other methods, which stems from the size and variance 

of the selected block, which required further study. Therefore, it was concluded that the selection 

of a proper approach is related to the existing dataset. Hence, to enhance the confidence of the 

results, the reliability analysis should be elaborated using different approaches. 
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