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Abstract

In uncertainty quantification of a numerical simulation model output, the classical approach for quantile
estimation requires the availability of the full sample of the studied variable. This approach is not
suitable at exascale as large ensembles of simulation runs would need to gather a prohibitively large
amount of data. This problem can be solved thanks to an on-the-fly (iterative) approach based on the
Robbins-Monro algorithm. We numerically study this algorithm for estimating a discretized quantile
function from samples of limited size (a few hundreds observations). As in practice, the distribution of
the underlying variable is unknown, the goal is to define “robust” values of the algorithm parameters,
which means that quantile estimates have to be reasonably good in most situations. This paper present
new empirically-validated iterative quantile estimators, for two different practical situations: when the
final number of the model runs N is a priori fixed and when N is unknown in advance (it can then be
minimized during the study in order to save cpu time cost).

keywords: Uncertainty Quantification, Quantile, Online statistics, Robbins-Monro, Averaging.

1 Introduction

In engineering studies, a numerical simulation
model is often used as a tool to assess the safety
of a complex industrial system [6, 13]. For such
a goal, when developing and using the numerical
simulation model, uncertainty quantification (UQ)
and global sensitivity analysis are valuable tools
[20, 3]. It is then required to run the simulation
model several (or even many) times with different
values of the model inputs (according to their prede-
fined probability laws) in order to calculate statisti-
cal quantities of interest (noted QoI) on the model
outputs, i.e. their mean, variance, quantiles, prob-
ability of threshold exceedence, sensitivity indices,
. . . [1, 27, 25]. To estimate these QoI, the usual
practice is to run all the simulation and store all
their results before calculating the QoI.

A major difficulty arises when the UQ ensemble
runs produce massive amount of data (e.g. when
state and time variables are simulated) that have to
be statistically aggregated, making them extremely
vulnerable to the storage issues and I/O bottleneck.

To keep a manageable amount of data, the clas-
sical approach, used in most of the studies, con-
sists in taking a limited number of outputs (e.g.
by only taking the central point of a spatial map
output), see various examples in [8]. A more suit-
able technique would be to use one-pass statistical
algorithms, also called iterative, recursive, update,
online or even parallel statistics. Such algorithms
only require to store the current results that can
next be updated with incoming new samples: the
required storage memory is therefore only the one
needed for the results of one (or a limited number)
simulation. For instance, if we are able to store
one spatio-temporal evolution of a simulation out-
put, we are able to compute its statistics after any
number of simulations.

The iterative statistical estimation issue is a rel-
atively classical subject in the treatment of large
volumes of data, in the so-called big data frame-
work [24]. One-pass variance algorithms were pro-
posed for example in [26, 5]. Numerically stable,
update formulas for arbitrary centered statistical
moments and co-moments are presented in [14] and
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were used, for instance, to compute large scale par-
allel statistics for a single simulation run in [2].
However, iterative estimation issues have been lit-
tle explored in UQ of numerical models (see [18] for
an overview of the different underlying update sta-
tistical issues in UQ). In global sensitivity analysis
of model outputs, for the estimation of Sobol’ in-
dices [21], [9] introduced an iterative computation
for the case of a scalar model output, while [22] ap-
plied the iterative covariance formulas on massive
output data (a spatio-temporal model output). For
estimating quantiles of model outputs, a first itera-
tive estimation algorithm has been studied in [18].

In this paper, we focus on the estimation of quan-
tiles, as often required in simulation-based risk as-
sessment, but in an iterative fashion. Indeed, quan-
tiles are essential elements for the calculation of pre-
diction or tolerance intervals, and for the detection
of outliers, in particular in safety studies. As in a lot
of industrial studies, we have to deal with limited
number of simulations [6], typically a few hundreds
(see an example in the field of nuclear engineering
in [10]). In this work, for the sake of brevity, we
only consider a scalar output Y ∈ R which writes

Y = G(X) (1)

where G(·) is the model function and X ∈ Rd is
the vector of the d random input variables (defined
by their joint probability density function). How-
ever, we keep in mind that iterative UQ is interest-
ing when the dimension output is very large, which
brings storage issues.

The following section presents the Robbins-
Monro (RM) algorithm for quantile estimation. It
allows to introduce the tuning RM parameters issue
that is studied in this paper by the way of intensive
numerical tests. Two different situations are then
distinguished. First, the final number of iterations
(i.e. number of computer model runs) N is a priori
fixed, which is a classical way to deal with UQ prob-
lems. Section 3 defines well-tuned choices for the
RM parameters in this context. Second, N is un-
known in advance. Indeed, in practical situations,
it is strongly interesting to stop the quantile esti-
mation process when a sufficient precision has been
reached in order to save cpu time cost. Section 4
shows the interest to use a stochastic adaptive step-
size rule associated to the averaged RM estimator
in this context. Section 5 concludes the work.

2 Quantile estimation

We look for an estimator q̂α of α-quantiles qα (of
the random variable Y ) defined by:

qα = inf{y ∈ R |P(Y ≤ y) ≥ α} , (2)

with α ∈ [αmin, αmax] where αmin (∈]0, 1[) and αmax

(∈]0, 1[) are the minimal and maximal values of the
orders of the estimated quantiles. In our study, αmin

(resp. αmax) will be equal to 5% (resp. 95%). The
empirical estimator of qα writes

q̂Nα = Y(bαNc+1) , (3)

where (Y(1), . . . , Y(N)) is the ordered sample asso-
ciated with the i.i.d. sample (Y1, . . . , YN ). The
sample (Y1, . . . , YN ) comes from a so-called Monte
Carlo uncertainty propagation of N i.i.d. values of
X through the model G(·) (see Eq. (1)).

Instead of this empirical estimator, the RM al-
gorithm [19] is devoted to iterative quantile esti-
mation. Its asymptotic properties (consistence and
central limit theorem) provide essential guarantees
of convergence [7]. However, these theoretical re-
sults are of little use while tuning the algorithm
parameters and our restricted sample size does not
reach the asymptotic regime. Indeed, as in [23], our
quantile estimation problem has to be done with a
small-size sample (a few hundred observations).

The RM algorithm consists in updating the cur-
rent quantile estimator (noted qα(n)) with each new
observation Yn+1 with n ≥ 1 by the recurrence for-
mula

qα(n+ 1) = qα(n)− C

nγ
(
1Yn+1≤qα(n)

− α
)
, (4)

with qα(1) = Y1 (initialization step from the first
data), C > 0 a constant and γ ∈]0, 1] governing
the rate of descent of the stochastic algorithm. The
required memory storage for this estimator is two
values (one realization of Y and one quantile esti-
mate).

At finite sample size N , the RM estimator of the
α-quantile of Y is therefore q̂α = qα(N). This es-
timator is consistent and asymptotically Gaussian
for γ ∈]0.5, 1] [7]. The value of γ does not therefore
seem to be of crucial importance but, for low N , we
will see that its adjustment is important.
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3 Fixed number of model eval-
uations

In this section, the final size N of available realiza-
tions of the model output Y is fixed. The tuning of
the γ parameter is first considered; then, the tuning
of the C constant is studied.

3.1 Robust tuning of γ via a linear
profile

We are looking for a value of γ which gives “ac-
ceptable” results whatever the distribution of Y
(unknown in practice). Our numerical test consid-
ers the cases Y ∼ N (0, 1) and Y ∼ U [0, 1], with
N = 1000, C = 1 and three orders of quantile α
(0.05, 0.5 et 0.95). For each of these cases, Fig-
ures 1 and 2 show 50 independent trajectories of the
RM estimator qα(n) for n = 1, . . . , N by consider-
ing three different choices of γ: 0.6, 1 and a linear
variation as a function of n [18] which is written

γ(n) = 0.5 + 0.5
n− 1

N − 1
. (5)

The theoretical and asymptotic properties of the
RM algorithm are preserved using Eq. (5), because
the γ values lie in ]0.5, 1].

The idea of the γ(n) profile, given by Eq. (5),
is to have strong fluctuations of the estimator at
the beginning of the algorithm (to remove its de-
pendence on the values of Y drawn first) then weak
fluctuations at the end of the algorithm (to sta-
bilize the estimator at the last iterations). This
so-called search-then-converge learning rule [16] en-
sures a regular decrease of the mixing (from strong
to weak) all along the RM iterations. Indeed, we
can see on Figures 1 and 2 that the fluctuations with
γ = 1 are too small in the Gaussian case (γ = 0.6 is
satisfactory in this case) and the fluctuations with
γ = 0.6 are too strong in the uniform case (γ = 1
is satisfactory in this case). The profile of a linear
variation of γ achieves a compromise between these
two extreme cases (and in the many other tests car-
ried out).

3.2 Robust tuning of C

In the previous section, the constant C has been
set to 1. This choice turns out to be catastrophic
when the variable considered has a dispersion which
is not of this order of magnitude. It should be re-
membered that in practice this dispersion of the
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(a) γ = 0.6.
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(b) γ = 1.
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(c) Linear γ evolution.

Figure 1: Simulations of trajectories of the RM al-
gorithm (N = 1000, Y ∼ N (0, 1)). Red lines give
exact order quantiles 0.05, 0.5 and 0.95.
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(a) γ = 0.6.
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(c) Linear γ evolution.

Figure 2: Simulations of trajectories of the RM al-
gorithm (N = 1000, Y ∼ U [0, 1]). Red lines give
exact order quantiles 0.05, 0.5 and 0.95.

studied variable Y is unknown. Then, as for γ, we
look for a choice of C which gives “acceptable” re-
sults whatever the distribution of Y (unknown in
practice).

Figure 3 shows 50 independent trajectories of the
RM estimator qα(n) for n = 1, . . . , 1000, Y follow-
ing a lognormal law (log(Y ) ∼ N (0, 1)) and three
orders of quantile α (0.05, 0.5 et 0.95). γ has a linear
profile and three different settings of C are tested:
1, 10 and an adaptive tuning which is written

C(n) = |qαmax(n− 1)− qαmin(n− 1)| , (6)

where n ≥ 2 and C(1) = |Y2 − Y1|. In Figure 3, it
is clear that, for the quantile of order 0.95, C must
be large enough to obtain sufficiently large fluctua-
tions from the beginning of the RM algorithm. The
adaptive adjustment of C via Eq. (6) allows to au-
tomatically regulate these fluctuations. Many other
numerical tests on distributions of different types
have confirmed the correctness of this choice.

4 Non-fixed number of model
evaluations

From a user point of view, fixing the number N of
model evaluations at the beginning at the study can
be quite impractical. Indeed, the user has often no
idea of the sample size that is needed to compute
the QoI with a sufficient precision. When the esti-
mator is not iterative, a convergence control is easy
to provide (for example by bootstrap) in order to
stop the simulations (see, e.g., [1]). However, such
solutions do not exist in iterative statistical estima-
tion. This difficult issue is left for a future work
and we start, in this section, to provide a prelimi-
nary study to adapt our RM algorithm when N is
unknown. Indeed, the profile that has been chosen
in Section 3.1 for γ (Eq. (5)) depends on N . To get
rid of the linear profile for γ, we first introduce an
averaged RM version; then, a stochastic adaptive
stepsize is proposed.

4.1 Averaged version of Robbins-
Monro

It is well known that the averaged version of RM
(noted here ARM) converges faster than the clas-
sical RM algorithm of Eq. (4) [15]. The idea is to
exploit the basic recursive formula for computing a
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(a) C = 1.
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(b) C = 10.
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(c) C adaptatif.

Figure 3: Simulations of trajectories of the RM al-
gorithm (N = 1000, Y ∼ LN (0, 1)). Red lines give
exact order quantiles 0.05, 0.5 and 0.95.

mean, to keep a quantile mean update (after apply-
ing the RM estimator) at each iteration. By pre-
liminary numerical tests (not shown here), we have
however noted that, if an averaged quantile is in-
troduced into (4), the fluctuations of the estimator
along the iterations are not of sufficient magnitude
to converge to the exact value. It is thus neces-
sary to preserve the formulation (4) for qα(n) and
to store in addition, at each iteration, the averaged
estimator (noted q̄α(n)):

q̄α(n+ 1) = q̄α(n) +
qα(n+ 1)− q̄α(n)

n+ 1
, (7)

with n ≥ 1 and q̄α(1) = Y1. The required memory
storage for the ARM estimator is three values (one
realization of Y and two quantile estimates).

Figure 4 compares the RM and ARM algorithms
for the two cases Y ∼ N (0, 1) and Y ∼ U [0, 1],
N = 1000 and the adaptive tuning of C (Eq. (6)) .
The quantiles are estimated for orders α discretized
inside the interval [0.05, 0.95] by step of 0.01. The
metric used (on the ordinate) is the mean square er-
ror between the exact quantiles and the estimated
quantiles. Estimates are repeated 100 times inde-
pendently in order to capture the variability of er-
rors due to sampling. The reference estimator is
the empirical estimator (which is not iterative). In
these examples, the performances of ARM with a
γ-linear profile are similar and close to those of the
empirical estimator, and better than those of RM.
A constant and low γ (equals to 0.6) gives even bet-
ter results with ARM (but not with RM) for both
distribution cases (normal and uniform). In fact,
the averaging in ARM (which makes the quantile
estimator converges more quickly) makes it unnec-
essary to increase the γ towards 1 that we have with
the linear profile.

Other tests with different distributions, not
shown here, present similar conclusions. They also
confirm that it is necessary to keep the adaptive
tuning of C.

4.2 Application of the Kesten’s rule

Another way of improvement of the RM algorithm
would be to apply a stochastic adaptive stepsize
rule (instead of a moving γ). The old and simple
Kesten’s rule [11, 16] allows to do so by increment-
ing n (in the stepsize 1/n) only if the two last errors
have different signs. It is based on the idea that “if
we are far from the optimal, the errors tend to all
have the same sign; as we get close, the errors tend
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Figure 4: Mean square errors of discrete quantile
functions for the empirical, RM and ARM estima-
tors. γ(n) corresponds to the γ-linear profile.

to alternate”. Then, it slows down the stepsize re-
duction at the beginning of the algorithm.

The RM estimator using the Kesten’s rule (noted
KRM) writes

qα(n+ 1) = qα(n)− C

kγn

(
1Yn+1≤qα(n)

− α
)
, (8)

with n ≥ 1, qα(1) = Y1 and

if n > 2, kn = kn−1 + 1δ(n)δ(n−1)<0 ,
if n ≤ 2, kn = n ,

(9)

with δ(n) = qα(n)−qα(n−1). The required memory
storage for the KRM estimator is four values (one
realization of Y and three quantile estimates). If
ARM (see section 4.1) is used instead of RM, the
estimator is noted KARM and requires a memory
storage of five values (one realization of Y and four
quantile estimates).

Our numerical test considers the case Y ∼
N (0, 1), with N = 1000, γ = 1, C = 1 and three
orders of quantile α (0.05, 0.5 et 0.95). Figure 5
shows 50 independent trajectories of the RM esti-
mator qα(n) for n = 1, . . . , N by applying Kesten’s
rule or not. Results clearly show that the Kesten’s
rule applies the search-then-converge learning rule
[16] which led us to consider a γ-linear profile in
Section 3.1. In this case, the KARM estimates pro-
vide similar result than the KRM (results not shown
here).

Other tests with different distributions for Y
(uniform, triangular, exponential, lognormal, mul-
timodal, etc.) have been performed. The main con-
clusion is that KARM (Kesten’s rule applied on the
averaged RM estimator), associated to γ = 1 and
the adaptive tuning of C, is the most robust ap-
proach.

5 Conclusion

This paper has proposed the computation of quan-
tiles by use of a parallel one-pass strategy based on
new robust versions of the stochastic quantile al-
gorithm of Robbins-Monro. This kind of iterative
approach has been demonstrated in the present pa-
per by studying a scalar output, but it is needed in
case of huge-volume simulation output, as a spatio-
temporal evolution of several quantities (as studied
in [22, 18]). Indeed, in this situation, it allows to
avoid the storage of large amount of data during
the uncertainty propagation stage.

More precisely, our work made it possible to de-
fine some heuristics for the iterative estimation of
quantile by the RM algorithm (eq. (4)) with a
finite-size sample N (a few hundreds values). Sev-
eral versions of the RM algorithm have been studied
and led to some conclusions:

• The choice of an adaptive C (Eq. (6)) is bene-
ficial in all cases;

6



0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2

Density norm − RM1

iteration number

qu
an

til
e

(a) With Kesten’s rule.
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(b) Without Kesten’s rule.

Figure 5: Simulations of trajectories of the RM al-
gorithm (N = 1000, Y ∼ N (0, 1)). Red lines give
exact order quantiles 0.05, 0.5 and 0.95.

• When using RM, the choice of a γ-linear profile
(Eq. (5)) is robust and must be privileged;

• On the other hand, the ARM algorithm (av-
erage version of RM) gives good results while
avoiding to define N at the beginning of the
study. With ARM, weak γ gives better results;

• Finally, the introduction of the stochastic
adaptive stepsize Kesten’s rule, which led to
define the KARM estimator, further improves
our results. In this case, γ = 1 has to be cho-
sen.

This paper has presented preliminary works
which need to be further investigated. For exam-
ple, the use of well distributed point sequences in-
stead of i.i.d. samples (tests not shown here) allow
to greatly improve the precision of the different RM
estimators. This idea seems judicious and will be
studied in depth in the case where the variable Y
comes from a model (as in UQ) whose input dimen-
sion is large and where the choice of a good design
of experiment (of the “space filling design” type) is
important [17].

In the same order of idea, it will be fruitful to
combine the RM algorithm and the techniques of
simulation of rare events [13, 27], as already studied
by [12]. Another major perspective of our work will
be to to control the convergence of the estimate
when N is not fixed, which is an essential issue in
industrial applications.

Last, in [18], the quantiles of the spatio-temporal
outputs have been computed cell per cell and time-
step per time-step via an iterative UQ approach,
which is perfected in this paper. [18] have shown
that the interpretation of this ubiquitous quantiles
(for instance in the form of static spatial maps, tem-
poral probes or videos) is much richer than the tra-
ditional predefined probe-based or sub-sampled ap-
proaches. However, the functional space where the
spatio-temporal field lies has not been considered.
Dealing with this space in a rigorous mathemat-
ical way (as in [4]), the ubiquitous quantile esti-
mates would conserve the geometrical and tempo-
ral structure of the ensemble run study, and would
then keep, more deeply, a physical significance.
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