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Definition

Elastic continua whose general deformation
energy density depends on second and possibly
higher gradients of the displacement.

Introduction

Continuum mechanics always supplies approx-
imate models for physical systems, in which
a more fundamental (possibly discrete or in-
homogeneous) microstructure may be somehow
neglected. Indeed, Cauchy (or Cauchy-Navier)
continuum theory describes efficiently, at a
macroscopic level, the behavior of a mechanical
system only when the inhomogeneities which
the model does not take into account have
a characteristic length scale much smaller
than the macroscale where phenomena are
observed.

Therefore, it is now widely accepted that in
some circumstances, it is necessary to add to the
placement field some extra kinematical fields, to
take into account, at a macroscopic level, some
aspects of the mechanical behavior of materials
having complex microscopic structures. In the
aforementioned direction, a first relevant gener-
alization of Cauchy continuum models was con-
ceived by Eugène and François Cosserat: their
efforts were not continued until late in the twen-
tieth century. Cosserat brothers described con-
tinuum bodies in which a complete kinemati-
cal description of considered continua can be
obtained by adding suitable micro-rotation fields.
In Cosserat models contact interactions were to
be modeled not only by means of surface forces
but also by means of surface couples. The con-
ceptual differences between Cauchy-type con-
tinuum mechanics and Cosserat-type continuum
mechanics were relevant, and the second one can-
not be obtained by means of simple modifications
of the first one.

As clearly stated already in the works by
Germain (1973a, c), the principle of virtual
work supplies a suitable tool for extending the
Cauchy-Navier format of continuum mechanics

when it has to be generalized to include
the so-called generalized or microstructured
continua. This principle has been successfully
used, for instance, in the classical works
Green and Rivlin (1964a, b, c, 1965), Mindlin
(1962, 1963, 1965a, b, c), Mindlin and Tiersten
(1962), and Mindlin and Eshel (1968), as well as
in dell’Isola and Seppecher (2011), Forest et al.
(2015), and Forest (1998, 2005, 2006).

Many results are available by now (see, e.g.,
Pideri and Seppecher 1997; Alibert et al. 2003;
Seppecher et al. 2011; Triantafyllidis and Aifan-
tis 1986) indicating that it is physically needed
or mathematically consistent to consider macro-
scopic continuum models where contact inter-
actions expend work on high order virtual dis-
placement gradients on dividing surfaces. These
interactions are exactly those which are called
s−forces, following Green and Rivlin (see Green
and Rivlin 1964a, b, 1965) and the works (Ger-
main 1973a; dell’Isola et al. 2012a). This seems
to be an essential common property of all sys-
tems that show highly contrasted physical prop-
erties at microlevel (see also Chesnais et al.
2012, 2013). On the purely macroscopic point
of view, the necessity of considering such inter-
actions has been proven in two very elegant
papers by Germain (see Germain 1973a, c) when
one wants to consistently consider continuum
models in which deformation energy depends
on second gradient of displacement (for higher
gradients, see dell’Isola et al. 2012a). The con-
ceptual framework introduced by Truesdell and
Noll (see Truesdell and Noll 1965) is not general
enough for encompassing such models (see, e.g.,
the difficulties arising in the papers Dunn and
Serrin 1985; Dunn 1986 and clarified in dell’Isola
and Seppecher 1995).

It should also be remarked that the condition
of scale separation mentioned at the beginning is
not by itself a sufficient criterion for insuring that
Cauchy theory supplies a suitable model: a well-
known example is the case of deformable porous
media for which both stress tensor for matrix
and pressure for fluid are needed to describe its
mechanical state (see, for instance, Collin et al.
2006; Coussy 2004; Sciarra et al. 2007). Another
example is given by the case of a periodic fibers
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reinforced elastic medium with high contrast of
mechanical properties (see Steigmann and Pipkin
1991; dell’Isola et al. 2016a). The mechanical
description of these systems needs in addition to
the standard stress tensor a higher-order hyper-
stress tensor.

To conclude this Introduction, we mention that
a list of existing and envisaged applications of
generalized continua
includes:

• materials which are able to damp mechanical
vibrations by means of a granular microstruc-
ture or by transforming mechanical energy
into electromagnetic energy via piezoelectric
transduction.

• materials which exhibit, at least in some direc-
tions, a large ratio between weight and frac-
ture toughness.

• multi-scale fabrics constituted by a beam-
like substructure whose deformation energy
depends on n-th gradient of displacement
field and exhibiting nonstandard disper-
sion effects, possibly including frequency
bandgaps.

• materials constituted by nearly inextensible
fibers that are able to resist shear and elonga-
tion by storing deformation energy in the form
of fiber bending energy.

A more comprehensive coverage of applica-
tions (and the relative bibliography) is provided
and discussed in dell’Isola et al. (2016a).

Interactions Modeled as Work
Distributions

It is evident that describing a force (respectively,
a force field) F is equivalent to describing the
linear form which, to any test vector V (respec-
tively, test field), associates the expended work
F ·V (resp.

∫
F ·V ). In this dual view, forces are

regarded as distributions in the sense of Laurent
Schwartz.

A generally agreed requirement is to admit
that the set of all admissible infinitesimal
displacement fields for a continuous body B

contains the set D of all test functions (i.e.,
infinitely differentiable functions having compact
support).

In accordance to what is done, e.g., in
the works Salençon (2005) and Germain
(1973a, b, c), let us recognize that the mechanical
interactions applied to an open subbody D ⊂ B

are distributions (in the sense of Schwartz)
concentrated on D, where D denotes the
topological closure of the set D.

Therefore, theorems and definitions of the the-
ory of distributions are relevant also in continuum
mechanics. In particular we have to remind that
(see Schwartz 1973, pp. 82–103) (i) every dis-
tribution having regular (Here “regular” must be
understood in the sense of Whitney (see Schwartz
1973, p. 98). This condition is weak enough
and all objects considered in this entry verify
it) compact support D can be represented as the
sum of a finite number of derivatives of measures
all having their support included in D; (ii) a
distribution is said to have order smaller than or
equal to N if one can represent it as the sum
of derivatives with order smaller than or equal
to N of measures; and (iii) every distribution
having support included in a regular embedded
submanifold M can be uniquely decomposed as a
finite sum of transverse derivatives of extensions
of distributions defined on M .

As a consequence, any mechanical interaction
applied to D has the following structure:

V ∈ D →
ND∑
s=0

∫
(∇sV ) | dT s

D, (1)

where dT i
D are tensor-valued measures having

support in D and the symbol | stands for the inner
product between tensors.

In order to ensure uniqueness in the represen-
tation formulas, it is natural to ask the measures
dT i

D to respect the same symmetry as ∇sV , that
is, to be invariant with respect to any permu-
tation of indices. We call complete symmetry
this property and denote Sym(X) the completely
symmetric part of any tensor X.

One of the greatest challenges of any contin-
uum mechanics theory is to describe the way in
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which the measures dT i
D depend on the shape

of D. The class of subbodies which are to be con-
sidered cannot be limited to domains with smooth
boundaries. Indeed tetrahedrons have to belong
to this class if we want to follow the trail of
Cauchy. Therefore, let us admit subbodies D with
boundaries (or Cauchy dividing surface) which
are piecewise regular. The topological boundary
∂D is constituted by regular surfaces called faces
(their union being denoted ∂2D), the boundary
of which is constituted by regular curves called
edges, (their union being denoted ∂1D) concur-
ring at wedges (their union being denoted ∂0D).
We denote nk the external normal toD on the face
Fk . On an edge Lj two faces Fk : k ∈ [Lj ]
concur. Hence [Lj ] denotes the pair of subscripts
of the faces concurring there. We denote ej a unit

vector tangent to the edge Lj and ν
j
k the unit

vector orthogonal to the line Lj , tangent to the
face Fk and external to it. On a wedge {x�}, a
finite number of edges Lj : j ∈ [x�] concur.
Hence [x�] denotes the set of subscripts of the
edges concurring there.

The description of the mechanical behavior
of a body needs the partition of the mechanical
interactions applied to any subbody D into two
subclasses, those which are applied inside the
body and those which are applied on its frontier:

Sins(D, V ) = −
ND∑
s=0

∫
(∇sV ) | dτs,D,

Sfro(D, V ) =
ND∑
s=0

∫
(∇sV ) | dFs,D,

where τs,D are tensor-valued measures con-
centrated on D, while dFs,D are tensor-valued
measures having support in the topological
boundary of D. At this point the distinction
between these two kinds of interactions is
completely arbitrary. We emphasize that it has
been shown (see Germain 1973a; dell’Isola et al.
2012a) how an expression of type Sins(D, V )

can be transformed in an expression of type
Sfro(D, V ) while in the works dell’Isola and
Seppecher (1997) and dell’Isola et al. (2016b)
the converse is shown.

Actually the necessity for mechanicians to
divide the mechanical interactions into these sub-
classes comes from their desire to find consti-
tutive laws for the tensors τ and F which only
involve local quantities. This distinction will be
now assumed as granted.

When accepting the point of view by Cauchy,
it is the functional Sfro which characterizes the
stress state of the body. When there exists an
integer N = ND such that the previous represen-
tation holds for all subbodies of the considered
body B, then it is said that the body B has a stress
state of order N in the sense of Cauchy. We deal
with measures dFs,D constituted by three parts
concentrated on ∂iD, i = 0, 1, 2 each one being,
respectively, absolutely continuous with respect
to the corresponding natural Hausdorff measures:

dFs,D = F2
s dH 2|∂2D

+ F1
s dH 1|∂1D

+ F0
s dH 0|∂0D

(2)
Moreover we deal with fields Fi

s which are
smooth tensor fields orthogonal to the manifold
where they are applied:

Fi
s ⊥ ∂iD.

This is a limitation as in the Schwartz decompo-
sition of distributions concentrated on manifolds
dual quantities to tangential components of test
functions may appear. Note however that, if these
tangent dual quantities are smooth enough to
be integrated by parts, they reduce to functions
plus dual quantities concentrated on lower-order
manifolds. Therefore frontier interactions have
the form (The chosen summation bounds may
seem restrictive. This is not the case, as one
can easily add some extra terms with vanishing
densities):

Sfro(D, V ) =
N−1∑
s=0

∫
∂2D

F2
s |
(∇sV )⊥ dH 2

+
N−2∑
s=0

∫
∂1D

F1
s |
(∇sV )⊥ dH 1

+
N−3∑
s=0

∫
∂0D

F0
s | ∇sV dH 0 (3)
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The tensor fields
(
F2
s ,F1

s ,F0
s

)
which depend on

D and on the material particle are naturally com-
pletely symmetric and normal to the manifolds
where they are applied. They are called the con-
tact s + 1-forces. For the explicit expression
of the generalized forces that appear in sec-
ond and higher gradient theories, we refer to
the entry Generalized contact actions in this
Encyclopedia.

One of the essential points of Cauchy
approach (see, e.g., Noll 1959 or Fosdick 2011)
is the determination of the dependence of the
fields Fi

s on the (shape of the) subbody D.
The densities Fi

s are assumed to depend in a
sufficiently regular way on the position and to
depend on the considered subbody only in a local
way through its shape: a notion which contains
all local geometrical characteristics of the frontier
(including its direction). This notion is defined in
the work (dell’Isola and Seppecher 1997), where
two domains are said to have the same shape if
they coincide locally up to a translation.

When accepting the point of view by
D’Alembert it is the functional Sins that
characterizes the stress state of the body. When
there exists an integer N such that the previous
representation holds for all subbodies of the
considered body B, it is said that the body
B has a stress state of order N in the sense
of D’Alembert. The tensor measures dτs,D
are naturally completely symmetric. They are
called the s-th order (hyper)-stress tensors. In
the literature, the only tensor measures which
were considered are absolutely continuous
with respect to the volume measure dH 3,
dτk,D = τk,DdH 3|D , with completely symmetric
tensor densities. Moreover the densities are
supposed to be smooth enough to be repeatedly
integrated by parts.

It has also to be remarked that the only pos-
sible way for the densities τs,D to depend on the
local form shape of D is to be independent of D.

Finally one deals with representations of the type:

Sins(D, V ) = −
N∑
k=0

∫
D

(∇sV ) | τsdH 3. (4)

This type of representation has first been consid-
ered by Green and Rivlin (see Green and Rivlin
1964a, b, c, 1965) who called the tensors τs the
s-th order stresses.

The Foundation of Higher Gradient
Theories à la D’Alembert and à la
Cauchy

The mechanical postulation à la D’Alembert con-
sists in assuming given a stress state Sins. Then
the procedure is to rewrite it as the sum of a term
of type

∫
D
V | f dH 3 plus an expression similar

to Sfro. This deduction is simply obtained by a
repeated application of the divergence theorem
(possibly on submanifolds).

The mechanical postulation à la Cauchy uses
a reverse procedure. It consists in assuming an
expression for Sfro and rewriting it in a form
similar to Sins. This is a more difficult procedure
and, to be completed, it needs the following
(quasi)-balance postulate: for every test field V ,
there exists a constant KV such that, for every
subbody D

∣∣∣Sfro(D, V )

∣∣∣ ≤ KVH 3(D). (5)

The reader should notice that, when
considering Cauchy continua and rigid virtual
velocity fields V , the inequality (5) reduces to
the quasi-balances of forces and moments done
in the work (Noll 1990), but, as remarked in
dell’Isola and Seppecher (1997), these quasi-
balances are not sufficient for obtaining a
complete description of a stress state of order
two or higher. While inequality (5) could seem
a very weak assumption, it has been emphasized
(see dell’Isola et al. 2016b) that it rules out
some possible stress states, as, for instance, those
occurring in continua including material surfaces
or continua including interfaces with Laplace
surface tension.

Even if often not explicitly stated, both
procedures (Cauchy type and D’Alembert type)
are always completed by using the postulate
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of work balance (or postulate of virtual work)
and the aforementioned uniqueness result by
L. Schwartz. This postulate states that the total
mechanical interactions vanish. In formula:

Sins +Sfro = 0

For a presentation of the ideas inspiring this pos-
tulate, we refer to the papers (Germain 1973a, c;
Salençon 2005) or to the historical works (Piola
1825, 1846 (translated in dell’Isola et al. 2014),
Cosserat and Cosserat 1908, 1909). This equality,
which holds for every admissible subbody and
test field, dates back to the pioneering works
of D’Alembert, Lagrange, and Piola (see Piola
1825, 1846; dell’Isola et al. 2014, 2015b) where
it is shown that this principle is a generalization
of Newton second law which is more suitable
when dealing with more general systems than
finite systems of material points.

Following D’Alembert, Lagrange, and Piola,
one can find continuum mechanics by postulating
a form for the work functional expressing internal
interactions. Starting from this postulate, one
can deduce, by means of a successive applica-
tion of divergence theorem, the structure of the
functionals expressing the contact interactions
which can be exerted at the boundary of the
considered body. Hence, this method starts from
the notion of stress tensors (as dual of virtual
displacements and their gradients) and deduces
from it the concept and the structure of contact
interactions by using the D’Alembert principle
of virtual work. This principle is undoubtedly a
great tool in mechanics. It has not been improved
since its original first (and standard) formulation
(differently to what was stated, e.g., in the paper
Fried and Gurtin 2006). This is generally a posi-
tion generally maintained in the literature (see,
for instance, in Banfi et al. 2006).

In the approach à la D’Alembert, one assumes
the principle of virtual work to be valid for
every subbody of considered continuous body.
This is done in all literature directly based on
Lagrange’s and Piola’s works (see, e.g., Toupin
1962, 1964; Germain 1972, 1973a, b, c; Bleustein
1967; Casal 1961, 1972; Polizzotto 2007). An

unduly restricted version of the Principle has
been formulated in Truesdell and Toupin (1960),
(pp. 595–600). For this reason many authors,
at different times, rediscovered its correct and
complete formulation.

At the beginning of the nineteenth century,
Cauchy founded continuum mechanics by assum-
ing that the surrounding material exerts on a part
of a continuum a mechanical interaction limited
to a surface density of contact forces concentrated
on the dividing surface. Then, by assuming that
these contact forces depend only on the normal
of dividing surface and are balanced by some
volume density of force (including inertia), he
used the geometric properties of tetrahedrons to
prove the existence of the so-called Cauchy stress
tensor.

Within the context of higher gradient theories,
the tetrahedron argument has to be treated
with special attention (see dell’Isola et al.
2015b, 2016b; Auffray et al. 2015). In 1959,
W. Noll (see Noll 1959) showed that the so-
called Cauchy postulate, that is, the dependence
of contact forces only on the normal of dividing
surfaces, is equivalent to the seemingly weaker
assumption of uniform boundedness of contact
forces for all dividing surfaces. It has to be
underlined that Cauchy postulate, despite its
usual designation, is not a fundamental principle
in the sense that balance of force or the principle
of virtual work are but rather a constitutive
assumption. Noll’s result allows to point out
the relationship between tetrahedron argument
and measure theory (see, e.g., Del Piero 2014).
However, one should pay special care not
to forget, behind the technical hypothesis of
uniform boundedness, the physical assumption
that the contact forces depend only on the
normal to the Cauchy cut. Actually the contact
force per unit surface at any regular point of a
Cauchy cut (in what is called face here) does
not depend, in general, only on the orientation
of such surface (i.e., only on its normal n).
Several authors (among which Richard Toupin;
see Toupin 1962, 1964) were aware of this fact,
and in dell’Isola and Seppecher (1995, 1997) and
dell’Isola et al. (2016b) some efforts have been
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done to generalize the tetrahedron construction
in order to encompass theories of higher gradient
continua. As explicitly remarked in dell’Isola
and Seppecher (1995, 1997), Banfi et al. (2006),
and Marzocchi and Musesti (2003), relevant
mathematical difficulties are encountered when
dealing with the double dependence of power
functional Sfro(D, V ) on velocity fields and
on subbodies of the considered continuum.
The efforts of many researchers (see, e.g.,
Banfi et al. 2006; Degiovanni et al. 2006;
Marzocchi and Musesti 2003) are directed, with
remarkable results, to the search of a generalized
Schwartz representation theorem adapted to this
context.

In De la pression ou tension dans un
corps solide, Cauchy wrote (see Cauchy 1827
pp. 61–64) that “a small element experiences on
its different faces and at each point of them a
determined pressure or tension [. . . ] which can
depend on the orientation of the surface. This
being set, [. . . ]” and that “equilibrium should
hold between inertial force and the forces to
which are reduced all pressures and tensions
exerted on the surface.” In his proof, Cauchy
applied the balance of forces to domains with
a “volume very small, so that every dimension
is an infinitesimal quantity of first order” the
mass being “an infinitesimal quantity of the
third order” and finally he stated that pressure
and tension on a small face “experience, by
moving from one point to another one on a face,
infinitesimal variations of the first order.” Clearly
Cauchy accepted the following hypotheses: (i)
contact interactions reduce to surface forces
on the boundary and depend on its normal (ii)
contact interactions are balanced by volume
forces and (iii) contact interactions depend at
least continuously on the position.

When accepting the form (3), one weakens
the assumption (i), and when accepting the quasi-
balance postulate (5), one adapts assumption (ii)
to the new context.

In fact the two methods can be reconciled.
Their equivalence has already been explicitly
established by Gabrio Piola (see dell’Isola et al.
2014) for stress states of order one. Much later
the same equivalence has been proven for stress

states of order two: these results have been
obtained in the papers dell’Isola and Seppecher
(1995, 1997) where the relationship between
the concept of contact line force and surface
double force was established by obtaining a
representation formula relating the two concepts.
Finally, a more general reconciliation which
holds for stress states of order n is provided
in dell’Isola et al. (2015a).

Some Remarks on Wave Propagation
in Second Gradient Continua

In this section we want to provide some quick and
elementary remarks on wave propagation, focus-
ing on the particular case of linearized isotropic
second gradient continua.

Let us denote by u(X, t) the displacement
field, by F := ∇χ the deformation gradient, and
by ε := (FT · F − I)/2 the classical Green-
Lagrange deformation tensor. If ρ is the mass
per unit volume of the considered continuum
in its reference configuration, we can write the
Lagrangian energy density of a second gradient
continuum as

E = 1

2
ρ (u̇)2 + Ψ (ε,∇ε) , (6)

where the deformation energy is denoted by Ψ ,
and we made explicit the fact that the objectivity
requirements imply that it is only function of the
Green tensor and its gradient (see Auffray et al.
2015).

In the absence of body forces, the equation
of motion for a second gradient continuum reads
(see, e.g., Germain 1973a)

div

[
F ·
(
∂Ψ

∂ε
− div

(
∂Ψ

∂∇ε

))]
= ρü (7)

Differentiating Eq. (6) with respect to time and
using Eq. (7) and the symmetry properties of the
tensors ε, ∇ε, and ∇F, it can be shown that (see
dell’Isola et al. 2012b)
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∂E

∂t
+ div

[
−u̇ · F ·

(
∂Ψ

∂ε
− div

(
∂Ψ

∂∇ε

))
−
(
(∇u̇)T · F

)
: ∂Ψ
∂∇ε

]
= 0. (8)

which represents the Lagrangian form of energy
balance for a second gradient continuum in the
nonlinear case.

Linearizing in the neighborhood of a stress-
free reference configuration, the gradient of
placement F in Eq. (8) is substituted by the
identity matrix and that the equation of motion

and mechanical energy balance for a second gra-
dient continuum reduce, respectively, to

div [S− divP] = ρü,
∂E

∂t

+ div
[
−u̇ · (S− divP)− (∇u̇)T : P

]
= 0,

(9)

where, following the nomenclature of Germain, S
and P are the linearized Piola-Kirchhoff first and
second gradient stress tensors, respectively.

It is well known that in the case of isotropic
material S = 2μE + λ (trE) I, where E =
(∇u + (∇u)T )/2 is the linearized Green-
Lagrange deformation tensor and λ and μ are
the so-called Lamé coefficients. As for the hyper-
stress third-order tensor P, it has been shown (see
dell’Isola et al. 2009) that in the case of isotropic
materials, it takes the following simplified form:
(We define the transposition operations of a third-
order tensor as A

T23
ijk = Aikj and A

T12
ijk = Ajik

and the symbol ⊗ as the usual tensor product
operation between two tensors of any order (e.g.,
(A⊗ B)ijhk = AijBhk))

P = c2

[
2I⊗ divE+ (I⊗∇(trE))T23 + ∇(trE)⊗ I

]
+ c3I⊗∇(trE)

+ 2c5

[
(I⊗ divE)T23 + divE⊗ I

]
+ 2c11∇E+ 4c15(∇E)T12 , (10)

where c2, c3, c5, c11, and c15 are constants
depending on the material properties of
the considered second gradient continuum.
Moreover, we define the following coefficients:

Λ := c3+2(c5+c15)+4c2, M := c11+c15+c5,

(11)

which parallel the first gradient Lamé coefficients
λ and μ.

Considering a wave traveling in the considered
second gradient continuum in the direction of
the axis x1 of an orthogonal reference system,
and assuming that the displacement vector has
three non-vanishing components depending only
on the x1 coordinate and on time, it is possible
to obtain by straightforward computation (see
dell’Isola et al. 2012b) the following dispersion
relations:

(Λ+ 2M)k4
1 + (λ+ 2μ)k2

1 − ρω2 = 0,

Mk4
2 + μk2

2 − ρω2 = 0,

Mk4
3 + μk2

3 − ρω2 = 0,

where ω is the positive real frequency, k1 is
the wave number relative to the eigenvector
(1, 0, 0), and k2 and k3 are the wave numbers
relative to the eigenvectors (0, 1, 0) and (0, 0, 1),
respectively. Since we were considering an
isotropic continuum, the last two transverse
dispersion relations coincide.
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