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We consider a micropolar fluid flow in a media perforated by periodically distributed obstacles of size ε. A non-homogeneous boundary condition for microrotation is considered: the microrotation is assumed to be proportional to the rotation rate of the velocity on the boundary of the obstacles. The existence and uniqueness of solution is analyzed. Moreover, passing to the limit when ε tends to zero, an analogue of the classical micropolar Darcy law in the theory of porous media is derived.

Introduction

Micropolar fluid model is a non-Newtonian model which represents a generalization of the well-established Newtonian Navier-Stokes model which takes into account the microstructure of the fluid. It describes the behavior of numerous real fluids (e.g. polymeric suspensions, liquid crystals, muddy fluids, animal blood, etc.) better than the classical one. The related mathematical model expresses the balance of momentum, mass and angular momentum. Thus, a new unknown function ŵ called microrotation (i.e. the angular velocity field of rotation of particles) is added to the classical pressure p and velocity û. Consequently, Newtonian Navier-Stokes equations become coupled with a new vector equation coming from the conservation of angular momentum, see Eringen [START_REF] Eringen | Theory for micropolar fluid[END_REF] and Lukaszewicz [START_REF] Lukaszewicz | Micropolar fluids, theory and applications[END_REF]. In view of its application in porous media, we can assume a small Reynolds number and neglect the nonlinear terms and so the following micropolar equations are considered

-(ν + ν r )∆û + ∇p = 2ν r rot( ŵ) + f , div(û) = 0, -(c a + c d )∆ ŵ + 4ν r ŵ = 2ν r rot(û) + ĝ.
The different viscosities ν, ν r , c a and c d are strictly positive and characterize the isotropic properties of the fluid, f represents the body force and g the body torque.

Solution to the governing equations in the presence of solid boundaries requires imposing appropriate boundary conditions. Typical conditions on the solid boundary are the no-slip condition for velocity and the no-spin condition for microrotation, which read û = 0 and ŵ = 0, which respectively imply that the fluid adheres to the solid boundary and that the fluid elements can not rotate on the fluid-solid interface. However, a more general boundary condition for microrotation was introduced to take into account the rotation of the microelements on the solid boundary, which is effectively proved to be in good accordance with experiments, see Bessonov [START_REF] Bessonov | Boundary viscosity conception in hydrodynamical theory of lubrication[END_REF][START_REF] Bessonov | A new generalization of the Reynolds equation for a micropolar fluid and its application to bearing theory[END_REF] and Migun et al. [START_REF] Migun | On hydrodynamic boundary conditions for microstructural fluids[END_REF][START_REF] Prokhorenko | Experimental studies of polar indicator liquids used in capillary penetrant testing[END_REF]. This condition, called non-zero spin condition, reads ŵ

× n = α 2 rot(û) × n, ŵ • n = 0, (1.1) 
where n is a normal unit vector to the boundary and the coefficient α describes the interaction between the given fluid and solid.

It should be noted that in the previous studies the no-slip condition for velocity on the solid surface combined with non-zero spin condition (1.1) for microrotation is assumed. However slippage is experimentally observed in various systems at fluid-solid interfaces and can strongly influence hydrodynamic behavior in microscale and nanoscale flows. For this reason, no-slip condition for velocity should be replaced by a more general relation. In this sense, several boundary conditions have been considered to model the observed slippage, most of them include limited yield stress or retain slippage value proportional to the shear stress. But there is a new interpretation of the observed slippage in micropolar fluids, expressed in terms of the microrotation, by introducing a new slippage condition for velocity compatible with non-zero spin boundary condition for microrotation. This condition was proposed in Bayada et al. [START_REF] Bayada | New models in micropolar fluid and their applications to lubrication[END_REF][START_REF] Bayada | Wall slip induced by a micropolar fluid[END_REF] in the framework of lubrication, and allows a slippage in the tangential direction and retains a non-penetration condition in the normal direction n (δ is a real parameter)

û × n = δrot( ŵ) × n, û • n = 0. (1.2)
On the other hand, the behavior of fluid flows in porous media is of great importance in industrial and engineering applications. As is well known, classical (Newtonian) Darcy's law is generally considered for modelling of flow through a porous media, see Darcy [START_REF] Darcy | Les fontaines publiques de la ville de Dijon Paris[END_REF]. By using homogenization techniques, the mathematical derivation of such Darcy's law was obtained in Tartar [START_REF] Tartar | Incompressible fluid flow in a porous medium convergence of the homogenization process[END_REF] assuming no-slip boundary conditions û = K( f -∇p), div(û) = 0, where the matrix coefficient K is calculated by using Newtonian local problems. In addition, problems with different types of slippage conditions for Newtonian fluids in porous media have been studied by several authors giving rise to a wide range of Darcy's laws. More precisely, the Navier-Stokes (or Stokes) flow in a periodic porous media with Fourier boundary conditions on the boundary of the obstacles was studied in Conca [START_REF] Conca | On the application of the homogenization theory to a class of problems arising in fluid mechanics[END_REF] by using the method of oscillating test functions and two-scale method with asymptotic expansion of the solution. The case of classical slip boundary conditions was treated in Allaire [START_REF] Allaire | Homogenization of Navier-Stokes equations with a slip boundary condition[END_REF] by means of the method of oscillating test functions. Finally, the case of non-homogeneous slip boundary conditions was considered in Cioranescu et al. [START_REF] Cioranescu | Homogenization of the Stokes Problem With Non-homogeneous Slip Boundary Conditions[END_REF] combining the method of oscillating test functions with the technique introduced in Vanninathan [START_REF] Vanninathan | Homogenization of eigenvalues problems in perforated domains[END_REF] to treat the surface integrals. Finally, the case of non-homogeneous slip boundary conditions was revisited in Capatina and Ene [START_REF] Capatina | Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method[END_REF] and Zaki [START_REF] Zaki | Homogenization of a Stokes problem in a porous medium by the periodic unfolding method[END_REF] by using the periodic unfolding method together with the boundary unfolding operator which allows to treat quite elementary the surface integrals, see Cioranescu et al. [START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF][START_REF] Cioranescu | The periodic unfolding method in perforated domains[END_REF][START_REF] Cioranescu | The periodic unfolding method. Theory and Applications to Partial Differential Problems[END_REF].

Although the behavior of micropolar fluid flows in porous media become of great practical relevance, the literature on the modelling of such type of problem by homogenization methods is far less complete. Lukaszewicz [START_REF] Lukaszewicz | Micropolar fluids, theory and applications[END_REF] rigorously derived the following version of the classical Darcy law by using the two-scale convergence method û = K (1) ( f -∇p) + K (2) ĝ, div(û) = 0, ŵ = L (1) ( f -∇p) + L (2) ĝ, where the matrix coefficients K (k) and L (k) , k = 1, 2, are calculated by using micropolar local problems. We also refer to Aganovic and Tutek [START_REF] Aganovic | Nonstationary micropolar fluid flow through porous medium[END_REF] for the nonstationary case and to Bayada et al. [START_REF] Bayada | Micropolar effects in the coupling of a thin film past a porous medium[END_REF] for the micropolar effects in the coupling of a thin film past a porous media.

Previous studies obtained different Darcy's laws for micropolar fluids by assuming on the obstacles of the porous media the no-slip conditon for velocity and the no-spin condition for microrotation, not allowing to capture the microscopic behavior of the fluid near the boundary of the obstacles. Thus, the goal of this paper is first to establish existence and uniqueness of solution of the micropolar system in the considered porous media by assuming non-zero spin boundary condition (1.1) and new slippage condition (1.2) on the boundary of the obstacles, and then to derive a generalized Darcy's law by means of a combination of the periodic unfolding method with the boundary unfolding operator to treat the surface integrals. As far as the author knows, this is the first attempt to carry out such an homogenization analysis for micropolar fluids in porous media, which is the main novelty of the work, and could be instrumental for understanding the effects on this type of non-Newtonian fluid flows taking into account the boundary of the obstacles.

The structure of the paper is as follows. In Section 2, we make an introduction of the problem and its setting. In Section 3, we give the main results of the paper, i.e. the existence and uniqueness of solution (Theorem 3.2) and the asymptotic behavior of the solution (Theorem 3.3). The proof of the corresponding results are given in Section 4. The paper ends with a list of references.

The setting of the problem

Definition of the domain. Let Ω be a bounded connected open set in R 3 , with smooth enough boundary ∂Ω. Denote Y = (0, 1) 3 and F an open connected subset of Y with a C 1,1 boundary ∂F , such that F ⊂ Y . We denote

Y * = Y \ F . For k ∈ Z 2 , each cell Y k,ε = εk + εY is similar to the unit cell Y rescaled to size ε and F k,ε = εk + εF is similar to F rescaled to size ε. We denote Y * k,ε = Y k,ε \ Fk,ε .
We denote by τ ( Fk,ε ) the set of all translated images of Fk,ε . The set τ ( Fk,ε ) represents the obstacles in R 3 . The porous media is defined by Ω ε = Ω \ k∈Kε Fk,ε , where

K ε := k ∈ Z N : Y k,ε ∩ Ω = ∅ .
By this construction, Ω ε is a periodically perforated domain with obstacles of the same size as the period.

We make the assumption that the obstacles τ ( Fk,ε ) do no intersect the boundary ∂Ω. We denote by F ε the set of all the obstacles contained in Ω ε . Then, F ε = ∪ k∈Kε Fk,ε .

We define n the outside normal vector to ∂F . We denote by n ε (x) = n(x/ε) the outside normal vector (extended by periodicity) to ∂F ε .

Statement of the problem. We consider that the micropolar fluid flow is described by the following linearized micropolar equations in Ω ε , taking into account the dependence of ε,

-(ν + ν r )∆û ε + ∇p ε = 2ν r rot( ŵε ) + fε in Ω ε , (2.3) div(û ε ) = 0 in Ω ε , (2.4 
)

-(c a + c d )∆ ŵε + 4ν r ŵε = 2ν r rot(û ε ) + ĝε in Ω ε . (2.5)
As discussed in the introduction, we impose the following boundary conditions for velocity and microrotation on the surface of the obstacles

ŵε × n ε = α 2 rot(û ε ) × n ε on ∂F ε , (2.6) rot( ŵε ) × n ε = 2ν r c a + c d β(û ε × n ε ) on ∂F ε , (2.7) ûε • n ε = 0 on ∂F ε , (2.8) ŵε • n ε = 0 on ∂F ε , (2.9) 
and the homogeneous boundary conditions on the exterior boundary ûε = 0, ŵε = 0 on ∂Ω.

(2.10)

Notice that the usual no-slip and no-spin boundary conditions for the velocity and microrotation are prescribed in the exterior boundary, while non-zero spin and new slip boundary conditions are imposed on the boundary of the obstacles. The coefficient α > 0 appearing in (2.6) describes the interaction between the given fluid and solid, it characterizes microrotation retardation on the solid surfaces. In [START_REF] Bessonov | Boundary viscosity conception in hydrodynamical theory of lubrication[END_REF] it was proposed to connect it with the different viscosity coefficients, which allows to give a certain physical sense and to determine the real limits of its value. The coefficient β > 0 in (2.7) is a characteristic of a slippage and allows the control of the slippage at the boundary of the obstacles when the value ûε is not zero.

Mathematical justification of the new slip boundary condition (2.7). By assuming condition (2.6), the supplementary condition (2.7) on the boundary of the obstacles is needed to close the system. The derivation of such boundary condition follows arguments from [START_REF] Bayada | New models in micropolar fluid and their applications to lubrication[END_REF] which is given in the context of lubrication by applying the non-zero spin condition to a flat surface. The idea is to consider ψ ∈ H 1 (Ω ε ) 3 , ψ = 0 on ∂Ω and ψ • n ε = 0 on ∂F ε and recall the following identities

-∆ϕ = rot(rot(ϕ)) -∇ div(ϕ) ∀ ϕ ∈ D(Ω ε ) 3 , (2.11) 
and div(ϕ

× ψ) = ψ • rot(ϕ) -ϕ • rot(ψ) .
(2.12)

Integrating by parts and taking into account the divergence theorem, we have

Ωε div(ϕ × ψ) dx = ∂Ω (ϕ × ψ) • n ε dσ - ∂Fε (ϕ × ψ) • n ε dσ = ∂Fε (ϕ × n ε ) • ψ dσ,
and taking into account the last identity (2.12), we get

Ωε rot(ϕ) • ψ dx = Ωε rot(ψ) • ϕ dx + ∂Fε (ϕ × n ε ) • ψ dσ ∀ (ϕ, ψ) ∈ H 1 (Ω ε ) 3 × H 1 (Ω ε ) 3 . (2.13) 
Thus, multiplying (2.5) by test function ψ and using identities (2.11) and (2.13), we get

(c a + c d ) Ωε rot( ŵε ) • rot(ψ) dx + Ωε div( ŵε ) • div(ψ) dx + ∂Fε (rot( ŵε ) × n ε ) • ψ dσ +4ν r Ωε ŵε • ψ dx = 2ν r Ωε rot(ψ) • ûε dx + ∂Fε (û ε × n ε ) • ψ dσ + Ωε ĝε • ψ dx
In this equation, the unknown terms rot( ŵε ) on ∂F ε prevent a well-posed variational formulation being obtained. It is then possible to cancel the boundary terms on ∂F ε by assuming

rot( ŵε ) × n ε = 2ν r c a + c d (û ε × n ε ).
Finally, similarly to [START_REF] Bayada | New models in micropolar fluid and their applications to lubrication[END_REF], we assume the slippage condition (2.7) on the boundary of the obstacles ∂F ε by introducing an additional parameter β > 0 which will enable the influence of this new condition to be controlled when the value ûε is not zero.

Dimensionless equations. It has been observed (see e.g. [START_REF] Bayada | About thin film micropolar asymptotic equations[END_REF][START_REF] Bayada | On micropolar fluids in the theory of lubrication. Rigorous derivation of an analogue of the Reynolds equation[END_REF]) that the magnitude of the viscosity coefficients appearing in equations (2.3)-(2.5) may influence the effective flow. Thus, it is reasonable to work with the system written in a non-dimensional form. In view of that, we introduce

u ε = ûε , p ε = pε ν + ν r , w ε = ŵε , f ε = fε ν + ν r , g ε = ĝε ν + ν r , N 2 = ν r ν + ν r , R M = c a + c d ν + ν r .
Dimensionless (non-Newtonian) parameter N 2 characterizes the coupling between the equations for the velocity and microrotation and it is of order O(1), in fact N 2 lies between zero and one. The second dimensionless parameter, denoted by R M is related to the characteristic length of the microrotation effects and is compared with small parameter ε. Thus, we assume that R M = O(ε 2 ), namely

R M = ε 2 R c , with R c = O(1). (2.14)
This case is the situation that is commonly introduced to study the micropolar fuid because the angular momentum equation shows a strong coupling between velocity and microrotation in the limit, see [START_REF] Aganovic | Nonstationary micropolar fluid flow through porous medium[END_REF][START_REF] Lukaszewicz | Micropolar fluids, theory and applications[END_REF].

The flow equations (2.3)-(2.5) now have the following form

-∆u ε + ∇p ε = 2N 2 rot(w ε ) + f ε in Ω ε , (2.15) div(u ε ) = 0 in Ω ε , (2.16 
)

-ε 2 R c ∆w ε + 4N 2 w ε = 2N 2 rot(u ε ) + g ε in Ω ε .
(2.17)

Concerning the body force and body torque, in order to obtain appropriate estimates, given f, g ∈ L 2 (Ω) 3 we make the following assumptions

f ε (x) = ε -1 f (x), g ε (x) = g(x), a.e. x ∈ Ω ε . (2.18)
The corresponding boundary conditions on the boundary of the obstacles read

w ε × n ε = α 2 rot(u ε ) × n ε on ∂F ε , (2.19) 
rot(w ε ) × n ε = 2N 2 ε 2 R c β(u ε × n ε ) on ∂F ε , (2.20) 
u ε • n ε = 0 on ∂F ε , (2.21) 
w ε • n ε = 0 on ∂F ε , (2.22) 
and the boundary conditions on the exterior boundary read as follows

u ε = 0, w ε = 0 on ∂Ω. (2.23) 
Functional setting. Due to the boundary conditions (2.21) and (2.22), we introduce the functional spaces V ε and V 0 ε given by

V ε = ϕ ∈ H 1 (Ω ε ) 3 : ϕ = 0 on ∂Ω, ϕ • n ε = 0 on ∂F ε , V 0 ε = {ϕ ∈ V : div(ϕ) = 0} ,
equipped with the norm ∇ϕ L 2 (Ωε) 3×3 and the L 2 0 the space of functions of L 2 with null integral equipped with the norm of

L 2 . Let C ∞ per (Y ) be the space of infinitely differentiable functions in R 3 that are Y -periodic. By L 2 per (Y ) (resp. H 1 per (Y )) we denote its completion in the norm L 2 (Y ) (resp. H 1 (Y ))
. We denote by L 2 0,per (Y ) the space of functions in L 2 per (Y ) with null integral. We also define the spaces V Y and V 0 Y are given by

V Y = ϕ ∈ H 1 per (Y * ) 3 : ϕ • n = 0 on ∂F , V 0 Y = {ϕ ∈ V Y : div y (ϕ) = 0 in Y * } .

Main results

In this section we give the main results of this paper. First, the existence and uniqueness of solution of problem (2.15)-(2.23) is established in Theorem 3.2 and then, the homogenized model is given in Theorem 3.3. The proof of the corresponding results are given in the next section.

In order to prove, for each value of ε, the existence and uniqueness of solution of problem (2.15)-(2.23), instead of working directly with the classical variational formulation, we will work with an equivalent variational formulation. Proposition 3.1. Sufficiently regular solutions of (2.15)-(2.23) satisfy the following weak formulation:

Find (u ε , w ε , p ε ) ∈ V 0 ε × V ε × L 2 0 (Ω ε ) such that Ωε rot(u ε ) • rot(ϕ) dx - Ωε p ε div(ϕ) dx -2N 2 Ωε rot(ϕ) • w ε dx +2 1 α -N 2 ∂Fε (w ε × n ε ) • ϕ dσ = ε -1 Ωε f • ϕ dx , ∀ϕ ∈ V ε , (3.24) 
ε 2 R c Ωε rot(w ε ) • rot(ψ) dx + ε 2 R c Ωε div(w ε ) • div(ψ) dx + 4N 2 Ωε w ε • ψ dx -2N 2 Ωε rot(ψ) • u ε dx + 2N 2 (β -1) ∂Fε (u ε × n ε ) • ψ dσ = Ωε g • ψ dx , ∀ψ ∈ V ε . (3.25)
We give the result of the existence and uniqueness of solution of problem (3.24)-(3.25).

Theorem 3.2. Let γ = 1 α -N 2 -N 2 β.
Assume that the asymptotic regimes (2.14) and (2.18) hold. Then, for any α and β satisfying

γ 2 < R c (1 -N 2 ) K 2 , (3.26) 
there exists a unique solution We describe the asymptotic behavior of the sequences u ε , w ε and p ε when ε tends to zero. To do this, we take into account that the sequence of solutions (u ε , w

(u ε , w ε , p ε ) ∈ V 0 ε × V ε × L 2 0 (Ω ε ) of problem (3.
ε , p ε ) ∈ V 0 ε × V ε × L 2 0 (Ω ε )
is not defined in a fixed domain independent of ε and a ε but rather in a varying set Ω ε . Thus, in order to pass to the limit when ε tends to zero, convergences in fixed Sovolev spaces (defined in Ω) are used which require first that (u ε , w ε , p ε ) be extended to the whole domain Ω. Then, we define an extension (U ε , W ε , P ε ) of (u ε , w ε , p ε ) on Ω which coincides with (u ε , w ε , p ε ) on Ω ε . Theorem 3.3. Assume that the asymptotic regimes (2.14) and (2.18) and condition (3.26) hold. Then, the whole sequences of extensions (ε -1 U ε , W ε ) and εP ε of the solution of problem (2.15)-(2.23) converge weakly to (u, w) in L 2 (Ω) 3 × L 2 (Ω) 3 and strongly to p in L 2 (Ω) respectively. Moreover, it holds

u(x) = K (1) (f (x) -∇p(x)) + K (2) g(x), w(x) = L (1) (f (x) -∇p(x)) + L (2) g(x) in Ω, (3.27) 
and moreover, p

∈ H 1 (Ω) ∩ L 2 0 (Ω) is the unique solution of the Darcy equation div K (1) (f (x) -∇p(x)) + K (2) g(x) = 0 in Ω, K (1) (f (x) -∇p(x)) + K (2) g(x) • n = 0 on ∂Ω.
(3.28)

The matrix coefficients

K (k) , L (k) ∈ R 3×3 , k = 1, 2
, where K (1) is positive definite, are given by 

K (k) ij = Y * u i,k j (y) dy, L (k) ij = Y * w i,k j (y) dy, i, j = 1, 2, 3, with (u i,k , w i,k , π i,k ) ∈ V 0 Y × V Y × L 2 0,per (Y * ), k = 1, 2, i = 1, 2, 3, the unique solution of local micropolar problem                                    -∆ y u i,k + ∇ y π i,k -2N 2 rot y (w i,k ) = e i δ 1k in Y * , -R c ∆ y w i,k + 4N 2 w i,k -2N 2 rot y (u i,k ) = e i δ 2k in Y * , div y (u i,k ) = 0 in Y * , w i,k × n = α 2 rot(u i,k ) × n on ∂F, rot(w i,k ) × n = 2N 2 R c β(u i,k × n) on ∂F, u i,k • n = 0 on ∂F, w i,k • n = 0 on ∂F. ( 3 
rot(u ε ) • rot(ϕ) dx - Ωε p ε div(ϕ) dx + ∂Fε (rot(u ε ) × n ε ) • ϕ dσ -2N 2 Ωε rot(ϕ) • w ε dx -2N 2 ∂Fε (w ε × n ε ) • ϕ dσ = ε -1 Ωε f • ϕ dx .
Thus, taking into account the boundary condition (2.19), we derive equation (3.24).

Finally, to obtain (3.25), we take ψ ∈ V ε as test function in (2.17) and proceeding as above we get

ε 2 R c Ωε rot(w ε ) • rot(ψ) dx + ε 2 R c Ωε div(w ε ) div(ψ) dx + ε 2 R c ∂Fε (rot(w ε ) × n ε ) • ψ dσ +4N 2 Ωε w ε • ψ dx -2N 2 Ωε rot(ψ) • u ε dx -2N 2 ∂Fε (u ε × n ε ) • ψ dσ = Ωε g • ψ dx .
Taking into account the boundary condition (2.20), we derive equation (3.25).

Before proving the result concerning existence and uniqueness of solution, we give several technical lemmas which will also be used to obtain a priori estimates of the solution. First, we recall a result about a trace result on the boundary of the obstacles ∂F ε whose proof can be found in [START_REF] Allaire | Homogenization of Navier-Stokes equations with a slip boundary condition[END_REF][START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF][START_REF] Cioranescu | The periodic unfolding method. Theory and Applications to Partial Differential Problems[END_REF].

Lemma 4.1. There exists a positive constant C t independent of ε, such that for every v ∈ H 1 (Ω ε ) 3 , v 2 L 2 (∂Fε) 3 ≤ ε -1 C t v 2 L 2 (Ωε) 3 + ε 2 Dv 2 L 2 (Ωε) 3×3 . (4.30)
We note that the fact that the normal component of the function is equal zero on ∂F ε is not used in the previous estimate, so it holds true in a more general context. However, the next inequalities in Ω ε makes use of this condition and will be also used for obtaining a priori estimates for the velocity and microrotation. Thus, we first recall the version of Poincaré's inequality given in [START_REF] Allaire | Homogenization of Navier-Stokes equations with a slip boundary condition[END_REF][START_REF] Capatina | Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method[END_REF]. Lemma 4.2. There exists a positive constant C p , independent of ε, such that for every v ∈ V ε ,

v L 2 (Ωε) 3 ≤ εC p Dv L 2 (Ωε) 3×3 . (4.31)
Moreover, there exists a positive constant C, independent of ε, such that for every v ∈ H 1 (Ω)

3 with v • n ε = 0 on ∂F ε , v L 2 (Ω) 3 ≤ εC Dv L 2 (Ω) 3×3 . (4.32)
As a consequence of previous results, we deduce the following result.

Corollary 4.3. For every v ∈ V ε , the following estimate holds

v L 2 (∂Fε) 3 ≤ (εC pt ) 1 2 Dv L 2 (Ωε) 3×3 , (4.33) 
where the positive constant C pt = C 2 t (C 2 p + 1) 2 with C t given in (4.30) and C p given in (4.31).

We also give an estimate of the derivative in terms of the divergence and the rotational, necessary to prove the coercivity of the variational formulation. It has different names in the literature, e.g. Gaffney's, Maxwell's or Friedrichs' inequality, see [START_REF] Amrouche | Vector potentials in three-dimensional nonsmooth domains[END_REF][START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF][START_REF] Duvaut | Les inequations en Mécanique et en Physique[END_REF][START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF].

Lemma 4.4. There exists a positive constant C g , independent of ε, such that for every v ∈ V ε ,

Dv 2 L 2 (Ωε) 3×3 ≤ C g div(v) 2 L 2 (Ωε) + rot(v) 2 L 2 (Ωε) 3 . (4.34) Moreover, for every v ∈ V 0 ε it holds Dv L 2 (Ωε) 3×3 ≤ C g rot(v) L 2 (Ωε) 3 . (4.35) Proof. For every function v ∈ H 1 (Y * k,1 ) 3 such that v • n = 0 on ∂F k,1
, using Theorem IV.4.8. in [START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF] (see also Chapter 7, Lema 6.1 in [START_REF] Duvaut | Les inequations en Mécanique et en Physique[END_REF]), the fact that Y * k,1 is simply connected and that the boundary

∂F k,1 is C 1,1 , we have, for every k ∈ Z 3 , that Dv 2 L 2 (Y * k,1 ) 3×3 ≤ C g div(v) 2 L 2 (Y * k,1 ) + rot(v) 2 L 2 (Y * k,1 ) 3 , (4.36) 
where the positive constant C g only depends on Y * k,1 . By the change of variable 3 . Summing the inequalities, for every k ∈ K ε , gives (4.34) (estimate (4.35) is straightforward).

y = x ε , dy = ε -3 dx, ∂ y = ε∂ x , we rescale (4.36) from Y * k,1 to Y * k,ε and from F k,1 to F k,ε . This yields Dv 2 L 2 (Y * k,ε ) 3×3 ≤ C g div(v) 2 L 2 (Y * k,ε ) + rot(v) 2 L 2 (Y * k,ε )
In fact, we must consider separately the periods containing a portion of ∂Ω, but they yield at a distance O(ε) of ∂Ω, where v is zero, and then the corresponding inequality is immediately obtained.

Proof of Theorem 3.2. To prove, for each value of ε > 0, the existence and uniqueness of a weak solution (u ε , w ε , p ε ) of problem (3.24)-(3.25), we shall apply classical results given in [START_REF] Girault | Finite Element Approximation of the Navier Stokes Equation[END_REF]. To this purpose, we introduce the following equivalent mixed variational form:

Find (u ε , w ε , p ε ) ∈ V ε × V ε ∈ L 2 0 (Ω ε ) such that A ε (u ε , w ε ; ϕ, ψ) + B ε ((ϕ, ψ), p ε ) = L ε (ϕ, ψ) ∀ (ϕ, ψ) ∈ V ε × V ε , B ε ((u ε , w ε ), q ε ) = 0 ∀ q ε ∈ L 2 0 (Ω ε ) , (4.37) 
where

A ε (u ε , w ε ; ϕ, ψ) = Ωε rot(u ε ) • rot(ϕ) dx -2N 2 Ωε rot(ϕ) • w ε dx +ε 2 R c Ωε rot(w ε ) • rot(ψ) dx + ε 2 R c Ωε div(w ε ) • div(ψ) dx -2N 2 Ωε rot(ψ) • u ε dx + 4N 2 Ωε w ε • ψ dx +2 1 α -N 2 ∂Fε (w ε × n ε ) • ϕ dσ + 2N 2 (β -1) ∂Fε (u ε × n ε ) • ψ dσ , (4.38) 
and

B ε ((ϕ, ψ), p ε ) = - Ωε p ε div(ϕ) dx, L ε (ϕ, ψ) = ε -1 Ωε f • ϕ dx + Ωε g • ψ dx .
It is easy to prove that the bilinear form A ε , B ε and L ε are continuous bilinear forms on

(V ε ×V ε ) 2 , V ε ×V ε ×L 2 0 (Ω ε ) and V ε × V ε respectively. Denoting (ϕ, ψ) V 0 ε ×Vε = ( Dϕ 2 L 2 (Ωε) 3×3 + Dψ 2 L 2 (Ωε) 3×3 ) 1 2 
.

classical existence conditions for such a problem [27, Theorem 4.1] are the coerciveness of the form A ε on the subspace (V 0 ε × V ε ) 2 and the inf-sup condition. First, we prove that A ε is coercive on (V 0 ε × V ε ) 2 , i.e. that there exists η > 0 such that

A ε (ϕ, ψ; ϕ, ψ) ≥ η (ϕ, ψ) 2 V 0 ε ×Vε . (4.39)
To do this, let us derive another equivalent expression for A ε . By using (2.13) applied to Ωε rot(ψ) • u ε dx and using that ∂Fε (ψ 

× n ε ) • u ε dσ = -∂Fε (u ε × n ε ) • ψ dσ, we have that A ε defined in (4.

38) has the following expression

A ε (u ε , w ε ; ϕ, ψ) = Ωε rot(u ε ) • rot(ϕ) dx -2N 2 Ωε rot(ϕ) • w ε dx +ε 2 R c Ωε rot(w ε ) • rot(ψ) dx + ε 2 R c Ωε div(w ε ) • div(ψ) dx -2N 2 Ωε rot(u ε ) • ψ dx + 4N 2 Ωε w ε • ψ dx + 2γ ∂Fε (w ε × n ε ) • ϕ dσ .
A ε (ϕ, ψ; ϕ, ψ) = Ωε |rot(ϕ)| 2 dx -4N 2 Ωε rot(ϕ) • ψ dx + ε 2 R c Ωε |rot(ψ)| 2 dx +ε 2 R c Ωε |div(ψ)| 2 dx + 4N 2 Ωε |ψ| 2 dx + 2γ ∂Fε (ψ × n ε ) • ϕ dσ .
From the Cauchy-Schwartz inequality and (4.33), we get

∂Fε (ψ × n ε ) • ϕ dσ ≤ εC pt Dψ L 2 (Ωε) 3×3 Dϕ L 2 (Ωε) 3×3 ,
and by using (4.34) and (4.35), we deduce

A ε (ϕ, ψ; ϕ, ψ) ≥ 1 C g Dϕ 2 L 2 (Ωε) 3×3 -4 √ 3N 2 Dϕ L 2 (Ωε) 3×3 ψ L 2 (Ωε) 3 +ε 2 R c C g Dψ 2 L 2 (Ωε) 3×3 + 4N 2 ψ 2 L 2 (Ωε) 3 -2|γ|εC pt Dϕ L 2 (Ωε) 3×3 Dψ L 2 (Ωε) 3×3 . (4.41)
Now, by condition (3.26), there exists c 1 > 0 satisfying

|γ|C pt C 2 g R c < c 1 < 1 -N 2 |γ|C pt ,
and by Young's inequality,

Dϕ L 2 (Ωε) 3×3 Dψ L 2 (Ωε) 3×3 ≤ c 1 2εC g Dϕ 2 L 2 (Ωε) 3×3 + εC g 2c 1 Dψ 2 L 2 (Ωε) 3×3 .
Introducing a real number c 2 satisfying 0 < c 2 < min{1, 1/(3C g )}, and such that

c 1 < 1 -N 2 c2
|γ|C pt and so

|γ|C pt C 2 g R c < c 1 < 1 -N 2 c2 |γ|C pt < 1 -N 2 |γ|C pt ,
we also have by Young's inequality

Dϕ L 2 (Ωε) 3×3 ψ L 2 (Ωε) 3 ≤ 1 4 √ 3c 2 C g Dϕ 2 L 2 (Ωε) 3×3 + √ 3 c 2 C g ψ 2 L 2 (Ωε) 3 .
Going back to estimate (4.41), we obtain

A ε (ϕ, ψ; ϕ, ψ) ≥ A Dϕ 2 L 2 (Ωε) 3×3 + ε 2 B Dψ 2 L 2 (Ωε) 3×3 + 4N 2 (1 -3c 2 C g ) ψ 2 L 2 (Ωε) 3 ,
where A, B are defined as follows

A = 1 C g 1 - N 2 c 2 -|γ|C pt c 1 , B = 1 C g R c - |γ|C pt c 1 C 2 g . (4.42)
Thus, we have

A ε (ϕ, ψ; ϕ, ψ) ≥ A Dϕ 2 L 2 (Ωε) 3×3 + ε 2 B Dψ 2 L 2 (Ωε) 3×3 , (4.43) 
which proves that (4.39) holds.

Next, we prove the inf-sup condition, i.e. that there exists δ > 0 such that inf

qε∈L 2 0 (Ωε) sup (uε,ψ)∈V 2 ε B ε ((u ε , ψ), q ε ) (u ε , ψ) V 2 ε q ε L 2 0 (Ωε) ≥ δ. (4.44) 
Let (ϕ, ψ) belong to V ε × V ε , and q ε to L 2 0 (Ω ε ), we obtain

H 1 0 (Ω ε ) 3 × {0} ⊆ V ε × V ε , so that sup (ϕ,ψ)∈Vε×Vε Ωε div ϕ q ε dx ( ϕ 2 Vε + ϕ 2 Vε ) 1 2 ≥ sup (ϕ,0)∈H 1 0 (Ωε) 3 ×{0} Ωε div ϕ q ε dx Dϕ L 2 (Ωε) 3×3 = sup ϕ∈H 1 0 (Ωε) 3 Ωε div ϕ q ε dx Dϕ L 2 (Ωε) 3×3 .
According to the inverse of the divergence operator in perforated domains, see for example [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF], for a given

q ε ∈ L 2 0 (Ω ε ), there exists v ε [q ε ] ∈ H 1 0 (Ω ε ) 3 such that div v ε [q ε ] = q ε in Ω ε and Dv ε [q ε ] L 2 (Ωε) 3×3 ≤ C q ε L 2 (Ωε) for some constant C > 0 independent of ε. Choosing ϕ = v ε [q ε ], we get sup (ϕ,ψ)∈Vε×Vε Ωε div ϕ q ε dx ( ϕ 2 Vε + ϕ 2 Vε ) 1 2 ≥ Ωε div v ε [q ε ] q ε dx Dv ε [q ε ] L 2 (Ωε) 3×3 = q ε 2 L 2 (Ωε) Dv ε [q ε ] L 2 (Ωε) 3×3 ≥ 1 C q ε L 2 (Ωε) .
This ends the proof.

A priori estimates. We establish sharp a priori estimates of the solution in Ω ε and also for extended solution to Ω, which is independent of ε, introducing suitable extension operators.

We give the a priori estimates for velocity and microrotation in Ω ε .

Lemma 4.5. Assume that the asymptotic regimes (2.14) and (2.18) and condition (3.26) hold. Then there exists a positive constant C, independent of ε, such that the following estimates for the velocity and microrotation hold

ε -1 u ε L 2 (Ωε) 3 + Du ε L 2 (Ωε) 3×3 ≤ C , (4.45) 
w ε L 2 (Ωε) 3 + ε Dw ε L 2 (Ωε) 3×3 ≤ C . ( 4 

.46)

Proof. To obtain estimates of velocity and microrotation we consider (ϕ, ψ) = (u ε , w ε ) as test functions in the weak formulation (3.24)-(3.25) and use (4.43) and Young's inequality to obtain

A Du ε 2 L 2 (Ωε) 3×3 + ε 2 B Dw ε 2 L 2 (Ωε) 3×3 ≤ C p f L 2 (Ω) 3 Du ε L 2 (Ωε) 3×3 + εC p g L 2 (Ω) 3 Dw ε L 2 (Ωε) 3×3 ≤ C 2 p 2A f 2 L 2 (Ω) 3 + A 2 Du ε 2 L 2 (Ωε) 3×3 + C 2 p 2B g 2 L 2 (Ω) 3 + ε 2 B 2 Dw ε 2 L 2 (Ωε) 3×3 .
Then we have,

A 2 Du ε 2 L 2 (Ωε) 3×3 + ε 2 B 2 Dw ε 2 L 2 (Ωε) 3×3 ≤ C 2 p 2A f 2 L 2 (Ω) 3 + C 2 p 2B g 2 L 2 (Ω) 3 .
Since A and B are bounded, we deduce than the right hand side of the previous inequality is bounded by a certain positive constant C independent of ε, which implies the following estimates in Ω ε

Du ε L 2 (Ωε) 3×3 ≤ C , Dw ε L 2 (Ωε) 3×3 ≤ Cε -1 .
This and Poincaré's inequality (4.31) give the estimate for u ε and w ε respectively.

Since the solution (u ε , w ε ) of problem (2.15)-(2.23) is defined only in Ω ε , we need to extend them to the whole domain Ω. If we had considered the micropolar equations with Dirichlet boundary condition on the obstacles, the velocity and microrotation would be extended by zero in the obstacles. However, we need another kind of extension for the case in which the velocity and microrotation are non-zero on the obstacles. Thus, we introduce an extension operator which is classical in the homogenization literature, see [START_REF] Allaire | Homogenization of Navier-Stokes equations with a slip boundary condition[END_REF][START_REF] Cioranescu | Homogenization in open sets with holes[END_REF][START_REF] Conca | On the application of the homogenization theory to a class of problems arising in fluid mechanics[END_REF][START_REF] Tartar | Incompressible fluid flow in a porous medium convergence of the homogenization process[END_REF]. Lemma 4.6. There exists an extension operator Π ε ∈ L(H 1 (Ω ε ) 3 ; H 1 0 (Ω) 3 ) and a positive constant C, independent of ε, such that

Π ε v(x) = v(x), if x ∈ Ω ε , DΠ ε v L 2 (Ω) 3×3 ≤ C Dv L 2 (Ωε) 3×3 , ∀v ∈ H 1 (Ω ε ) 3 .
Taking into account the extension Π ε , we denote by U ε the extension Π ε u ε of the velocity u ε , and by W ε the extension Π ε w ε of the microrotation w ε . Next, we get the following uniform estimates in Ω as consequence of Lemmas 4.5 and 4.6.

Corollary 4.7. Assume that the asymptotic regimes (2.14) and (2.18) and condition (3.26) hold. Then there exists a positive constant C, independent of ε, such that the following estimates for the extensions of velocity and microrotation hold

ε -1 U ε L 2 (Ω) 3 + DU ε L 2 (Ω) 3×3 ≤ C , (4.47) 
W ε L 2 (Ω) 3 + ε DW ε L 2 (Ω) 3×3 ≤ C . (4.48)
Now, we recall two important results from [START_REF] Tartar | Incompressible fluid flow in a porous medium convergence of the homogenization process[END_REF] which are concerned with the extension of the pressure p ε to the whole domain Ω. First, we define a restriction operator R ε from H 1 0 (Ω) 3 into H 1 0 (Ω ε ) 3 and then, we extend the gradient of the pressure by duality in H -1 (Ω) 3 . Lemma 4.8. There exists a restriction operator R ε acting from

H 1 0 (Ω) 3 into H 1 0 (Ω ε ) 3 such that 1. v ∈ H 1 0 (Ω ε ) 3 ⇒ R ε v = v in Ω ε (elements of H 1 0 (Ω ε ) are continuated by 0 to Ω). 2. div(v) = 0 on Ω ⇒ div(R ε v) = 0 in Ω ε .
3. There exists a positive constant C, independent of ε, such that

R ε v L 2 (Ωε) 3 + ε DR ε v L 2 (Ωε) 3×3 ≤ C v L 2 (Ω) + ε Dv L 2 (Ω) 3×3 ≤ C v H 1 0 (Ω) 3 . (4.49)
Lemma 4.9. Let q ε be a function in L 2 0 (Ω ε ). There exists a unique function Q ε ∈ L 2 0 (Ω) which satisfies the following equality

∇Q ε , v H -1 ,H 1 0 (Ω) = ∇q ε , R ε v H -1 ,H 1 0 (Ωε) , for every v ∈ H 1 0 (Ω) 3 . (4.50)
We denote by P ε the extension of the pressure p ε obtained by applying Lemma 4.9 and give the following result.

Lemma 4.10. Assume that the asymptotic regimes (2.14) and (2.18) and condition (3.26) hold. Then there exists a positive constant C independent of ε, such that the following estimate holds

ε P ε L 2 (Ω) + ε ∇P ε H -1 (Ω) 3 ≤ C. (4.51)
Proof. From the definition (4.50) of the extension P ε and the variational formulation (3.24), we get

∇P ε , v H -1 ,H 1 0 (Ω) = - Ωε rot(u ε ) • rot(R ε v) dx + 2N 2 Ωε rot(R ε v) • w ε dx -2 1 α -N 2 ∂Fε (w ε × n ε ) • R ε v dσ + ε -1 Ωε f • R ε v dx.
Applying Cauchy-Schwarz's inequality and taking into account estimates of the velocity (4.45), microrotation (4.46) and restricted operator (4.49), we get

Ωε rot(u ε ) • rot(R ε v) dx ≤ C Du ε L 2 (Ωε) 3×3 DR ε v L 2 (Ωε) 3×3 ≤ Cε -1 v H 1 0 (Ω) , Ωε rot(R ε v) • w ε dx ≤ C DR ε v L 2 (Ωε) 3×3 w ε L 2 (Ωε) 3 ≤ Cε -1 v H 1 0 (Ω) , ε -1 Ωε f • R ε v dx ≤ ε -1 f L 2 (Ω) 3 R ε v L 2 (Ωε) 3 ≤ Cε -1 v H 1 0 (Ω) .
From estimate (4.30) applied to R ε v and using estimate (4.49), we deduce R ε v L 2 (∂Fε) 3 ≤ Cε -1 2 and from estimate (4.31) with estimate (4.46), we deduce w L 2 (∂Fε) 3 ≤ Cε -1 2 . Then, we get

∂Fε (w ε × n ε ) • R ε v dσ ≤ C w ε L 2 (∂Fε) 3 R ε v L 2 (∂Fε) 3 ≤ Cε -1 2 R ε v L 2 (∂Fε) 3 ≤ Cε -1 v H 1 0 (Ω) .
This together with previous inequalities gives 3 and so ∇P ε H -1 (Ω) 3 ≤ Cε -1 . By using the classical inequality (see [START_REF] Temam | Navier-Stokes Equations[END_REF])

| ∇P ε , v | ≤ Cε -1 v H 1 0 (Ω)
P ε L 2 (Ω) ≤ C ∇P ε H -1 (Ω) 3 , (4.52)
we get estimate (4.51).

A compactness result. Our aim is to describe the asymptotic behavior of the velocity u ε , microrotation w ε and pressure p ε of the fluid as ε tends to 0 taking into account the boundary of the obstacles. To do this we use the periodic unfolding method in perforated domains and the estimates given in the previous section. Thus, we briefly recall the definition of the unfolding operator and its main properties (for more details, see [START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF][START_REF] Damlamian | An elementary introduction to periodic unfolding[END_REF] for fixed domains and [START_REF] Cioranescu | The periodic unfolding method in perforated domains[END_REF][START_REF] Cioranescu | Asymptotic behaviour of elliptic problems in perforated domains with nonlinear conditions[END_REF][START_REF] Cioranescu | The periodic unfolding method. Theory and Applications to Partial Differential Problems[END_REF] for perforated domains).

In the sequel we will use the following notation:

• φ for the zero extension outside Ω ε (resp. Ω) for any function ϕ in L 2 (Ω ε ) (resp. L 2 (Ω)),

• For x ∈ R 3 , we set x = [x] Y + {x} Y where the integer part [x] Y belongs to the periodical net of R 3 (i.e. the subgroup Z 3 ) with respect to Y and {x} Y = x -[x] Y is the fractional part of x. Thus, for every ε > 0, the former decomposition implies that we also have

x = ε{x/ε} Y + ε[x/ε] Y for every x ∈ R 3 .
Definition 4.11. The unfolding operator

T ε : L 2 (Ω ε ) → L 2 (R 3 × Y * ) is defined by T ε (ϕ)(x, y) = φ ε x ε Y + εy , ∀ϕ ∈ L 2 (Ω ε ), ∀(x, y) ∈ R 3 × Y * .
Proposition 4.12. The unfolding operator T ε has the following properties:

1. T ε is a linear operator.

T

ε (ϕφ) = T ε (ϕ)T ε (φ), ∀ ϕ, φ ∈ L 2 (Ω ε ). 3. T ε (ϕ ε )(x, y) = ϕ(y), ∀ (x, y) ∈ R 3 × Y * , ∀ ϕ ∈ L 2 (Y * ) a Y -periodic function with ϕ ε (x) = ϕ x ε . 4. T ε (ϕ) L 2 (R 3 ×Y * ) = |Y | 1 2 ϕ L 2 (Ωε) , ∀ϕ ∈ L 2 (Ω ε ). 5. ∇ y T ε (ϕ)(x, y) = εT ε (∇ x ϕ)(x, y), ∀ (x, y) ∈ R 3 × Y * , ∀ ϕ ∈ H 1 (Ω ε ). 6. T ε (ϕ) ∈ L 2 (R 3 ; H 1 (Y * )), ∀ ϕ ∈ H 1 (Ω ε ). 7. Let ϕ ε be in L 2 (Ω) such that φε → ϕ in L 2 (Ω). Then T ε (ϕ ε ) → φ in L 2 (R 3 × Y * ).
Proposition 4.13. Let ϕ ε be a sequence such that

ϕ ε L 2 (Ωε) 3 + ε Dϕ ε L 2 (Ωε) 3×3 ≤ C .
Then, there exists φ ∈ L 2 (Ω;

H 1 per (Y * ) 3 ) such that T ε (ϕ ε ) φ in L 2 (Ω; H 1 (Y * ) 3 ), εT ε (Dϕ ε ) D y φ in L 2 (Ω × Y * ) 3×3 .
In a similar way, it is introduced in [START_REF] Cioranescu | The periodic unfolding method in perforated domains[END_REF][START_REF] Cioranescu | The periodic unfolding method. Theory and Applications to Partial Differential Problems[END_REF] the unfolding operator on the boundary of the holes ∂F ε .

Definition 4.14. The unfolding boundary operator

T b ε (ϕ) ∈ L 2 (R 3 × ∂F ) is defined by T b ε (ϕ)(x, y) = φ ε x ε Y + εy , ∀ ϕ ∈ L 2 (∂F ε ), ∀(x, y) ∈ R 3 × ∂F. (4.53)
We remark that if ϕ ∈ H 1 (Ω ε ) and ϕ = 0 on ∂Ω, one has T b ε (ϕ) = T ε (ϕ) on ∂F . The next results reformulate the properties given above in the case of functions defined on the boundary of the holes ∂F ε .

Proposition 4.15. The unfolding boundary operator T b ε has the following properties:

1. T b ε is linear. 2. T b ε (ϕφ) = T b ε (ϕ)T b ε (φ), ∀ ϕ, φ ∈ L 2 (∂F ε ). 3. T b ε (ϕ ε )(x, y) = ϕ(y), ∀ (x, y) ∈ R 3 × ∂F, ∀ ϕ ∈ L 2 (∂F ) a Y -periodic function with ϕ ε (x) = ϕ x ε . 4. T b ε (ϕ) L p (R 3 ×∂F ) = (ε|Y |) 1 2 ϕ L p (∂Fε) , ∀ϕ ∈ L 2 (∂F ε ). 5. lim ε→0 R 3 ×∂F T b ε (ϕ)(x, y)dxdσ(y) = |∂F | Ω ϕ(x) dx, ∀ ϕ ∈ H 1 (Ω). 6. T b ε (ϕ) → φ strongly in L 2 (R 3 × ∂F ), ∀ ϕ ∈ H 1 0 (Ω).
Next, we give some compactness results about the behavior of the extended functions (U ε , W ε , P ε ) and the unfolding functions (T ε (u ε ), T ε (w ε ), T ε (P ε )) by assuming the a priori estimates given in Lemmas 4.5, 4.7 and 4.10. Proposition 4.16. Assume that the asymptotic regimes (2.14) and (2.18) and condition (3.26) hold. Then, for a subsequence of ε still denoted by ε, we have that 1. (Velocity) there exist u ∈ L 2 (Ω) 3 and û ∈ L 2 (Ω;

H 1 per (Y * ) 3 ) such that ε -1 U ε u in L 2 (Ω) 3 , (4.54) 
ε -1 T ε (u ε ) û in L 2 (Ω; H 1 (Y * )) 3 , T ε (Du ε ) D y û in L 2 (Ω × Y * ) 3×3 , (4.55) 
ε -1 T b ε (u ε ) û in L 2 (Ω; H 1 2 (∂F )) 3 , (4.56) 
T ε (rot(u ε )) rot y (û) in L 2 (Ω × Y * ) 3 , (4.57) 
and moreover, the following conditions hold

u(x) = Y * û(x, y) dy in Ω, (4.58) û(x, y) • n(y) = 0 on Ω × ∂F, (4.59) 
div y û(x, y) = 0 in Ω × Y * , (4.60) 
div x Y * û(x, y) dy = 0 in Ω, (4.61) 
Y * û(x, y) dy • n(y) = 0 in Ω, (4.62) 2. 
(Microrotation) there exist w ∈ L 2 (Ω) 3 and ŵ ∈ L 2 (Ω; H 1 per (Y * ) 3 ) such that W ε w in L 2 (Ω) 3 , (4.63) 
T ε (w ε ) ŵ in L 2 (Ω; H 1 (Y * )) 3 , εT ε (Dw ε ) D y ŵ in L 2 (Ω × Y * ) 3×3 , (4.64) 
T b ε (w ε ) ŵ in L 2 (Ω; H 1 2 (∂F )) 3 , (4.65) 
εT ε (rot(w ε )) rot y (û) in L 2 (Ω × Y * ) 3 , (4.66) 
and moreover, the following conditions hold

w(x) = Y * ŵ(x, y) dy in Ω, (4.67) 
ŵ(x, y) • n(y) = 0 on Ω × ∂F, (4.68) 
3. (Pressure) there exist p ∈ L 2 0 (Ω) 3 such that

εP ε → p in L 2 (Ω), εT ε (P ε ) → p in L 2 (Ω × Y * ). (4.69) 
Proof. We start proving 1. From estimates for the extended velocity (4.47) we deduce convergence (4.54). Taking into account the a priori estimates for the velocity (4.45) and using Proposition 4.13, we deduce convergences given in the (4.55). Convergence (4.56) is straightforward from the definition (4.53) and the Sobolev injections. Finally, taking into account Proposition 4.12 1,5 , we have

T ε ∂ xi u ε,j -∂ xj u ε,i = T ε (∂ xi u ε,j ) -T ε ∂ xj u ε,i = ε -1 (∂ yi T ε (u ε,j ) -∂ yj T ε (u ε,i )), ∀ i, j = 1, 2, 3, i < j,
and so T ε (rot(u ε )) = ε -1 rot y (T ε (u ε )), which from convergence (4.55) implies (4.57).

In order to prove the boundary conditions (4.59), let us take ϕ ∈ D(Ω) and from u ε • n ε = 0 on ∂F ε , we have

∂Fε (u ε • n ε )ϕ dσ(x) = 0.
By applying the unfolding boundary and using Proposition 4.15 2,3,4 , we get

0 = ∂Fε (u ε • n ε )ϕ dσ(x) = ε -1 R 3 ×∂F T b ε (u ε ) • n T b ε (ϕ) dx dσ(y).
Passing to the limit when ε tends to zero, from convergence (4.56) and Proposition 4.15 6 , we obtain

0 = Ω×∂F (û(x, y) • n(y))ϕ dxdσ(y) = Ω ∂F û(x, y) • n(y) dy ϕ(x) dx ,
which implies (4.59).

In order to prove relation (4.60), let us observe that div(u ε ) = 0 implies T ε (div(u ε )) = 0. But from Proposition 4.12 1,5 , we have

T ε (div(u ε )) = 3 i=1 T ε (∂ xi u ε,i ) = ε -1 3 i=1 ∂ yi T ε (u ε,i ) = ε -1 div y (T ε (u ε ))
and so ε -1 div y (T ε (u ε )) = 0. Passing to the limit as ε tends to zero in the last equality we get (4.60).

In order to prove (4.59) and (4.61), multiplying div(u ε ) = 0 by ε -1 ϕ with ϕ in D(Ω) and using

u ε • n ε = 0 on ∂F ε , we have 0 = Ωε ε -1 div(u ε )ϕ dx = Ωε ε -1 u ε • ∇ϕ dx.
By applying the unfolding, we get

R 3 ×Y * ε -1 T ε (u ε ) • T ε (∇ϕ) dxdy = 0.
We pass to the limit as ε tends to zero and we get Ω×Y * û(x, y) • ∇ϕ(x) dxdy = 0, and so

Ω div x Y * û(x, y) dy ϕ(x) dx = 0, ∀ ϕ ∈ D(Ω),
which implies (4.61) and (4.62).

Finally, we prove (4.58). From Proposition 4.12 and taking ϕ ε = ε -1 ϕ with ϕ in D(Ω), we have

ε -1 Ωε u ε (x) • ϕ(x) dx = 1 ε|Y | R 3 ×Y * T ε (u ε )(x, y) • T ε (ϕ)(x, y) dxdy.
By using the extension of the velocity, we have

ε -1 Ω U ε (x) • ϕ(x) dx = ε -1 R 3 ×Y * T ε (u ε )(x, y) • T ε (ϕ)(x, y) dxdy,
and passing to the limit by using convergences (4.54) and (4.55), we get

Ω u(x) • ϕ(x) dx = Ω Y * û(x, y) dy ϕ(x) dx,
which implies property (4.58).

The proof of 2 is similar, so we omit it.

We finish with the proof of 3. Thus, estimates given in Lemma 4.10 imply, up to a subsequence, the existence

of p ∈ L 2 0 (Ω) such that εP ε p in L 2 (Ω), ε∇P ε p in H -1 (Ω) 3 . (4.70)
Moreover, following [START_REF] Tartar | Incompressible fluid flow in a porous medium convergence of the homogenization process[END_REF] it can be proved that this convergence is in fact strong. To prove this, let

σ ε ∈ H 1 0 (Ω) 3 such that σ ε σ in H 1 0 (Ω) 3 . (4.71)
Then, we have

ε∇P ε , σ ε H -1 ,H 1 0 (Ω) 3 ≤ ε∇P ε , σ ε -σ H -1 ,H 1 0 (Ω) 3 + ε (∇P ε -∇p) , σ H -1 ,H 1 0 (Ω) 3 .
On the one hand, using first convergence in (4.70), we have

ε (∇P ε -∇p) , σ H -1 ,H 1 0 (Ω) 3 = Ω ε (P ε -p) div(σ) dx → 0, as ε → 0.
On the other hand, from estimate (4.49) and (4.51), we have that

ε∇P ε , σ ε -σ H -1 ,H 1 0 (Ω) 3 = ε∇P ε , R ε (σ ε -σ) H -1 ,H 1 0 (Ωε) 3 ≤ C σ ε -σ L 2 (Ω) 3 + ε D(σ ε -σ) L 2 (Ω) 3 → 0, as ε → 0,
by virtue of (4.71) and the Rellich theorem. This implies that ∇P ε → ∇p in H -1 (Ω) 3 , which together with inequality (4.52), implies the strong convergence of the pressure P ε given in (4.69). This convergence and Proposition 4.12 7 imply the strong convergence of εT ε (P ε ) to p in L 2 (Ω × Y * ).

Obtaining the limit system. We use the results of the previous sections to prove Theorem 3.3 describing the asymptotic behavior of the solution of the micropolar system (2.15)-(2.23). To do this, we first give the existence and uniqueness result for micropolar local problem (3.29).

Lemma 4.17. Assume that condition (3.26) holds. Then, for every k = 1, 2 and i = 1, 2, 3, there exists a unique solution

(u i,k , w i,k , π i,k ) ∈ V 0 Y × V Y × L 2 0 (Y * ) of the local problem (3.29).
Proof. Similarly to Proposition 3.1, sufficiently regular solutions of (3.29) satisfy the following weak formulation:

For i = 1, 2, 3, k = 1, 2 find (u i,k , w i,k , π i,k ) ∈ V 0 Y × V Y × L 2 0 (Y * ) such that Y * rot(u i,k ) • rot(ϕ) dx - Y * π i,k div(ϕ) dx -2N 2 Y * rot(ϕ) • w i,k dx +2 1 α -N 2 ∂F (w i,k × n) • ϕ dσ = Y * e i δ 1k • ϕ dx , ∀ϕ ∈ V Y , R c Y * rot(w i,k ) • rot(ψ) dx + R c Y * div(w i,k ) • div(ψ) dx + 4N 2 Y * w i,k • ψ dx -2N 2 Y * rot(ψ) • u i,k dx + 2N 2 (β -1) ∂F (u i,k × n) • ψ dσ = Y * e i δ 2k • ψ dx , ∀ψ ∈ V Y .
Thus, following the lines of the proof of Theorem 3.2, we can introduce the following mixed variational form:

For i = 1, 2, 3, k = 1, 2 find (u i,k , w i,k , π i,k ) ∈ V 0 Y × V Y × L 2 0,per (Y * ) such that A Y (u i,k , w i,k ; ϕ, ψ) + B Y ((ϕ, ψ), π i,k ) = L i,k Y (ϕ, ψ) ∀ (ϕ, ψ) ∈ V Y × V, B ε ((u i,k , w i,k ), q i,k ) = 0 ∀ q i,k ∈ L 2 0,per (Y * ) ,
where

A Y (u i,k , w i,k ; ϕ, ψ) = Y * rot y (u i,k ) • rot y (ϕ) dx -2N 2 Y * rot y (ϕ) • w i,k dy +R c Y * rot y (w i,k ) • rot y (ψ) dy + R c Y * div y (w i,k ) • div y (ψ) dy -2N 2 Y * rot y (ψ) • u i,k dy + 4N 2 Y * w i,k • ψ dy +2 1 α -N 2 ∂F (w i,k × n) • ϕ dσ(y) + 2N 2 (β -1) ∂F (u i,k × n) • ψ dσ(y) , (4.72) 
and

B Y ((ϕ, ψ), π i,k ) = - Y * π i,k div y ϕ dy, L i,k Y (ϕ, ψ) = Y * e i δ 1k • ϕ dy + Y * e i δ 2k • ψ dy . We denote (ϕ, ψ) V 0 Y ×V Y = ( Dϕ 2 L 2 (Y * ) 3×3 + Dψ 2 L 2 (Y * ) 3×3 ) 1 2 .
Following the proof of Theorem 

(V 0 Y × V Y ) 2 , V Y × V Y × L 2 0,per (Y * ) and V Y × V Y respectively. . Moreover, under condition (3.26) it follows from the proof of the coercivity of A ε in Theorem 3.2 that A Y satisfies A Y (ϕ, ψ; ϕ, ψ) ≥ A Dϕ 2 L 2 (Ωε) 3×3 + B Dψ 2 L 2 (Ωε) 3×3 ≥ min{A, B} (ϕ, ψ) 2 V 0 Y ×V Y ,
with positive constants A, B given by (4.42). Moreover, it can be proved the inf-sup condition ∃ δ > 0, such that sup

(ϕ,ψ)∈V Y ×V Y Y * div ϕ q i,k dx ( ϕ 2 V Y + ϕ 2 V Y ) 1 2
≥ δ, which ends the proof.

Proof of Theorem 3.3. We divide the proof in two steps.

Step 1. In this step we prove that the whole sequences (ε 3 ) to (û, ŵ) and strongly to p in L 2 (Ω × Y * ) respectively, where the triplet (û, ŵ, p) ∈ L 2 (Ω;

-1 T ε (u ε ), T ε (w ε )) and εT ε (P ε ) converge weakly in L 2 (Ω; H 1 (Y * ) 3 ) × L 2 (Ω; H 1 (Y * )
H 1 per (Y * ) 3 ) × L 2 (Ω; H 1 per (Y * ) 3 ) × L 2 0 (Ω)
is the unique solution of the following homogenized system

-∆ y û + ∇ y q -2N 2 rot y ( ŵ) = f -∇ x p in Ω × Y * , (4.73) -R c ∆ y ŵ + 4N 2 ŵ -2N 2 rot y (û) = g in Ω × Y * , (4.74) div y (û) = 0 in Ω × Y * , (4.75) div x Y * û dy = 0 in Ω, (4.76) Y * û dy • n = 0 in Ω, (4.77) 
where q ∈ L 2 (Ω; L 2 0,per (Y * ) 3 ), and the boundary conditions 

ŵ × n = α 2 rot y (û) × n on Ω × ∂F, (4.78) rot y ( ŵ) × n = 2N 2 R c β(û × n) on Ω × ∂F, ( 4 
rot(u ε ) • rot(ϕ ε ) dx - Ωε p ε div(ϕ ε ) dx -2N 2 Ωε rot(ϕ ε ) • w ε dx +2 1 α -N 2 ∂Fε (w ε × n ε ) • ϕ ε dσ(x) = ε -1 Ωε f • ϕ ε dx . Let us observe rot(ϕ ε ) = ε∇φ × Φ • ε + φ rot y Φ • ε , div(ϕ ε ) = ε∇φ • Φ • ε + φ div y Φ • ε . (4.82) 
Hence, by Proposition 4.12 2,3,7 , we have T ε (ϕ ε ) = εT ε (φ)Φ and convergences

T ε (φ)Φ → φΦ in L 2 (Ω × Y * ) 3 , T ε (ϕ ε ) → 0 in L 2 (Ω × Y * ) 3 , T ε (rot(ϕ ε )) φ rot y (Φ) in L 2 (Ω × Y * ) 3 . (4.83)
By applying the unfolding and using Propositions 4.12 2,3 and 4.15 2,3 , we get

R 3 ×Y * T ε (rot(u ε )) • T ε (rot(ϕ ε )) dxdy - R 3 ×Y * T ε (P ε ) T ε (div(ϕ ε )) dxdy -2N 2 R 3 ×Y * T ε (rot(ϕ ε )) • T ε (w ε ) dxdy +2 1 α -N 2 R 3 ×∂F T b ε (w ε ) × n • (T b ε (φ)Φ) dxdσ(y) = R 3 ×Y * T ε (f ) • (T ε (φ)Φ) dxdy .
Next, we pass to the limit in every terms of the previous variational formulation:

• First term. From convergence (4.57) and (4.83), we have

R 3 ×Y * T ε (rot(u ε )) • T ε (rot(ϕ ε )) dxdy → Ω×Y * rot y (û(x, y)) • (φ(x)rot y (Φ(y))) dxdy = Ω×Y *
rot y (û(x, y)) • rot y (φ(x)Φ(y)) dxdy.

• Second term. We use (4.82) and Proposition 4.12 1,2,7 , the fact that div y (Φ) = 0 in Y * and convergence (4.69),

R 3 ×Y * T ε (P ε )T ε (div(ϕ ε )) dxdy = R 3 ×Y * εT ε (P ε ) T ε (∇φ • Φ) dxdy → Ω×Y * p(x)∇φ(x) • Φ(y) dx = Ω×Y * p(x)div x (φ(x)Φ(y)) dxdy .
• Third term. From convergences (4.64) and (4.83), we get

R 3 ×Y * T ε (rot(ϕ ε )) • T ε (w ε ) dxdy → Ω×Y * φ(x)rot y (Φ(y)) • ŵ(x, y) dxdy = Ω×Y * rot y (φ(x)Φ(y)) • ŵ(x, y) dxdy
• Fourth term. We use convergence (4.65) and (4.83),

R 3 ×∂F T b ε (w ε ) × n • (T b ε (φ)Φ) dxdσ(y) → Ω×∂F ( ŵ(x, y) × n(y)) • (φ(x)Φ(y)) dxdσ(y).
• Fifth term. From Proposition 4.12 7 and convergence (4.83), we have

R 3 ×Y * T ε (f ) • (T ε (φ)Φ) dxdy → Ω×Y * f (x) • (φ(x)Φ(y)) dxdy.
Therefore, taking into account the previous convergences and denoting ϕ(x, y) = φ(x)Φ(y), we obtain

Ω×Y * rot y (û(x, y)) • rot y (ϕ(x, y))dxdy - Ω p(x) div x (ϕ(x, y))dxdy -2N 2 Ω×Y * rot y (ϕ(x, y)) • ŵ(x, y)dxdy +2 1 α -N 2 Ω×∂F ( ŵ(x, y) × n(y)) • ϕ(x, y) dxdσ(y) = Ω×Y * f (x) • ϕ(x, y) dxdy .
By density, this variational formulation holds for ϕ ∈ V with div y (ϕ) = 0 in Ω × Y * , where

V = ϕ ∈ L 2 (Ω; H 1 per (Y * ) 3 ) : ϕ • n = 0 on Ω × ∂F .
Then we easily find that the function û satisfies the variational formulation

Ω×Y * rot y (û(x, y)) • rot y (ϕ(x, y))dxdy -2N 2 Ω×Y * rot y (ϕ(x, y)) • ŵ(x, y)dxdy +2 1 α -N 2 Ω×∂F ( ŵ(x, y) × n(y)) • ϕ(x, y) dxdσ(y) = Ω×Y * f (x) • ϕ(x, y) dxdy , (4.84) 
for every ϕ ∈ V 0 (Y * ) where

V 0 (Y * ) =      ϕ ∈ V : div y (ϕ) = 0 in Ω × Y * , div x Y * ϕ dy = 0 in Ω, Y * ϕ dy • n = 0 on ∂Ω     
.

Next, we prove (4.74). To do this, we take as test function in (3.24) the function ψ ε (x) = η(x)Ψ(x/ε), where η ∈ D(Ω) and Ψ ∈ H 1 per (Y * ) 3 with Ψ • n = 0 on ∂F , and we have

ε 2 R c Ωε rot(w ε ) • rot(ψ ε ) dx + ε 2 R c Ωε div(w ε ) • div(ψ ε ) dx + 4N 2 Ωε w ε • ψ ε dx -2N 2 Ωε rot(ψ ε ) • u ε dx + 2N 2 (β -1) ∂Fε (u ε × n ε ) • ψ ε dσ = Ωε g • ψ ε dx .
Similarly to what happens with ϕ ε and taking into account that By applying the unfolding and using Propositions 4.12 2,3 and 4.15 2,3,4 , we get

rot(ψ ε ) = ∇η × Ψ • ε + ε -1 η rot y Ψ • ε , div(ψ ε ) = ∇η • Ψ • ε + ε -1 η div y Ψ • ε , ( 4 
ε 2 R c R 3 ×Y * T ε (rot(w ε )) • T ε (rot(ψ ε )) dxdy + ε 2 R c R 3 ×Y * T ε (div(w ε )) • T ε (div(ψ ε )) dxdy +4N 2 R 3 ×Y * T ε (w ε ) • T ε (ψ ε ) dxdy -2N 2 R 3 ×Y * T ε (rot(ψ ε )) • T ε (u ε ) dxdy +2N 2 (β -1)ε -1 R 3 ×∂F T b ε (u ε ) × n • T ε (ψ ε ) dxdσ(y) = R 3 ×Y * T ε (g) • T ε (ψ ε ) dxdy .
Next, we pass to the limit in every terms of the previous variational formulation:

• First to third terms. From convergences (4.64), (4.66) and (4.86), we have Finally, under condition (3.26), we can prove that the variational formulation given by (4.84) and (4.87) admits a unique solution (û, ŵ) in V 0 (Y * )×V (see proof of Lemma 4.17 above), and so we conclude that the whole sequence (ε -1 T ε (u ε ), T ε (w ε )) converges to this solution. Reasoning as in [START_REF] Allaire | Homogenization of the Stokes flow in a connected porous medium[END_REF], it follows that there exists q(x) ∈ L 2 (Y * )/R and q(x, y) ∈ L 2 (Ω; L 2 per (Y * )/R) such that the variational formulation given by (4.84) and (4.87) is equivalent to system (4.73)-(4.77). It remains to prove that q coincides with pressure p. This can be easily done by proceeding as above by considering a test function which is divergence-free only in y, and identifying limits.

ε 2 R 3 ×Y * T ε (rot(w ε )) • T ε (rot(ψ ε )) dxdy = R 3 ×Y *
Step 2. In this step, we eliminate the microscopic variable y in the homogenized problem (4.73)-(4.81) and then, we obtain a Darcy equation for the pressure p. To do that, for every k = 1, 2, i = 1, 2, 3, we consider the micropolar local problem (3.29), which has a unique solution (u i,k , w i,k , π i,k ) ∈ V 0 Y × V Y × L 2 0 (Y * ) (see Lemma 4.17 below). Then, by the following indentification û(x, y) = 3 i=1 (f i (x) -∂ xi p(x)) u i,1 (y) + g i (x)u i,2 (y) , ŵ(x, y) = 3 i=1 (f i (x) -∂ xi p(x)) w i,1 (y) + g i (x)w i,2 (y) , q(x, y) = 3 i=1 (f i (x) -∂ xi p(x)) π i,1 (y) + g i (x)π i,2 (y) , and thanks to identities (4.58) and (4.67), we deduce that u and w have the expressions given in (3.27).

Next, the divergence condition with respect to the variable x given in (4.61) together with the expression of u gives (3.28).

Finally, positive definiteness of K (1) follows from the fact that K

(1) ij = A Y (u i,1 , w i,1 ; u j,1 , w j,1 ) and the coercivity of the bilinear form A Y defined by (4.72). Since (3.28) is an elliptic equation with K (1) f + K (2) g ∈ L 2 (Ω), then it has a unique solution p ∈ H 1 (Ω) ∩ L 2 0 (Ω), and u, w ∈ L 2 (Ω) 3 given by (3.27) are also unique. By the uniqueness of the limits, the whole sequences converge.

  24)-(3.25), with K = C pt C g where C pt and C g are the trace and the Gaffney constants given, respectively, in Corollary 4.3 and Lemma 4.4, both placed in the next section.

  .85)we have T ε (ψ ε ) = T ε (η)Ψ and T ε (ψ ε ) → ηΨ in L 2 (Ω × Y * ) 3 , εT ε (div(ψ ε )) → η div y (Ψ) in L 2 (Ω × Y * ) 3 , εT ε (rot(ψ ε )) → η rot y (Ψ) in L 2 (Ω × Y * ) 3 .(4.86)
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 2313 εT ε (rot(w ε )) • εT ε (rot(ψ ε )) dxdy → Ω×Y * rot y ( ŵ(x, y)) • (η(x)rot y (Ψ(y))) dxdy = Ω×Y * rot y ( ŵ(x, y)) • rot y (η(x)Ψ(y)) dxdy , ε ×Y * T ε (div(w ε )) • T ε (div(ψ ε )) dxdy = R 3 ×Y * εT ε (div(w ε )) • εT ε (div(ψ ε )) dxdy → Ω×Y * div y ( ŵ(x, y)) • (η(x)div y (Ψ(y))) dxdy = Ω×Y * div y ( ŵ(x, y)) • div y (η(x)Ψ(x, y)) dxdy. R 3 ×Y * T ε (w ε ) • T ε (ψ ε ) dxdy → Ω×Y * ŵ(x, y) • (η(x)Ψ(y)) dxdy.• Fourth term. From (4.55) and (4.86), we getR 3 ×Y * T ε (rot(ψ ε )) • T ε (u ε ) dxdy = R 3 ×Y * εT ε (rot(ψ ε )) • ε -1 T ε (u ε ) dxdy → Ω×Y * η(x)rot y (Ψ(y)) • û(x, y) dxdy = Ω×Y *rot y (η(x)Ψ(y)) • û(x, y) dxdy. Fifth term. From convergence (4.56) and (4.86),ε -×∂F T b ε (u ε ) × n(y)) • T ε (ψ ε ) dxdσ(y) → Ω×∂F (û(x, y) × n(y)) • (η(x)Ψ(y)) dxdσ(y). Sixth term. From Proposition 4.12 7 and convergence (4.86),R 3 ×Y * T ε (g) • T ε (ψ ε ) dxdy → R 3 ×Y * g(x) • (η(x)Ψ(y)) dxdy.From the previous convergences and noting ψ(x, y) = η(x)Ψ(y), we obtain R c Ω×Y * rot y ( ŵ(x, y)) • rot y (ψ(x, y)) dxdy + R c Ω×Y * div y ( ŵ(x, y)) • div y (ψ(x, y)) dxdy +4N 2 Ω×Y * ŵ(x, y) • ψ(x, y) dxdy -2N 2 Ω×Y * rot y (ψ(x, y)) • û(x, y) dxdy +2N 2 (β -1) Ω×∂F (û(x, y) × n(y)) • ψ(x, y) dxdσ(y) = Ω×Y * g(x) • ψ(x, y) dxdy , (4.87) which, by density, holds for ψ ∈ V.

  Proof of Proposition 3.1. First, from (2.16) and the boundary conditions (2.21) and (2.22), solutions of (2.15)-(2.23) are in V 0 ε × V ε . Next, to obtain (3.24), we take ϕ ∈ V ε as test function in (2.15) and using (2.11) and (2.13) we get

	Ωε

.29) 4 Proof of the results of Section 3

  3.2 and taking into account that in Y * the trace inequality (4.30) holds with constant C t instead of ε -1 C t , the Poincaré inequality (4.31) with constant C p instead of εC p , the trace inequality and the Gaffney inequality (4.34) with constant C g , it is not difficult to prove that the bilinear form A Y , B Y and L Y are continuous bilinear forms on

	(4.33) with constant C	1 2 pt instead of (εC pt )	1 2

  First, we prove (4.73). To do this, we first take as test function in (3.24) the following function ϕ ε (x) = εφ(x)Φ(x/ε), where φ ∈ D(Ω) and Φ ∈ H 1 per (Y * ) 3 with Φ • n = 0 on ∂F and div y Φ = 0 in Y * . Then, we have

		.79)
	û • n = 0 on Ω × ∂F,	(4.80)
	ŵ • n = 0 on Ω × ∂F.	(4.81)
	By taking into account Proposition 4.16, we have that (4.75)-(4.77) and (4.80)-(4.81) hold. Below, we prove the
	rest of them.	
	Ωε