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Abstract

Global sensitivity analysis provides insight into how sources of uncertainty contribute to uncertainty
in predictions of computational models. Global sensitivity indices, also called variance-based
sensitivity indices and Sobol indices, are most often computed with Monte Carlo methods.
However, when the computational model is computationally expensive and only a small number
of samples can be generated, that is, in so-called small-data settings, usual Monte Carlo
estimates may lack sufficient accuracy. As a means of improving accuracy in such small-data
settings, we explore the use of probabilistic learning. The objective of the probabilistic learning
is to learn from the available samples a probabilistic model that can be used to generate
additional samples, from which Monte Carlo estimates of the global sensitivity indices are then
deduced. We demonstrate the interest of such a probabilistic learning method by applying it in
an illustration concerned with forecasting the contribution of the Antarctic ice sheet to sea-level rise.

Keywords: global sensitivity analysis, Sobol index, probabilistic learning on manifolds, small data

1 Introduction

Global sensitivity analysis is concerned with understanding how uncertainties in input variables of
a computational model induce uncertainty in a predicted quantity of interest. Global sensitivity
analysis is a probabilistic method based on describing the uncertainties in the input variables with
a probabilistic representation and then analyzing the induced probabilistic representation of the
quantity of interest. More specifically, global sensitivity analysis provides for each uncertain input
variable a global sensitivity index, also called variance-based sensitivity index as well as Sobol index,
that quantifies the relative contribution of the uncertainty in this input variable to the variance of
the quantity of interest. These global sensitivity indices allow the uncertain input variables to
be arranged in an order that reflects their significance in inducing uncertainty in the quantity of
interest, thus permitting dominant uncertain input variables to be distinguished from less important
ones. Gaining such understanding can serve to identify where to direct efforts aimed at reducing
uncertainties and hence be useful in robust design optimization under uncertainty, model enrichment
and model validation, and many other purposes; see for instance, [Alhossen et al., 2019, Arnst and
Ponthot, 2014, Nossent et al., 2011, Rosolem et al., 2012]. For a recent survey of the current state
of the art in global and other types of sensitivity analysis, we refer to Part 4 “Introduction to
sensitivity analysis” in the recent “Handbook of Uncertainty Quantification” [Ghanem et al., 2017].

Global sensitivity indices are most often defined based on a decomposition of the function that the



computational model establishes between the input variables and the quantity of interest into an
expansion of component functions. These component functions are defined as solutions to regres-
sion problems in which only individual input variables or only subsets of input variables serve as
regressors, and mean-square norms of these component functions are then used to define the global
sensitivity indices [Owen, 2013, Sobol, 2001]. Equivalently, the global sensitivity indices can also be
defined directly, and without explicit reference to such a decomposition into an expansion of com-
ponent functions, as variances of conditional expectations, see, for instance, [Oakley and O’Hagan,
2004, Owen, 2013, Saltelli, 2002].

The aforementioned different ways of defining global sensitivity indices are the basis for different
ways of numerically computing global sensitivity indices. Monte Carlo methods are most often
used to compute global sensitivity indices. Their principle is to approximate the mathematical
expectations involved in the expression of the global sensivitity indices as variances of conditional
expectations by using Monte Carlo integration. To deal with the nested structure of this expression,
such Monte Carlo methods most often take the form of so-called fixing methods, also called pick-
freeze methods, which require the computational model to be evaluated for pairs of samples of the
input variables that share the same values for some of the input variables but involve different,
independently sampled values for the others [Owen, 2013, Saltelli, 2002, Sobol, 2001]. There exist
central limit theorems for the Monte Carlo estimators thus obtained, which indicate that accuracy
improves with the square root of the number of samples [Janon et al., 2014a]. Especially when
the computational model is computationally expensive and only a small number of samples can be
generated, this rather slow rate of convergence may lead to such Monte Carlo estimates lacking
sufficient accuracy.

To alleviate this issue, numerical methods have been proposed that are able to use available eval-
uations of the computational model more effectively when special structure is present within the
probability distribution of the uncertain input variables and the function that the computational
model establishes between the input variables and the quantity of interest. Variants of the aforemen-
tioned Monte Carlo methods have been proposed that involve approximating the aforementioned
mathematical expectations by using other numerical integration methods, such as Gaussian and
other types of deterministic quadrature, quasi Monte Carlo integration, and multilevel and mul-
tifidelity Monte Carlo integration, see, for instance, [Lamboni, 2016, Qian et al., 2018]. Further,
numerical methods have been proposed that involve approximating the aforementioned regression
functions by using nonparametric kernel regression methods [Scott, 2015], see, for instance, [Janon
et al., 2014b, Luo et al., 2014]. Finally, numerical methods have been proposed that involve the
use of metamodels, including numerical methods that involve the approximation of the function
that the computational model establishes between the input variables and the quantity of interest
with a Gaussian process [Oakley and O’Hagan, 2004] and numerical methods that involve the ap-
proximation of the aforementioned expansion of component functions by using a polynomial chaos
expansion, which allows the global sensitivity indices to be deduced directly from the polynomial
chaos coefficients [Crestaux et al., 2009, Sudret, 2008]. To work well, all these numerical methods
require special structure to be present. The use of a Gaussian process requires that the function that
the computational model establishes between the input variables and the quantity of interest be
sufficiently smooth and can be approximated as a trajectory of a Gaussian process with a trend and
a covariance function that can be identified from the available samples. The use of Gaussian quadra-
ture and polynomial chaos expansions require this function to lend itself well to being approximated
with a polynomial of sufficiently low order.

In this paper, we propose an alternative numerical method that is specifically intended for settings in
which the computational model is computationally expensive and can be evaluated for only a small
number of samples. As a means of improving accuracy in such small-data settings, we explore the
use of probabilistic learning. The objective of the probabilistic learning is to learn from the available
samples a probabilistic model that can be used to generate additional samples, on the basis of which



the global sensitivity indices are then computed, ideally with higher accuracy. Clearly, as for the
aforementioned numerical methods, to work well, such a probabilistic learning method requires
special structure to be present, albeit of a different kind than for the aforementioned numerical
methods. Here, the available samples must in some way encapsulate information that can be used
to generate additional samples that are statistically consistent with the available samples, that
is, so that the additional samples can be considered as being sampled from the same probability
distribution.

In this paper, we use the probabilistic learning on manifolds (PLoM) method that has been recently
introduced by Soize and Ghanem in [Soize and Ghanem, 2016] with complementary developments
in Ghanem and Soize [2018], Soize and Ghanem [2020a,b], Soize et al. [2019] and applications and
validations in Farhat et al. [2019], Ghanem et al. [2018, 2019], Soize and Farhat [2019]. The PLoM
method allows available samples to be used more effectively by generating statistically consistent
additional samples, especially when the samples concentrate near a lower dimensional manifold.
Please note that we do not seek in this paper to provide new validations and performance evaluations
of the PLoM method. Rather, we use the PLoM method as a particular instance of a probabilistic
learning method in order to propose and demonstrate the interest of probabilistic learning in the
computation of global sensitivity indices in small-data settings. In this regard, it should also be noted
that while we focus on the computation of (variance-based) global sensitivity indices in this paper,
the proposed use of probabilistic learning extends to other types of (global) sensitivity analysis,
including sensitivity-analysis methods using divergence functions from statistics and information
geometry Borgonovo [2007], Da Veiga [2014], Da Veiga and Gamboa [2013], Laurent [1996].

This paper is organized as follows. First, in Secs. 2 and 3, we recall the definition of global sensi-
tivity indices and the main numerical methods available for their computation. Then, in Sec. 4, we
describe the proposed PLoM method for small-data settings. Subsequently, Sec. 5 is devoted to the
illustration. Finally, after the conclusion in Sec. 6, in A, we provide further details about the PLoM
method and its implementation.

2 Global sensitivity indices

We will now recall the definition of global sensitivity indices. Let us consider a computational model
that establishes a (typically nonlinear) function of a set of input variables into a predicted quantity
of interest, written as

q = f(w1, . . . , wnw), f : Rnw → R, (1)

in which w1, . . ., wnw are the values of the nw input variables and q is the value of the quantity of
interest. We assume that the values of the input variables and the value of the quantity of interest
are scalars. But please note that most of the material to follow can be readily extended to settings
in which they are vectors, matrices, or even of other types.

The values of the input variables w1, . . ., wnw are collected in a vector w = (w1, . . . , wnw). The
indices are collected in an index set denoted by I = {1, . . . , nw}. In global sensitivity analysis, these
indices are also called factors, and this terminology will be used in the following. For two subsets of
factors u and v, we denote by u ⊆ v that u is a subset of v and by u ⊂ v that u is a proper subset of
v (which could also have been written more explicitly as u ( v). We denote by |u| the cardinality of
u and by −u the complement I\u of u in I. For the subset of factors u = {k1, . . . , k|u|}, we denote
by wu the subvector of values of the input variables wu = (wk1 , . . . , wk|u|).

Global sensitivity analysis is a probabilistic method based on describing uncertainties in the input
variables with a probabilistic representation. In global sensitivity analysis, it is most often assumed
that the uncertain input variables are independent, and we do so here, thus resulting in a joint



probability distribution for the uncertain input variables

PW = PW1 ⊗ . . .⊗ PWnw
(2)

that is the product of the marginal probability distributions PW1 , . . ., PWnw
for the individual

uncertain input variables. Here and throughout the remainder of this paper, uppercase letters are
used for random variables and lowercase letters for their realizations. Clearly, for the subset of
factors u = {k1, . . . , k|u|}, the joint probability distribution

PW u = PWk1
⊗ . . .⊗ PWk|u|

(3)

is also the product of the marginal probability distributions PWk1
, . . ., PWk|u|

for the uncertain input

variables indexed by k1, . . ., k|u|. Please note that most of the material to follow can be extended to
settings in which the uncertain input variables are dependent, but certain properties to follow, such
as the orthogonality of the component functions and the normalized variance components forming a
partition of unity, then do not hold; please see also [Chastaing et al., 2012, 2015, Hart and Gremaud,
2018, Tarantola and Mara, 2017].

Global sensitivity analysis then analyzes the induced probabilistic representation of the quantity of
interest:

Q = f(W ). (4)

For the material to follow to be well-posed, the uncertain quantity of interest must be of the second
order: ∫

R
|q|2dPQ(q) =

∫
Rnw
|f(w)|2dPW (w) < +∞, (5)

in which PQ is the probability distribution of the uncertain quantity of interest, that is, PQ is the
image of PW under f .

Global sensitivity indices are most often defined based on a decomposition of the function f intro-
duced in (1) into an expansion of component functions:

f(w) =
∑
u⊆I

fu(wu), (6)

in which the component functions fu, also called effects, as we will do in the following, are recursively
defined by

fu(wu) = f?u(wu)−
∑
v⊂u

fv(wv), (7)

with

f?u = arg min
g?u∈L2

PWu
(R|u|,R)

∫
Rnw
|f(w)− g?u(wu)|2dPW (w). (8)

Thus, for the subset of factors u = {k1, . . . , k|u|}, the effect fu is obtained by determining the regres-
sion function f?u that solves the regression problem that seeks the mean-square-best approximation
of the function f of w = (w1, . . . , wnw) with a function of only wu = (wk1 , . . . , wk|u|) and then
subtracting from it the effects fv for the subsets of factors v for which v is a proper subset of u. As
usual in regression problems, the regression function f?u is the orthogonal projection of f onto the
subspace of functions of only wu in the geometry of the space of PW -square-integrable functions.
And, as can also be deduced from a simple calculation within the calculus of variations, it is also
obtained by averaging f over the uncertain input variables indexed by the factors not in u:

f?u(wu) =

∫
Rnw−|u|

f(w)dPW−u(w−u). (9)



The effect f∅ for the subset of factors taken as the empty set ∅ is obtained by averaging f over all
the uncertain input variables, that is, it is the mean q of the uncertain quantity of interest:

f∅ = q =

∫
Rnw

f(w)dPW (w). (10)

For subsets of factors with a cardinality of 1, that is, for singletons, the effects are also called main
effects. The main effect f{k} for the singleton {k}, which we will denote more concisely by fk, is
given by

fk(wk) = f?k (wk)−f∅ =

∫
Rnw−1

f(w1, . . . , wnw
)dPW1

(w1) . . . dPWk−1
(wk−1)dPWk+1

(wk+1) . . . dPWnw
(wnw

)−q.

(11)

For subsets of factors with a cardinality larger than 1, the effects are also called interaction effects.

Because they are obtained via orthogonal projections in the geometry of the space of PW -square-
integrable functions, the effects are orthogonal functions in this geometry of the space of PW -square-
integrable functions: ∫

Rnw
fu(wu)fv(wv)dPW (w) = 0 if u 6= v. (12)

It follows from (10) and (12) that∫
R|u|

fu(wu)dPW u(wu)= 0 if u 6= ∅. (13)

Bringing f∅, that is, q, to the left-hand side in (6) and averaging the square of both hand sides over
all the uncertain input variables results in the variance decomposition

V =
∑
u⊆I
u6=∅

Vu, (14)

in which it is the square of the mean-square norm thus obtained in the left-hand side that provides
the variance V of uncertain quantity of interest in the left-hand side:

V =

∫
Rnw

∣∣f(w)− q
∣∣2dPW (w), (15)

and the squares of the mean-square norms thus obtained in the right-hand side provide the so-called
variance components Vu in the right-hand side:

Vu =

∫
R|u|
|fu(wu)|2dPW u(wu) if u 6= ∅. (16)

Because the effects are orthogonal functions in the geometry of the space of PW -square-integrable
functions, there are no double-product terms in this variance decomposition. Clearly, by dividing
both hand sides in (14) by the variance, it is seen that the normalized variance components form a
partition of unity:

1 =
∑
u⊆I
u6=∅

Vu
V
. (17)

Based on the variance components in the right-hand side in (14), global sensitivity analysis defines
for each subset of factors u = {k1, . . . , k|u|} with |u| ≥ 1 an unnormalized (also called closed) global
sensitivity index as

Du =
∑
v⊆u
v 6=∅

Vv; (18)



it is interpreted as the portion of the variance of the uncertain quantity of interest that is explained
as stemming from the uncertain input variables indexed by the factors k1, . . ., k|u|. Based on these
unnormalized global sensitivity indices, global sensitivity analysis defines (normalized) global sen-
sitivity indices as

Su =
Du

V
. (19)

Because the effects are orthogonal functions in the geometry of the space of PW -square-integrable
functions, the unnormalized global sensitivity index Du is also obtained as

Du =
∑
v⊆u
v 6=∅

∫
R|v|
|fv(wv)|2dPW v(wv)

=

∫
R|u|

∣∣∣∣f?u(wu)−
∑
v⊂u
v 6=∅

fv(wv)− q
∣∣∣∣2dPW u(wu) +

∑
v⊂u
v 6=∅

∫
R|v|
|fv(wv)|2dPW v(wv)

=

∫
R|u|

∣∣f?u(wu)− q
∣∣2dPW u(wu), (20)

and, hence, with (9), it is also obtained as

Du =

∫
R|u|

∣∣∣∣ ∫
Rnw−|u|

f(w)dPW−u(w−u)−q
∣∣∣∣2dPWu(wu) =

∫
R|u|

∣∣∣∣ ∫
Rnw−|u|

f(w)dPW−u(w−u)

∣∣∣∣2dPWu(wu)−q2.

(21)

As usual in regression problems, the expression of the regression function f∗u in (9) may also be
viewed as providing f∗u(wu) as the conditional expectation E{Q|W u = wu} of Q = f(W ) given
W u = wu, thus allowing the decomposition of f into an expansion of component functions in (6)
to be written equivalently as follows:

q = f(w1, . . . , wnw) = f∅ +

nw∑
k=1

fk(wk) +
∑
j<k

f{j,k}(wj , wk) +
∑

i<j<k

f{i,j,k}(wi, wj , wk) + . . .+ fI(w1, . . . , wnw)

(22)

in which
f∅ = q = E{Q}, (23)

the main effects are given by

fk(wk) = E{Q|Wk = wk} − E{Q}, (24)

the interaction effects for pairs of factors are given by

f{j,k}(wj , wk) = E
{
Q
∣∣(Wj ,Wk) = (wj , wk)

}
− fj(wj)− fk(wk)− E{Q} (25)

and the interaction effects for triples of factors are given by

f{i,j,k}(wi, wj , wk)=E
{
Q
∣∣(Wi,Wj ,Wk) = (wi, wj , wk)

}
− f{i,j}(wi, wj)− f{i,k}(wi, wk)− f{j,k}(wj , wk)− fi(wi)− fj(wj)− fk(wk)− E{Q}.

(26)

With this equivalence, the expression in (21) provides the unnormalized global sensitivity index Du

as the variance of the conditional expectation E{Q|W u = wu}:

Du = Var{f?u(W u)} with f?u(wu) = E{Q|W u = wu}. (27)



3 Computation of global sensitivity indices

The different ways of defining global sensitivity indices, which we recalled in the previous section,
are the basis for different ways of numerically computing global sensitivity indices, the main variants
of which we will now recall.

3.1 Monte Carlo method

For the estimation of global sensitivity indices, the principle of Monte Carlo methods is to ap-
proximate the mathematical expectations involved in the expression of the unnormalized global
sensivitity indices as variances of conditional expectations as in (21) and equivalently (27) by using
Monte Carlo integration. In these equations, the expression for Du has a nested structure: an outer
integral averages over the uncertain input variables indexed by the factors in u the square of an
expression that involves an inner integral that averages over the uncertain input variables indexed
by the factors not in u the function f . Because of this nested structure, a straightforward appli-
cation of a Monte Carlo method would require the computational model to be evaluated for the
product of the numbers of samples used for Monte Carlo estimations of the outer integral and the
inner integral. To avoid the high number of evaluations of the computational model that such an
approach would require, Monte Carlo methods for the estimation of global sensitivity indices remove
this nested structure by increasing the multiplicity of the inner integral [Owen, 2013, Saltelli, 2002,
Sobol, 2001]:

Du =

∫
R|u|

∫
Rnw−|u|

f(wu : w−u)dPW−u(w−u)

∫
Rnw−|u|

f(wu : w̃−u)dPW−u(w̃−u)dPW u(wu)− q2.

Here, the notation involving the colon signifies that a vector z = (vu : w−u) is such that zk = vk if
k is in u and zk = wk otherwise. Thus, Monte Carlo methods for the estimation of global sensitivity
indices avoid the iterated integral and take the form of so-called fixing methods that use two sets
of samples of the uncertain input variables along with the corresponding samples of the uncertain
quantity of interested evaluated with the computational model:{(

q(j),w(j)
u : w

(j)
−u
)
, 1 ≤ j ≤ N

}
, in which q(j) = f

(
w(j)
u : w

(j)
−u
)
, (28){(

q̃(j),w(j)
u : w̃

(j)
−u
)
, 1 ≤ j ≤ N

}
, in which q̃(j) = f

(
w(j)
u : w̃

(j)
−u
)
, (29)

whereby the samples of the uncertain input variables form pairs that share the same independently
sampled values for the uncertain input variables indexed by the factors in u but involve different,
independently sampled values for the uncertain input variables indexed by the factors not in u. The
Monte Carlo estimate DMC

u of Du is then obtained as

DMC
u =

1

N

N∑
j=1

f
(
w(j)

u : w
(j)
−u
)
f
(
w(j)

u : w̃
(j)
−u
)
−
(

1

N

N∑
j=1

f
(
w(j)

u : w
(j)
−u
))2

=
1

N

N∑
j=1

q(j)q̃(j) −
(

1

N

N∑
j=1

q(j)
)2

.

(30)

Estimating in this way the main effect global sensitivity indices for nw uncertain input variables
requires a total of N × (nw + 1) evaluations of the computational model. There exist central limit
theorems for such Monte Carlo estimators, which indicate that accuracy improves with the square
root of the number of samples N , see, for instance, [Janon et al., 2014a].

3.2 Nonparametric kernel method

The principle of nonparametric kernel methods for the estimation of global sensitivity indices is
to approximate the regression function involved in the expression of the unnormalized global sen-
sivitity indices as variances of conditional expectations as in (21) and equivalently (27) by using



nonparametric kernel regression. Such nonparametric kernel methods involve rewriting the regres-
sion function in these equations equivalently as follows:

f?u(wu) = E{Q|W u = wu} =

∫
R
q pQ|W u

(q|wu)dq =

∫
R q p(Q,W u)(q,wu)dq∫
R p(Q,W u)(q,wu)dq

(31)

and then approximating p(Q,W u) by using kernel density estimation, see, for instance, [Luo et al.,
2014]. In (31), p(Q,W u) is the joint probability density function (PDF) of the uncertain quantity of
interest and the uncertain input variables indexed by the factors in u, and pQ|W u

is the conditional
PDF of the uncertain quantity of interest given the uncertain input variables indexed by the factors
in u. Based on a set of independently sampled values of the uncertain input variables and the
corresponding samples of the quantity of interest evaluated by using the computational model,{(

q(j),w(j)
)
, 1 ≤ j ≤ N

}
, in which q(j) = f

(
w(j)

)
, (32)

the kernel density estimate pKDE
(Q,W u) of p(Q,W u) takes the form

pKDE
(Q,W u)(q,wu) =

1

N

N∑
j=1

KQ

(
q − q(j)

)
KW u

(
wu −w(j)

u

)
, (33)

in which KQ is a univariate kernel with appropriately chosen bandwidth parameter for the uncertain
quantity of interest and KW u is a |u|-variate kernel with appropriately chosen bandwidth parameters
for the uncertain input variables indexed by the factors in u. In this paper, we use Gaussian kernels
with bandwidth parameters chosen in accordance with Silverman’s rule of thumb, see, for instance,
[Scott, 2015], a reference to which we also refer for details about alternative kernels and choices of
values of bandwidth parameters. Provided that KQ satisfies the moment conditions∫

R
KQ

(
q − q(j)

)
dq = 1,

∫
R
q KQ

(
q − q(j)

)
dq = q(j), (34)

introducing the kernel density estimate in the numerator and denominator in (31) leads to∫
R
q pKDE

(Q,W u)(q,wu)dq =
1

N

N∑
j=1

∫
R
q KQ

(
q − q(j)

)
dq︸ ︷︷ ︸

=q(j)

KW u

(
wu −w(j)

u

)
=

1

N

N∑
j=1

q(j)KW u

(
wu −w(j)

u

)
,

(35)∫
R
pKDE

(Q,W u)(q,wu)dq =
1

N

N∑
j=1

∫
R
KQ

(
q − q(j)

)
dq︸ ︷︷ ︸

=1

KW u

(
wu −w(j)

u

)
=

1

N

N∑
j=1

KW u

(
wu −w(j)

u

)
.

(36)

Therefore, the following nonparametric kernel regression estimate is obtained:

f?,KDE
u (wu) =

1
N

∑N
j=1 q

(j)KW u

(
wu −w(j)

u

)
1
N

∑N
j=1KW u

(
wu −w(j)

u

) . (37)

By using a quadrature rule for integration with respect to the kernel density estimate of the PDF
of the uncertain input variables indexed by the factors in u, specifically, by using a quadrature rule

with NG nodesw
(i)
G,u and weights v

(i)
G constructed so that the integral

∫
R|u| g(wu) 1

N

∑N
j=1KW u

(
wu−

w
(j)
u

)
dwu of a function g from R|u| into R, with the kernel density estimate of the PDF of the



uncertain input variables indexed by the factors in u acting as weight function, is approximated

with
∑NG

j=1 g
(
w

(j)
G,u

)
v

(j)
G , the nonparametric kernel estimate DKDE

u of Du is obtained as

DKDE
u =

NG∑
i=1

 1
N

∑N
j=1 q

(j)KW u

(
w

(i)
G,u −w

(j)
u

)
1
N

∑N
j=1KW u

(
w

(i)
G,u −w

(j)
u

)
2

v
(i)
G −

(
1

N

N∑
j=1

q(j)

)2

. (38)

In this paper, to estimate main-effect global sensitivity indices, we use a trapezoidal quadrature
rule. But please note that alternative quadrature rules, such as Gaussian quadrature or Monte Carlo
integration, can also be used, as in [Luo et al., 2014]. In comparison with the aforementioned Monte
Carlo methods, there is no need to generate an additional set of samples and associated evaluations
of the computational model per global sensitivity index. Estimating all the global sensitivity indices
by using this nonparametric kernel method requires N evaluations of the computational model.

3.3 Spectral method

The principle of spectral methods for the estimation of global sensitivity indices is to approximate
the decomposition of f into an expansion of component functions as in (6) with a polynomial chaos
expansion. Based on an experimental design of well-chosen values of the uncertain input variables
for which the computational model is evaluated,{(

q
(j)
DOE,w

(j)
DOE

)
, 1 ≤ j ≤ NDOE

}
, in which q

(j)
DOE = f

(
w

(j)
DOE

)
, (39)

such spectral methods involve the approximation of f with a polynomial chaos expansion of the
form

qp = fp(w) =

p∑
|α|=0

fαΨα(w), (40)

where the Ψα are multivariate polynomials set up as products of univariate polynomials as Ψα(w) =

ψ
(1)
α1 (w1)×. . .×ψ(nw)

αnw (wnw), in which for k = 1, . . ., nw the univariate polynomials ψ
(k)
0 = 1, ψ

(k)
1 , ψ

(k)
2 ,

. . . are of increasing degree and PWk
-orthonormal, that is, they are such that

∫
R ψ

(k)
α (wk)ψ

(k)
β (wk)dPWk

(wk) = δαβ, with δαβ the Kronecker delta equal to 1 if α = β and 0 otherwise. In (40), α =
(α1, . . . , αnw) is a multi-index and |α| = α1 + . . . + αnw its modulus. There exist many meth-
ods for choosing the values of the uncertain input variables in the experimental design, including
fully-tensorized and sparse grids of nodes of quadrature rules, and there exist many methods for
fitting the so-called polynomial chaos coefficients fα in (40) to the data set in (39), including re-
gression and collocation methods; please refer, for instance, to [Le Mâıtre and Knio, 2010]. Once
the polynomial chaos expansion is available, owing to Ψ0 being 1 and the Ψα being products of
PWk

-orthonormal basis functions, approximations to the unnormalized global sensitivity indices can
be deduced directly from the polynomial chaos coefficients as follows [Crestaux et al., 2009, Sudret,
2008]:

DPCE
u =

∑
α∈Ju

f2
α, in which Ju =

{
α : α 6= 0 and αk = 0 if k is not in u

}
. (41)

4 Probabilistic learning on manifolds

Especially when the computational model is computationally expensive, it may not be possible
(within an available computational budget) to evaluate the computational model sufficiently many
times to obtain sufficiently many samples for estimates obtained with Monte Carlo methods as
in (30) and those obtained with nonparametric kernel methods as in (38) to be sufficiently accurate.



For such small-data settings, we propose to explore the probabilistic learning on manifolds (PLoM)
presented in [Soize and Ghanem, 2016], as we will now describe in more detail.

We assume that a number Nir of independently sampled values w(1), . . ., w(Nir) of the uncertain
input variables has been generated and the corresponding samples q(1), . . ., q(Nir) of the uncertain
quantity of interest have been obtained by evaluating the computational model, thus resulting in
the so-called initial data set of length Nir given by{

x(j) =
(
q(j),w(j)

)
, 1 ≤ j ≤ Nir

}
in which q(j) = f

(
w(j)

)
. (42)

Here, the subscript “ir” stands for “initial realizations.” We assume that Nir cannot be taken
sufficiently large for estimates obtained with Monte Carlo methods as in (30) and those obtained
with nonparametric kernel methods as in (38) to be sufficiently accurate. As a means of improving
accuracy, we explore the use of probabilistic learning, specifically, the PLoM method. The objective
of the probabilistic learning is to deduce from the available samples in the initial data set, but,
importantly, without any further evaluations of the computational model, statistically consistent
additional samples collected in a so-called learned data set of length Nar, with Nar larger or much
larger than Nir: {

x(j)
ar =

(
q(j)

ar ,w
(j)
ar

)
, 1 ≤ j ≤ Nar

}
. (43)

Here, the subscript “ar” stands for “additional realizations.” We then use these additional samples
to estimate the global sensitivity indices. Because these additional samples do not form pairs that
share the same values for some uncertain input variables but involve different values for others,
these estimates cannot be obtained by using Monte Carlo methods as in (30). Consequently, we use
a nonparametric kernel method as in (38):
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, (44)

in which the w
(i)
G,u and v

(i)
G are the nodes and weights of a quadrature rule such that the integral∫

R|u| g(wu) 1
Nar

∑Nar
j=1 KW u

(
wu−w(j)

ar,u

)
dwu of a function g from R|u| into R, with the kernel density

estimate of the PDF of the uncertain input variables indexed by the factors in u acting as weight

function, is approximated with
∑NG

i=1 g
(
w

(i)
G,u

)
v

(i)
G .

Whereas estimates obtained with Monte Carlo methods as in (30) and those obtained with non-
parametric kernel methods as in (38) have a single number of samples N with respect to which
convergence must be assessed, estimates obtained with the PLoM method have two numbers of
samples Nir and Nar with respect to which convergence must be assessed. Because we assumed the
computational model to be computationally expensive, the total computational cost of the global
sensitivity analysis can be expected to be determined mainly by the number of samples Nir in the
initial data set. Because the computational model is not used to generate the additional samples
in the learned data set, it can be expected that Nar can be readily taken sufficiently large for esti-
mates to be converged with respect to Nar, without accruing a significant contribution to the total
computational cost.

For the PLoM method to be of interest, the initial data set must encapsulate information that the
PLoM method can extract to generate the additional samples, and the PLoM method must use
this information more effectively than Monte Carlo methods and nonparametric kernel methods
can. In this paper, we approach this issue from a convergence point of view: we consider that the
PLoM method is of interest when the number of samples Nir required for estimates obtained with
the PLoM method to be sufficiently converged is lower than the number of samples N required for
estimates obtained with Monte Carlo methods and nonparametric kernel methods to be sufficiently
converged.



In the remainder of this section, we provide an overview of the PLoM method. We limit ourselves
in the remainder of this section to describing and putting into equations the main steps involved in
the PLoM method. We provide in A additional details about the PLoM method and its implemen-
tation. And we also refer to [Soize and Ghanem, 2016] for additional details, including illustrative
examples with samples concentrating near circles in a plane and near a helix in 3D, to Ghanem and
Soize [2018], Soize and Ghanem [2020a,b], Soize et al. [2019] for complementary developments, and
to Farhat et al. [2019], Ghanem et al. [2018, 2019], Soize and Farhat [2019] for applications and
validations.

In the PLoM method, first, a principal component analysis is used to normalize and, if appropriate,
construct a linear reduced-dimensional representation of the available samples in the initial data
set:

η
(j)
d = [λ]−1/2[ϕ]T(x(j) − x), j = 1, . . . , Nir; (45)

here, the vector x in Rn with n = nw +1 is the sample mean of the available samples, the matrix [ϕ]
is the (n × ν)-dimensional matrix that collects in its columns the eigenvectors associated with the
ν largest magnitude eigenvalues of the sample covariance matrix of the available samples, and the
matrix [λ] is the (ν × ν)-dimensional diagonal matrix that collects along its diagonal these largest
magnitude eigenvalues. The main purpose of the principal component analysis is to normalize the
scales and correlations of the physical degrees of freedom (the input variables and the quantity of
interest). This normalization of scales and correlations is exploited throughout the remainder of
the PLoM method. For instance, it will enable in (46) the use of an isotropic kernel. The linear
dimension reduction is not mandatory, that is, ν can be kept equal to the number n of physical
degrees of freedom. If ν = n, the representation in (45) involves only a normalization; otherwise, it
involves both a normalization and a linear dimension reduction.

The PLoM method interprets the samples η
(1)
d , . . . , η

(Nir)
d obtained in (45) as Nir independent

samples of a random variable H with values in Rν , whose probability distribution is unknown but
assumed to be concentrated in a subset near a manifold in Rν . The PLoM method collects these
samples in a matrix [ηd] = [η

(1)
d . . .η

(Nir)
d ] and views this matrix as one realization of a random

matrix [H], also with unknown probability distribution. The PLoM method seeks to construct
a probabilistic model of this unknown data-generating probability distribution (for a group of Nir

samples collected together in a matrix). The additional samples are ultimately obtained by sampling
from this probabilistic model. The construction of a generator for groups of Nir samples collected
together in a matrix is inherent to the PLoM method. It enables a dimension reduction in the
dimension of the problem that indexes the samples. In the PLoM method, this dimension reduction
is obtained by using the diffusion-map nonlinear dimension-reduction method [Coifman et al., 2005],
and it is fundamental to preserving the concentration near the manifold, as explained next.

Specifically, the PLoM method uses the diffusion-map method to identify the manifold that the
samples concentrate near to. This method involves defining an (Nir × Nir)-dimensional so-called
affinity matrix [k] whose entries

[k]ij = exp

(
− 1

4εdiff
‖η(i)

d − η
(j)
d ‖

2

)
, i, j = 1, . . . , Nir, (46)

gauge the similarity between the available samples. Upon considering the right eigenvalue problem
for the so-called transition matrix [p] = [b]−1 [k],

[p] g(j) = Λj g
(j), j = 1, . . . , Nir, (47)

in which [b] is the diagonal matrix such that [b]ii =
∑Nir

j=1[ k]ij for i = 1, . . . , Nir, for a given integer
κ ≥ 0, the diffusion map Φκ, which embeds the available samples into a reduced-dimensional space
Rm, is then obtained as

Φκ : η
(j)
d 7→ Φκ

(
η

(j)
d

)
=
(
Λκ1g

(1)
j , . . . ,Λκmg

(m)
j

)
; (48)



here, 0 ≤ m ≤ Nir, and, strictly speaking, the embedding results in a reduced-dimensional represen-
tation only if m is smaller than Nir. As we have already mentioned, achieving a dimension reduction
and thus m being smaller than Nir is fundamental to the PLoM method. The diffusion-map method
is a nonlinear dimension-reduction method that does not provide a closed-form out-of-sample exten-
sion for the diffusion map Φκ: for a supplementary sample in Rν , there is no closed-form expression
for its image in Rm, and, for a supplementary sample in Rm, there is no closed-form expression for
its pre-image in Rν . In the PLoM method, the eigenvectors g(1), . . ., g(m) are used in an unusual
and original way to construct an alternative, linear, reduced-dimensional representation:

[ηd]T = [g][zd]T, in which [ηd] = [η
(1)
d . . . η

(Nir)
d ], [g] = [g(1) . . . g(m)], and [zd] = [ηd][g]([g]T[g])−1.

(49)
As already mentioned, it should be noted that in this representation, the dimension reduction
pertains to the matrix dimension that indexes the samples (Nir is reduced to m) and not the usual
physical dimension (ν is kept).

Then, to obtain the probabilistic model of the unknown data-generating probability distribution
(for a group of Nir samples collected together in a matrix), the PLoM method begins with inferring

from the available samples η
(1)
d , . . . , η

(Nir)
d an estimate pKDE

H of the probability density function
of the aforementioned random variable H by using multi-dimensional kernel density estimation.
However, the estimate pKDE

H thus obtained does not account explicitly for the concentration near
the manifold and is thus not used to sample from directly. Instead, the PLoM method proceeds with
constructing a joint probability density function pKDE

[H] by multiplying Nir copies of pKDE
H such that

[η] = [η(1) . . .η(Nir)] 7→ pKDE
[H] ([η]) = pKDE

H (η(1))× . . .×pKDE
H (η(Nir)). The probabilistic model is then

obtained by improving pKDE
[H] by a transport of pKDE

[H] to the subspace spanned by the eigenvectors

g(1), . . ., g(m). That is, the probability distribution pKDE
[H] on the space of all (ν ×Nir)-dimensional

matrices is improved by a transport to the subspace of only those (ν × Nir)-dimensional matrices
[η] that admit a reduced-dimensional representation [η]T = [g][z]T with [z] a (ν ×m)-dimensional
matrix. Thus, the concentration near the manifold is preserved by requiring that like the available

samples η
(1)
d , . . . , η

(Nir)
d , the additional samples in the learned data set (to be generated by sampling

from the probabilistic model) belong to the subspace spanned by the eigenvectors g(1), . . ., g(m).

To generate the additional samples, the PLoM method uses the following reduced-dimensional
representation:

[Hm]T = [g][Z]T; (50)

here, [Hm] is a (ν × Nir)-dimensional random matrix whose probability distribution is the proba-
bilistic model of the unknown data-generating probability distribution (for a group of Nir samples
collected together in a matrix) that must be sampled from, and [Z] is a (ν × m)-dimensional
random matrix. With this reduced-dimensional representation, the problem of generating samples
of [Hm] is transformed into a problem of generating samples of [Z]. To generate samples of [Z],
the PLoM method uses a Markov chain Monte Carlo (MCMC) method. This MCMC method is ob-
tained by constructing an Itô-stochastic-differential-equation-based (ISDE-based) MCMC method
for sampling from the kernel density estimate deduced from the normalized available samples in
(45) and then projecting Nir independent copies of this ISDE-based MCMC method onto the sub-
space spanned by the eigenvectors g(1), . . ., g(m) (this ISDE-based MCMC method can be viewed
as belonging to the class of Hamiltonian Monte Carlo methods). It should be noted that [zd] is used
to define an initial value for the MCMC generator of [Z] (see A).

Finally, once the MCMC method has provided samples of [Z], denoted here by [z(1)], . . ., [z(nMC)],
with nMC = Nar/Nir, the additional samples to form the learned data set are obtained as follows:

x(j)
ar = x+[ϕ][λ]1/2[z(`)][g

(1)
i . . . g

(m)
i ]T, j = (`−1)Nir+i, i = 1, . . . , Nir, ` = 1, . . . , nMC. (51)



Thus, the PLoM method introduces several parameters to be set. Particularly notable are the
parameter εdiff of the kernel involved in the definition of the affinity matrix [k] in (46) and the
dimension m of the reduced basis g(1), . . ., g(m) in (49). In [Soize et al., 2019], the parameters εdiff

and m have been interpreted as parameters that control scales retained in the probabilistic model
used to generate the additional samples and in terms of the concentration of this probabilistic model
near the identified manifold. In [Soize and Ghanem, 2020b], mathematical results are provided
that further elucidate how the dimension reduction achieved by choosing m smaller than Nir is
fundamental to preserving the concentration near the manifold. In this paper, we set the values of
these parameters based on the scale-separation argument proposed in [Soize et al., 2019] and recalled
in A. In addition to εdiff and m, the PLoM method introduces bandwidth parameters sν and ŝν for
the kernel density estimate that must be deduced from the normalized available samples in (45), a
damping parameter f0 involved in the ISDE, a pseudotime step 4t involved in the discretization of
this ISDE, and parameters k0 and M0 involved in the extraction of samples from the sample path
of the Markov chain produced by the ISDE-based MCMC method; please see A for more details.

It should be noted that in the PLoM method as it is set up in Soize and Ghanem [2016] with com-
plementary developments in Ghanem and Soize [2018], Soize and Ghanem [2020a], Soize et al. [2019]
and recalled in A, it is assumed that there is in the computational model a source of uncertainty U
beyond the source of uncertainty W . Owing to the presence of U , the random variable X = (Q,W )
with, now, Q = f(W ,U) can reasonably be expected to admit a PDF, thus lending a justification
to deducing a kernel density estimate from the normalized available samples in (45) in obtaining
the MCMC method. In our context, such a source of uncertainty U is not present explicitly. One
way of still lending a justification to the use of a kernel density estimate is to consider that the
computational model is complex and involves a number of numerical approximations (discretiza-
tions, iterative solvers with tolerances, . . . ) whose impact on the quantity of interest is complex and
ultimately manifests itself as a numerical noise that can be construed as a source of uncertainty U .

Finally, it should be noted that when the PLoM method is used to compute sensitivity indices in
global sensitivity analysis, two factors primarily determine the accuracy that is attained. On the
one hand, in the PLoM method, a probabilistic model is learned from the available samples and
then used to generate additional samples. Any discrepancy that may exist between this probabilistic
model and the true, but unknown, data-generating probability distribution can manifest itself as
a source of inaccuracy in the computed global sensitivity indices. In this paper, we control this
source of inaccuracy by assessing the convergence of the computed sensitivity indices with respect
to the number of available samples in the initial data set. On the other hand, we estimate the global
sensitivity indices from the additional samples. Here, the use of only a finite number of additional
samples can manifest itself as a source of inaccuracy in the computed global sensitivity indices. In
this paper, we control this source of inaccuracy by assessing the convergence of the computed global
sensitivity indices with respect to the number of additional samples in the learned data set. It can
be expected that since the PLoM method is computationally expedient, the number of additional
samples in the learned data set can be readily taken as large as desired, thus allowing the potential
source of inaccuracy stemming from the use of only a finite number of additional samples to be
made as small as desired.

5 Illustration

We will now demonstrate the proposed probabilistic learning method and compare it with the
aforementioned other methods in an illustration concerned with forecasting the contribution of the
Antarctic ice sheet to sea-level rise.



5.1 Computational ice-sheet model

We used the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model, a computational ice-
sheet model that reduces the three-dimensional nature of ice-sheet flow to a two-dimensional problem
while keeping the essential characteristics of ice-sheet thermodynamics and ice-stream flow Pattyn
[2017]. The f.ETISh model solves a coupled thermo-mechanical system of equations for the ice-flow
velocity, the ice thickness, the ice temperature, and the bedrock elevation defined with respect
to sea level. For a comprehensive overview of the governing equations, we refer to Pattyn [2017].
As described in Pattyn [2017], the ice-flow velocity and the ice thickness are obtained by solving a
hybrid combination of governing equations according to the shallow-ice approximation and governing
equations according to the shallow-shelf approximation. The governing equations according to the
shallow-ice approximation are solved only where the ice is grounded, that is, where the ice rests
on the bedrock, and the governing equations according to the shallow-shelf approximation are
solved both where the ice is grounded and where it is floating, that is, in the so-called ice shelves.
The governing equations according to the shallow-shelf approximation take a different form in the
grounded and floating portions, as a consequence of friction with the bedrock only being present
in the grounded portion and differences in the mechanical behavior that dominates the ice-flow
velocity and stress fields between the grounded and floating portions. The temperature is obtained
by solving a diffusion-advection equation. The bedrock elevation is obtained by solving a bedrock
relaxation model. Input data for the f.ETISh model consist of input data deduced from present-
day observations, such as present-day ice-sheet geometry and topography, a basal-sliding coefficient
inferred with a data assimilation method, present-day atmospheric temperature and precipitation,
and present-day ocean temperature. The discretization of space is a finite-difference discretization
on staggered grids and the discretization of time is implicit.

5.2 Test problem

Figure 1: Ice thickness [m] (a) at present day and (b) after 1 000 years obtained with nominal values
of input variables.

We set up a test problem using the f.ETISh model in a manner that is similar to the problem set up
in [Bulthuis et al., 2019]. We simulated the response of the Antarctic ice sheet over the next 1 000
years, starting from its present-day configuration, under the atmospheric forcing scenario RCP 4.5
defined for the next hundred years by the IPCC and extended in time as reported in [Golledge
et al., 2015] (Fig. 1). In the test problem as we set it up using the f.ETISh model, an increase



in atmospheric temperature has an impact on the surface mass balance through an increase in
precipitation and surface melting, and, in addition, an increase in atmospheric temperature induces
an increase in the ocean temperature, which in turn has an impact on the mass balance underneath
the ice shelves through an increase in the strength of the overturning ocean circulation in ice-shelf
cavities. We used a square spatial grid with a length of 5 600 km in each direction and a spatial
resolution of 20 km, and we used a time step of 0.05 year. The computing time of a single model
evaluation on two threads of a SkyLake 2.3 GHz CPU was approximately 8 hours.

5.3 Sources of uncertainty

Uncertain input variables Symbol Nominal Min Max Units

Calving multiplier factor w1 1 0 2.0

Ocean melt factor w2 0.3 0.1 0.5
Shelf anisotropy factor w3 0.5 0.2 1

East Antarctic relaxation time w4 3 000 1 000 5 000 yr

West Antarctic relaxation time w5 3 000 1 000 5 000 yr

Quantity of interest Symbol Nominal Min Max Units

Contribution to global mean sea level q m

Table 1: List of uncertain input variables and quantity of interest.

We considered five input variables to be uncertain (Table 1), in a manner that is similar to the
problem set up in [Bulthuis et al., 2019], where the reader may also find additional information
about the definition and physical interpretation of these input variables. The first uncertain input
variable, the calving multiplier factor, controls the magnitude of the calving rate at the edges of
ice shelves. The second uncertain input variable, the ocean melt factor, controls the magnitude of
the change in the ocean temperature on the continental shelf as a function of the change in the
background atmospheric temperature under the atmospheric forcing scenario. The third uncertain
input variable, the shelf anisotropy factor, controls the magnitude of the change in ice viscosity as
shear-dominated stress behavior of grounded ice transitions to extension-dominated stress behavior
of floating ice. The fourth and fifth uncertain input variables, the East and West Antarctic relaxation
times, control the characteristic time scales of the bedrock uplift due to deglaciation in East and
West Antarctica. We represented these uncertain input variables as independent uniform random
variables with ranges of values determined by the minimum and maximum values in Table 1.

5.4 Predicted quantity of interest

As the predicted quantity of interest, we considered the contribution to global mean sea level
stemming from the evolution of the Antarctic ice sheet after 1 000 years. Under the aforementioned
probabilistic description of the uncertain input variables, we found using the Monte Carlo method
with 3 000 samples for this quantity of interest a mean value of 0.46 m, a standard deviation of
0.49 m, and thus a variance of 0.24 m2 and a coefficient of variation of 108%.

5.5 Global sensitivity analysis: Monte Carlo method

We used the Monte Carlo method as in (30) as described in Sec. 3.1 to estimate the main-effect
global sensitivity indices for the first, third, and fifth uncertain input variables. We used for N
values up to 3 000, so that the Monte Carlo estimation of these three main-effect global sensitivity
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Figure 2: Estimates of the main-effect global sensitivity indices for the first (circle), third (diamond),
and fifth (x-mark) uncertain input variables obtained by using the Monte Carlo method as a function
of N .

indices required 3 000× (3 + 1) = 12 000 model evaluations. Figure 2 shows the convergence of the
estimates as a function of N . We can observe that the uncertainties introduced in the calving factor
and the shelf anisotropy factor are more significant in inducing uncertainty in the contribution to
global mean sea level than the uncertainty introduced in the West Antarctic relaxation time. We
can observe that reasonably converged estimates of the main-effect global sensitivity indices for the
first and third uncertain input variables are obtained after a value for N of about 1 000 and that
reasonably converged estimates of the main-effect global sensitivity index for the fifth uncertain
input variable are obtained after a value for N of about 2 000. The results obtained with N = 3 000
are SMC

1 = 0.3869, SMC
3 = 0.2322, and SMC

5 = 0.0026. Please note that we did not compute the
main-effect global sensitivity indices for the second and fourth uncertain input variables because we
preferred to avoid the high computational cost of the additionally required 3 000× 2 = 6 000 model
evaluations.

5.6 Global sensitivity analysis: Spectral method
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Figure 3: Estimates of the main-effect global sensitivity indices for the first (circle), second (square),
third (diamond), fourth (triangle), and fifth (x-mark) uncertain input variables obtained by using
the spectral method as a function of NDOE.

We used the spectral method as in (41) as described in Sec. 3.2 to estimate the main-effect global
sensitivity indices for the uncertain input variables. Especially to facilitate a comparison of the
performance of the spectral method with the performance of the probabilistic learning method to
be presented next, we used for NDOE values up to only 224. We used independent samples to form the



experimental design of values of the uncertain input variables for which the computational model is
evaluated as in (39). We used multivariate polynomials set up as products of univariate normalized
Legendre polynomials up to a total degree of 4; a polynomial chaos expansion of dimension nw = 5
and a total degree of p = 4 as in (40) involves (4+5)!/4!/5! = 126 terms. We used a regression method
to determine the polynomial chaos coefficients. Figure 3 shows the convergence of the estimates as a
function of NDOE. We can observe that especially for the main-effect global sensitivity index for the
first uncertain input variable, the estimate obtained with the spectral method after NDOE = 224
evaluations of the computational model in Fig. 3 is not yet converged to the reasonably converged
value obtained with the Monte Carlo method after N = 3 000 evaluations of the computational
model in Fig. 2. The results obtained with NDOE = 224 and p = 4 are SPCE

1 = 0.4294, SPCE
2 =

0.2945, SPCE
3 = 0.2192, SPCE

4 = 0.0003, and SPCE
5 = 0.0009.

5.7 Global sensitivity analysis: PLoM method

We used the PLoM method as in Sec. 4 to estimate the main-effect global sensitivity indices for the
uncertain input variables. The maximum value considered for the length of the initial data set was
224.
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Figure 4: Eigenvalues of [p] for Nir = 224 and εdiff = 20.

For Nir = 224, we set the values of the parameters of the PLoM method as follows:

• We set ν = n = 6, so that the representation of the available samples as in (45) (and (52) in
A) involves only a normalization and not a dimension reduction.

• We set the parameter εdiff of the kernel involved in the definition of the affinity matrix [k]
in (46) (and (54) in A) and the dimensionm of the reduced basis g(1), . . ., g(m) in (49) (and (59)
in A) following the arguments in (57) with (56) in A, leading to εopt

diff = 20 and mopt = 8. The
constant eigenvector g(1) was removed for the reasons detailed in A. For εdiff = 20, Fig. 4 shows
the eigenvalues of [p].

• We set the bandwidth parameters sν and ŝν for the kernel density estimate that must be
deduced from the normalized available samples in (45) following (65) in A, leading to sν =
0.543 and ŝν = 0.478. We set the damping parameter f0 in the ISDE (equation (61) in A)
equal to f0 = 1.5.

• We set the pseudotime step 4t involved in the discretization of the ISDE (equations (67)–
(69) in A) equal to ∆t = 0.150192. We set the parameters k0, M0, and nMC involved in the
extraction of samples from the trajectory of the Markov chain produced by the ISDE-based
MCMC method as in (51) (and Sec. A.6 in A) equal to k0 = 200, M0 = 100, and nMC = 400,
thus leading to Nar = 89 600 = 400× 224.



• In estimating the global sensitivity indices as in (44), we used an NG = 200-node trapezoidal
integration rule.
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(a) Nir = 224.
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(b) Nar = 89 600.

Figure 5: Estimates of the main-effect global sensitivity indices for the first (circle), second (square),
third (diamond), fourth (triangle), and fifth (x-mark) uncertain input variables obtained by using
the PLoM method (a) as a function of Nar for Nir = 224 and (b) as a function of Nir for Nar = 89 600.
For the values of Nir different from 224, the values of nMC are different from 400.

Figure 5(a) shows the convergence of the estimates as a function of Nar for Nir = 224. The PLoM
method was computationally expedient, and we could readily take Nar sufficiently large for es-
timates to be converged with respect to Nar without accruing a significant contribution to the
total computational cost. Figure 5(b) shows the convergence of the estimates as a function of Nir

for Nar = 89 600. We can observe that the estimates obtained with the PLoM method are well
converged with respect to the length Nir of the initial data set even for small initial data sets with
lengths of only Nir = 190 or only Nir = 224. We can also observe that the estimates obtained with
the PLoM method even for small initial data sets with lengths of only Nir = 190 or only Nir = 224
in Fig. 5(b) correspond well with the converged values obtained with the Monte Carlo method in
Fig. 2. Notably, we can observe that for the main-effect global sensitivity index for the first uncertain
input variable, the estimate obtained with the PLoM method even for the small initial data set with
a length of only Nir = 224 in 5(b) corresponds better with the reasonably converged value obtained
with the Monte Carlo method with N = 3 000 in Fig. 2 than the estimate obtained with the spectral
method with NDOE = 224 in Fig. 3. We carried out a final computation with the PLoM method
with Nar = 1 000 000 for Nir = 224. The results obtained with Nir = 224 and Nar = 1 000 000 are
SPLoM

1 = 0.3963, SPLoM
2 = 0.3353, SPLoM

3 = 0.2361, SPLoM
4 = 0.0066, and SPLoM

5 = 0.0182.

5.8 Global sensitivity analysis: Comparison of the numerical methods

Uncertain input variables DMC
k [m2] SMC

k DPCE
k [m2] SPCE

k DPLoM
k [m2] SPLoM

k

Calving multiplier factor 0.0956± 0.0100 0.3869 0.1040 0.4294 0.0960 0.3963
Ocean melt factor 0.0714 0.2945 0.0812 0.3353
Shelf anisotropy factor 0.0578± 0.0093 0.2322 0.0531 0.2192 0.0572 0.2361
East Antarctic relaxation time 7.2687E-5 0.0003 0.0016 0.0066
West Antarctic relaxation time 6.6151E-4± 0.0094 0.0026 2.1806E-4 0.0009 0.0044 0.0182

Table 2: Unnormalized and normalized global sensitivity indices obtained with the Monte Carlo
method with N = 3 000, the spectral method with NDOE = 224 and p = 4, and the PLoM method
with Nir = 224 and Nar = 1 000 000.



Table 2 lists the unnormalized and normalized global sensitivity indices obtained with the Monte
Carlo, spectral, and PLoM methods. In addition, Table 2 provides 95%-confidence intervals for the
Monte Carlo estimates of the unnormalized global sensitivity indices obtained by using the central
limit theorem for the Monte Carlo estimator. These 95%-confidence intervals quantify the error
that may be present in the Monte Carlo estimates of the unnormalized global sensitivity indices
owing to their estimation from only the finite number of N = 3 000 samples. We can observe that
the estimates of the unnormalized global sensitivity indices obtained with the spectral and PLoM
methods fall within the 95%-confidence intervals for the corresponding estimates obtained with the
Monte Carlo method. We can also observe that for the first and third uncertain input variables, the
estimates obtained with the PLoM method correspond better with the estimates obtained with the
Monte Carlo method than the estimates obtained with the spectral method. This is not the case
for the fifth uncertain input variable, but the global sensitivity index for the fifth uncertain input
variable is very small, and the 95%-confidence interval for its Monte Carlo estimate indicates that
this estimate may be subject to a large relative error due to its estimation from only N = 3 000
samples.

Since a single evaluation of the computational model on two threads of a SkyLake 2.3 GHz CPU of
the employed cluster takes about 8 hours, the aggregate computing time for the 3 000 × (3 + 1) =
12 000 evaluations of the computational model to obtain the Monte Carlo estimates was 96 000 hours.
By contrast, the aggregate computing time for the 224 evaluations of the computational model to
obtain the spectral and PLoM estimates was only 1 792 hours.

6 Conclusion

We have proposed to use the PLoM method for the computation of global sensitivity indices in small-
data settings in which the computational model can be evaluated only a small number of times. The
probabilistic learning on manifolds serves to learn from the available samples a probabilistic model
that is used to generate statistically consistent additional samples, on the basis of which estimates of
the global sensitivity indices are then computed. We provided an illustration in which a usual Monte
Carlo method required a data set of several thousands of samples to attain a reasonable convergence
of the estimates, but the proposed PLoM method was able to attain converged estimates based on
only a small data set of only a few hundred samples. In this illustration, these results indicated
that the small data set encapsulated information that the PLoM method was able to exploit to
accelerate the convergence of the estimates of the global sensitivity indices with respect to the
number of samples.
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A Probabilistic learning on manifolds (PLoM)

In this Appendix, we summarize in greater detail the probabilistic learning on manifolds (PLoM)
method. The PLoM method was introduced in Soize and Ghanem [2016] and complementary devel-
opments can be found in Ghanem and Soize [2018], Soize and Ghanem [2020a,b], Soize et al. [2019].



Applications and validations can be found in Farhat et al. [2019], Ghanem et al. [2018, 2019], Soize
and Farhat [2019]. In addition, we give formulas for setting the values of parameters εdiff, m, sν ,
and ŝν .

In this Appendix, all random variables are defined on a probability space (Θ, T ,P). An example
of the use of the PLoM method is as follows. We consider a computationally expensive large-scale
stochastic computational model. The vector-valued random response is a non-Gaussian Rnq-valued
random variable Q = (Q1, . . . , Qnq) written as Q = f(W ,U) in which W = (W1, . . . ,Wnw) is
a non-Gaussian Rnw-valued random parameter controlling the system, U is a non-Gaussian Rnu-
valued random variable not used for controlling the system, such as a random variable related to
uncertainties, and f is a deterministic measurable nonlinear function with values in Rnq repre-
senting the computational model. The available information is a given initial data set DNir (train-
ing set) of length Nir that is constructed as {x(j) = (q(j),w(j)), j = 1, . . . , Nir}, in which the
q(j) = f(w(j),u(j)) are Nir independent realizations of Q calculated with the computational model,
with the w(j) and u(j) being Nir independent realizations ofW and U . Hence, {x(j), j = 1, . . . , Nir}
collects Nir independent realizations in Rn = Rnq ×Rnw with n = nq +nw of the non-Gaussian ran-
dom vector X = (Q,W ) with values in Rn = Rnq×Rnw . Knowing only this initial data set, the ob-
jective is, for instance, to construct, for a givenw, an estimate hNir(w) of h(w) = E{H(Q)|W = w},
the conditional expectation of H(Q) given W = w, with H a given deterministic function. For in-
stance, beyond the scope of the computation of global sensitivity indices as considered in this paper,
h could be the objective function of an optimization problem for which w could be a design param-
eter. If each evaluation of a q(j) is computationally expensive, then taking Nir sufficiently large for
hNir(w) to be sufficiently converged to h(w) may not be computationally tractable. The objective

of the PLoM method is then to generate Nar � Nir additional realizations {x(j)
ar , j = 1, . . . , Nar}

of X. As soon as the set {x(j)
ar , j = 1, . . . , Nar} is obtained, the additional realizations of Q and W

may be extracted as x
(j)
ar = (q

(j)
ar ,w

(j)
ar ) for j = 1, . . . , Nar to obtain the learned data set DNar .

A.1. Normalization of the initial dataset by using principal component analysis. Let [X] = [X(1) . . .
X(Nir)] be the random matrix with values in Mn,Nir whose columns are Nir independent copies of
X. Therefore, the Nir independent realizations x(j) of X with values in Rn may be collected in the
columns of a matrix [xd] = [x(1) . . . x(Nir)] in Mn,Nir , which may be viewed as one realization of
[X]. A normalization [H] of [X] is obtained via a mean-square approximation [Xν ] to [X] by using
a classical principal component analysis:

[Xν ] = [x] + [ϕ][λ]1/2[H]. (52)

In (52), the random matrix [H] = [H(1) . . . H(Nir)] takes values in Mν,Nir with ν ≤ n and its
columns are Nir independent copies of a random vector denoted by H. The diagonal of the (ν× ν)-
dimensional diagonal matrix [λ] is composed of ν positive eigenvalues of the empirical estimate of the
covariance matrix ofX (computed by using x(1), . . . ,x(Nir)) and [ϕ] is the (n×ν)-dimensional matrix
that collects in its columns the associated eigenvectors that satisfy the normalization condition
[ϕ]T[ϕ] = [Iν ]. The matrix [x] belongs to Mn,Nir and has identical columns, each one being equal to
the empirical estimate x in Rn of the mean value of X (computed by using x(1), . . . ,x(Nir)). The

realization [ηd] = [η
(1)
d . . . η

(Nir)
d ] in Mν,Nir of [H] (associated with the realization [xd] of [X]) is

computed as
[ηd] = [λ]−1/2[ϕ]T([xd]− [x]). (53)

If n is small, ν may be chosen equal to the rank nrank of the aforementioned empirical estimate of
the covariance matrix of X. If n is high, a statistical reduction may be used as usual and therefore
ν < nrank. Then, [Xν ] is a mean-square approximation to [X] for a given tolerance of the mean-
square error.



A.2. Diffusion-maps basis. An algebraic basis of RNir is constructed by using diffusion maps as
proposed in Coifman et al. [2005]. We introduce the matrix [k], assumed to be in M+

Nir
, with entries

given for i= 1, . . . , Nir and j = 1, . . . , Nir by

[k]ij = exp

(
− 1

4εdiff

∥∥∥η(i)
d − η

(j)
d

∥∥∥2
)
, (54)

in which the kernel depends on a real smoothing parameter εdiff > 0. Let [b] be the positive-definite
diagonal real matrix in M+

Nir
such that [b]ii =

∑Nir
j=1[k]ij for i = 1, . . . , Nir. Let [p] = [b]−1[k], so that

[p] may be viewed as a transition matrix in MNir of a Markov chain. For given m with 1 < m ≤ Nir,
let g(1), . . . , g(m) be the right eigenvectors in RNir of [p] such that [p]g(j) = Λjg

(j), with the real
eigenvalues Λj ordered such that Λ1 = 1 > Λ2 > . . . > Λm. The vectors g(1), . . . , g(m) are referred to
as the diffusion-maps basis, and they are collected in a matrix [g] = [g(1) . . . g(m)] in MNir,m. The
normalization condition of these eigenvectors is set such that [g]T [b] [g] = [Im]. The eigenvector g(1)

associated with the largest eigenvalue Λ1 = 1 is a constant vector. For m = Nir, the diffusion-maps
basis is an algebraic basis of RNir . It can be seen that [g] is the solution to the following generalized
eigenvalue problem for positive-definite matrices with the normalization condition [g]T[b] [g] = [Im]:

[k] [g] = [b] [g] [Λ]. (55)

This construction introduces two parameters: the dimension m ≤ Nir and the smoothing parameter
εdiff > 0. The value of m is a priori dependent on the value of εdiff. A method has been proposed
in Soize et al. [2019] for setting their values as follows. Let εdiff 7→ m̂(εdiff) be the function from
R+

0 =]0,+∞[ into N such that

m̂(εdiff) = arg min
j|j≥3

{
Λj(εdiff)

Λ2(εdiff)
< 0.1

}
. (56)

If m̂ is a decreasing function of εdiff in the broad sense (if not, see Soize et al. [2019]), then the
optimal value εopt

diff of εdiff can be chosen as the smallest value of the integer m̂(εopt
diff) such that{

m̂(εopt
diff)< m̂(εdiff), ∀εdiff ∈]0, εopt

diff[
}
∩
{
m̂(εopt

diff) = m̂(εdiff),∀εdiff ∈]εopt
diff, 1.5ε

opt
diff[
}
. (57)

The corresponding optimal value mopt of m is then given by mopt = m̂(εopt
diff).

A.3. Reduced-dimensional representation [Hm] of [H]. The vectors g(1), . . . , g(m) span a subspace
of RNir that characterizes, for the optimal values mopt and εopt

diff of m and εdiff, the local geometry of

the data set {η(j)
d , j = 1, . . . , Nir}. A reduced-dimensional representation [Hm] of [H] is obtained

by representing each column of the MNir,ν-valued random matrix [H]T in this subspace of RNir

spanned by g(1), . . . , g(m). Consequently, introducing the random matrix [Z] with values in Mν,m,
we write

[Hm] = [Z][g]T. (58)

Asuming that for all i = 1, . . . , ν, the vector (η
(1)
di , . . . , η

(Nir)
di ) is not a constant vector, the basis vector

g(1) associated with Λ1 = 1, which is a constant vector, could be removed from the representation
defined by (58). In order to calculate a realization [zd] in Mν,m of [Z] associated with [ηd], which
will be used as an initial value of the MCMC generator of [Z], and since the matrix [g]T[g] in Mm

is invertible, we introduce the following least-squares approximation [zd] of [ηd]:

[zd] = [ηd][a], (59)

in which
[a] = [g]([g]T[g])−1. (60)



A.4. Generation of the additional realizations {η(j)
ar , j = 1, . . . , Nar} of [Hm]. The generation of

additional realizations [z1
ar], . . . , [z

nMC
ar ] of [Z] is carried out by using an unusual MCMC method

introduced in Soize and Ghanem [2016]. This MCMC method is based on a reduced-order Itô
stochastic differential equation (ISDE) constructed by projecting onto the diffusion-maps basis an
ISDE related to a dissipative Hamiltonian dynamical system for which the invariant measure is
defined by the PDF of [H] (obtained using an unusual Gaussian kernel-density estimation method
[Soize, 2015] from [ηd]) Soize [2008]. The existence and uniqueness of this invariant measure can be
obtained as in Soize [1988, 1994]. This MCMC method preserves the concentration of the probability
measure (if such a concentration exists) and avoids a scatter phenomenon. This reduced-order ISDE,
for which the stochastic process {([Z(t)], [Y(t)]), t ∈ R+} with values in Mν,m×Mν,m is the solution,
is written, for t > 0, as d[Z(t)] = [Y(t)]dt,

d[Y(t)] = [L([Z(t)])]dt− 1

2
f0[Y(t)]dt+

√
f0 d[V(t)],

(61)

and it is completed with the initial condition [Z(0)] = [zd] and [Y(0)] = [N ][a] almost surely.

(i) The random matrix [L([Z(t)])] with values in Mν,m is such that [L([Z(t)])] = [L([Z(t)][g]T)][a].

For [u] = [u(1) . . . u(Nir)] in Mν,Nir with the u(j) = (u
(j)
1 , . . . , u

(j)
ν ) in Rν , the entries of the matrix

[L([u])] in Mν,Nir for i = 1, . . . , ν and j = 1, . . . , Nir are given by

[L([u])]ij =
1

p(u(j))
{∇up(u

(j))}i, (62)

p(u) =
1

Nir

Nir∑
j=1

exp

(
− 1

2ŝν
2

∥∥∥∥ ŝνsν η(j)
d − u

∥∥∥∥2
)
, (63)

∇up(u) =
1

ŝ2
ν

1

Nir

Nir∑
j=1

(
ŝν
sν
η

(j)
d − u

)
exp

(
− 1

2ŝ2
ν

∥∥∥∥ ŝνsν η(j)
d − u

∥∥∥∥2
)
, (64)

in which sν is the bandwidth chosen in accordance with Silverman’s rule of thumb (more specifically,
its extension to multivariate product kernels) and ŝν its modification introduced in Soize [2015] (this
modification is motivated by the normalization of the initial data set by using principal components
described above; this modification results in the covariance matrix of the kernel density estimate
being the identity matrix):

sν =

(
4

Nir(2 + ν)

)1/(ν+4)

, ŝν =
sν√

s2
ν + Nir−1

Nir

. (65)

(ii) [V(t)] = [W(1)(t) . . .W(Nir)(t)][a] where the {[W(j)(t)], t ∈ R+} are Nir independent Rν-valued
normalized Wiener stochastic processes.

(iii) [N ] is an Mν,Nir-valued normalized Gaussian random matrix that is independent of [V ].

(iv) The free parameter f0, whose value must be set such that 0 < f0 ≤ 4, allows the dissipation term
of the nonlinear second-order dynamical system (dissipative Hamiltonian system) to be controlled
in order to suppress the transient induced by the initial condition (because the initial condition
does not correspond to a realization of the invariant measure). A common value is f0 = 1.5, and
the upper bound of f0 = 4 would correspond to the critical damping value if the dynamical system



was linear (which is not the case).

(v) We then have [Z] = limt→+∞ [Z(t)] in probability distribution, which allows us to generate the

additional realizations [z
(1)
ar ], . . . , [z

(nMC)
ar ] and then the additional realizations [η

(1)
ar ], . . . , [η

(nMC)
ar ] by

using (58) such that [η
(j)
ar ] = [z

(j)
ar ][g]T (see Sec. A.6 of this Appendix).

A.5. Algorithm for solving the reduced-order ISDE. The reduced-order ISDE is solved with a step
∆t of the continuous index parameter t (pseudotime). The pseudotime integration scheme is based
on the use of the pseudotime instants tk such that tk = k∆t for k ≥ 0, at which [Zk] denotes the
pseudotime-discrete approximation to [Z(tk)], [Yk] denotes the pseudotime-discrete approximation
to [Y(tk)], and [Wk] = [W(tk)], with [Z0] = [zd], [Y0] = [N ][a], and [W0] = [0ν,m]. For k ≥ 0,
let [∆Wk+1] = [∆W k+1][a] be the sequence of random matrices with values in Mν,m, in which
the increments [∆W k+1] are independent random matrices with values in Mν,Nir whose entries
[∆W k+1]ij for i = 1, . . . , ν and j = 1, . . . , Nir are independent and centered Gaussian random
variables such that

E{[∆W k+1]ij [∆W k+1]i′j′} = ∆t δii′ δjj′ . (66)

For k ≥ 0, the Störmer–Verlet scheme Burrage et al. [2007], Hairer et al. [2002], Soize [2017] is
applied to the reduced-order ISDE:

[Zk+ 1
2
] = [Zk] +

∆t

2
[Yk], (67)

[Yk+1] =
1− b
1 + b

[Yk] +
∆t

1 + b
[Lk+ 1

2
] +

√
f0

1 + b
[∆Wk+1], (68)

[Zk+1] = [Zk+ 1
2
] +

∆t

2
[Yk+1], (69)

with the initial condition defined in Sec. A.4, b = f0∆t/4, and [Lk+ 1
2
] the Mν,m-valued random

matrix
[Lk+ 1

2
] = [L([Zk+ 1

2
])] = [L([Zk+ 1

2
][g]T)][a]. (70)

A.6. The additional realizations {x(j)
ar , j = 1, . . . , Nar} of Xν . Let {([Zk(θ)], [Yk(θ)]), k = 0, . . . ,M}

be one sample path of the (Mν,m×Mν,m)-valued stochastic process {([Zk], [Yk]), k = 0, . . . ,M}
computed by using the algorithm presented in Sec. A.5. Let k0 be an integer such that for k ≥ k0,
the pseudotime-discrete solution is converged to the stationary solution. Let M0 be a given positive
integer such that the pairs [Zk] and [Zk+M0 ] are random matrices that are approximatively indepen-
dent. For ` = 1, . . . , nMC with nMC such that Nar = nMC×Nir, for i = 1, . . . , Nir, and for i′ = 1, . . . , ν,

we set {η(j)
ar }i′ =

[
[Zk0+`M0(θ)][g]T

]
i′i

with j = (`−1)Nir +i. The realizations {x(j)
ar , j = 1, . . . , Nar}

of Xν are then calculated for j = 1, . . . , Nar as x
(j)
ar = x+ [ϕ][λ]1/2η

(j)
ar .

A.7. Convergence of the probabilistic learning with respect to dimension Nir of the initial data set.

The additional realizations {x(j)
ar , j = 1, . . . , Nar} of Xν depend on Nir, ν, and m, in which ν and m

depend, in general, on Nir. To emphasize these dependencies, Xν is denoted by XNir,ν(Nir),m(Nir).
By construction, XNir,ν(Nir),m(Nir) is a second-order random variable with values in Rn. The con-
vergence of the PLoM method can be analyzed via the mean-square convergence of the sequence
of random variables XNir,ν(Nir),m(Nir) indexed by Nir. This convergence could also be studied in
distribution (mean-square convergence implies convergence in distribution). Nevertheless, the fol-
lowing comment must be made. The PLoM method is proposed for improving the construction of
the generator of X for the small-data case, that is, for Nir relatively small because one evaluation of
the response of the computational model is assumed to be computationally expensive. This means



that, in practice, the value of Nir is constrained by the total computational cost, so that it may not
be possible to take the value of Nir as high as one may wish. Consequently, a convergence analysis
could run as follows. Subsets DN1 ⊂ DN2 ⊂ . . . ⊂ DNµ of the initial dataset can be introduced
with 1 < N1 < N2 < . . . < Nmax. Then, the convergence can be analyzed with respect to the finite
number of values N1 < N2 < . . . < Nµ of Nir. If a reasonable convergence cannot be obtained using
such a convergence analysis of the XNj ,ν(Nj),m(Nj) for j = 1, . . . , µ, this convergence analysis would
suggest that new evaluations have to be carried out by using the computational model in order to
increase the value of Nmax.
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