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Regional Stabilization of Input-Delayed Uncertain
Nonlinear Polynomial Systems

Daniel Coutinho, Carlos E. de Souza, João M. Gomes da Silva Jr, André F. Caldeira and Christophe Prieur

Abstract—This paper addresses the problem of local sta-
bilization of nonlinear polynomial control systems subject to
time-varying input delay and polytopic parameter uncertainty.
A linear matrix inequality approach based on the Lyapunov-
Krasovskii theory is proposed for designing a nonlinear polyno-
mial state feedback controller ensuring the robust local uniform
asymptotic stability of the system origin along with an estimate of
its region of attraction. Two convex optimization procedures are
presented to compute a stabilizing controller ensuring either a
maximized set of admissible initial states for given upper bounds
on the delay and its variation rate or a maximized lower bound
on the maximum admissible input delay considering a given set
of admissible initial states. Numerical examples demonstrate the
potentials of the proposed stabilization approach.

Index Terms—Nonlinear polynomial systems, time-varying in-
put delay, local stabilization, region of attraction estimation.

I. INTRODUCTION

The stability analysis and control synthesis of dynamical
systems under delayed inputs is a problem that has been
attracting the interest of control practitioners over the last
decades due to the inherent transport delays in practical appli-
cations, and more recently because of induced communication
delays in the context of networked control systems (see, for
instance, [1]–[4] and references therein). For linear systems,
there exist several approaches to deal with input delay in
the frequency and state-space domains such as the predictor-
based approach [5], the model reduction technique [6], and the
ones employing either Lyapunov-Razumikhin or Lyapunov-
Krasovskii stability theories to take model uncertainties and
varying delays into account – see, e.g., [7], [8] and the
references therein.

In the context of nonlinear systems, results dealing with
model uncertainties and/or time-varying input delays have
been proposed in the literature. For instance, [9] addresses
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the input-to-state stability problem for the class of input affine
nonlinear systems subject to a constant input delay, [10] con-
siders the stabilization problem of a chain of integrators with
nonlinearities subject to norm-bounded uncertainties and input
delay, [11] focuses on the stabilization of uncertain Euler-
Lagrange systems with a time-varying input delay, [12] studies
the stability properties of a class of switched nonlinear systems
subject to input delays, and [13] proposes a Smith predictor
like input delay compensation for nonlinear systems in either
forward complete or strict-feedforward form. An alternative
approach to deal with input-delayed nonlinear systems is to
consider a linear approximation of the system around an
operating point (e.g., obtained via the Taylor expansion), and
then apply well-established control design tools for linear
input-delayed systems. If the error introduced by a linear
approximation is too large, high-order terms of the Taylor
expansion can be considered to more accurately describe the
system dynamics leading to nonlinear polynomial models.
Besides, many practical systems are exactly described by
polynomial systems such as heating columns [14], DC–DC
converters [15], aircraft systems [16], and unmanned aerial
vehicles [17]. Due to the good compromise between model
accuracy and mathematical complexity, the class of nonlinear
polynomial systems has been in the last ten or more years
the subject of intensive research generally using either the
sum-of-squares technique [18], [19], or the multiplier-based
methods [20], [21]. In particular, local and global stability
analysis problems of state-delayed polynomial systems have
been addressed in [22], [23] and [24].

Inspired by the delay-dependent method proposed in [7] to
deal with the stabilization of linear systems with input delay
and actuator saturation, this paper investigates the local stabi-
lization of nonlinear polynomial systems with a time-varying
input delay and polytopic parameter uncertainty considering a
Lyapunov-Krasovskii functional. Note that the stabilization of
input-delayed nonlinear systems which are open-loop unstable
and only locally stabilizable is more involved than the linear
system counterpart as it is required to guarantee that the system
state trajectory in the initial time interval before any control
signal is applied does not leave the region of attraction of
the system equilibrium to be stabilized [7]. Motivated by
this fact, a linear matrix inequality (LMI) based method is
proposed in this paper for designing a nonlinear polynomial
state feedback controller ensuring the robust local uniform
asymptotic stability of the system zero equilibrium point while
providing an estimate of its region of attraction. In addition,
thanks to a novel polynomial decomposition of the system dy-
namics, two convex optimization procedures are presented for
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designing a stabilizing controller ensuring either a maximized
set of admissible initial states for a given maximum delay
and its variation rate, or a maximized lower bound on the
maximum admissible input delay considering a given region
of admissible initial states.

This paper is organized as follows. Section II introduces
the class of input-delayed systems considered in this paper
and the stabilization problem to be addressed, whereas Sec-
tion III presents a key result which will be instrumental to the
controller design. Then, the main result of this paper is derived
in Section IV along with two convex optimization procedures
to design a controller that provides either a maximized set of
admissible initial states or a maximized lower bound on the
maximum admissible delay. Numerical examples are given in
Section V and Section VI provides some concluding remarks.

Notation: R is the set of real numbers, Rn is the n-
dimensional Euclidean space, Rm×n is the set of m × n
real matrices, In in the n × n identity matrix, 0n and
0n×m are respectively the n × n and n × m matrices of
zeros, and diag{· · · } denotes a block-diagonal matrix. For
a real matrix S, S′ denotes its transpose, He{S} stands for
S + S′, and S > 0 means that S is symmetric and positive-
definite. For two polytopes A and B, A × B denotes the
meta-polytope obtained by the cartesian product and V(A)
is the set of all the vertices of A. For a vector ξ ∈ Rn,
R : Rn → Rm×q is an affine matrix function of ξ if it
can be cast as R(ξ) = R0 +

∑n
i=1 ξiRi, where Ri ∈ Rm×q ,

i = 0, 1, . . . , n, and ξi is the i-th element of ξ. The Banach
space of continuous functions φ : [a, b]→ Rn with finite norm
‖φ‖[ a,b ] := supa≤t≤b ‖φ(t)‖ is denoted by Cn[ a,b ], where ‖ · ‖
is the Euclidean vector norm, and xt ∈ Cn[−d,0 ] is a segment
of the function xt(s) = x(t+ s), ∀s ∈ [−d, 0].

II. PROBLEM STATEMENT

Consider the following class of input-delayed nonlinear
control systems: ẋ(t) = f(x(t), δ)+B(x(t), δ)u(t−τ(t)), ∀ t ≥ 0,

x(0) = x̄0,
u(t) = K(x(t))x(t), ∀ t ≥ 0,

(1)

where x(t) ∈ X ⊂ Rn is the state, u(t) ∈ Rnu is the control
input, δ ∈ ∆ ⊂ Rnδ is a vector of uncertain constant param-
eters, f(x, δ) : X ×∆→ Rn and B(x, δ) : X ×∆→ Rn×nu
are polynomial functions of x and affine with respect to δ, with
f(0, δ) = 0, ∀ δ ∈ ∆, K(x) : X → Rnu×n is a polynomial
function of x to be determined, x̄0 is the initial state, and
τ(t) ∈ R is a time-varying input delay satisfying:

0 ≤ τ(t) ≤ d, τ̇(t) ≤ h ≤ 1, ∀ t ≥ 0, (2)

with d and h being given positive scalars. X and ∆ are
compact regions defining respectively the state and uncertainty
domains with X containing x=0. In addition, similarly as in
[7], it is assumed that the controller is turned on at t=0 and
u(t) = 0,∀t < 0. For t ≥ 0, due to the input delay, the control
signal is computed from the past state information whenever
t − τ(t) ≥ 0, otherwise the control input is set to zero. Note
that this control setting is effectively a practical problem and

appears in a number of control applications as, for instance,
in sampled-data control systems with transmission delays.

In view of (2), there exists a unique t0 ≤ d such that
t − τ(t) < 0, ∀ t ∈ [0, t0), and t−τ(t) ≥ 0, ∀ t ≥ t0. As a
consequence, since u(t− τ(t)) = 0 for t ∈ [0, t0), the system
operates in open loop in the time interval [0, t0). Hence, the
controlled system can be cast as follows:

ẋ(t) =

{
f(x(t), δ), for 0 ≤ t < t0,
fcl(x(t), x̃(t), δ), for t ≥ t0,

(3)


fcl(x(t), x̃(t), δ)=f(x(t), δ)+B(x(t), δ)K(x̃(t))x̃(t),

x(0) = x̄0,

x̃(t) = x
(
t− τ(t)

)
.

(4)

Note that x= 0 is an equilibrium solution of system (3) and
in this paper attention will be focused on stability properties
of this equilibrium. For notation simplicity, hereafter the
argument t of x(t), x̃(t), u(t) and τ(t) will be often omitted.

It should be observed that since in the time interval [0, t0)
system (3) operates in open-loop, it is of fundamental im-
portance in the stabilization problem to explicitly take into
account the system behavior over the latter interval when
the equilibrium x = 0 of the open-loop system of (1) is
unstable. In this case, the state trajectory starting at some
initial value x̄0 will move away from the equilibrium point
until the feedback signal starts to be applied to the system
at t= t0 and thus it may leave the region of attraction of the
closed-loop system origin before any control action is actually
applied to the system. Thus, the delayed state feedback will
not be able to asymptotically stabilize the system origin. In
order to prevent this situation and to properly address the
system closed-loop stability behavior in the vicinity of the
zero equilibrium solution, it will be considered in this paper
the following definition of robust regional stability.

Definition 1: Consider the system in (1) for a given stabiliz-
ing state feedback and let R0 and R be two compact sets such
that R0 ⊂ R ⊂ X with R0 containing x = 0. The equilibrium
point x = 0 of system of (1) is robustly regionally stable if, for
any x̄0 ∈ R0 and all δ ∈ ∆, the state trajectory x(t) remains
confined to R, for all t ≥ 0 and x(t)→ 0 as t→∞.

In light of the above scenario, this paper is concerned
with obtaining a numerical and tractable solution to the ro-
bust regional stabilization problem for uncertain input-delayed
nonlinear polynomial systems. More precisely, this paper is
focused on the design of a polynomial state feedback control
law u = K

(
x
)
x ensuring the robust regional stability of the

control system in (1) while achieving either: (i) a maximized
set of initial states R0 for a given maximum delay d; or (ii)
a maximized lower bound on the maximum admissible delay
d for a given set R0 of admissible initial states.

Before ending this section, the following two lemmas, that
will be instrumental to derive the main results of this paper,
are recalled from the literature.

Lemma 1 ([25]): Let P and G be n× n real matrices with
P > 0 and G nonsingular. Then, the following holds:

P−1 ≥ G+G′ −G′PG. (5)
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Lemma 2 ([26]): For any n × n real matrix Q > 0, real
scalars d1 and d2 such that d1 < d2, and any continuous
function w : [d1, d2] 7→ Rn, the following holds:

(d2 − d1)
∫ d2
d1
w(s)′Qw(s)ds ≥[∫ d2

d1
w(s)ds

]′
Q
[∫ d2
d1
w(s)ds

]
.

(6)

III. PRELIMINARY RESULTS

This section presents an extension of the solution bound
approach proposed in [7] for input-delayed linear systems via
the Lyapunov-Krasovskii method to the context of general
nonlinear systems with input delay. This result provides the
means to derive an LMI-based solution to the robust regional
stabilization problem as stated in Section II. Firstly, a local
stability result for retarded functional differential equations is
recalled. To this end, consider the following delayed state-
space representation:{

ẋ = g(t, xt), ∀ t ≥ ti, x ∈ Rn,
xti = ψ ∈ Cn[−d,0 ] .

(7)

It is assumed that g : R × Cn[−d,0] 7→ Rn, with g(t, 0) = 0,
∀ t ≥ ti, satisfies the conditions of existence and uniqueness
of solution for any t ≥ ti. Next, for system (7), we present the
following local version of the Lyapunov-Krasovskii stability
theorem [27].

Lemma 3: Let u, v, w : R 7→ R be continuous nonde-
creasing and positive definite functions, X ∈ Rn a bounded
compact set containing x = 0, and

X a :=
{
φ ∈ Cn[−d,0 ] : φ(s) ∈ X , ∀ s ∈ [−d, 0 ]

}
. (8)

Suppose there exists a continuously differentiable functional
V : R× Cn[−d,0 ] 7→R+ satisfying

u(‖x(t)‖) ≤ V (t, xt) ≤ v(‖xt‖[−d,0]), ∀ xt ∈ X a, t ≥ ti,
V̇ (t, xt) < −w(‖x(t)‖), ∀ xt ∈ X a, t ≥ ti , (9)

where V̇ (t, xt) denotes the time-derivative of V (t, xt) along
the solution of (7). Then, the equilibrium solution x = 0 of
(7) is uniformly asymptotically stable.

Since the delayed input is a function of the state, note that
the closed-loop system in (3) is of the form of system (7).
However, when the zero equilibrium of the open-loop system
of (1) is unstable, Lemma 3 cannot be applied to system
(3) for all t ≥ 0 because there is no V (t, xt) satisfying the
second condition in (9). Indeed, if such a V (t, xt) existed and
since f(·) is time-invariant, the zero equilibrium of the system
ẋ = f(x, δ) would be locally asymptotically stable, which is a
contradiction. To overcome this difficulty, an approach inspired
by [7] is presented in the sequel. The idea consists on ensuring
that the state trajectory in the interval [0, t0) does not leave
the region of attraction of the zero equilibrium solution of
the closed-loop system and then to apply Lemma 3 to system
(3) for all t ≥ t0. To this end, let the following Lyapunov-
Krasovskii functional candidate:

V (t, xt, ẋt) = V1(x(t)) + V2(t, xt) + V3(ẋt), (10)
where

V1(x(t)) = x(t)
′
P1x(t),

V2(t, xt)=
∫ t
t−τ(t) x(α)′P21x(α)dα+

∫ t
t−d x(α)′P22x(α)dα,

V3(ẋt) = d
∫ 0

−d
∫ t
t+β

ẋ(α)′P3ẋ(α)dα dβ, (11)

with P1, P21, P22 and P3 being symmetric positive definite
matrices. To simplify the notation, let V (t) := V (t, xt, ẋt).

The next lemma gives conditions to ensure the robust
regional stability of system (1).

Lemma 4: Consider system (1) with f(·), B(·) and K(·)
being general nonlinear functions satisfying the conditions
of existence and uniqueness of solution for any t ≥ 0,
the Lyapunov-Krasovskii functional given in (10) and the
following sets:

R0 =
{
x ∈ Rn :x′P1x≤1

}
, R=

{
x ∈ Rn :x′P1x≤γ

}
, (12)

with γ > 0 as defined in the sequel. Let V̇ (t, xt, ẋt, δ) and
V̇1(x(t), δ) be respectively the time-derivatives of V (t, xt, ẋt)
and V1(x(t)) along the trajectories of (1). Suppose there exist
positive scalars ε, σ and ϕ satisfying the following conditions:
C1 V̇ (t, xt, ẋt, δ) ≤ −ε‖x(t)‖2, ∀ xt ∈ X a, t ≥ t0, ∀ δ ∈ ∆;
C2 V̇1(x(t), δ)−2ϕV1(x(t)) ≤ 0, ∀ x(t) ∈ X , t ∈ [0, t0),
∀ δ ∈ ∆;

C3 V̇ (t, xt, ẋt, δ) − 2ϕV1(x(t)) ≤ 0, ∀ xt ∈ X a, t ∈ [0, t0),
∀ δ ∈ ∆;

C4 σP1 − d
(
P21 + P22

)
≥ 0;

C5 R ⊂ X , with γ = σ + e2ϕd.
Then, provided that x̄0 ∈ R0, the state trajectory x(t), for all
t ≥ 0 and δ ∈ ∆, will never leave R and x(t)→ 0 as t→∞.

Proof: Notice from Lemma 3 that C1 implies the asymp-
totic convergence to zero of x(t) provided that the state
trajectory x(t), for any t ∈ [0, t0), is confined to a region
R̃(γ) := {xt ∈ Cn[−d,0) : V (t, xt, ẋt) ≤ γ} ⊂ X a, for some
γ > 0. It will be shown in the sequel that C2 and C3 guarantee
for all t ∈ [0, t0) that x(t) lies inside the region R ⊂ X and
V (t, xt, ẋt) ≤ γ, with γ as in C5, provided that x̄0 belongs
to the set R0.

Firstly, by [28, Lemma 2.5], C2 implies the following:

V1(x(t)) ≤ e2ϕtV1(x(0)), ∀ t ∈ [0, t0), δ ∈ ∆. (13)

Integrating C3 from 0 to t, for any t ∈ [0, t0), leads to

V (t) ≤ V (0)+2ϕ
∫ t
0
V1(x(s))ds, ∀ t ∈ [0, t0), δ ∈ ∆, (14)

which together with (13) yields:

V (t)≤V (0)+V1(x(0))
(
e2ϕt−1

)
,∀ t ∈ [0, t0), δ ∈ ∆. (15)

Next, an upper bound on V (0) is derived from (10) using
arguments similar to those as in [7]. To this end, since the
solution to (3) for t ∈ [0, t0) does not depend on the value of
x(s) for s < 0, similar as in [7] it is considered that x(s) =
x̄0, ∀ s ∈ [−d, 0]. Hence, the following is obtained from (10)
and (11):

V (0) = x̄′0P1x̄0 +
∫ 0

−τ(0) x̄
′
0P21x̄0 dα+

∫ 0

−d x̄
′
0P22x̄0 dα

= x̄′0 (P1 + τ(0)P21 + dP22) x̄0

≤ x̄′0
[
P1 + d(P21 + P22)

]
x̄0 (16)

As V1(x(0)) = x̄′0P1x̄0 and taking (16) and C4 into
account, (15) leads to:

V (t) ≤
(
σ + e2ϕt

)
x̄′0P1x̄0, ∀ t ∈ [0, t0), δ ∈ ∆.

Hence, if x̄0 ∈ R0 and since t0 ≤ d, the following holds:

V (t) ≤ γ, ∀ t ∈ [0, t0), δ ∈ ∆; with γ = σ + e2ϕd. (17)
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Next, considering that by (10) we have V (t) ≥ V1(x(t)), it
follows that:

V1(x(t)) ≤ V (t) ≤ γ, ∀ t ∈ [0, t0), δ ∈ ∆ . (18)

Thus, provided that x̄0 ∈ R0, the inequality in (18) ensures
that x(t) ∈ R for all t ∈ [0, t0) and δ ∈ ∆. In addition, if
C1 holds, then V̇ (t) < 0, for all t ≥ t0 and δ ∈ ∆, and
hence V1(x(t)) ≤ V (t) ≤ V (t0) ≤ γ, ∀ t ∈ [t0,∞), δ ∈ ∆.
Finally, in view of C5, the state trajectory x(t), for all t ≥ 0
and δ ∈ ∆, will never leave R and thus xt ∈ X a, ∀ t ≥ t0,
which from Lemma 3 ensures that x(t)→ 0 as t→∞. �

Remark 1: It should be pointed out that the setting con-
sidered in this paper differs from the one proposed, e.g., in
[1], where it is assumed that u(s), for s ∈ [−d, 0], is defined
by an initial actuator trajectory φ(s), s ∈ [−d, 0]. In this case,
u(t−τ(t)) will also affect the system dynamics over the interval
[0, t0). Precisely, the system dynamics for t ∈ [0, t0) will be
ẋ(t) = f(x(t), δ) + B(x(t), δ)w(t), with w(t) = u(t−τ(t)),
u(s) = φ(s), s ∈ [−d, 0]. Then, to obtain a bound on the
system trajectory in this interval, we have to modify conditions
C2 and C3 and the definition of γ in C5 of Lemma 4
accordingly. For instance, assuming that φ : [−d, 0]→ Rnu is a
continuously differentiable function with a finite norm ‖φ‖d =
sup−d≤t≤0 ‖φ(t)‖ ≤ λ, C2 and C3 can be respectively
modified as: (C2’) V̇1(x(t), δ)−2ϕV1(x(t))−κw(t)′w(t) < 0,
∀ x ∈ X , t ∈ [0, t0), δ ∈ ∆, w ∈ W and κ > 0; and
(C3’) V̇ (t, xt, ẋt, δ)−2ϕV1(x(t))−w(t)′w(t) < 0, ∀ xt ∈ Xa,
t ∈ [0, t0), δ ∈ ∆ and w ∈ W , where W = {w ∈ Rnu :
w(t)′w(t) ≤ λ2}. However, due to space limitation, this case
is not addressed in this paper.

IV. MAIN RESULTS

This section starts by introducing the following polynomial
decomposition of the vector and matrix functions f(x, δ) and
B(x, δ):{

f(x, δ)=Πa(x)′Aa(δ)x, B(x, δ)=Πa(x)′Ba(δ),

Πa(x) = [ In Π(x)′ ]′,
(19)

where Aa : ∆ 7→ Rm×n and Ba : ∆ 7→ Rm×nu are affine
matrix functions of δ, and Π : X 7→ R(m−n)×n is a polynomial
function of x such that the following constraint holds:

Ω1(x) + Ω2(x)Π(x) = 0, (20)

for some affine matrix functions Ω1 : X 7→ Rq×n and
Ω2 : X 7→ Rq×(m−n), q ≥ m−n. Notice that the matrix Π(x)
in the decomposition in (19) and (20) contains monomials in x
of f(x, δ) of degree equal or larger than one and monomials in
x of B(x, δ) not appearing in f(x, δ) (with sum of monomials
being also allowed). Observe that the integer m will be
determined by the choice of monomials in x comprised in
Π(x).

It is assumed that the matrix Ω2(x) is full column-rank for
all x ∈ X . It should be noticed that this assumption does
not imply any loss of generality because it is always possible
to choose a polynomial matrix Π(x) ensuring that such an
assumption holds.

Remark 2: It can be easily verified using standard poly-
nomial manipulations that there always exists a polynomial

decomposition as in (19) and (20) by a suitable choice of
Π(x) [21]. The reader may follow the numerical examples in
Section V for details on how to choose the matrix Π(x).

Next, taking the Lyapunov-Krasovskii functional in (10)
into account, the time-derivative of V (t), denoted by V̇ (t),
is given by:

V̇ (t)=2x′P1ẋ+ x′
(
P21 + P22

)
x− (1− τ̇)x̃′P21x̃

− x̆′P22x̆+ d2ẋ′P3ẋ− d
∫ t
t−τ(t) ẋ

′(α)P3ẋ(α) dα

+ d
∫ t−τ(t)
t−d ẋ′(α)P3ẋ(α) dα, (21)

where x̃ is as in (4) and

x̆ := x(t− d) . (22)

In view of Lemma 2 and since τ̇ ≤ h, the following upper
bound on V̇ (t) holds:

V̇ (t) ≤ 2x′P1ẋ+ x′(P21 + P22)x

− (1− h)x̃′P21x̃− x̆′P22x̆+ d2ẋ′P3ẋ

−
[∫ t
t−τ(t) ẋ(α)dα

]′
P3

[∫ t
t−τ(t) ẋ(α)dα

]
−
[∫ t−τ(t)
t−d ẋ(α)dα

]′
P3

[∫ t−τ(t)
t−d ẋ(α)dα

]
. (23)

Now, let the following notation:

η(xt)=
[
x′(t)P1 x̃(t)′P1 x̆(t)′P1( ∫ t
t−τ(t) ẋ(α)dα

)′
P1

( ∫ t−τ(t)
t−d ẋ(α)dα

)′
P1

]′
, (24)

Υ(x, x̃, δ)=
[
dΠa(x)′Aa(δ)Q1 dΠa(x)′Ba(δ)K(x̃)Q1

0n 0n 0n
]
, (25)

Q1 = P−11 , Q21 = Q1P21Q1, Q22 = Q1P22Q1,

Q3 = Q1P3Q1. (26)

Then, considering ẋ(t) for t ≥ t0 given in (3), it follows that
(23) for t ≥ t0 becomes:

V̇ (t) ≤ η(xt)
′ [Ψ(x, x̃, δ) + Υ(x, x̃, δ)′P3Υ(x, x̃, δ)] η(xt),

∀ t ≥ t0, (27)

where Ψ(x, x̃, δ)=[Ψij ] , i, j=1, . . . , 5, is a symmetric block
matrix function whose nonzero blocks Ψij , i= 1, . . . , 5, j =
i, . . . , 5, are given by:

Ψ11 = He{Πa(x)′Aa(δ)Q1}+Q21 +Q22,

Ψ12 = Πa(x)′Ba(δ)K(x̃)Q1, Ψ22 = −(1− h)Q21,

Ψ33 = −Q22, Ψ44 = −Q3, Ψ55 = −Q3. (28)

Notice that since

P1

[
x(t)− x̃(t)−

∫ t
t−τ(t) ẋ(α) dα

]
= 0,

P1

[
x̃(t)− x̆(t)−

∫ t−τ(t)
t−d ẋ(α) dα

]
= 0,

(29)

it can be easily verified that the vector η(xt) is such that

Iη(xt) ≡ 0, I =

[
In −In 0n −In 0n
0n In −In 0n −In

]
. (30)

Then, for any free multiplier matrix R(x, x̃, δ) to be deter-
mined, the following holds:

V̇ (t) ≤ η′(xt)
[
Ψ(x, x̃, δ)+Υ(x, x̃, δ)′P3Υ(x, x̃, δ)+

He{R(x, x̃, δ)I }
]
η(xt), ∀ t ≥ t0. (31)
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Applying similar arguments used to derive (31) and since
from (3), ẋ(t) = f(x(t), δ), ∀ t ∈ [0, t0), and x(s) =
x̄0, ∀ s ∈ [−d, 0], it follows that x̃(t) = x̆(t) = x̄0,
∀ t ∈ [0, t0). Hence, the term V̇ (t)−2ϕV1(x(t)), ∀ t ∈ [0, t0),
satisfies:
V̇ (t)−2ϕV1(x(t)) ≤ η̃(xt)

′
[
Ψ̃(x, δ)

+ Υ̃(x, δ)′P3Υ̃(x, δ) + He{S(x, δ)Ĩ }
]
η̃(xt), (32)

where S(x, δ) is a free matrix function to be determined and

η̃(xt) =
[
x′(t)P1 x̄′0P1

( ∫ t
t−τ(t) ẋ(α)dα

)′
P1

]′
,

Υ̃(x, δ) =
[
dΠa(x)′Aa(δ)Q1 0n 0n

]
,

Ĩ =
[
In −In −In

]
, (33)

Ψ̃ = diag
{

He{Πa(x)′Aa(δ)Q1}+Q21+Q22−2ϕQ1,

−(1−h)Q21 −Q22, −Q3

}
.

In the sequel, it will be proposed a solution to the robust
regional stabilization problem in terms of a finite set of LMIs
to ensure that conditions C1, C2, C3, C4 and C5 hold. To this
end, it is assumed that X and ∆ are given polytopic regions
with known vertices with 0 ∈ X . In addition, it is considered
that X is either defined in terms of the convex hull of its
vertices or in the following equivalent form:

X = {x ∈ Rn : c′ix ≤ 1, i = 1, . . . , nf}, (34)
with ci ∈ Rn, i = 1, . . . , nf , defining the nf faces of X .

Theorem 1: Consider system (1) satisfying (2) and the
polynomial decomposition as defined in (19) and (20). Let
X and ∆ be given polytopic regions defining the state and
uncertainty domains, respectively. Suppose that for given
positive scalars d, h, σ and ϕ there exist real matrices F ,
Q1> 0, Q21> 0, Q22> 0, Q3> 0 and Li, for i= 1, 2, 3, and
affine matrix functions Rij(x, x̃, δ), i=1, . . . , 5, j=1, 2, and
Sk(x, δ), k = 1, 2, 3, all having appropriate dimensions and
satisfying the following LMIs:

Φ(x, x̃, δ) + He{L1Ωb(x, x̃)} < 0,
∀ (x, x̃, δ) ∈ V(X × X ×∆), (35)

He{Aa(δ)Q1N+L2Ωa(x)} − 2ϕN ′Q1N ≤ 0,
∀ (x, δ) ∈ V(X ×∆), (36)

Λ(x, δ) + He{L3Ωc(x)} ≤ 0, ∀ (x, δ) ∈ V(X ×∆), (37)

σQ1 − d
(
Q21 +Q22

)
≥ 0, (38)

1− γc′iQ1ci ≥ 0, i = 1, . . . , nf , (39)

where γ = σ + e2ϕd, and Φ(·) = [ Φij ], i, j = 1, . . . , 6, and
Λ(·) = [ Λlk ], l, k = 1, . . . , 4, are symmetric block matrices
with nonzero blocks given by
Φ11 = He{[Aa(δ)Q1 +R11(x, x̃, δ)]N}+N ′(Q21 +Q22)N,

Φ12 = Ba(δ)F +N ′R21(x, x̃, δ)′

+[R12(x, x̃, δ)−R11(x, x̃, δ)]N,

Φ13 = N ′R31(x, x̃, δ)′ −R12(x, x̃, δ),

Φ14 = N ′R41(x, x̃, δ)′ −R11(x, x̃, δ),

Φ15 = N ′R51(x, x̃, δ)′ −R12(x, x̃, δ),

Φ16 = dN ′Q1Aa(δ)′,

Φ22 =He{[R22(x, x̃, δ)−R21(x, x̃, δ)]N}−(1−h)N ′Q21N,

Φ23 = N ′[R32(x, x̃, δ)′ −R31(x, x̃, δ)′]−R22(x, x̃, δ),

Φ24 = N ′[R42(x, x̃, δ)′ −R41(x, x̃, δ)′]−R21(x, x̃, δ),

Φ25 = N ′[R52(x, x̃, δ)′ −R51(x, x̃, δ)′]−R22(x, x̃, δ),

Φ26 =dF ′Ba(δ)′, Φ33 =−Q22 −He{R32(x, x̃, δ)},
Φ34 = −R31(x, x̃, δ)−R42(x, x̃, δ)′,

Φ35 = −R32(x, x̃, δ)−R52(x, x̃, δ)′,

Φ44 = −Q3 −He{R41(x, x̃, δ)},
Φ45 = −R42(x, x̃, δ)−R51(x, x̃, δ)′,

Φ55 = −Q3 −He{R52(x, x̃, δ)}, Φ66 = N ′(Q3 − 2Q1)N,

Λ11 = He{[Aa(δ)Q1 + S1(x, δ)]N}
+N ′[Q21 +Q22 − 2ϕQ1]N,

Λ12 =N ′S2(x, δ)′−S1(x, δ), Λ13 =N ′S3(x, δ)′−S1(x, δ),

Λ14 = dN ′Q1Aa(δ)′,

Λ22 = −(1− h)Q21 −Q22 −He{S2(x, δ)},
Λ23 =−S3(x, δ)′−S2(x, δ), Λ33 =−Q3−He{S3(x, δ)},
Λ44 = N ′(Q3 − 2Q1)N,

N = [ In 0n×(m−n) ],

Ωa(x) = [ Ω1(x) Ω2(x) ],

Ωb(x, x̃) =

 Ωa(x) 0 0 0 0 0
0 Ωa(x̃) 0 0 0 0
0 0 0 0 0 Ωa(x)

 ,
Ωc(x) =

[
Ωa(x) 0 0 0

0 0 0 Ωa(x)

]
.

Then, the origin of the closed-loop system given by (3) with
K(x̃) = F Πa(x̃)Q−11 (40)

is robustly regionally stable, i.e., for any x̄0 ∈ R0 and δ ∈ ∆,
x(t) ∈ R for all t ≥ 0 and x(t)→ 0 as t→∞, where R and
R0 are as defined in (12) with P1 = Q−11 .

Proof: Suppose that (35)-(39) are satisfied. Then, by con-
vexity arguments, (35), (36) and (37) are satisfied for all
(x, x̃, δ) ∈ X ×X ×∆, (x, δ) ∈ X ×∆ and (x, δ) ∈ X ×∆,
respectively. In addition, let P1, P21, P22 and P3 be matrices
satisfying the relations in (26) and observe that Ωa(·)Πa(·)=0,
NΠa(·)=In and K(x̃)Q1 =F Πa(x̃). In the following, it will
be shown that the conditions of Lemma 4 hold.

Firstly, note from Lemma 1 that Q3 − 2Q1 ≥ −P−13 ,
and thus (35) also holds with Φ66 replaced by −N ′P−13 N .
Then, post- and pre-multiplying (35) with the latter Φ66

by diag{Πa(x),Πa(x̃), In, In, In,Πa(x)} and its transpose,
respectively, and applying Schur’s complement to the resulting
inequality leads to:
Ψ(x, x̃, δ)+Υ(x, x̃, δ)′P3Υ(x, x̃, δ)+He{R(x, x̃, δ) I} < 0,

∀ (x, x̃, δ) ∈ X × X ×∆, (41)
with Ψ(·), Υ(·) and I as defined previously and R(x, x̃, δ) is
given by:

R(x, x̃, δ)=

[
R′11Πa(x) R′21Πa(x̃) R′31 R′41 R′51
R′12Πa(x) R′22Πa(x̃) R′32 R′42 R′52

]′
,

where, for notation simplicity, Ri,j denotes Ri,j(x, x̃, δ).
Then, pre- and post-multiplying (41) by respectively η(xt)

′

and η(xt) as in (24) and since Iη(xt) ≡ 0, yields
η(xt)

′[Ψ(x, x̃, δ)+Υ(x, x̃, δ)′P3Υ(x, x̃, δ)
]
η(xt)<0,

∀ (xt, δ) ∈ X a×∆, η(xt) 6≡ 0, t ≥ t0. (42)



6

Hence, taking (27) into account and noting that the in-
equality (42) is strict, X is bounded and η(xt) also depends
on x(t), there exists a sufficiently small scalar ε such that the
condition C1 of Lemma 4 holds.

Now, pre- and post-multiplying (36) by x(t)′P1Πa(x)′ and
Πa(x)P1x(t), respectively, and considering the definition of
V1(x(t)) in (11) and the fact that

ẋ(t) = f(x(t), δ) = Πa(x)′Aa(δ)x, ∀ t ∈ [0, t0),

leads to:
V̇1(x(t))−2ϕV1(x(t)) ≤ 0, ∀ (x(t), δ) ∈ X ×∆, ∀ t ∈ [0, t0),

and thus C2 holds.
Next, similar as for (35), by Lemma 1 it turns out

that (37) also holds with Λ44 replaced by −N ′P−13 N .
Then, post- and pre-multiplying (37) with the latter Λ44

by diag{Πa(x), In, In,Πa(x)} and its transpose, respectively,
and applying Schur’s complement to the resulting inequality
leads to:

Ψ̃(x, δ) + Υ̃(x, δ)′P3Υ̃(x, δ) + He{S(x, δ)} Ĩ} ≤ 0,

∀ (x, δ) ∈ X ×∆, (43)
with Ψ̃(·), Υ̃(·) and Ĩ as defined previously and S(x, δ) is
given by:

S(x, δ) =
[
S1(x, δ)′Πa(x) S2(x, δ)′ S3(x, δ)′

]′
.

Pre- and post-multiplying (43) by respectively η̃(xt)
′ and

η̃(tx) given in (33) and considering (32) it follows that
condition C3 holds.

Finally, taking the matrices defined in (26) into account,
notice that (38) is equivalent to condition C4 whereas (39)
ensures that the inclusion condition R ⊂ X of C5 holds (see,
e.g., [29]), which completes the proof. �

Remark 3: Notice that if the inequalities of Theorem 1 are
feasible for some d = d̄ and h = h̄, then they are also feasible
for all d < d̄ and h < h̄. In addition, if there is a solution
u(·) = Kx(·) of Theorem 1 for the linear approximation
of system (1) around the system origin then there exists a
solution of Theorem 1 for the original polynomial system and
a sufficiently small region X .

A. Computational Issues

Theorem 1 can be applied for designing the polynomial
state feedback control law u(·) = K(x(·))x(·), with K(x(·))
as defined in (40), in order to regionally stabilize the closed-
loop system. Furthermore, the following design optimization
problems are of interest.

Maximizing the set of admissible initial states: Firstly, as-
suming that the maximal admissible input delay d, its variation
rate h and the polytopic state-space domain X are given, the
following optimization problem maximizes the volume of the
set R0 of admissible initial states:

max
ϕ,σ,Q1,...,F

log
(
det(Q1)

)
subject to (35)-(39). (44)

If σ and ϕ are considered as free parameters, notice that
the above optimization problem is non-convex and a direct
numerical solution will be hard to be obtained. To derive a
solution via semi-definite programming, it can be applied a
gridding technique over σ and ϕ as considered in the numerical
examples in Section V.

In addition, the shape and size of X play an important role
in the maximization of R0, since it is implied by Theorem 1
that R0 ⊆ R ⊂ X to guarantee the positively invariance
of R. In practical applications, the shape and size of X
may be estimated from the physical knowledge of state-space
constraints or from directions where the system is likely to
be initialized. When there is no previous knowledge on the
physical constraints, the set X can be initially defined in terms
of the following parameterized hyper-rectangle

X := {x ∈ Rn : |xi| ≤ µi, i = 1, . . . , n} ,
where µi, i = 1, . . . , n, are positive scalars defining the size
of X . In this case, it can be straightforwardly applied the
approach proposed in [30] for iteratively maximizing the sets
X and R.

Maximizing a lower bound on the maximum admissible
delay: In order to maximize a lower bound on the maximum
admissible delay d ensuring the regional stability for a given
set of initial states of the closed-loop system, it is assumed
for simplicity that h and X are given. In particular, the set of
admissible initial states of interest is assumed to be an ellipsoid
as described in the following:

R̃0 :=
{
x ∈ Rn : x′P0x ≤ 1

}
, (45)

where P0 > 0 is a given matrix defining the size and shape
of R̃0. Thus, the following optimization problem can be
formulated to maximize d:

max
d,ϕ,σ,Q1,...,F

d subject to (35)-(39) and
[
P0 In
In Q1

]
≥0. (46)

Notice that the last inequality in (46) ensures that R̃0 ⊆ R0.
In addition, similarly to the optimization problem of (44), a
numerical solution in terms of LMI constraints can be obtained
by means of a griding over σ, ϕ and d.

V. NUMERICAL EXAMPLES

In this section, two numerical examples are provided to
demonstrate the effectiveness of the proposed approach.

A. Van der Pol equation

Consider the following state-space representation of the Van
der Pol equation with a delayed control input:{

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + δ
(
1− x21(t)

)
x2(t) + u(t− τ(t)),

(47)

where x=[x1 x2 ]′ ∈ R2 is the state, δ ∈ R is a bounded
uncertain constant parameter and u ∈ R is the control input
being subject to a time-varying delay τ(t). Notice that the
origin of the above system is open-loop unstable. In this
example, it is assumed that the sets X and ∆ defining
respectively the state and uncertainty domains, as well as
the maximum delay variation rate h are known a priori and
the following two scenarios will be considered: (i) for a
given maximum admissible delay d, determine a controller
u(t) = K(x)x(t) that maximizes the set of admissible initial
states; and (ii) for a given set of admissible initial states,
determine a controller u(t) = K(x)x(t) that maximizes a
lower bound on the maximum admissible delay d.

To determine a polynomial matrix decomposition as in
(19), observe that the largest polynomial degree of the system
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dynamics (47) with respect to x is three. Then, the matrix
Π(x) has to contain the monomials in x of degree one up to
two. For instance, let Π(x) be defined as below:

Π(x) =
[
x1I2 x21I2

]′
. (48)

Then, the matrices Aa(δ) and B(δ) in (19) are as follows:

Aa(δ) =
[
A′0 02 A′2

]′
, (49)

Ba(δ) =
[
B′0 01×2 01×2

]′
, (50)

where

A0 =

[
0 1
−1 δ

]
, A2 =

[
0 0
0 −δ

]
, B0 =

[
0
1

]
,

and the constraint in (20) is satisfied with the following
matrices

Ω1(x) =

[
x1I2
02

]
, Ω2(x) =

[
−I2 02
x1I2 −I2

]
. (51)

Note that the matrix Ω2(x) as above has full column-rank for
all x ∈ R2.

It is considered that the maximum delay variation rate h
and the sets X and ∆ are given by:

h = 1, X =
{
x ∈ R2 : |xi| ≤ µ, i = 1, 2

}
,

∆ =
{
δ ∈ R : 0.4 ≤ δ ≤ 0.8

}
,

(52)

where µ is a scalar defining the size of X . Firstly, for d =
0.1, the optimization problem (44) to maximize R0 is solved
considering the evaluation of inequalities (35)-(39) in a 2-D
grid on (σ, ϕ) and the iterative procedure of [30], leading to:

P1 =

[
0.1096 0.0033
0.0033 0.1096

]
, µ = 3.3, σ = 10−5,

ϕ = 0.880, , K(x) =

[
0.0117− 7.2315× 10−7x21
−1.7076 + 1.1461× 10−5x21

]′
.

Fig. 1 shows the obtained regions R0 and R (i.e., an estimate
of the set of reachable states) as well as closed-loop trajectories
starting at the boundary of R0 considering a constant delay
τ(t) = 0.1 (solid black line) and a time-varying one τ(t) =
0.05

(
1 +cos(2πt)

)
(dashed black line).
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0

1

2

3
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Figure 1. The sets R0 (blue line) and R (red line) and stable trajectories
(solid and dashed black lines).

On the other hand, assuming that the set of admissible
initial states is defined as in (45) with P0 = 2I2, optimization

problem (46) is considered to synthesize a controller in order
to obtain a maximized lower bound d on the admissible delay
yielding:

d=0.26, ϕ=2.218,K(x)=

[
0.0803 + 4.1122× 10−6x21
−1.6411− 5.9074× 10−5x21

]′
,

considering σ = 10−5, µ = 1 and a 2-D griding over (ϕ, d).

B. Event-based sampled-data polynomial system
Consider the following open-loop unstable polynomial sys-

tem taken from [23]:{
ẋ1(t) = −1.5x21(t)− 0.5x31(t)− x2(t),

ẋ2(t) = −u(t) .
(53)

For the above system, it is considered that the control signal
u(t) is an event-based sampled-data state feedback control
law with a bounded sampling interval, i.e., u(t) = u(tk),
t ∈ [tk, tk+1), tk+1− tk ≤ d, ∀ k ∈ Z+. In this setting, it
is assumed that the state x = [x1 x2 ]′ is sampled at time
instants t0, t1, . . . , tk, . . . satisfying 0 <t0<t1< · · · < tk <
· · · , ∀ k ∈ Z+. In this example, it is aimed to design a locally
stabilizing controller that maximizes d assuming that the first
sampling instant t0 can take any value in the interval (0, d].
Following the approach in [31] with a zero transmission delay,
the aperiodic sampled-data control signal can be modeled as
a time-delayed signal with a bounded varying delay satisfying
τ(t) := t− tk ≤ d, τ̇(t) = 1, ∀ t ∈ [tk, tk+1), and being reset
to zero at the sampling instants.

Similarly to Example V-A, a polynomial decomposition
of the system dynamics can be obtained by considering the
matrices Π(x) together with Ω1(x) and Ω2(x) as in (48) and
(51), respectively, and with Aa =

[
A′0 A′1 A′2

]′
,

Ba =
[
B′0 01×2 01×2

]′
, B0 =

[
0 −1

]′
,

A0 =

[
0 −1
0 0

]
, A1 =

[
−1.5 0

0 0

]
, A2 =

[
−0.5 0

0 0

]
.

In this example, it is considered that the state-space domain
and the set of admissible initial states are respectively given
by X = {x ∈ R2 : |xi| ≤ 0.6, i = 1, 2} and R̃0 = {x ∈
R2 : x21 + x22 ≤ 0.252}. Then, the optimization problem (46)
is applied to maximize d such that the origin of the closed-
loop system is regionally stable leading to d = 0.112, i.e.,
tk+1 − tk ≤ 0.112, for all k ∈ Z+, and

P1 =

[
4.3912 −1.4268
−1.4268 4.2385

]
,K(x)=

[
−1.5420− 0.0057x21
1.6718 + 0.0052x21

]′
,

considering σ = 10−5 and ϕ = 0.890. It should be noted
that in [23] a locally stabilizing controller has been designed
for a maximum sampling interval d = 0.099 [sec] and it is
not guaranteed that a controller can be designed for d ≥ 0.1.
Furthermore, [23] does not provide a domain of stability. The
regions R0 and R are shown in Fig. 2 as well as stable (black
dashed line) and unstable (black dotted line) closed-loop
trajectories starting close at the boundary of R0 considering a
constant sampling interval of 0.112 (i.e., tk+1 − tk = 0.112,
∀ k ∈ Z+) with t0 = 0.112. In particular, it can be observed
that there exist divergent trajectories starting very close to the
computed domain of stability, which shows that the method
can provide good estimates of the region of attraction.



8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. The sets R0 (blue line) and R (red line), as well as stable (dashed
black lines) and unstable (dotted black lines) trajectories.

VI. CONCLUDING REMARKS

This paper has addressed the problem of regional stabiliza-
tion of open-loop unstable input-delayed nonlinear polynomial
systems with polytopic parameter uncertainty. Considering a
novel polynomial decomposition of the system dynamics, the
control synthesis is cast in terms of LMIs and is based on
the Lyapunov-Krasovskii stability theory. In particular, the
proposed conditions take into account that the system initially
operates in open-loop for a certain interval of time due to
the input delay. Then, a nonlinear polynomial state-feedback
controller is designed such that the zero equilibrium solution
of the closed-loop system under a bounded time-varying input
delay is robustly locally uniformly asymptotically stable with a
guaranteed stability region. Two optimization procedures have
also been proposed to either maximize the set of admissible
initial states (assuming a given bound on the input delay
and its variation rate) or maximize a lower bound on the
maximum input delay for a given set of admissible initial
states. Numerical examples have demonstrated the potentials
of the proposed approach.
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