Haniye Dehestani 
  
Yadollah Ordokhani 
  
Bessel collocation method for solving variable order fractional problems

Keywords: Bessel collocation method, Variable-order fractional operational matrix, Variable order fractional differential equations, Variable order fractional functional boundary value problems, Variable order fractional pantograph equations AMS Mathematical Subject Classification [2010]: 26A33, 33F05 1 speaker

In this paper, we examined a wide class of the variable order fractional problems such as linear and nonlinear fractional variable order differential equations, variable order fractional functional boundary value problems, variable order fractional pantograph differential equations. The proposed method is a collocation method based on the Bessel polynomials and the operational matrix of derivatives, which transformed equations into a system of non-linear algebraic equations to achieve the approximate solution. By using Caputo fractional derivative, the operational matrix of the variable-order fractional derivatives is constructed. The error analysis shows that the method is convergent. Several numerical results confirm the accuracy and efficiency of the proposed method.

Introduction

Recently, several papers have been devoted to the study of variable order fractional problems. Variable fractional problems which have different applications in various areas of science and engineering such as processing of geographical data using variable-order derivatives [START_REF] Cooper | Filtering using variable order vertical derivatives[END_REF], signature verification [START_REF] Tseng | Design of variable and adaptive fractional order FIR differentiators[END_REF], constitutive laws in viscoelastic continuum mechanics [START_REF] Ramirez | A variable order constitutive relation for viscoelasticity[END_REF]. Therefore, various numerical and analytical methods developed by many researchers for obtaining the solutions of the variable order fractional differential equations, boundary value problems, delay differential equations.

Razminia et al. [START_REF] Razminia | Solution existence for non-autonomous variable-order fractional differential equations[END_REF], investigated existence of solution for non-autonomous variable-order fractional differential equations. Sun and Chen [START_REF] Sun | Variable-order fractional differential operators in anomalous diffusion modeling[END_REF][START_REF] Sun | On mean square displacement behaviors of anomalous diffusions with variable and random orders[END_REF][START_REF] Chen | A variable-order time-fractional derivative model for chloride ion sub-diffusion in concrete structures[END_REF][START_REF] Sun | Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media[END_REF][START_REF] Fu | Method of approximate particular solutions for constantand variable-order fractional diffusion models[END_REF], introduced some important applications of variable fractional derivative. Liu, Shen and Zhang [START_REF] Lin | Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation[END_REF][START_REF] Chen | Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation[END_REF][START_REF] Chen | Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes first problem for a heated generalized second grade fluid[END_REF][START_REF] Shen | Numerical techniques for the variable order time fractional diffusion equation[END_REF][START_REF] Chen | Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation[END_REF], have been used numerical methods for variable fractional partial differential equations. Yu and Erturk [START_REF] Xu | A finite difference technique for solving variable-order fractional integro-differential equations[END_REF] applied a finite difference method to variable order fractional integro-differential equations.

Bhrawy and Zaky [START_REF] Bhrawy | Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation[END_REF][START_REF] Bhrawy | Numerical algorithm for the variable-order Caputo fractional functional differential equation[END_REF], have been solved variable-order fractional partial differential equations and differential equations. Authors in [START_REF] Chena | Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets[END_REF] have solved nonlinear variable order fractional differential equations with Legendre wavelets.

Li and Wu [START_REF] Li | A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations[END_REF] reproduced kernel method for variable order fractional boundary value problems. Cao and Qiu [START_REF] Cao | A high order numerical scheme for variable order fractional ordinary differential equations[END_REF] introduced a high order numerical scheme for variable order fractional ordinary differential equations. Sweilam et al. [START_REF] Sweilam | Numerical simulations for variable-order fractional nonlinear delay differential equations[END_REF] have been solved variable order fractional nonlinear delay differential equations.

In this paper, by means of the Bessel collocation method and operational matrix of the variable order fractional derivatives used for solving a wide class of variable order fractional problems. Authors have been used Bessel collocation 2 Haniye Dehestani, Yadollah Ordokhani methods for solving many problems such as Yuzbasi et al. [START_REF] Yuzbasi | A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients[END_REF] have solved linear neutral delay differential equations with variable coefficients, Yuzbasi and Sezer [START_REF] Yuzbasi | A collocation approach to solve a class of LaneEmden type equations[END_REF], investigated a class of Lane-Emden type equations, Yuzbasi et al. [START_REF] Yuzbasi | A Bessel collocation method for numerical solution of generalized pantograph equations[END_REF] have worked on pantograph equations, Tohidi et al. [START_REF] Tohidi | A Bessel collocation method for solving fractional optimal control problems[END_REF] have employed Bessel collocation method for solving fractional optimal control problems.

Applications

Variable-order fractional derivatives have a lot of application in various branches of physics and engineering. So, we describe some models with variable-order fractional derivatives as:

• Tuberculosis is the potentially fatal disease, which resistant to treatment and has been grown in the worldwide.

TB models considered in several papers such as [START_REF] Jp | Mathematical modelling of tuberculosis epidemics[END_REF][START_REF] Castillo-Chavez | To treat or not to treat: the case of tuberculosis[END_REF], which these models incorporate three strains: drug sensitive, multi-drug resistant and extensively drug-resistant.

Recently, Sweilam et al. in [START_REF] Sweilam | Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives[END_REF] considered TB model of variable-order fractional derivatives, which includes several factors of spreading TB such as the first infection, the exogenous reinfection and secondary infection along with the resistance factor. Variable-order fractional TB model is a general model than the integer and fractional order models, which can be employed to depict the variable memory of systems.

• In processing and transmitting information in the brain through cortical neurons, bursting and spiking oscillations play important roles. In [START_REF] Teka | Spiking and bursting patterns of fractional-order Izhikevich model[END_REF], researchers presented the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produced a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Fractional-order Izhikevich model can produce abundant bursting and spiking patterns controlled by the fractional order. when chosen much smaller values of the fractional order the model illustrates fast-spiking.

Outline of this paper

The outline of this paper is as follows. In Section 2, we introduce some necessary preliminaries and notations of variable order fractional derivatives. In Sections 3 and 4, after describing the basic formulation of Bessel polynomials, we derive the Bessel polynomials operational matrix of integer-order and variable-order fractional derivative. Section 5, we develop a collocation approach to solve the variable-order fractional problems. In Section 6, the error analysis is given. Section 7, we examine our method over a set of variable order fractional linear, non-linear differential equations, variable order fractional functional boundary value problems and variable order fractional pantograph differential equations and compare the results with the results of other methods. Concluding remarks are given in Section 8.

Preliminaries and notations

We express some basic definitions and properties of the fractional calculus theory, which are applied further in this paper [START_REF] Chen | Numerical solution for the variable order linear cable equation with Bernstein polynomials[END_REF].

Definition 1 . 2. The fractional derivative of u(t) in the Caputo sense is defined as

0 D γ(t) t u(t) = 1 Γ(m -γ(t)) t 0 (t -x) m-γ(t)-1 u (m) (x)dx, m -1 < γ(t) ≤ m, m ∈ N, t > 0.
Based on the above definition, the following results are obtained: 

• 0 D γ(t) t C = 0, (C is a constant.) • 0 < γ(t) ≤ 1, 0 D γ(t) t t β = 0, β = 0, Γ(β+1) Γ(β+1-γ(t)) t β-γ(t) , β = 1, 2, • • • . • 1 < γ(t) ≤ 2, 0 D γ(t) t t β = 0, β = 0, 1, Γ(β+1) Γ(β+1-γ(t)) t β-γ(t) , β = 2, 3, • • • .

Bessel functions

t 2 y ′′ (t) + ty ′ (t) + (t 2 -n 2 )y(t) = 0, (1) 
where the solution to Bessel's equation yields Bessel functions of the first and second kind as follows:

y = A Jn (t) + BY n (t), n = 0, 1, 2, • • • ,
where A and B are arbitrary constants. Jn (t) in the solution to Bessel's equation is referred to as a Bessel function of the first kind, so that

Jn (t) = ∞ k=0 (-1) k k!Γ(n + k + 1) ( t 2 ) 2k+n , (2) 
Γ(λ) is the gamma function. The Bessel functions of the first kind are orthogonal with respect to the weight function w(t) = t in the interval [0, 1] with the orthogonality property

1 0 t Jn (λt) Jn (µt)dt = 1 2 [ Jn+1 (λ)] 2 δ λµ , (3) 
if in the relation λ, µ are roots of the equation Jn (λt) = 0, where δ λµ is the Kronecker function. The n-th degree truncated Bessel functions of first kind are define by [START_REF] Tohidi | A Bessel collocation method for solving fractional optimal control problems[END_REF] J n (t) =

[ N -n 2 ] k=0 (-1) k k!Γ(k + n + 1) ( t 2 ) 2k+n , 0 ≤ t < ∞, n ∈ N, (4) 
where N is chosen the positive integer so that N ≥ n and n = 0, 1, • • • , N. We can transform the Bessel polynomials of first kind to in N-th degree Taylor polynomials. In matrix form as [37]

J(t) = P T (t), ( 5 
)
where P is defined in [START_REF] Yuzbasi | A Bessel collocation method for numerical solution of generalized pantograph equations[END_REF] and

J(t) = [J 0 (t), J 1 (t), • • • , J N (t)] T , T(t) = [T 0 (t), T 1 (t), • • • , T N (t)] T .

Operational matrices of derivative

The main purpose of this section is to calculate operational matrices of integer and variable order, about fractional derivative of Bessel polynomials.

Operational matrix of integer-order derivatives

By using the Eq. ( 4), we obtain operational matrix of integer-order derivatives of Bessel polynomials as

D m J(t) = D m ( s k=0 (-1) k k!Γ(k + n + 1) ( t 2 ) 2k+n ), s = [ N -n 2 ], (6) 
= s k=0 (-1) k k!Γ(k + n + 1) D m (t 2k+n ) 2 2k+n = s k=[ m-n 2 ] (-1) k k!Γ(k + n + 1) (2k + n)! 2 2k+n (2k + n -m)! t 2k+n-m = s k=[ m-n 2 ] b m n,k t 2k+n-m , where b m n,k = (-1) k k!Γ(k + n + 1) (2k + n)! 2 2k+n (2k + n -m)! .
Assume t 2k+n-m be expanded by Bessel polynomials as:

t 2k+n-m = N j=0 c m k,j J j (t), (7) 
substituting Eq. ( 7) into Eq. ( 6) for n = 0, 1, • • • , N, we get:

D m J(t) = s k=[ m-n 2 ] b m n,k ( N j=0 c m k,j J j (t)) (8) 
= N j=0 ( s k=[ m-n 2 ] q m n,k,j )J j (t), q m n,k,j = b m n,k c m k,j , = N j=0 Q m n,k,j J j (t).
Therefore, we have

D m J(t) = Q m J(t) = [ s k=[ m-n 2 ] q m n,k,0 , s k=[ m-n 2 ] q m n,k,1 , • • • , s k=[ m-n 2 ] q m n,k,N ]J(t), (9) 
where Q m is called operational matrix of integer-order derivatives of Bessel polynomials.

Operational matrix of variable-order fractional derivatives

To obtain the operational matrix of variable order fractional derivative of Bessel polynomials, we used Taylor polynomials. The operational matrix of Caputo variable order fractional derivatives of order 0 < γ(t) ≤ 1 for the Taylor polynomials, can be obtained as follows:

D γ(t) T (t) = D γ(t) ( ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 t t 2 . . . t N ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 Γ(2) Γ(2-γ(t)) t 1-γ(t) Γ(3) Γ(3-γ(t)) t 2-γ(t) . . . Γ(N +1) Γ(N +1-γ(t)) t N -γ(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (10) = t 1-γ(t) ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 • • • 0 0 Γ(2) Γ(2-γ(t)) 0 • • • 0 0 0 Γ(3) Γ(3-γ(t)) • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • Γ(N +1) Γ(N +1-γ(t)) 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ T (t).
Then,

D γ(t) T (t) = t 1-γ(t) θ γ(t) 1,N T (t), (11) 
where

θ γ(t) 1,N = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 • • • 0 0 Γ(2) Γ(2-γ(t)) 0 • • • 0 0 0 Γ(3) Γ(3-γ(t)) • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • Γ(N +1) Γ(N +1-γ(t)) 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
. Now, by using operational matrix of variable order fractional derivative of Taylor polynomials, we obtain operational matrix of variable order fractional derivative of Bessel polynomials as

D γ(t) J(t) = D γ(t) (P T (t)) = P D γ(t) (T (t)) (12) 
= t 1-γ(t) P θ γ(t)

1,N P -1 J(t).
Consequently, we get

D γ(t) J(t) = t 1-γ(t) η γ(t) 1,N J(t), η γ(t) 1,N = P θ γ(t) 1,N P -1 , (13) 
where η

γ(t)
1,N is called operational matrix of variable order fractional derivative of Bessel polynomials for 0 < γ(t) ≤ 1. Also, can be calculated the operational matrix of variable order fractional derivative of Bessel polynomials for 1 < γ(t) ≤ 2:

D γ(t) J(t) = t 2-γ(t) η γ(t) 2,N J(t), η γ(t) 2,N = P θ γ(t) 2,N P -1 , (14) 
where

θ γ(t) 2,N = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 • • • 0 0 0 0 0 • • • 0 0 0 Γ(3) Γ(3-γ(t)) 0 • • • 0 0 0 0 Γ(4) Γ(4-γ(t)) • • • 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • Γ(N +1) Γ(N +1-γ(t)) 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
, where η

γ(t)
2,N is called operational matrix of variable order fractional derivative of Bessel polynomials for 1 < γ(t) ≤ 2. The matrix form of variable order fractional derivative of J(t) 2 is obtained by using Taylor polynomials as

D γ(t) (T (t) 2 ) = D γ(t) ( ⎡ ⎢ ⎢ ⎢ ⎣ 1 t • • • t N t t 2 • • • t N +1 . . . . . . . . . . . . t N t N +1 • • • t 2N ⎤ ⎥ ⎥ ⎥ ⎦ ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 Γ(2) Γ(2-γ(t)) t 1-γ(t) • • • Γ(N +1) Γ(N +1-γ(t)) t N -γ(t) Γ(2) Γ(2-γ(t)) t 1-γ(t) Γ(3) Γ(3-γ(t)) t 2-γ(t) • • • Γ(N +2) Γ(N +2-γ(t)) t N +1-γ(t) . . . . . . . . . . . . Γ(N +1) Γ(N +1-γ(t)) t N -γ(t) Γ(N +2) Γ(N +2-γ(t)) t N +1-γ(t) • • • Γ(2N +1) Γ(2N +1-γ(t)) t 2N -γ(t) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = M γ(t) .
As a result, by using of Eq. ( 5) and above matrix, we get

D γ(t) (J(t) 2 ) = D γ(t) (P T (t)T T (t)P T ) (15) 
= P D γ(t) (T (t)T T (t))P T = P M γ(t) P T .

Method of solution

In this section, we use collocation method to solve variable order fractional problems as

• Variable-order fractional differential equations:

0 D γ 1 (t) t u(t) = f (t, u(t), 0 D γ 2 (t) t u(t), u ′ (t), u ′′ (t)), 0 ≤ t ≤ 1, 0 < γ 1 (t), γ 2 (t) ≤ 2, (16) 
u(0) = µ 1 , u ′ (0) = µ 2 .
• Variable-order fractional functional boundary value problems:

0 D γ(t) t u(t) = f (t, u(t), u(τ (t)), u ′ (t)), 0 ≤ t ≤ 1, 0 < γ(t) ≤ 2, (17) 
u(0) = µ 1 , u(1) = µ 2 .
• Variable-order fractional pantograph differential equation:

0 D γ(t) t u(t) = f (t, u(α 1 t), u(α 2 t), • • • , u(α l t)), 0 ≤ t ≤ 1, 0 < γ(t) ≤ 2, 0 < α i ≤ 1, (18) 
u(0) = µ 1 , u ′ (0) = µ 2 .
To solve above problems, the unknown function u(t) can be expanded as

u(t) ≃ A T J(t), (19) 
where

A = [a 0 , a 1 , • • • , a N ] T ,
using Eqs. ( 9) and ( 19) , we get:

D m u(t) ≃ D m (A T J(t)) = A T D m (J(t)) = A T Q m J(t), m ∈ N. (20) 
From Eqs. ( 13), ( 14), [START_REF] Lin | Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation[END_REF] and the property of Caputo variable-order fractional derivative in Definition 1, we expansion

the function 0 D γ(t) t u(t) for 0 < γ(t) ≤ 1, 0 D γ(t) t u(t) ≃ D γ(t) (A T J(t)) = A T D γ(t) (J(t)) = t 1-γ(t) A T η γ(t) 1,N J(t), (21) 
for 1 < γ(t) ≤ 2, we get

0 D γ(t) t u(t) = t 2-γ(t) A T η γ(t) 2,N J(t). (22) 
Also, we expansion the function u(τ (t)), by using Eq. ( 19) as

u(τ (t)) ≃ A T J(τ (t)), (23) 
in particular,

u(α i t) ≃ A T J(α i t), i = 1, 2, • • • , l. (24) 
Substituting Eqs. ( 19)- [START_REF] Razminia | Solution existence for non-autonomous variable-order fractional differential equations[END_REF] in Eqs. ( 16)-( 18), we get an algebraic equation with N + 1 unknown Bessel coefficients for each of Eqs. ( 16)- [START_REF] Li | A numerical technique for variable fractional functional boundary value problems[END_REF]. Then, we collocate this system at the following points

t i = 2i -1 N , i = 1, 2, • • • , N + 1 -j, (25) 
so that, j = 1 for a initial condition and j = 2 for two initial conditions. These equations give N -1 or N -2 non-linear algebraic equations. Now, we approximate initial conditions by Bessel polynomials for different case of fractional differential equations as

A T J(0) = µ 1 , A T Q 1 J(0) = µ 2 , (26) 
or

A T J(0) = µ 1 , A T J(1) = µ 2 . ( 27 
)
With regards to non-linear algebraic equations and initial conditions, we have a system of algebraic equations with N + 1 unknown Bessel coefficients. Consequently, which can be solved last system of non-linear algebraic equations, for the unknown vector A, by using Newton's iterative method.

Error analysis

In this section, we investigate the convergence analysis of our proposed method. Let u be a function and a some point from the interior of its domain. Assume that u has derivatives of all orders at a. Then, we define its Taylor series at a by the formula

u(t) = ∞ n=0 u (n) (t) n! (t -a) n ,
Haniye Dehestani, Yadollah Ordokhani this statement holds for any constant coefficients 0 < λ ≤ 1, as

u(λt) = ∞ n=0 u (n) (t) n! (λt -a) n . (28) 
Therefore, we can write

u(λt) = N n=0 u (n) (t) n! (λt -a) n + R N (λt), (29) 
so that,

|R N (λt)| ≤ M N (N + 1)! (λt -a) N +1 , sup t∈[0,1] | u (N +1) (t) |= M N . ( 30 
)
Theorem 1 . 6. Suppose u(λt) ∈ C N +1 [0, 1 λ ], 0 < λ ≤ 1 and u N (λt) = A T J(λt) be the approximate solution obtained by the present method in previous section. If ũN (λt) = ÃT J(λt) be the Bessel polynomials of first kind expansion of the exact solution u(λt), where

J(λt) = [ J0 (λt), J1 (λt), • • • , JN (λt)] T , Ã = [ã 0 , ã1 , • • • , ãN ] T , and 
Jn (λt) = ∞ k=0 (-1) k k!(k + n)! ( λt 2 ) 2k+n , 0 ≤ t < ∞,
where the set of Bessel polynomials of first kind Jn (λt) in L 2 [0, 1] is orthogonal with respect to the weight function

w(t) = t, 1 0 w(t)[ Jn (λt)] 2 dt = 1 2 [ Jn+1 (λ)] 2 .
Then obtain the upper bound of the error, as

∥u(λt) -u N (λt)∥ L 2 w ≤ M N λ N +1 (N + 1)! √ 2N + 4 + ∥ Ã -A∥ 2 θ N + ∥A∥ 2 ω N , (31) 
where

θ N = N n=0 1 2 [ Jn+1 (λ)] 2 1 2 , ω N = ⎡ ⎢ ⎣ N n=0 ∞ k=[ N -n 2 ] λ 4k+2n (k!(k + n)!2 2k+n ) 2 (4k + 2n + 2) ⎤ ⎥ ⎦ 1 2
.

Proof. we can write

∥u(λt) -u N (λt)∥ L 2 w ≤ ∥u(λt) -ũN (λt)∥ L 2 w + ∥ũ N (λt) -u N (λt)∥ L 2 w , (32) 
from Eq. ( 28), we define

p N (λt) = N n=0 f (n) (t) n! (λt) n ,
since ũN (λt) is the best approximation of u(λt), we have

∥u(λt) -ũN (λt)∥ L 2 w = 1 0 |u(λt) -ÃT J(λt)| 2 tdt 1 2 ≤ 1 0 |u(λt) -p N (λt)| 2 tdt 1 2 (33) ≤ M 2 N ((N + 1)!) 2 1 0 (λt) 2N +2 tdt 1 2 ≤ M N λ N +1 (N + 1)! √ 2N + 4 .
Also, we have

∥ũ N (λt) -u N (λt)∥ L 2 w = ∥ N n=0 ãn Jn (λt) - N n=0 a n J n (λt)∥ L 2 w (34) ≤ ∥ N n=0 ãn Jn (λt) - N n=0 a n Jn (λt)∥ L 2 w + ∥ N n=0 a n Jn (λt) - N n=0 a n J n (λt)∥ L 2 w ≤ ∥ N n=0 (ã n -a n ) Jn (λt)∥ L 2 w + ∥ N n=0 a n ( Jn (λt) -J n (λt))∥ L 2 w = ⎛ ⎝ 1 0 N n=0 (ã n -a n ) Jn (λt) 2 tdt ⎞ ⎠ 1 2 + ⎛ ⎝ 1 0 N n=0 a n ( Jn (λt) -J n (λt)) 2 tdt ⎞ ⎠ 1 2 ≤ 1 0 N n=0 |ã n -a n | 2 N n=0 | Jn (λt)| 2 tdt 1 2 + 1 0 N n=0 |a n | 2 N n=0 | Jn (λt) -J n (λt)| 2 tdt 1 2 ≤ ∥ Ã -A∥ 2 N n=0 1 0 t| Jn (λt)| 2 dt 1 2 + ∥A∥ 2 N n=0 1 0 | Jn (λt) -J n (λt)| 2 tdt 1 2 , ∥.∥ 2 is 2-norm of vectors.
Therefore, by use of orthogonality property of Bessel polynomials, we get

∥ũ N (λt) -u N (λt)∥ L 2 w ≤ ∥ Ã -A∥ 2 N n=0 1 2 [ Jn+1 (λ)] 2 1 2 (35) 
+ ∥A∥ 2 ⎡ ⎢ ⎣ N n=0 1 0 ⎛ ⎜ ⎝ ∞ k=[ N -n 2 ] (-1) k (λt) 2k+n k!(k + n)!2 2k+n ⎞ ⎟ ⎠ 2 tdt ⎤ ⎥ ⎦ 1 2 ≤ ∥ Ã -A∥ 2 N n=0 1 2 [ Jn+1 (λ)] 2 1 2 + ∥A∥ 2 ⎡ ⎢ ⎣ N n=0 1 0 ∞ k=[ N -n 2 ] λ 4k+2n t 4k+2n+1 (k!(k + n)!2 2k+n ) 2 dt ⎤ ⎥ ⎦ 1 2 ≤ ∥ Ã -A∥ 2 N n=0 1 2 [ Jn+1 (λ)] 2 1 2 + ∥A∥ 2 ⎡ ⎢ ⎣ N n=0 ∞ k=[ N -n 2 ] λ 4k+2n (k!(k + n)!2 2k+n ) 2 (4k + 2n + 2) ⎤ ⎥ ⎦ 1 2
.

According to Eq. ( 31)- [START_REF] Yuzbasi | A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients[END_REF], we determine the upper bound of error for any constant coefficients 0 < λ ≤ 1.

In view of the above discussion and Theorem 1 . 6, we conclude that by increasing the number of the Bessel functions Haniye Dehestani, Yadollah Ordokhani bases, the numerical result convergence to exact solution:

N → ∞ ⇒ ∥u(λt) -u N (λt)∥ L 2 w → 0.

Illustrative examples

In this section, we test the performance of the scheme on some examples. The computations associated with the examples were performed using MATLAB.

Differential equation

Example 1 . 7. Consider the following linear variable-order fractional differential equation [13]

D γ(t) u(t) -10u ′ (t) + u(t) = g(t), t ∈ [0, 1], u(0) = 5, (36) 
with

γ(t) = t + 2 exp(t) 7 , g(t) = 10( t 2-γ(t) Γ(3 -γ(t)) + t 1-γ(t) Γ(2 -γ(t)) ) + 5t 2 -90t -95.
The exact solution of this problem is u(t) = 5(1 + t) 2 .

Solution.

Applying the proposed method, so we have

u(t) ≃ A T J(t), u ′ (t) ≃ A T Q 1 J(t), (37) 
D γ(t) u(t) ≃ t 1-γ(t) A T η γ(t)
1,N J(t).

Substituting above equations in Eq. ( 36), we have

t 1-γ(t) A T η γ(t) 1,N J(t) -10A T Q 1 J(t) + A T J(t) = 10( t 2-γ(t) Γ(3 -γ(t)) + t 1-γ(t) Γ(2 -γ(t)) ) (38) 
+ 5t 2 -90t -95,
with initial condition

A T J(0) = 5,
Now, we collocate Eq. (38) at the points in Eq. ( 25), which can be solved for the unknown vector A, using Newton's iterative method. For N = 2, we obtain

Q 1 = ⎡ ⎣ 0 0.5 0 -1 0 0.5 0 1 0 ⎤ ⎦ , η t+2exp(t) 7 1,2 = ⎡ ⎢ ⎢ ⎣ 0 1 2Γ(2- t+2exp(t) 7 ) 0 -1 Γ(3- t+2exp(t) 7 ) 0 1 2Γ(3- t+2exp(t) 7 ) 0 1 Γ(2- t+2exp(t) 7 ) 0 ⎤ ⎥ ⎥ ⎦ .
Replacing Q 1 and η

t+2exp(t) 7 
1,2

into Eq. ( 38) with initial condition, we get the following system of algebraic equations ⎧ ⎨ ⎩ 2.19610618846a 0 -4.63047433988a 1 -0.59805309423a 2 + 111.53161056 = 0, 4.31138930829a 0 -4.11325924065a 1 -1.65569465414a 2 + 143.49297097 = 0, a 0 -5.0 = 0.

Then, we obtain

A = [5, 20, 50] T , by using Eq. ( 37), we have

u(t) = 5(1 + t) 2 ,
which is the exact solution of Eq. ( 36). This example was considered in [START_REF] Chena | Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets[END_REF] by using Legendre wavelet method for k = 2, M = 4, which maximum absolute error for it is 2.0245 × 10 -9 .

Example 2 . 7. Consider the following nonlinear variable-order fractional differential equation [13]

D γ(t) u(t) -7u ′ (t) + 5u(t) -6u ′′ (t)u(t) = g(t), t ∈ [0, 1], u(0) = 0, with g(t) = 5( 2 Γ(3 -γ(t)) t 2-γ(t) + 3 Γ(2 -γ(t)) t 1-γ(t) ) -275t 2 -895t -105, γ (t) = 3(cos(t) + sin(t)) 5 . 
The exact solution of this problem is u(t) = 5(3t + t 2 ).

Solution. By using the proposed method and considering that 1 < γ(t) ≤ 2, we have

⎧ ⎪ ⎨ ⎪ ⎩ t 2-γ(t) A T η γ(t) 2,N J(t) -7A T Q 1 J(t) -6A T Q 2 J(t)A T J(t) = 5( 2 
Γ(3-γ(t)) t 2-γ(t) + 3 Γ(2-γ(t)) t 1-γ(t) ) -275t 2 -895t -105, A T J(0) = 0.
Taking N = 2, we obtain u(t) = 5(3t + t 2 ), which is the exact solution. This problem is solved by Legendre wavelet method [START_REF] Chena | Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets[END_REF], so that maximum absolute error in it for k = 2, M = 3 is 2.2737 × 10 -13 . That, the proposed method is more accurate compared to Legendre wavelet method.

Example 3 . 7. Consider the following nonlinear variable-order fractional differential equation [START_REF] Chen | Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials[END_REF] D cos(t) 3

(u 2 (t)) + D t 2 u(t) + u ′ (t) = g(t), t ∈ [0, 1], u(0) = 0, (39) 
with .

g(t) = 1 + 2t + 4t 1-t 4 (8 + 7t) (-8 + t)(-4 + t)Γ(1 -t 4 ) + 18t
The exact solution of this problem is u(t) = t + t 2 .

Solution.

To solve by using the present method, we have 

A T P Mcos(t) 3 P T A + t 1-t 2 A T η t 2 1,N J(t) + A T Q 1 J(t) = 1 + 2t + 4t 1-t 4 (8 + 7t) (-8 + t)(-4 + t)Γ(1 -t 4 ) + 18t
D e t 3 (u 2 (t)) + D t 2 u(t) + u ′ (t) = g(t), t ∈ [0, 1] u(0) = 0 with g(t) = 3t 2 + 720t 6-e t 3 Γ(7 -e t 3 ) - 48t 3-t 2 (t -6)(t -4)(t -2)Γ(1 -t 2 )
.

The exact solution of this problem is u(t) = t 3 .

Solution.

Applying the proposed method with N = 3, we obtain u(t) = t 3 -2.3652 × 10 -17 t 2 + 1.8037 × 10 -30 t.

This example was considered in [START_REF] Chen | Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials[END_REF] by using Bernstein polynomials for N = 3, we can conclude that the result obtained by the present method more accurate compared to Bernstein polynomials. 

Functional boundary value problem

D γ(t) u(t) + cos(t)u ′ (t) + 4u(t) + 5u(t 2 ) = g(t), t ∈ [0, 1], u(0) = 0, u(1) = 1 with g(t) = 2t 2-γ(t) Γ(3 -γ(t)) + 5t 4 + 4t 2 + 2t cos(t), and 
γ(t) = 5 + sin(t) 4 .
The exact solution is u(t) = t 2 .

Solution. By applying the method described in Section 5, the exact solution for N = 2 is obtained. Due to the absolute errors table in [START_REF] Bhrawy | Numerical algorithm for the variable-order Caputo fractional functional differential equation[END_REF], [START_REF] Li | A numerical technique for variable fractional functional boundary value problems[END_REF], present method more accurate compared with those methods. Respectively, maximum absolute error for M = 12 is 1. 1.58 × 10 -3 1.07 × 10 -5 3.29 × 10 -8 0.2 4.75 × 10 -3 9.06 × 10 -5 5.71 × 10 -7

1.11 × 10 -4 2.37 × 10 -5 5.58 × 10 -8 0.3 3.26 × 10 -3 6.76 × 10 -5 5.71 × 10 -7

1.60 × 10 -3 1.02 × 10 -5 2.57 × 10 -8 0.4 2.06 × 10 -3 7.75 × 10 -5 5.28 × 10 -7

2.16 × 10 -3 1.50 × 10 -5 6.74 × 10 -8 0.5 1.88 × 10 -3 8.32 × 10 -5 4.64 × 10 -7

1.26 × 10 -3 1.04 × 10 -5 1.52 × 10 -7 0.6 2.65 × 10 -3 7.14 × 10 -5 4.68 × 10 -7

6.53 × 10 -4 1.85 × 10 -5 2.11 × 10 -7 0.7 3.79 × 10 -3 6.65 × 10 -5 4.38 × 10 -7

2.58 × 10 -3 2.43 × 10 -5 4.75 × 10 -7 0.8 4.34 × 10 -3 9.52 × 10 -5 4.49 × 10 -7

3.15 × 10 -3 2.80 × 10 -5 8.08 × 10 -7 0.9 3.10 × 10 -3 1.11 × 10 -4 7.58 × 10 -7

7.89 × 10 -4 6.73 × 10 -5 7.97 × 10 -7 3.78 × 10 -8 0.6 7.74 × 10 -4 6.09 × 10 -6 1.43 × 10 -7

1.01 × 10 -4 0.8 1.53 × 10 -3 6.64 × 10 -6 2.37 × 10 -7

1.42 × 10 -4 1.0 5.56 × 10 -3 3.03 × 10 -5 4.12 × 10 -7 -

Conclusion

In the present work, we solved wide class of the variable-order fractional problems by using Bessel collocation method and their operational matrices of integer and variable order fractional derivative. The main advantage of the proposed scheme is using few terms of bessel polynomials to obtain approximate solutions. Also, reasonable upper bound Bessel collocation method for solving variable order fractional problems of error for approximate solution of any functions are presented, which was proved that the method is convergent. Moreover, we have solved lots of examples in various fields, which considered a limited number of them, indicating that this method is more accurate than other methods.
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 1 Figure 1: Absolute error between the exact and approximate solution with various functions of γ(t) and N = 5 for Example 7.7.

Figure 3 :

 3 Figure 3: Approximate solution for various functions of γ(t) with N = 5 of Example 7.8.

  = t + t 2 -5.95009 × 10 -31 .The approximate solution of Eq. (39) obtained by Bernstein polynomials for n = 2, 3, 4 plotted in[START_REF] Chen | Numerical solution for the variable order linear cable equation with Bernstein polynomials[END_REF]. Due to the those figures in[START_REF] Chen | Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials[END_REF], we can conclude that the result obtained by the present method more accurate compared to
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	with initial condition	
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	and taking N = 2, we have	
	A = [-5.95009 × 10 -31 , 2, 8] T ,	
	as a result,	
	u(t) Bernstein polynomials.	
	Example 4 . 7. Consider the following nonlinear variable-order fractional differential equation [12]

Table 1 :

 1 11 × 10 -16 and maximum absolute error for kernel method with n = 40 is 3.87 × 10 -8 . Absolute errors with various values of N for Example 7.7. 10 -30 2.59 × 10 -29 3.69 × 10 -31 3.46 × 10 -30 6.47 × 10 -29 0.1 3.47 × 10 -3 1.35 × 10 -4 8.60 × 10 -7

	Example 6 . 7. Consider the following variable-order fractional functional boundary value problem [4, 18]
	D γ(t) u(t) + e t u ′ (t) + 2u(t) + 8u(e t-1 ) = g(t), t ∈ [0, 1], 1 < γ(t) ≤ 2, u(0) = 4, u(1) = 9,
	with		
	g(t) =	2t 2-γ(t) Γ(3 -γ(t))	+ 2(t 2 + 4t + 4) + 8(4e t-1 + e 2t-2 + 4) + e t (2t + 4),
	and the exact solution of this problem is u(t) = t 2 + 4t + 4. we solved this problem by taking γ(t) = 6+cos(t) 4	and
	γ(t) = 20-exp(t)		

  1.0 1.21 × 10 -3 1.09 × 10 -4 8.56 × 10 -7 6.21 × 10 -3 2.11 × 10 -4 3.31 × 10 -6

	3.5	x 10 -4				
			γ(t)=1-0.1sin(t)			
	3		γ(t)=1-0.3sin(t)			
			γ(t)=1-0.5sin(t)			
	2.5		γ(t)=1-0.7sin(t)			
			γ(t)=1-0.9sin(t)			
	2					
	1.5					
	1					
	0.5					
	0 0	0.2	0.4	0.6	0.8	1
				t		

Table 2 :

 2 Absolute errors with various values of N with γ(t) = 2 for Example 7.8. 10 -7 0.2 4.42 × 10 -4 2.60 × 10 -6 2.16 × 10 -8 8.01 × 10 -8 0.4 7.99 × 10 -4 4.29 × 10 -6 7.01 × 10 -8

			Present method		Method in [23]
	t	N = 3	N = 5	N = 7	k = 2, M = 5
	0	0	0	0	2.33 ×

  Figure 2: Approximate solution for various values of γ(t) with N = 5 of Example 7.8.
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	1				γ=1.9	
					γ=1.8	
					γ=1.7	
	0.9				γ=1.6	
					γ=1.5	
					Exact solution	
	0.8					
	0.7					
	0.6					
	0 0.5	0.2	0.4	0.6	0.8	1
			t			
	1					
	0.9					
	0.8					
	0.7	γ(t)=2-0.05(cos(t)+sin(t)) γ(t)=2-0.1(cos(t)+sin(t))			
		γ(t)=2-0.15(cos(t)+sin(t))			
	0.6	γ(t)=2-0.3(cos(t)+sin(t))			
		γ(t)=2-0.35(cos(t)+sin(t))			
		Exact solution				
	0 0.5	0.2	0.4	0.6	0.8	1
			t			

. Solution. By applying the method described in Section 5, the exact solution for N = 2 is obtained. Also, with regards to absolute errors table in [START_REF] Bhrawy | Numerical algorithm for the variable-order Caputo fractional functional differential equation[END_REF], [START_REF] Li | A numerical technique for variable fractional functional boundary value problems[END_REF], we can conclude that the result obtained by the present method more accurate compared to those methods.

Pantograph differential equation

Example 7 . 7. Consider the following variable-order fractional multi-pantograph differential equation with variable

and the exact solution of this problem is u(t) = t 3 e -t .

Solution.

The absolute errors between the exact solution and approximate solution for different functions of γ(t) = cos(t) and γ(t) = t+2 exp(t)

with various values of N , can be seen from Table 1. The absolute error between exact and approximate solution with various functions of γ(t) for N = 5 is plot in Figure 1.

Example 8 . 7. Consider the following variable-order fractional nonlinear pantograph differential equation

The exact solution of this problem, when γ = 2 is u(t) = cos(t). 2, displays the absolute errors between the exact and approximate solutions for γ(t) = 2 with various values of N . Also, we presented numerical solutions for various functions of γ(t) with various values of N = 5 in Figure 2 and3. With regards to these figure and table, it is seen that the approximate solutions converge to the exact solution.

Solution. Table