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Coordination numbers are among the central quantities to describe the local environ-

ment of atoms and are thus used in various applications such as structure analysis,

fingerprints and parameters. Yet, there is no consensus regarding a practical algo-

rithm, and many proposed methods are designed for specific systems. In this work, we

propose a scale-free and parameter-free algorithm for nearest neighbor identification.

This algorithm extends the powerful Solid-Angle based Nearest-Neighbor (SANN)

framework to explicitly include local anisotropy. As such, our Anisotropically cor-

rected Solid-Angle based Nearest-Neighbor (ASANN) algorithm provides with a fast,

robust and adaptive method for computing coordination numbers. The ASANN al-

gorithm is applied to flat and corrugated metallic surfaces to demonstrate that the

expected coordination numbers are retrieved without the need for any system-specific

adjustments. The same applies to the description of the coordination numbers of

metal atoms in AuCu nano-particles and we show that ASANN based coordination

numbers are well adapted for automatically counting neighbors and the establish-

ment of cluster expansions. Analysis of classical molecular dynamics simulations of

an electrified graphite electrode reveals a strong link between the coordination num-

ber of Cs+ ions and their position within the double layer, a relation that is absent

for Na+, which keeps its first solvation shell even close to the electrode.

PACS numbers: 68.08.De

a)Electronic mail: stephan.steinmann@ens-lyon.fr
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I. INTRODUCTION

Detailed analysis of chemical systems allows to gain insight into their working mecha-

nisms, to rationalize their properties and sometimes even to predict the impact of chemical

modifications such as functionalization of molecules or alloying of surfaces. Roughly two

big categories can be distinguished: energetic and structural characterizations. While en-

ergy decomposition analysis provides detailed energetic insight in molecular chemistry, solid

interfaces and in liquid phase,1–4 it is the coordination environment that commonly defines

the building block for local structural interpretations. The main applications in chem-

istry involve hydration numbers of ions5,6, which are of particular interest in the context of

biochemistry,7 the link between structure and activity in heterogeneous catalysis8,9 and the

characterization of alloys.10,11

Intuitively, the coordination number of a particle is defined as the number of nearest

neighboring particles. However, this does not provide with a rigorous definition: what

is neighboring after all? Chemists tend to link neighboring to the idea of bonding: two

items are connected if there is a strong interaction between them. But again, “strong” is

not defined and most of the time the strength of the interaction is not easily accessible.

Therefore, it is far more common and convenient to think in terms of spatial proximity,

echoing the initial terminology of “neighbors”.

In chemistry and physics, many different algorithms are used to define the connectivity

between atoms, using more or less additional parameters (e.g., nature of the atoms or refer-

ence bond lengths). We propose to classify the algorithms based on their input, using only

two criteria: (i) Usage of parameters (e.g., particles nature, reference bond lengths). Any

algorithm that depends on more than a set of point coordinates falls into this category and

is denoted with a P 1, while parameter-free algorithms are denoted by P 0. (ii) Local adaptiv-

ity. By this we mean that the connectivity between two particles depends on the presence

of other surrounding particles and denote it by A1, while the absence of local adaptivity

corresponds to A0. Since these two criteria are non-exclusive, Figure 1 provides relevant

examples of algorithms for the four possible combinations.

The simplest coordination number algorithm is based on tabulated “typical” bond

lengths: only if the atoms are closer, they are connected. Hence, it falls into the class

P 1A0. This simple and rapid algorithm is most popular in visualization softwares,12 where

2



FIG. 1: Overview of available coordination number algorithms. We report only popular

algorithms of relevance for the context of the ASANN algorithm development, with the

references provided in the text.

bond length cut-offs are typically constructed from predefined covalent radii13 of considered

elements.

Instead of using predetermined typical/average bond lengths that might not be of rel-

evance for the considered sample, coordination cut-offs can be estimated from the sample

itself. This lead to the development of multiple parameter-free methods7,10,11,14–19 using a

cut-off based on the radial distribution function g(r). However, such algorithms require

enough data to perform meaningful radial distribution analysis. Finally, these algorithms

have an inherently mean-field description of coordination since they use averaged cut-offs.

Hence, local fluctuations are not necessarily well handled as these algorithms do not take

the remaining neighboring particles into account, i.e., it is a P 0A0 algorithm.

Constructing locally adaptive coordination numbers requires an analysis of the surround-

ings of each possible connection, which necessarily increases the computational cost. The

best known algorithm to extract context-dependent coordination numbers uses a Voronoi

tesselation,18,20 where space is decomposed into regions (polyhedra for 3D structures), based

on which particle is the closest. Two particles are connected if their corresponding regions

share a face. This algorithm is parameter-free and thus falls into the P 0A1 category, which

means it can be applied without any additional knowledge on the set of particles considered.

However, it has been shown that Voronoi-based coordination numbers have a tendency to

be overestimated,18–21 which can be alleviated by re-weighting.11 Furthermore, 3D Voronoi
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tesselations are computationally expensive22. In the same P 0A1 category, the Solid-Angle

based Nearest-Neighbor algorithm (SANN) algorithm21 was developed as an efficient alter-

native to Voronoi tesselations. SANN attributes a solid angle to each possible neighbor

and iteratively increases the cut-off radius to reach a sum of 4π for the solid angles, cor-

responding to a fully surrounded coordination environment. This elegant method is faster

than the Voronoi tesselation and, furthermore, reduces the overestimation of the coordina-

tion numbers, without the introduction of any parameters21. However, SANN suffers from

coordination number overestimation at interfaces23.

Recently, the Relative Angular Distance (RAD) algorithm23 was developed to amend the

SANN overestimation at interfaces. The reduction of the coordination number is achieved

by accounting for blocking: the coordination of two particles can be obstructed by particles

between the considered pair. Compared to other available blocking-based methods24,25 RAD

does not require predefined cut-off distances, but still requires additional parameters, so that

the algorithm falls in the P 1A1 class. An earlier P 0A1 algorithm26 accounted for blocking

by considering only bonds that are not intersecting a triangle formed by shortest bonds.

However, this idea was not further explored as its computational cost is expected to be

large, and we found the method not suitable to describe surfaces.

Herein we propose to augment the SANN algorithm with a correction term that takes the

local anisotropy into account, while preserving all properties of SANN, i.e., low computa-

tional cost, no parameters, being locally adaptive (P 0A1 class) and being scale free, i.e., an

isotropic scaling of all coordinates does not change the coordination number. This scheme

is called Anisotropically corrected Solid-Angle based Nearest-Neighbors (ASANN).

To set the stage, we introduce the SANN algorithm in section II A. Then, in section II B,

we identify the SANN isotropic description as source of coordination number overestimation

and propose a natural solution to tackle local anisotropy through ASANN. After the com-

putational details in section III, section IV contains tests and applications of ASANN for

characterizing metal surfaces, alkali metal ion coordination at an electrified interface and

for the construction of model Hamiltonians for alloy nanoparticles.
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FIG. 2: Schematic representation of the solid angle definition Ωi,j = 2π(1− cos(θi,j))

associated with neighbor j at distance ri,j of central particle i, and using a coordination

radius of R
(m)
i .

II. ALGORITHMS

A. The SANN algorithm

The reader is strongly encouraged to read the original SANN article21 for details. Never-

theless, the main points are outlined below to make the ASANN algorithm understandable.

SANN defines a coordination number CNSANN(i) of particle i to be the number of the m

nearest neighbors found within the individual coordination sphere of radius R
(m)
i (also called

shell radius). SANN elegantly provides a self-consistent definition of m and the associated

coordination sphere radius R
(m)
i as detailed below.

Let ri,j be the distance between particle i and its j-th nearest neighbor (denoted simply

as j in the following). By definition of R
(m)
i and m, one can already write the inequality:

ri,m ≤ R
(m)
i < ri,m+1 (1)

Within SANN, the m nearest neighbors are defined such that the sum of their solid angles

(with respect to i) is equal to 4π. This requirement is related to the intuitive idea that the

nearest neighbors of i are the smallest set of particles fully covering its field of view. Indeed,

each nearest neighbor j of particle i is associated with a solid angle Ωi,j, which is defined by

Ωi,j = 2π(1− cos(θi,j)), where the angle θi,j is depicted on Figure 2.
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FIG. 3: Illustration of the SANN iterative algorithm in 2D. Blue dots represents neighbors

of the considered particle (green dot), while other particles are displayed in purple. For

each increasing number of neighbors m (starting from 3), a coordination sphere radius is

computed such that the SANN equality is respected (sum of neighboring solid angle

requirement). The algorithm continues until the coordination radius is well-defined (i.e.

surrounding particles are considered neighbors if and only if they are within the

coordination radius).

The above definitions are summarized in the following equation:

4π =
m∑
j=1

Ωi,j =
m∑
j=1

2π(1− cos(θi,j)) =
m∑
j=1

2π

(
1− ri,j

R
(m)
i

)
(2)

One can rewrite the two fundamental Eqs 1 and 2 into a much simpler form:

R
(m)
i =

m∑
j=1

ri,j

m− 2
< ri,m+1 (3)

The inequality of Eq. 3 allows to easily compute the CNSANN(i) = m by iteratively

increasing R
(m)
i from m = 3 until the inequality is respected (see Figure 3). The convergence

of the algorithm was mathematically proven21.

SANN is scale free, i.e., a uniform scaling of all coordinates will not affect the coordination

number. This property can have counter-intuitive consequences when the analyzed phase

features significant density fluctuations. This is particularly problematic when applied to

the gas-liquid interface, where thermal fluctuations might create nearly isolated particles.

The scale-free algorithm will assign a significantly larger coordination sphere to such an

isolated particle, which potentially leads to a higher coordination number compared to

particles in dense regions. However, such problematic cases can be spotted by monitoring

the coordination sphere radius.
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Furthermore, in situations where the environment of j is more dense than the one of i,

it is possible that j is considered a neighbor of i, even though i is not considered a neighbor

of j. Further along this line, we note that the solid-angle based approach behind SANN is

inherently linked to the assumption of locally identical coordination radii. This hypothesis

is the only meaningful approach within a parameter-free approach and represents a first

order expansion for the coordination sphere. As a consequence, directional bonding (e.g.,

in organic molecules) which leads to locally more compact geometries is can lead to an

overestimation of the coordination number compared to conventional views.

B. Anisotropically corrected Solid-Angle based Nearest-Neighbors, ASANN

algorithm

The SANN algorithm implicitly uses a locally isotropic description of the coordination

shell, i.e., the angular distribution of neighboring particles is not taken into account. At

surfaces or tips there are, however, simply no neighbors in some directions, leading to empty

sections in the coordination sphere. Therefore, the SANN radius must expand to reach

more neighbors in the non-empty directions in order to compensate and reach a total sum

of 4π. Hence, one observes an over-estimation of coordination numbers when neighboring

particles are not isotropically distributed.23 This issue was already reported in the literature,

and led to the development of the relative angular distance (RAD) algorithm. However,

RAD requires the particles sizes as input parameters, and is fundamentally different from

SANN. Here, we propose an Anisotropically corrected Solid-Angle based Nearest neighbors

(ASANN) algorithm, which is based on the SANN framework, but includes a parameter-free

correction term to correctly describe intrinsically anisotropic coordination shells.

The basic idea of the ASANN algorithm is that some directions are more relevant for

coordination than others. Therefore, instead of requiring the neighbors to fill up the whole

field of view, ASANN only requires to fill up the relevant neighboring region of space (see

Figure 4).

An estimator of the first order local anisotropy is obtained based on the barycentre.

Specifically, we define the SANN-based barycentre ~G
(m)
i as the position barycentre over

all SANN-coordinated neighbors of i, weighted by their SANN-based solid angle Ωi,j (with

respect to i). A similar solid-angle based neighbors weighting has been proposed in the
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FIG. 4: Illustration of the SANN coordination number overestimation, and founding idea

of the ASANN algorithm: tackle local anisotropy by focusing on relevant regions for

coordination. This leads to the consideration of a coordination spherical cap instead of a

sphere. The chosen spherical cap reproduces the local anisotropy, through our first order

local anisotropy estimator (using a SANN-based barycentre with solid-angle weighting).

context of the Voronoi tessalationfor its canonicity.11 Mathematically, this can be written:

~G
(m)
i =

m∑
j=1

Ωi,j~ri,j

m∑
j=1

Ωi,j

(4)

This SANN-based barycentre is in agreement with the properties expected for retrieving

the first order local anisotropy. Indeed, it identifies a global privileged direction in the

distribution of coordinating neighbors and, more importantly, it provides with a quantitative

estimation of the first order local anisotropy magnitude α
(m)
i defined by:

α
(m)
i =

||~G(m)
i ||

R
(m)
i

(5)

Instead of considering a coordination sphere, the ASANN algorithm uses a coordination

spherical cap C which focuses on the locally relevant region of space for coordination. Ci is

the spherical cap centered on i having the same anisotropic properties as the neighboring

particles through our first order local anisotropy estimator. This is achieved by setting the

radius RCi = R
(m)
i and requiring that its barycentre ~GCi is confounded with the SANN-based

barycentre ~G
(m)
i :

Ci is centred on i

RCi = R
(m)
i

~GCi = ~G
(m)
i

(6)
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The solid angle ΩCi associated with this spherical cap (with respect to i) can be written

as:

ΩCi = 4π(1− γCi) (7)

where γCi ∈ [0, 1[ corresponds to the angular correction coefficient, which only depends on

the first order local anisotropy magnitude α
(m)
i (see section S1 in the SI for a derivation):

γCi =
α
(m)
i +

√
α
(m)
i

2
+ 3α

(m)
i

3
(8)

Therefore, instead of filling up the whole field of view (
m∑
j=1

Ωi,j = 4π), ASANN neighbors

only cover the spherical cap. This leads to the fundamental equation of ASANN:

m′∑
j=1

Ω′i,j =
m′∑
j=1

2π

(
1− ri,j

R
′(m′)
i

)
= ΩCi = 4π(1− γCi) (9)

where the ASANN coordination numberm′ and the coordination cap radiusR
′(m′)
i are defined

by extending the SANN coordination radius definition to include the angular correction

coefficient γCi :

R
′(m′)
i =

m′∑
j=1

ri,j

m′ − 2× (1− γCi)
< ri,m′+1 (10)

Note that for isotropic distributions (γCi = 0), Eq. 10 goes back to Eq. 3, which means that

SANN and ASANN coincide for this case.

Using the inequality of Eq. 10, the ASANN coordination number m′ can be easily com-

puted by iteratively computing R
′(m′)
i , starting with m′ = b2(1− γCi)c + 1, and increasing

m′ until the inequality is respected.

In principle, this angular correction could be computed self-consistently, i.e., the angular

correction term is recomputed at each iteration along with the ASANN coordination radius.

This self-consistency breaks the analytic, direct link between the fundamental equation (Eq.

9) and the coordination radius definition (Eq. 10). Therefore, we only explore the “per-

turbative” angular correction, where the SANN-based barycentre ~G
(m)
i and the associated

angular correction term γCi are computed only once, using the SANN-based coordination

radius and coordinating neighbors. Then, the iterative ASANN algorithm (Eq. 10) is per-

formed with a fixed γCi . As demonstrated in the supporting information, this algorithm

converges to a unique solution. The overall workflow for ASANN is depicted in Figure 5,
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FIG. 5: Schematic representation of the ASANN workflow: Based on the SANN

coordination sphere, the barycenter and the corresponding angular correction is computed,

leading to the ASANN coordination spherical cap.

which also provides information regarding the computational cost of ASANN compared to

SANN: Essentially, there is a factor of two between them, since the iterations have to be

performed twice. Knowing that ASANN coordination number is lower or equal to the one

from SANN (see SI for a proof), there are, in general, less ASANN than SANN iterations.

Based on general properties of ASANN, partially inherited from SANN, we show the

expected applicability domain of the two algorithms in Figure 6. The first major limitation

is related to low coordination numbers (e.g., four) in combination with isotropic distributions

(e.g., a tetrahedron). In this case, the coordination radius R
(4)
i of Eq. 3 is twice the distance

between atom i and its nearest neighbors j. If there are atoms closer than 2rij, the inequality

is not satisfied and the coordination shell is expanded to include next nearest neighbors. This

is the case for most organic molecules (see Figs. S2-S5 and the associated discussion), but
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also in ionic compounds where small cations are located in tetrahedral sites as shown in the

SI (Tables S4 to S15), where we have analyzed a variety of salts, oxides and perovskites.

The particularity of these systems is most clearly seen for the case of a graphene sheet (Fig.

S5): the barycenter of neighboring atoms is confounded with the central atom, so there

is no first order anisotropy and ASANN is equivalent to SANN. There are three nearest

neighbor atoms at a distance rC−C and the next nearest neighbors are already at
√

3rC−C ,

again due to the directional bonding, but which is well below the R
(3)
i = 3rC−C (Eq. 3 for

the perfect symmetry of this system). If there would not be an anisotropic preference due

to bond formation characteristic for an sp2 carbon atom, there would also be “space” for

at least two more particles one above and one below the plane within such a coordination

sphere. But this is not the case and, therefore, for geometrical reasons, ASANN significantly

overestimates the conventional coordination number of 3, by adding the 6 next nearest

neighbors, reaching a CNASANN=9 for carbon in graphene. The same geometrical reasons

and deviations from homogeneous distributions apply to the ionic compounds referred to

above. Since ASANN is built on a first order anisotropy, the application to nanopores or

slits is also at the border of its applicability: if the SANN coordination sphere spans two

surfaces, the first order anisotropy vanishes and ASANN does not improve upon SANN.

Higher order anisotropy corrections might correct SANN in this situation as well as for the

isotropic, low-coordination environments mentioned above. Second, density fluctuations are

problematic for the scale free algorithms. Therefore, cross-checks with the coordination radii

are required for biphasic systems and the liquid-gas interface. As we will show by numerical

results below, ASANN extends, however, the applicability of SANN to (inhomogeneous)

solutions, the solid-liquid interface and rough surfaces including nano-particles.

The time complexity of (A)SANN is in the worst-case O(nk) for pre-treated input, where

n is the number of particles, and k is the maximum coordination number. In fact, the

most time consuming step is due to the input pre-processing, required for both SANN and

ASANN algorithms. This pre-processing comprises the computation of pair-wise distances

(and vectors for ASANN) in O(n2), and sorting those distances in O(n2 log(n)). It is, there-

fore, this step that is also responsible for the space complexity of (A)SANN in O(n2). In

practice, this pre-processing quickly becomes the computational bottleneck for large sys-

tems. As a consequence, particular care was taken for optimizing these steps in our Python

3 implementation, heavily relying on the Numpy library27,28. We thus combine low-level
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FIG. 6: Venn diagram depicting the applicability domains of both SANN and ASANN.

By design, ASANN extends the applicability domain of SANN to systems presenting local

anisotropy.

language performance for large systems, with convenient Python 3 syntax and modularity.

As an example, the computation of the Cs coordination numbers in a 742 atom system (vide

infra), took around 0.14 seconds and the computation of all coordination numbers in a 2942

atom system took about 2 seconds (93% is spent on input pre-processing) on a personal

laptop (Core i5-6300HQ CPU).

III. COMPUTATIONAL DETAILS

The presented algorithms have been implemented using Python329 and are available in

the supporting information and also on the webpage of the authors. The implementation

relies on the Numpy library27,28 whenever possible and ASE12 for reading common coordinate

formats. A particular effort was made to provide with extensively commented code, including

documentation and illustrative examples.

Figures have been generated with a custom ASE12 fork to visualize the coordination

numbers.

All DFT computations are performed using VASP30,31. The PBE exchange-correlation

functional32 was applied and a 400 eV energy cut-off was chosen for the plane-wave basis

set. The PAW pseudo-potentials were used for describing the electron–ion interactions.33,34
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Some of the optimized metallic surfaces and metal clusters have been previously published

by our group.35–37 The graphite electrode was set up as follows: A symmetric six layer

p(2×2) graphite slab has been built based on the optimized bulk geometry using the PBE-

dDsC38 level of theory. A 9 × 9 × 1 Monkhorst-Pack K-point grid was used to integrate

the Brillouin zone. To assess the charge distribution at negative potentials, the number of

electrons was varied and the linearized Poisson-Boltzmann equation was utilized to neutralize

the unit cell as implemented in the VASPsol package.39,40 Similarly to our previous study

on electroreduction in aprotic medium,41 the isodensity value defining the cavity has been

lowered to 5 10−4 e/Å3. In the case of graphite, this value ensures an absence of implicit

solvent between the dispersion bound graphene layers.

The potential of zero charge of graphite is, according to our setup, -0.2 V vs SHE, which

compares reasonably well with experiments (0.1 to 0.3 V depending on the nature of the

carbon electrode42–44) considering the idealized morphology of our electrode and the expected

systematic error due to the simplified electrolyte model as discussed in the context of the

potential dependent adsorption of pyridine on a gold single crystal surface45. A negative

charge of -0.25 electrons in the unit cell (-0.125 electrons per surface) led to a potential drop of

2.4 V compared to the potential of zero charge and thus corresponds to a significant negative

polarization. Based on the DFT computations, the unit cell was replicated four times in

each in-plane direction, resulting in 128 carbon atoms per layer and a total charge of 4 e-.

Following a setup very similar to ref 46, the Lennard-Jones (LJ) parameters for graphite are

taken from UFF.47 The initial solvent distribution is obtained from the predefined TIP3P48

box with about 35 Å of water surrounding the system, resulting in a box of 716 water

molecules. To simulate a 1 M electrolyte, 15 Na+ (or Cs+) and 11 Cl− ions, described by

their standard AMBER force field parameters, are added using tleap of the AmberTools.

MM computations are performed with NAMD 2.949 for 5 ns (time step of 2 fs), applying a

Langevin thermostat (300 K) with a damping coefficient of 1 ps-1. The Langevin barostat

(1 bar) is applied with a piston period of 100 fs and a decay of 150 fs.
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IV. RESULTS AND DISCUSSION

A. Metallic surfaces

As a first test, we apply ASANN to various metallic surfaces. The selection of surfaces is

intended to span a wide range of typical cases to assess the applicability domain of SANN

and ASANN.

For face centered cubic (fcc) metallic surfaces, the metal-metal contact distance in the

bulk is a reliable measure for identifying nearest neighbors. Reassuringly, closed packed,

flat surfaces are well described by SANN and ASANN, giving identical results that are in

perfect agreement with cutoff based methods (see SI). In other words, flat surfaces are not

anisotropic enough to induce an expansion of the SANN coordination sphere to the next

nearest neighbors.

An increased local anisotropy can be obtained for nano-rods. The large rod, constructed

from the corresponding bulk without any geometry optimization (Figure 7), is still well and

identically described by SANN and ASANN.

However, stepped surfaces (see Figures 8 and 9) are more challenging for SANN, while

ASANN consistently retrieves the cutoff based coordination number. In particular, SANN

is very sensitive to small local surface induced contractions, while ASANN is more robust,

avoiding coordination number overestimations seen in Figure 9 for SANN.

To simulate low-coordinated atoms,9 add-atoms have also been analyzed. Based on visual

inspection (and confirmed by cutoff based methods), the square of addatoms on a (100) sur-

face is characterized by two nearest neighbors from the square (the third is not “touching”,

i.e., it is a next-nearest neighbor) and four from the (100) plane below, yielding a coordina-

tion number of six. Similarly, an addatom of the triangle on a (111) surface possesses two

nearest neighbors from the triangle and three from the supporting (111) plane, resulting in a

coordination number of five. Recalling that the flat (100) surface of fcc closed packed metals

has a coordination number of 8 for its surface atoms, the CNSANN=8 for surface addatoms

reveal a clear overestimation (see Figures 10 and 11), qualitatively failing to identify the

low-coordination environment. This contrasts with CNASANN that is in full agreement with

visual inspection and cuttoff based methods.

To challenge the algorithms even further, we apply them to an optimized, amorphous gold
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FIG. 7: Transversal cut of a periodic nano-rod of an fcc metal, with superimposed

coordination numbers. SANN and ASANN coordination numbers are identical.

FIG. 8: Side view of a stepped gold surface (664), with superimposed coordination

numbers. SANN and ASANN coordination numbers are identical.
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(a) SANN (b) ASANN

FIG. 9: Side view of a stepped gold surface (644), with superimposed SANN (a) and

ASANN (b) coordination numbers.

(a) ASANN algorithm (b) SANN algorithm

FIG. 10: Representation of a p(3×3) Cu(100) surface with a square of 4 Cu addatoms.

Coordination numbers from SANN (a) and ASANN (b) are superimposed.

nanoparticle (see Figure 12). As can be seen, the particle features atoms that clearly form

tips and, therefore, we expect low CNs for them. However, just like for the addatoms on

the planar surfaces, SANN fails to correctly identify these low-coordinated atoms. For these

highly aniostropic distributions, the SANN coordination radius has to expand significantly to
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(a) ASANN algorithm (b) SANN algorithm

FIG. 11: Representation of a p(3×3) Cu(111) surface with a triangle of 3 Cu addatoms.

Coordination numbers from SANN (a) and ASANN (b) are superimposed.

(a) ASANN algorithm (b) SANN algorithm

FIG. 12: Low energy, amorphous Au38 nanoparticle. Coordination numbers from SANN (a)

and ASANN (b) are superimposed. SANN overestimation is particularly visible at the tips.

reach the entire 4π for the sum of solid angles. In contrast, ASANN exploits the aniosotropy

of the SANN coordination sphere to construct a spherical cap and, therefore, succeeds in

identifying intuitive nearest neighbors in all cases.
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As a rule of thumb, we empirically found that SANN rarely finds coordination num-

bers below 7 in these systems, illustrating the surface-related overestimation reported

earlier.23 ASANN, however, performs very well in all tested systems, correctly identify-

ing low-coordination environments. As shown in the supporting information, this robust,

parameter-free performance is also transmitted to generalized coordination numbers9 of

various surfaces, dispensing with the need to define a characteristic distance or manual

counting.

B. Coordination numbers at charged interfaces

The interaction of cations with negatively charged electrodes is of growing interest in the

electro-reduction of CO and CO2.
50–52 In a different context, electrolyte solutions at charged

silica interfaces are widely studied to understand the behavior of confined electrolytes.53

Finally, the advent of carbon based supercapacitors54,55 has spurred simulations of electrolyte

solutions at charged carbon interfaces.56,57 Such simulations are also of particular interest to

understand the intercalation mechanism of alkali metal ions into graphitic surfaces.58 Here,

we consider a simple model system: aqueous salt solutions in contact with a perfect graphite

electrode. On the one hand, the experimental capacitance of a graphitic electrode is not

strongly dependent on the alkali cation in the electrolyte,59 which might suggest that the

double layer structure is similar for all alkali metal cations. On the other hand, Cs+ ions

are, in contrast to Na+ ions, known to be soft and large, implying a low charge density at

their surface. As a consequence, Cs+ ions are expected to partially loose their solvation shell

to approach the negatively charged electrode surface more closely, which increases both the

VdW interactions and the Coulomb attraction.

We probe the difference between Cs+ and Na+ based on classical molecular dynamics

simulations of a graphite carbon electrode at a potential of about -2.5 V (see Computational

Details) in ∼1 M aqueous CsCl and NaCl solutions. To analyze the double layer, we inves-

tigate the existence of a link between coordination number of ions in water (determined by

ASANN, SANN and a g(r) based cut-off algorithm) and their adsorption state.

Figure 13 displays the structuring of the electrolyte at the electrode surface. As com-

monly observed60, for both electrolyte solutions the distribution curve of the excess cation

density presents two well-defined peaks, corresponding to two distinct layers of preferred
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FIG. 13: Ionic density of ∼1 M CsCl (top pannel) and NaCl (bottom pannel) aqueous

solutions near a graphite anode (−2.5 V vs SHE). The excess counter-ions (compared with

the co-ions, equivalent here to the charge density) and the co-ions density are represented

for both systems. Three distinct zones are identified, corresponding to different

adsorption/trapping states for the counter-ions. The average ASANN coordination number

for the counter-ions (with water molecules and co-ions) is superimposed for each zone.

presence near the anode. The strong first cation excess peak is followed by a nearly charge

compensated zone before a second, although lower, cation excess peak occurs which then

decays to zero towards the bulk solution. Besides, the anion (Cl−) distribution is barely

structured and independent on the nature of the cation. The details of the charge-excess

profiles are quite different: Cs+ excess density has the first peak at about 3.5 Å, while the

corresponding one for Na+ is at 4.8 Å. This difference indicates that Cs+ can indeed ap-

proach the electrode more closely. The second peak is, accordingly, shifted from 6 Å to 7.5

Å when going from caesium to sodium.

Table I and II report the ASANN and SANN coordination numbers of Cs+ and Na+,

respectively. For reference purposes, the radial distribution function of the O-Cs+ was

analysed and a first coordination sphere radius cutoff of 4.0 Å was identified. From this

radius, cutoff-based coordination numbers have been computed. All three algorithms agree

that on average at least one water molecule is lost when Cs+ is located in the first layer,
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Average coordination numbers of Cs+ ions

Method
Desolvated trapping layer

h < 4.7 Å

Solvated trapping layer

4.7 < h < 7 Å

Bulk-like layer

h > 7 Å

ASANN 7.4 (1.1) 9.6 (1.2) 9.4 (1.2)

SANN 9.1 (1.1) 10.6 (1.2) 10.5 (1.2)

fixed cutoff 7.1 (1.1) 9.2 (1.3) 9.0 (1.3)

TABLE I: Comparison of average Cs+ ions coordination numbers determined by ASANN,

SANN and a fixed cutoff (4.0 Å) for each defined region. The data is displayed in the form:

mean (standard deviation).

while the second layer is indistinguishable from the bulk solution in terms of the coordination

numbers. This can be rationalized based on Van der Waals (VdW) radii: a fully solvated

Cs ion cannot approach the graphitic electrode closer than roughly 7 Å (rC + rCs+ + 3 Å,

where 3 Å is a rough estimate for the size of a water molecule).

For Na+ ions, however, the coordination numbers are the same in the two excess regions

as in the bulk, despite the qualitative similarity between the two cation excess profiles.

Even the nearest Na+ layer (∼ 4.8 Å) is not close enough to the surface to induce a partial

desolvation (see Table II). In other words, in contrast to Cs+, the solvation shell of Na+ is

strong and stable across the double layer and the three methods agree on an approximate

average coordination number of six, indicating minor fluctuations and a rather isotropic

distribution, in agreement with spectroscopic data.6

To quantitatively determine if ASANN provides with “good” coordination numbers, we

assess their ability to discriminate between “close” and “bulk” Cs ions. Specifically, we want

to quantify if CNASANN is statistically lower (i.e., below CNthresh) at the interface than in

the bulk. For the sake of comparison, we apply the same analysis also to SANN and to the

cutoff based algorithm.

To have a quantifiable measure whether or not CNASANN is lower at the interface than in

the bulk, we explore the relation between closeness and loss of coordination via a Receiver

Operating Characteristic (ROC) curve analysis. The ROC curve is one of the most rigorous

and well-established tools to evaluate the discriminating power for a binary classifier (here

20



Average coordination numbers of Na+ ions

Method
First trapping layer

h < 6.5 Å

Second trapping layer

6.5 < h < 9 Å

Bulk-like layer

h > 9 Å

ASANN 6.1 (0.6) 6.1 (0.6) 6.1 (0.5)

SANN 6.5 (0.7) 6.6 (0.8) 6.5 (0.8)

fixed-cutoff 5.8 (0.5) 5.8 (0.5) 5.8 (0.5)

TABLE II: Comparison of average Na+ ions coordination numbers determined by ASANN,

SANN and a fixed cutoff (3.2 Å) for each defined region. The data is displayed in the form:

mean (standard deviation).

close/not close) depending on a threshold value (here CNASANN).61,62 The ROC curve of a

class of binary classifiers is constructed by plotting the True Positive Rate (TPR) against

the False Positive Rate (FPR) computed on a data set, for different threshold values.

Here, the TPR is the ratio of CNi <CNthresh for the i Cs ions “close” to the electrode to

the number of Cs ions “close” to the electrode overall, while the False Positive Rate is the

ratio of CNi <CNthresh for Cs ions not “close” to the electrode to the number of Cs ions not

“close” to the electrode overall. The threshold value can be varied between the minimum

and maximum observed with a given algorithm. Here, we define “close” as the Cs – surface

distance ≤ 4.7 Å.

Such an analysis is reported on Figure 14. Let us first look at the ASANN results to

explain how to read a ROC curve. Since the CNs are reasonable descriptors, for low CNthresh

(e.g., 7), only “close” Cs ions are identified (FPR=0%), but not all of them (TPR≈20%),

as shown in Table S16a. Similarly, at high CN (e.g., 10), the TPR reaches ≈100%, i.e., all

“close” Cs ions have CNs below this value, but about 50% (FPR) of the ions not close to the

surface have CNs below this value. Hence, increasing the threshold further does not change

the TPR, but the FPR reaches 100%.

A major ROC curve analysis is performed through the Area Under the Curve (AUC), as

it provides an aggregate measure of classification performance63. In this particular example,

the AUC is associated with the probability that a random interfacial Cs ion has a lower

coordination number than a random bulk Cs ion.
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FIG. 14: ROC curve for classifying Cs ions for being “close” to the carbon anode based on

the coordination number being below a given threshold. When moving from TPR=20% to

TPR=55% with ASANN (blue curve), CNthresh is increased from 7 to 8 (see Table S16a in

the SI for the raw data). This exploits the geometrical constraint responsible for a partial

desolvation when close enough to the surface. The distance criterium for being close

enough to the surface is chosen to be 4.7 Å, since it corresponds to the empirical frontier

between the partially desolvated adsorption zone and the fully solvated adsorption zone for

Cs ions near the graphite anode (see Fig. 13).

With an AUC of 0.90, we find a strong correlation between CNASANN and the proximity

of Cs+ and the surface. This finding is coherent with ASANN providing reasonable coor-

dination numbers in this system. The same analysis performed with SANN only yields an

AUC of 0.81. The cutoff-based algorithm yields an AUC of 0.86, outperforming SANN, but

not reaching the performance of ASANN. This is rather remarkable, given that the cutoff

algorithm is tuned to the system by analyzing the radial distribution function, while ASANN

does not know anything about the specificities of the system. On a physical level, the ma-

jor difference between the cutoff algorithm and ASANN is that the ASANN coordination

sphere adapts itself to the local environment, while the cutoff does not. This means that the
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cutoff based CNs are more sensitive to thermal fluctuations. Indeed, we found cutoff-based

coordination numbers to be slightly noisier (≈ +8%) than their ASANN/SANN counter-

parts within each region of the studied system (see Table I), rationalizing the poorer AUC

performance.

From this comparison it can be concluded that fixed-cutoff based algorithms are some-

what challenged when dealing with liquids, while SANN is not suitable for interfaces. In

contrast, ASANN combines the best features of these algorithms and performs well. There-

fore, ASANN is most relevant for describing solid/liquid interfaces.

C. Application to Au NP energy fitting

Exploring the energy landscape of alloy nano-particles from first principles is computa-

tionally very expensive. Therefore, cheap energy evaluations based on simplified Hamilto-

nians are often applied.64–66. Furthermore, if the model Hamiltonian captures the essential

physics, it can also be used to gain insight into the driving force of the alloy formation.

Inspired from cluster expansions, we here test the use of a simple model Hamiltonian Hm

for bimetallic materials. Hm depends only on the number of atoms of each element and the

number of bonds between each possible elements pairs:

Hm =
∑
χ

ΓχNχ +
∑
χ,χ′≥χ

Γχ,χ′Nχ,χ′ (11)

In other words, it is a two-body model Hamiltonian. For alloys of elements with quite

different atomic radii, the alloy nano-particles are not necessarily very regular and selecting

characteristic distances is not straight forward. Therefore, an automatic, parameter free

algorithm to identify bonds is particularly beneficial for these systems. In the following, we

apply this simplified model to bimetallic Au-Cu materials, where Hm becomes

Hm = ΓAuNAu + ΓCuNCu + ΓAu,AuNAu,Au + ΓAu,CuNAu,Cu + ΓCu,CuNCu,Cu

= Γ ·N
(12)

with Γ the set of parameters to fit. N is constructed by enumeration of atoms and bonds

of each type. The automatic bond enumeration was performed using ASANN and SANN for

comparison purposes. In order to have consistent bond description, a bond between atoms

A and B is only counted if and only if B is found as nearest neighbor of A and reciprocally.
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FIG. 15: Parity plot for the total energy predicted by a 2-body model Hamiltonian fitted

using the SANN vs. ASANN coordination algorithm. The whole set of 27 nanoparticles +

6 Bulk structures was used as training set, and the test set was composed of the 27 Au-Cu

bimetallic nanoparticles only for graphical considerations.

Such filtering is particularly beneficial to SANN, where buried atoms are mostly spared

from coordination overestimation. Hence, the bidirectional bond definition improves the

soundness of bonds between bulk and surface atoms.

For fitting the model Hamiltonian, we use a structurally diverse set of 27 Au-Cu bimetallic

nanoparticles composed of 38 atoms with various compositions and morphologies and 6 Au-

Cu bulk structured alloys with various Au-Cu ratios. The coordinates are provided in the

supplementary information.

When fitting only the nanoparticle set, the algorithms lead to model Hamiltonians with

mean absolute deviation (MAD) of 0.8 eV for ASANN and 0.7 eV for SANN, see Figure

S1. In other words, both approaches are very similar, with SANN performing slightly better

than ASANN. However, the ASANN-derived parameters are found to be more robust than

their SANN-based counterparts when adding the bulk structured alloys to the training
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set (i.e. diversifying the training set). The fitted parameters are not only slightly less

impacted (see Tables S1 and S2 in the SI), but the overall model performance is better with

ASANN-based bonds (MAD near 1.5 eV for ASANN, versus 1.8 eV for SANN). This is

especially true when using only the nanoparticles as test set. The predicted energy for the

nanoparticles with respect to the DFT reference energies yields a coefficient of determination

R2 = 0.72 and R2 = 0.59 with ASANN and SANN based 2-body patterns, respectively (see

Figure 15). Similarly, the pure bulks are better described by ASANN (MAD=0.37 eV), than

SANN (MAD=0.60 eV). Hence, the better performance of SANN for exclusively fitting the

nanoparticles set can be traced back to error cancellation between coordination number

overestimation and missing higher-order many-body terms at the surface. In summary, we

conclude that ASANN provides a balanced and physical sound description between bulk and

surface-rich nanoparticles. Therefore, ASANN can also be applied to alloys of elements with

quite different atomic radii. Similarly, ASANN could be used to provide a simple estimation

of the surface of nanoparticles, by considering the union (or surface sum) of the planar edge

of each coordination cap. A more rigorous approach using ASANN to define the surface of

nanoparticles would be through the definition of a locally adaptative coordination radius,

defining the local coarseness of the surface.

V. CONCLUSION

In this work we have extended the solid-angle based nearest-neighbor (SANN) algorithm

to account for the local anisotropy, defining the anisotropically corrected solid-angle based

nearest-neighbor (ASANN) method. ASANN allows to efficiently compute parameter-free

coordination numbers and significantly improves over SANN at interfaces, where the coor-

dination environment is highly anisotropic, such as nano-particles and partially desolvated

ions at solid/liquid interfaces, where SANN leads to overestimations of the coordination

number. In all situations tested, the ASANN coordination numbers are either identical or

physically more sound than the ones provided by SANN and on par with system-specific, cut-

off based coordination numbers. Therefore, ASANN provides a robust method to compute

coordination numbers for describing alloy nano-particles, extended surfaces and (electrified)

solid/liquid interfaces.
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Skeel, L. Kalé, and K. Schulten, J Comput Chem 26, 1781 (2005).

50J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, and A. T.

Bell, J. Am. Chem. Soc. 139, 11277 (2017).
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