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ABSTRACT: Hydroxide ion is shown to be a potent disruptor of Ru-catalyzed olefin metathesis, in a study of the Hoveyda cata-
lyst HII. Addition of [NnBu4][OH] immediately terminates metathesis via HII, an effect traced to formation of bis(hydroxide) 
complex HII-OH. The latter was synthesized for direct study. HII-OH initiates very slowly on reaction with olefins, and de-
composes in the first cycle of metathesis. Computational analysis reveals rapid bimolecular coupling between HII-OH and its 
four-coordinate methylidene derivative. Importantly, fully decomposed catalyst also accelerates decomposition of HII-OH. The 
H-bonding capacity of the hydroxide ligand is proposed as a powerful driving force for decomposition. 
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Ruthenium-catalyzed olefin metathesis offers exceptionally 
powerful methodologies for the assembly of carbon-carbon 
bonds.1 In many applications in total synthesis,2,3 pharmaceu-
tical manufacturing,4 and chemical biology,5-7 metathesis is 
carried out on densely-functionalized substrates bearing 
polar functional groups, in the presence of variable amounts 
of water. We speculated that hydroxide ion might pose a 
common, unrecognized challenge to catalyst function under 
such conditions. At the extreme is the metathetical modifica-
tion of proteins in water buffered to pH >7, a forefront appli-
cation that necessitates use of the Ru complex in high stoi-
chiometric excess.6 While clever strategies have been de-
signed to accelerate metathesis relative to catalyst degrada-
tion,7 the basis of the problem remains ambiguous. Under-
standing the unintended, non-metathetical reactivity of the 
Ru=CHR bond under such conditions is thus of both fun-
damental and practical importance. The present work was 
aimed at assessing the impact of hydroxide on the productivi-
ty and fate of the second-generation Hoveyda catalyst HII, 
an exemplary, widely used metathesis catalyst.  
Prominent among the decomposition pathways now known 
to disrupt Ru-catalyzed metathesis are those enabled by 
nucleophiles and Bronsted base (Scheme 1). Nucleophiles 
have been shown to attack the methylidene carbon of Ru-
1,8,9 while Bronsted bases readily deprotonate the metallacy-
clobutane (MCB) intermediate Ru-2.10,11 The potential 
engagement of hydroxide ion in either manifold was antici-

pated.12-14 Unexpectedly, however, a potent new decomposi-
tion pathway was identified, which appears unique to Ru-
hydroxide species. Here we describe transformation of HII 
into bis-hydroxide complex HII-OH, and bimolecular de-
composition of HII-OH during the first cycle of metathesis. 

 
Scheme 1. Decomposition of Metathesis-Active Species 
by (a) Nucleophiles; (b) Bronsted Base. L = H2IMes; Red 
Arrows Indicate Sites of Attack. 

Our attention was first drawn to the potential of hydroxide 
ion to hinder metathesis in studies of the impact of Bronsted 
base on metathesis productivity.10,15 Yields were negatively 
affected by the presence of strongly basic enolate anions,10 
but dropped even further when water was added as a sacrifi-
cial proton source.15 (In contrast, sacrifical phenols restored 
metathesis activity). Likewise suggestive was a preliminary 
survey of the impact of common contaminants on metathesis 

Ru
Cl

Cl
L Ru

Cl

Cl

L

R

Ru-1 Ru-2

R

Nu-CH3

(a) H-Nu: (b) Base

H
H

+ metathesis-inactive Ru products

base•HCl +

R

(a) (b)



 

productivity. These experiments examined the impact of 
additives on turnover numbers (TON) in cyclization of 
diethyl diallylmalonate (DDM, A; Figure 1), with the ra-
tionale that any agents capable of disrupting this exceptional-
ly facile ring-closing metathesis (RCM) reaction merit atten-
tion. As shown in Figure 1a, either water or morpholine C (a 
basic contaminant present in technical grade toluene)16 
caused TONs to drop by approximately half, but a 50% fur-
ther decrease occurred when both water and morpholine 
were present. 
The premise that hydroxide ion might be responsible was 
tested via a knockdown experiment, in which [NnBu4][OH] 
(a THF-soluble source of hydroxide ion)17 was added during 
RCM. Metathesis activity immediately ceased (Figure 1b; 
red line), even at catalyst loadings 20x higher than those used 
in the original screen. To assess whether this drop reflects 
attack on the active species Ru-1 or Ru-2, or on the precata-
lyst HII, a second experiment was carried out, in which hy-
droxide was added prior to substrate. RCM activity (blue 
line) was completely suppressed. This suggests that hydrox-
ide ion attacks HII to yield a ruthenium product that is either 
completely inactive, or decomposes in the first cycle of me-
tathesis. 

 

 

Figure 1. Impact of additives on RCM. (a) Water, morpholine 
C, or both. (b) [NnBu4][OH] (2 equiv vs Ru). 

Synthesis of the putative hydroxide complex was undertaken 
for closer examination. Accordingly, aqueous [NnBu4][OH] 
was added to a solution of HII in THF (Scheme 2).18 As use 
of 1 equiv hydroxide per Ru resulted in 50% consumption of 
HII, a 2:1 stoichiometry was employed. A colour change 
from green to red occurred over the time of mixing, and 1H 
NMR analysis revealed a new singlet for the benzylidene 
proton at 14.04 ppm (cf. 16.72 ppm for HII). Reaction was 
complete in <10 min even on 200 mg scale, and bis-
hydroxide HII-OH was isolated in ca. 85% yield. Complete 
selectivity for salt metathesis was evident, as expected from 

reactions of related Ru alkylidenes with aryloxide ion,19 but 
in contrast with reactions of hydroxide with Ru-CO com-
plexes, which yield Ru formates via attack on the carbonyl 
ligand.12a,b  
With the exception of the Ru=CHAr signal, the chemical 
shifts and multiplicities of all proton signals for HII-OH 
accord closely with those for HII. An additional singlet was 
observed for the Ru-OH protons at 1.1 ppm, the assignment 
of which was confirmed by exchange with degassed D2O.20 
The structure depicted for HII-OH in Scheme 2 is that pre-
dicted by density functional theory (DFT) analysis: specifi-
cally, a distorted trigonal bipyramidal geometry,21 with an 
HO–Ru–OH angle of 139.1° (Table S2). In comparison, the 
Cl–Ru–Cl angle for HII is nearly 20° larger (computed: 
155.1°; crystallographic:22 156.5°). 

 
Scheme 2. Synthesis of HII-OH.  

Consistent with the knockdown behaviour seen in Figure 1b, 
HII-OH proved unreactive toward DDM. Even with 10 
mol% of HII-OH at 60 °C, <3% RCM was evident after 2 h 
(cf. 100% within 15 min at RT with 1 mol% HII as catalyst). 
Slow initiation of HII-OH is not surprising, given the induc-
tive withdrawal of electron density from the Ru center by the 
oxygen ligands. The compressed HO–Ru–OH angle may 
also be relevant, as Ru metathesis catalysts with cis-anionic 
geometries are known to initiate very slowly.23  
Computational analysis of the initiation step, undertaken 
using ethylene as a model olefin (Scheme S4a),24 revealed a 
higher energy barrier to cycloaddition for HII-OH, relative 
to HII (20.9 kcal/mol, vs. 16.7 kcal/mol). The resulting 
metallacyclobutane is trigonal bipyramidal in both cases, but 
intramolecular H-bonding of the OH ligands (ca. 2 Å) stabi-
lizes a cis-anionic geometry for HII-OH, in contrast with the 
trans-anionic geometry seen for HII (Scheme S4b).  
While this energy difference accounts for slower reaction of 
HII-OH, it does not account for the complete loss of me-
tathesis activity. We infer that HII-OH is considerably more 
susceptible to decomposition. In examining the relevant 
pathways, we first considered those established  for HII and 
related catalysts (see Introduction). Nucleophilic attack by 
hydroxide on the benzylidene carbon (cf. Scheme 1a) is 
expected to liberate the aldehyde HC(O)Ar (Ar = o-C6H4-
OiPr).25 This aldehyde is indeed detected, but in minor, 
variable amounts, depending on rates of mixing.26 The alter-
native possibility, in which a hydroxide ligand deprotonates 
the MCB Ru-3 (cf.  Scheme 1b), is unlikely given the ca. 41 
kcal/mol barrier calculated by DFT analysis (Scheme S5). A 
potent new decomposition pathway thus appears to be 



 

operative. Given that the sole difference between HII and HII-
OH lies in the nature of the anionic ligands (and given that 
related Ru(OAr)2 and Ru(k2-O2C6R4) exhibit notably high 
metathesis productivity),19 the hydroxide groups appears to 
play a critical, negative role. 
To gain deeper insight, we reacted HII-OH with ethylene, 
using a sealed NMR tube to retain any volatile products 
(Scheme 3). Loss of the [Ru]=CHAr signal for HII-OH was 
complete within 24 h. Unexpectedly, however, only ca. 50% 
of the HII-OH complex had participated in metathesis, as 
judged from the combined yields of styrenyl ether D 
(Scheme 3a) and propenes E/E’ (Scheme 3b). These pro-
penes are presumed to form via b-elimination from the MCB 
Ru-3, a well-established decomposition pathway for HII27,28 and 
other metathesis catalysts.29 The computed barrier to 
elimination of E/E’ from Ru-3 is comparable to that for cyclo-
reversion (15.9 vs. 17.0 kcal/mol, respectively).  
The fact that these organic products account for only 50% of 
the starting HII-OH is puzzling. As Ru(OH) complexes are 
known to form hydroxy-bridged dimers with remarkable 
facility,30,31 we queried whether  bimolecular coupling might 
consume HII-OH prior to metathesis. We recently reported 
that HII and related metathesis catalysts decompose via 
dimerization of RuCl2(H2IMes)(=CH2), Ru-1.29 In the case 
of HII-OH, slow initiation limits the concentration of the 
corresponding hydroxo complex Ru-4. This disfavours ho-
mo-coupling of two Ru-4 molecules, but opens the door to 
hetero-coupling with the large excess of HII-OH present 
(Figure 2, bottom). Trapping of HII-OH upon formation of 
Ru-4 could account for the engagement of only 50% HII-
OH in metathesis.32 

 
Scheme 3. Products Generated in the First Cycle of Me-
tathesis. (a) Via Metathesis Exchange. (b) Via MCB De-
composition.a 

a Path (a) is quantified from the yield of D; Path (b) from the 
yield of E+E’ (4% each). 

DFT calculations indicate that hetero-coupling of HII-OH is 
indeed thermodynamically favoured relative to ethylene 

binding. The latter is endergonic by 13.3 kcal/mol. Because 
these calculations are based on gas-phase entropies, however, 
they greatly exaggerate the entropic penalty to dimerization. 
If we adopt one proposed correction factor, and add 50% of 
the gas-phase entropy to account for the change from perfect 
gas to perfect solution,33  the heterodimer is –12.4 kcal/mol 
more stable than HII-OH + Ru-4, whereas the ethylene 
complex lies at +14.9 kcal/mol. Hetero-dimerization is thus 
greatly favoured relative to ethylene binding (the requisite 
first step for formation of D and Ru-4). Consistent with this 
picture, kinetics experiments indicate that decomposition is 
first order in [Ru] (Figure S2). That is, formation of Ru-4 is 
rate-limiting. 
Two conformers of the anticipated29,34,35 heterodimer are 
predicted to be thermodynamically favoured with respect to 
HII-OH + Ru-4. These are transoid- and cisoid-Ru-6, of 
which the former is the more stable (DG –4.0 kcal/mol). 
Liberation of styrenyl ether D from transoid-Ru-6 is inhib-
ited by the relative disposition of the two ylidene groups on 
opposite sides of the Ru2(µ-OH)2 plane. Precedents from 
the chloride system29 suggest that elimination of D from 
cisoid-Ru-6 could be feasible, if the methylidene ligand can 
adopt the conformation shown in cisoid-Ru-6’ (inset, Figure 
2). However, the proportion of D liberated via the sum of 
metathesis and decomposition should then approach 100%. 
The observed 40% yield of D argues against such an elimina-
tion pathway. Instead, the cumulative data suggest that while 
bimolecular coupling is thermodynamically favoured relative 
to metathesis, C=C coupling and elimination is inhibited.  

 
Figure 2. Competing reaction pathways for  HII-OH: ethylene 
binding, vs. hetero-coupling with Ru-4. Gibbs free energies 
(kcal/mol) computed at the PBE-D3M(BJ)/cc-
pVQZ+ECP28MDF/PCM(Benzene) // M06L/cc-
pVDZ+ECP28MDF) level of theory. The free energy for the 
heterodimer is underestimated, owing to exaggeration of the 
entropic penalty to dimerization: see text. 
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To confirm that decomposed Ru-OH species can trap HII-OH, 
we added fresh catalyst to a solution of the decomposed material 
(Figure 3). Disappearance of the fresh HII-OH was indeed 
much faster than in the control reaction of HII-OH under N2. 
(As expected, however, it is slower than decomposition of HII-
OH under ethylene). Importantly, the corresponding experi-
ment with HII caused negligible decomposition of fresh HII 
(Figure S3). The H-bonding capacity of the hydroxide ligands 
thus appears to be critical in promoting attack of decomposed 
Ru-OH species on fresh catalyst.  

 

Figure 3. Accelerating effect of decomposed catalyst on the 
decomposition of HII-OH. Black: (left) Decomposition of HII-
OH under C2H4; (right) impact of decomposed HII-OH on 
fresh precatalyst. Green: proportion of D formed during exper-
iments indicated with black lines). 

While coupling of HII-OH with Ru-4 is thus plausible, we were 
unable to detect the alkylidene protons of Ru-6 by NMR analy-
sis, or to observe agglomerated species by DOSY-NMR. This, as 
well as the steady degradation in NMR signal-to-noise ratios 
over the 24 h timescale of decomposition (Figure S11) is con-
sistent with rapid transformation of Ru-6 into paramagnetic 
products. Paramagnetism may result from the versatile coordi-
nation modes and redox properties of the hydroxide ligand,30,31 
although multisite alkylidene binding is also feasible.36,37 
The foregoing demonstrates that hydroxide ion is an unex-
pectedly potent disruptor of Ru-catalyzed olefin metathesis. 
Termination is traced to the slow initiation and rapid de-
composition of the bis(hydroxide) complex HII-OH. A 
notable feature is the capacity of the decomposed Ru species 
to sequester and decompose the precatalyst HII-OH, behav-
iour that arises from the H-bonding capacity of the hydrox-
ide ligand. These results highlight previously unrecognized 
challenges to metathesis under conditions that can generate 
hydroxide, and more particularly metathesis in alkaline wa-
ter. 
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