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Optimal perturbations in viscous round jets
subject to Kelvin–Helmholtz instability

Gabriele Nastro1,†, Jérôme Fontane1 and Laurent Joly1

1ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse, France

We investigate the development of three-dimensional instabilities on a time-dependent
round jet undergoing the axisymmetric Kelvin–Helmholtz (KH) instability. A non-modal
linear stability analysis of the resulting unsteady roll-up into a vortex ring is performed
based on a direct-adjoint approach. Varying the azimuthal wavenumber m, the Reynolds
number Re and the aspect ratio α of the jet base flow, we explore the potential for
secondary energy growth beyond the initial phase when the base flow is still quasi-parallel
and universal shear-induced transient growth occurs. For Re = 1000 and α = 10, the
helical m = 1 and double-helix m = 2 perturbations stand as global optimals with larger
growth rates in the post roll-up phase. The secondary energy growth stems from the
development of elliptical (E-type) and hyperbolic (H-type) instabilities. For m > 2, the
maximum of the kinetic energy of the optimal perturbation moves from the large scale
vortex core towards the thin vorticity braid. With a Reynolds number one order of
magnitude larger, the kinetic energy of the optimal perturbations exhibits sustained growth
well after the saturation time of the base flow KH wave and the underlying length scale
selection favours higher azimuthal wavenumbers associated with H-type instability in the
less diffused vorticity braid. Doubling the jet aspect ratio yields initially thinner shear
layers only slightly affected by axisymmetry. The resulting unsteady base flow loses scale
selectivity and is prone to a common path of initial transient growth followed by the
optimal secondary growth of a wide range of wavenumbers. Increasing both the aspect
ratio and the Reynolds number thus yields an even larger secondary growth and a lower
wavenumber selectivity. At a lower aspect ratio of α = 5, the base flow is smooth and
a genuine round jet affected by the axisymmetry condition. The axisymmetric modal
perturbation of the base flow parallel jet only weakly affects the first common phase of
transient growth and the optimal helical perturbation m = 1 dominates with energy gains
considerably larger than those of larger azimuthal wavenumbers whatever the horizon
time.

Key words: Jets

1. Introduction

Understanding the mechanisms by which initially laminar flows transition to turbulence
is of fundamental importance in fluid dynamics, especially in the context of mixing
promotion. Due to its occurrence in many industrial applications aiming at mixing an
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effluent with a background fluid, round jet is a prototypical flow to which many authors
have devoted special attention in the past. The main features of round jet transition have
been widely studied allowing for a characterisation of its initial phase, which is ruled by
the development of corotating vortex rings resulting from the primary Kelvin–Helmholtz
(KH) instability of the axisymmetric shear layer (Becker & Massaro 1968). This inviscid
primary instability is a prototypical inflectional instability (Drazin & Reid 1981) whose
streamwise and azimuthal wavenumbers can be determined through a classical local
linear stability analysis (Batchelor & Gill 1962; Lessen & Singh 1973; Crighton &
Gaster 1976; Morris 1976; Plaschko 1979; Michalke 1984). The azimuthal wavenumber
m is necessarily an integer and defines the azimuthal periodicity of the instability:
axisymmetric perturbations correspond to m = 0; helical ones to m = 1; double-helix
ones to m = 2 and so on. The selection of the most unstable mode depends on both the
Reynolds number Re and the steepness of the base flow velocity profile, measured by
the aspect ratio α = �0/ϑ where �0 is the jet radius and ϑ is the shear layer momentum
thickness (Jimenez-Gonzalez, Brancher & Martinez-Bazan 2015). Fully developed jet
velocity profiles corresponding to low aspect ratios α, i.e. profiles with a thick vorticity
layer, are generally unstable to helical perturbations (m = 1) whatever the Reynolds
number, as shown by Batchelor & Gill (1962) in their pioneering work. Conversely,
steeper so-called top-hat jet profiles, characterised by large values of α, present a wider
range of unstable azimuthal wavenumbers (Michalke 1964; Plaschko 1979), including
axisymmetric disturbances (m = 0) which become the most unstable for vanishing
shear layer thickness in the inviscid limit (Abid, Huerre & Brachet 1993). However,
perturbations with higher azimuthal wavenumbers m ≥ 2 are always less unstable than
the axisymmetric or helical ones. A similar response has been retrieved for low aspect
ratios and top-hat jets when considering low-Reynolds-number jets, although the viscosity
plays a stabilising role that yields lower growth rates (Lessen & Singh 1973; Morris 1976).
Therefore, the most unstable primary mode of the round jet undergoes a transition from
helical to axisymmetric azimuthal periodicity when the velocity profile steepness increases
(Jimenez-Gonzalez et al. 2015).

The vortex ring resulting from the nonlinear evolution of the primary KH instability
experiences two kinds of secondary instabilities. The first one is the two-dimensional
subharmonic pairing of two consecutive billows which induces an increase of their
size combined with a doubling of the streamwise wavelength (Yule 1978; Reynolds &
Bouchard 1981). When promoted or spontaneously occurring, the subharmonic pairing has
been demonstrated to merely delay the onset of the second type of secondary instabilities
(Moser & Rogers 1993; Rogers & Moser 1993; Arratia, Caulfield & Chomaz 2013). These
are three-dimensional and lead to the development of streamwise counter-rotating vortices
along the ‘braid’, i.e. along the stretched axisymmetric vorticity sheet connecting two
consecutive primary structures. These longitudinal ‘rib’ vortices wrap around the KH
vortex rings and cause an azimuthal deformation of their cores, as observed experimentally
by Yule (1978), Liepmann (1991) and Liepmann & Gharib (1992). No global stability
analysis has been conducted so far to determine the three-dimensional secondary modes
of the round jet associated with these three-dimensional structures. However, their
development has been analysed numerically by Martin & Meiburg (1991) and Brancher,
Chomaz & Huerre (1994) by introducing an arbitrary azimuthal deformation of the initial
velocity profile. They found the same physical mechanism described by Lasheras, Cho
& Maxworthy (1986) and Lasheras & Choi (1988) to be responsible in the plane mixing
layer for the development of the rib vortices in the braid region. This strong similarity
with the three-dimensionalisation of the plane mixing layer allows one to transpose the
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results of the stability analyses conducted in that case (Pierrehumbert & Widnall 1982;
Klaassen & Peltier 1991; Caulfield & Kerswell 2000; Fontane & Joly 2008; Arratia et al.
2013, amongst others) to the jet flow. The three-dimensionalisation of the flow results from
the combined development of two secondary modes: a small wavenumber core-centred
elliptical (E-type) instability, originally coined by Pierrehumbert & Widnall (1982) as the
‘translative’ instability due to the induced spanwise periodic displacement of the vortex
core, and a large wavenumber braid-centred hyperbolic (H-type) instability; following
Arratia et al. (2013).

The present work intends to perform a global stability analysis over the whole unsteady
evolution from the initially parallel jet flow to the roll-up of the KH vortex rings in order
to determine the secondary instabilities of the round jet and to analyse which specific
features come from the axisymmetry of the base flow compared with the plane mixing
layer. Adopting the temporal approach, we discard any non-parallel effects such as the
frequency and wavenumber drifts downstream an otherwise spatially developing flow.
We also filter out the effect of two-dimensional subharmonic pairing by restricting the
time-dependent base flow to a streamwise extent equivalent to the wavelength of the most
unstable KH mode. We compensate for the phase velocity of the most unstable KH mode
to follow the base flow unsteady roll-up in a reference frame moving with the primary
mode, at least initially. Due to the unsteadiness of the base flow and the non-normality
of the governing equations, the classical modal approach, which predicts the asymptotic
long-time exponential behaviour of perturbations, is not suited for capturing the short time
unstable dynamics and to account for the influence of the base flow temporal evolution on
the secondary modes (Schmid 2007). Therefore, we opt for a non-modal analysis based
on a direct-adjoint approach, similar to the one conducted by Arratia et al. (2013) and
Lopez-Zazueta, Fontane & Joly (2016) for the plane shear layer, and look for the optimal
perturbation growing over temporally evolving KH vortex rings.

In the case of the plane shear layer, Arratia et al. (2013) found that both E-type and
H-type instabilities initially grow thanks to a combination of the Orr (1907) and lift-up
(Ellingsen & Palm 1975; Landahl 1975, 1980) mechanisms. The Orr mechanism is purely
two-dimensional and relies on the deformation of vorticity patches under the action of the
base flow shear. The deformation induces a transient energy growth due to the temporary
concentration of vorticity, which, owing to the Kelvin circulation preservation theorem,
increases vorticity extrema of vorticity patches initially aligned with the direction of
compression, as illustrated in figure 1(a). The lift-up mechanism, originally identified in
wall-bounded shear flows, is associated with pairs of counter-rotating streamwise vortices
which lift fluid of low momentum in high velocity regions and reciprocally move high
momentum fluid towards lower velocity regions, generating streamwise aligned layers of
streamwise velocity perturbations, or so-called streamwise velocity streaks, as shown in
figure 1(b). Arratia et al. (2013) also observed that the E-type mode is the global optimal
when perturbation is injected from the initial development of the flow while the H-type
becomes dominant only when the optimisation interval starts after the initial period of
transient growth. Thus, the selection of an E-type or an H-type perturbation depends
on both the spanwise wavenumber and the injection time of the initial perturbation. The
outcome of these optimal perturbations leads in both cases to the formation of streamwise
counter-rotating vortices in the braid region.

In the case of the round jet, a non-modal stability analysis has already been conducted,
but only for the primary instability. Garnaud et al. (2013a) have found that the largest
transient energy gains are due to helical perturbations, leading the authors to suggest
that a lift-up mechanism could be involved. Boronin, Healey & Sazhin (2013) came to
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FIGURE 1. Sketches of (a) Orr and (b) lift-up transient growth mechanisms. For the Orr
mechanism, the term −ux uy(∂Ux/∂y) on the figure indicates the source term active in the
equation of the perturbation kinetic energy.

a similar conjecture based on the amplification of the streamwise velocity component
of the perturbation. Conversely, the results of Garnaud et al. (2013b) on the optimal
forcing of the jet suggest the contribution of an Orr-type mechanism to the perturbation’s
growth. The recent studies of Jimenez-Gonzalez et al. (2015) and Jimenez-Gonzalez
& Brancher (2017) on both the steady and the unsteady diffusing base flow identified
the existence of three distinct mechanisms depending on both the axial and azimuthal
wavenumbers of the perturbation. For axisymmetric perturbations, the transient growth
relies on the Orr mechanism with the reorientation of initial azimuthal vorticity structures
under the action of the base flow shear. This mechanism is observed to be more efficient
at large axial wavenumber when the Reynolds number is increased. In the helical case,
the Orr mechanism is also responsible for the transient growth of the perturbation at
large wavenumbers. However, for small axial wavenumbers, the energy of the perturbation
mostly lies in the streamwise vorticity component and induces a radial displacement of the
jet as a whole. This ‘shift-up’ mechanism is thus very specific to the m = 1 perturbation
at low wavenumber. Indeed, for higher values of the azimuthal wavenumber, i.e. m ≥ 2,
the structure of the optimal perturbation is more concentrated along the shear layer
and is associated with the classical lift-up mechanism. The transient energy growth of
the perturbation is always found to be more efficient in the helical case whatever the
Reynolds number and the aspect ratio of the base flow. The present work also aims
at ascertaining whether these transient mechanisms are active in the development of
secondary instabilities of the round jet.

The paper is organised as follows. The governing equations and the numerical methods
are presented in § 2 together with a description of the base flow. The results of the
non-modal stability analysis for the nonlinear KH vortex rings are discussed in § 3. The
influence of the azimuthal wavenumber m, the optimisation interval (both the injection t0
and horizon T times), the Reynolds number Re and the aspect ratio α of the initial velocity
profile on the optimal perturbation is considered. Finally, conclusions and perspectives are
drawn in § 4.

2. Formulation of the problem

2.1. Base flow
We consider an incompressible fluid flow in a cylindrical reference frame (r, θ, z) with
the r, θ and z axes corresponding to the radial, azimuthal and streamwise directions,
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FIGURE 2. (a) Definition of the cylindrical reference frame together with a sketch of the initial
condition of the simulation of the base flow. Here, the initial amplitude of the KH mode has been
rescaled for sake of clarity. (b) Temporal evolution of the energy gain GE of the KH mode for
α = 10. The insets represent the azimuthal vorticity of the base flow Ωθ shown at times t = 5,
t = Ts = 10 and t = 20. The dash-dotted line stands for the energy growth predicted by the linear
stability analysis.

respectively, as illustrated in figure 2(a). We denote �0 and u0 the characteristic length
and velocity scales taken as the jet radius and the jet centreline velocity at the nozzle
exit, respectively. As we address buoyancy-free flows, the dimensionless Navier–Stokes
equations read

∇ · u = 0, (2.1)

Dtu = −∇p + 1
Re

Δu, (2.2)

where Dt = ∂t + (u · ∇) denotes the material derivative and Re = (ρ0u0�0)/μ is the
Reynolds number with μ the dynamic viscosity and ρ0 = 1 the constant density. Following
the works of Arratia et al. (2013), Jimenez-Gonzalez et al. (2015), Lopez-Zazueta et al.
(2016) and Jimenez-Gonzalez & Brancher (2017), we will set the Reynolds number
Re = 1000 (except in § 3.2, where we deal with the effect of variations in Re), which is
large enough to guarantee that the primary KH mode wraps itself into a finite amplitude,
energetic vortex ring.

The two-dimensional base flow consists of a time-evolving axisymmetric jet which
undergoes the nonlinear development of the primary KH instability starting from
the classical profile proposed by Michalke (1971). The corresponding velocity U =
[Ur, 0, Uz] and pressure fields P are computed on a meridian plane of dimension
[−rmax , rmax ] × [0, Lz] through a direct numerical simulation using a two-dimensional
dealiased pseudo-spectral method described in detail in Joly, Fontane & Chassaing (2005)
and Joly & Reinaud (2007). In particular, we adopt a Fourier expansion in the streamwise
direction and a Chebyshev collocation method for the radial direction (Khorrami, Malik
& Ash 1989). The Gauss–Lobatto collocation points defined in the Chebyshev space (R ∈
[−1, 1]) are mapped into the physical space (r ∈ [−rmax , rmax ]) thanks to a logarithmic
mapping given by

r = a tanh−1 (bR) with b = tanh
(rmax

a

)
, (2.3)
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α �0 c rmax 100 aKH Lz/�0 Ts

5 1.27 0.757 8.89 1.77 4.95 20.0
6 1.51 0.718 10.6 1.91 4.15 16.7
7 1.74 0.688 12.2 1.94 3.60 14.3
8 1.97 0.665 13.8 1.95 3.19 12.5
9 2.18 0.647 15.7 1.91 2.88 11.1
10 2.39 0.633 16.7 1.88 2.63 10.0
12.5 2.92 0.606 20.4 1.76 2.15 8.00
15 3.45 0.588 24.2 1.64 1.82 6.67
17.5 3.98 0.575 27.9 1.55 1.56 5.71
20 4.52 0.566 31.6 1.49 1.39 5.00

TABLE 1. Main numerical parameters for the simulated homogeneous KH base flow fields:
aspect ratio α; jet radius �0; phase velocity of KH mode c; maximum radius rmax ; initial
amplitude of the KH mode aKH ; and ratio Lz/�0 between the domain streamwise extent and
the jet radius and KH saturation time Ts.

where the parameter a controls the stretching of the collocation points. A free-slip
boundary condition is imposed at the radial boundaries (r = ±rmax ) of the flow domain,
while the flow is periodic in the streamwise direction.

As illustrated in figure 2(a), the initial condition used for the simulation of the base flow
is the profile of Michalke (1971) U = [0, 0, Uz] given by

Uz(r) = 1
2

+ 1
2

tanh
[
α

4

(
1
r

− r
)]

, (2.4)

where α = �0/ϑ is the jet aspect ratio with ϑ the shear layer momentum thickness,
perturbed by the most unstable mode obtained by the inviscid temporal linear stability
analysis. The temporal modal analysis yields the phase velocity c(α) of the dispersion
relation of the most unstable mode. We compensate for this phase velocity over the whole
velocity field to keep the KH vortex ring at the centre of the Galilean reference frame.
The saturation time Ts of the primary instability depends on the initial amplitude of the
KH mode aKH , the Reynolds number Re and the aspect ratio α. The initial amplitude
aKH , defined as the square root of the ratio between the initial kinetic energy of the KH
mode and the Michalke profile, is chosen small enough to ensure the existence of a linear
phase of growth and its value is set so that the linear phase is the same for all cases, i.e.
αTs = 100. The jet radius �0 is set so that the most amplified KH mode corresponds to a
wavenumber of 2π/Lz. The radial extent of the domain is chosen large enough to ensure
that the free-slip boundary condition has no influence on the nonlinear development of the
flow, i.e. rmax = 7�0. For all simulations, we use a mesh of 5122 points, which has been
checked to be large enough to ensure the convergence of the results. All the numerical
settings for the homogeneous KH base flow fields are summarised in table 1.

Figure 2(b) shows the temporal evolution of the energy gain GE = E(t)/E(t0) of
the primary KH instability for α = 10. During the initial phase, the energy grows
exponentially in time at a rate consistent with the growth rate predicted by the linear
stability analysis. The nonlinear saturation of the mode occurs at Ts = 10 and results in
the unsteady roll-up of the axisymmetric shear layer into a KH vortex ring as illustrated
by the contours of the azimuthal vorticity Ωθ in the insets of figure 2(b). In contrast with
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the plane shear layer case, the KH vortex does not exhibit a central symmetry with respect
to the elliptical stagnation point, which is specific to the axisymmetry condition.

2.2. Optimisation problem
We now consider the temporal linear evolution of three-dimensional disturbances [u, p]
that are likely to grow over the incompressible KH vortex ring [U, P]. The governing
equations (2.1) and (2.2) are linearised around the two-dimensional base flow:

∇ · u = 0, (2.5)

∂u
∂t

+ U · ∇u + u · ∇U = −∇p + 1
Re

Δu. (2.6)

We can write this linear system – referred to as the direct system – in the following compact
form:

N t · q + Nc · q + 1
Re

Nd · q = 0, (2.7)

where q = [u, p] is the direct variable vector and the three matrix operators are the
temporal operator N t, the operator of coupling between the base flow and the disturbance
Nc and the operator of viscous diffusion Nd, respectively.

The base flow being time-dependent and the dynamical system (2.7) non-normal,
we resort to a non-modal stability analysis for which the temporal behaviour of the
perturbation is not prescribed. Taking into account the streamwise periodicity and the
axisymmetry of the base flow, the perturbation can be written in the form

[ur, uθ , uz, p](r, θ, z, t) = 1
2

(
[ũr, ũθ , ũz, p̃](r, z, t) ei(μz+mθ) + c.c.

)
, (2.8)

where m is the azimuthal wavenumber and μ ∈ [0, 1] the real Floquet exponent. As
advocated in the introduction, the case where the base flow exhibits two-dimensional
pairing is not considered here. Moreover, the works of Klaassen & Peltier (1991)
and Fontane & Joly (2008) showed that the unstable modes of the stratified and the
inhomogeneous mixing layers are only weakly sensitive to the Floquet exponent. For these
reasons, we look for perturbations having the same streamwise periodicity as the base flow,
i.e. μ = 0.

Amongst all possible perturbations likely to develop within the KH vortex ring, we are
interested in those maximising the growth of kinetic energy over a finite time interval
[t0, T]. The energy gain GE is defined as the ratio between the perturbation kinetic energy
at the horizon time T and the one at the injection time t0:

GE(T, t0) = E(T)

E(t0)
= ‖q(T)‖u

‖q(t0)‖u
, (2.9)

where ‖ · ‖u stands for the seminorm associated with the conventional inner product and
the kinetic energy (see appendix A for definition). In accordance with the pioneering work
of Farrell (1988), we define the optimal perturbation as the one reaching the maximal
energy gain

GE(T, t0) = max
q(t0)

{GE(T, t0)}, (2.10)

over all the possible initial conditions q(t0). To determine this optimal perturbation,
we solve an optimisation problem with constraints (Gunzburger 2002) enforcing the

https://doi.org/10.1017/jfm.2020.496
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


G. Nastro, J. Fontane and L. Joly

disturbance to be a solution of the linearised Navier–Stokes equations (2.5) and (2.6). It
can be converted to an optimisation problem without constraints by using the variational
method of the Lagrange multipliers (see Luchini & Bottaro 1998; Corbett & Bottaro 2000,
2001). This approach involves the derivation of the so-called adjoint equations (Schmid
2007) associated with the direct system (2.5) and (2.6):

∇ · u† = 0, (2.11)

−∂u†

∂t
− U · ∇u† + u† · ∇UT = ∇p† + 1

Re
Δu†, (2.12)

where u† denotes the adjoint variable of the velocity field, p† is the adjoint pressure and
the superscript T stands for the matrix transpose. The adjoint system can be also cast in the
following compact form:

− N t · q† + N†
c · q† + 1

Re
Nd · q† = 0, (2.13)

where q† = [u†, p†] is the adjoint variable vector. The negative sign before the temporal
operator N t implies a backward-in-time integration of the adjoint equations. Here, N†

c
represents the adjoint coupling matrix operator between the base flow and the adjoint
disturbance.

The identification of the optimal perturbation and the associated optimal energy gain
GE, relies on an iterative optimisation algorithm described in detail in appendix A. The
direct system (2.7) is advanced in time until the horizon time T , from an initial condition
q(t0) taken as a white noise. From the final direct state obtained at T , we compute the initial
condition q†(T) for the adjoint system (2.13), before its integration backward-in-time to the
injection time t0. The resulting state is rescaled and used for the subsequent direct-adjoint
integration. The optimisation loop is stopped when a 0.5 % convergence is achieved on the
kinetic energy gain (see (A 5)). When compared with a perturbation obtained with a 0.1 %
convergence rate, the L2-norm of the difference between velocity fields remains below 2 %
in relative value. Both direct and adjoint systems are integrated with the linearised version
of the two-dimensional dealiased pseudo-spectral method used for the generation of the
base flow. A rapid convergence of the optimisation problem is obtained in fewer than ten
iterations.

We resort to the evolution equation for the energy growth rate of the perturbation σE =
(1/E) dE/dt to analyse the physical mechanisms associated with the energy growth of the
optimal perturbations. This equation can be derived straightforwardly from the transport
equation of the perturbation kinetic energy E = ‖q‖u:

dE
dt

= −
∫
V

uruz

(
∂Ur

∂z
+ ∂Uz

∂r

)
dV

︸ ︷︷ ︸
ΠE1

−
∫
V

(
u2

r
∂Ur

∂r
+ u2

θ

Ur

r
+ u2

z
∂Uz

∂z

)
dV

︸ ︷︷ ︸
ΠE2

− 1
Re

∫
V
(∇u : ∇uT) dV︸ ︷︷ ︸

ΠEΦ

, (2.14)

where the symbol : stands for the double contracted tensor product, ΠE1 is the energy
production/destruction due to the base flow shear, ΠE2 the energy production/destruction
due to the base flow strain field and ΠEΦ

the viscous dissipation of energy.
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3. Optimal perturbations of a round jet

3.1. Optimal energy growth
We first consider the optimal perturbations of a round jet characterised by an aspect ratio
α = 10 when injected at the initial time of the development of the base flow, i.e. t0 = 0.
Figure 3 displays the temporal evolution of the energy gain GE of perturbations optimised
for four horizon times between half the saturation time Ts of the base flow KH wave
and twice Ts, and for azimuthal wavenumbers ranging from m = 0 to m = 5. The time
normalisation by Ts will be used throughout the paper. The evolution of the energy gain of
optimal perturbations growing over a diffusing unperturbed parallel jet with the Michalke
profile, as obtained by Jimenez-Gonzalez et al. (2015), has been added for comparison. For
the diffusing parallel jet, the energy curves are all superimposed indicating that increasing
the horizon time does not modify the path but only raises the final energy gain reached
by the disturbance. Therefore, the computation of the optimal perturbation for the largest
horizon time explored is sufficient to access the energy gain evolution for any smaller T .
The presentation of the optimal perturbations growing on a diffusing Michalke profile will
be limited to that sole case in the following. Up to t ∼ Ts/2, all perturbations follow the
same energy growth while the still quasi-parallel base flow is in the linear phase of the
KH instability. Even when optimised for long time horizons, the optimal perturbations
thus exhibit the same primary growth as the one developing over a parallel jet. The
influence of the nonlinear roll-up in the base flow is felt after t ∼ Ts/2, corresponding to
the onset of roll-up and of azimuthal vorticity concentration in the base flow, as illustrated
in figure 2(b). This is the turning point where perturbations optimised for horizon times
beyond the saturation time evolve from a primary to a secondary type. The onset of
the nonlinear roll-up in the base flow yields the energy decrease of the axisymmetric
optimal perturbation and bounds the energy growth of the helical and doubly helical
ones. Conversely, for larger azimuthal wavenumbers, i.e. m > 2, optimal perturbations
developing over a diffusive parallel jet experience a substantial drop of energy, while
perturbations optimised over a nonlinear KH roll-up benefit from a secondary phase of
renewed though moderate energy growth.

Figure 4(a) displays the final energy gain at horizon time GE as a function of the
horizon time T extended to 3Ts, for the same values of the azimuthal wavenumber. The
optimal energy gain of perturbations growing over a diffusing Michalke profile has also
been included in the background for reference. Whatever the azimuthal wavenumber, the
energy gain grows on a similar trend until T ≈ 0.5Ts up to a value of GE ≈ 102. For all
m, most of the perturbation energy growth is produced during this first phase. This initial
period corresponds to the linear phase of the primary KH instability during which the
axisymmetric shear layer has not rolled-up yet. After this initial phase, the energy of the
axisymmetric disturbance m = 0 continues to increase up to a maximal value obtained
for a horizon time equal to the saturation time T = Ts before decreasing monotonically
when T is increased further. The energy of the non-axisymmetric perturbations keeps
on growing, although not always monotonically, when the horizon time is increased
beyond T ≈ 0.5Ts. In particular, the helical mode is the only one to exhibit a monotonic
energy growth. It stands as the so-called global optimal, the one displaying the largest
energy growth over all wavenumbers up to T ≈ 2.5Ts, when it is overtaken by the m = 2
mode. If we consider [Ts, 2Ts] as the most favourable period for the development of
secondary instabilities in real jets, the overall maximum energy gain corresponds to a
helical perturbation whatever the horizon time, at least for the present values of the aspect
ratio α and Reynolds number Re.
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FIGURE 3. Temporal evolution of the energy gain GE for optimal perturbations growing over
the roll-up of a nonlinear KH wave (black lines) and for the ones developing over a diffusing
Michalke profile (grey lines) for six azimuthal wavenumbers: (a) m = 0; (b) m = 1; (c) m = 2;
(d) m = 3; (e) m = 4; and ( f ) m = 5. The thick continuous line in panel (a) represents the
temporal evolution of the energy gain of the primary KH mode, as displayed in figure 2(b). The
symbols are located at the horizon time of each energy curve.

In order to compare the growth efficiency of the various perturbations over the
optimisation time frame, we consider the mean optimal energy growth rate σm defined
as follows:

σm = 1
T/Ts

∫ T/Ts

0
σE(t) dt = ln

[GE(T/Ts)
]

T/Ts
. (3.1)
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FIGURE 4. (a) Optimal energy gain GE as a function of the normalised horizon time T/Ts for
different azimuthal wavenumbers at an injection time of t0 = 0. (b) Influence of the azimuthal
periodicity m on the mean optimal growth rate σm as a function of T/Ts. Dashed black lines
correspond to the temporal evolution of (a) the energy gain GE and (b) the mean growth rate of
the primary KH mode. Grey lines represent the optimal energy gain of perturbations growing
over a diffusing Michalke profile.

Figure 4(b) presents the evolution of σm with the time ratio T/Ts for all the azimuthal
wavenumbers considered here. As T increases, σm decreases monotonically confirming
that most of the energy growth occurs in the early times of the base flow evolution, i.e.
before the nonlinear saturation of the KH wave into a roll-up. For the shortest horizon
time considered here, T = 0.1Ts, one can see that σm increases monotonically with the
azimuthal wavenumber m (the largest is obtained for m = 5), but immediately after (for
T ≥ 0.2Ts) the hierarchy changes and the helical mode progressively emerges as the global
optimal until T ≈ 2.5Ts when it is overtaken by the double-helix perturbation (m = 2) in
accordance with the optimal energy gain GE in figure 4(a).

We now focus on the spatial distribution of the energy during the time evolution in the
interval [0, Ts] of perturbations optimised for T = Ts, as displayed in figure 5.

At t = t0, the optimal perturbations take the form of two elongated oblique layers
whatever the azimuthal wavenumber m. These structures characterised by different
azimuthal periodicity according to m value are orientated along the direction of maximal
compression of the base flow. During the time interval [t0, Ts/2], as the jet shear layer
gradually rolls up into a vortex ring, these layers are progressively deformed under the
action of the base flow mean shear in such way so as to be reoriented along the direction
of base flow maximal stretching. This short-times evolution reflects the combination of Orr
(1907) and lift-up (Ellingsen & Palm 1975) mechanisms, identified to be responsible for
the transient energy growth of so-called ‘OL’ perturbations in plane shear layers (Arratia
et al. 2013; Lopez-Zazueta et al. 2016). The subsequent evolution of the axisymmetric
m = 0 perturbation for t ≥ Ts/2 leads to a perturbation dipole located between the vortex
core and the braid of the KH vortex ring. Once the shear-induced deformation has brought
the initial energy growth due to the Orr-mechanism, the perturbation energy dipole is
slowly dissipated but does not benefit from any three-dimensional relay mechanism for
a secondary energy growth. For non-axisymmetric perturbations, the energy perturbation
at the horizon time T = Ts evolves progressively from a core-centred to a braid-centred
distribution when m is increased, as indicated by the location of the energy maximum
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FIGURE 5. Temporal evolution of the field of kinetic energy E of optimal perturbations from
t = t0 to t = Ts for various azimuthal wavenumbers. The energy is normalised by its current time
maximum value and ten equally spaced coloured contour levels are used. Tick marks along the r
and z axes correspond to the jet radius �0. Dashed contours correspond to 20 % of the maximal
absolute value of the base flow azimuthal vorticity Ωθ .

in figure 5. At low m, the perturbation lies preferentially in the KH vortex core where
the streamlines are locally elliptical and corresponds to an E-type instability while, at
high m, the perturbation induces oscillations in the braid region where the streamlines are
locally hyperbolic suggesting an H-type instability. This is analogous to the mixing layer
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FIGURE 6. Temporal evolution of the kinetic energy growth rate σE and its different
contributions according to (2.14) for the optimal perturbation with a horizon time T = 1.5Ts
and various azimuthal wavenumbers: (a) m = 0; (b) m = 1; (c) m = 2; (d) m = 3; (e) m = 4;
and ( f ) m = 5.

(Arratia et al. 2013) and the parallel wake (Ortiz & Chomaz 2011) where the secondary
instabilities develop, respectively, on two-dimensional KH billows and on the von Kármán
vortex street. Indeed higher azimuthal wavenumbers are associated with shorter azimuthal
wavelengths and their associated perturbations are expected to grow in regions of the
base flow where length scales are smaller. The hyperbolic region where the vorticity braid
thickness decreases in time due to stretching thus naturally hosts the energy growth of large
azimuthal wavenumber perturbations. Nevertheless, this scale selection between E-type
and H-type perturbations with respect to m is not exclusive since all the cases illustrated
in figure 5 display energy in both regions, at least for the present values of azimuthal
wavenumber m, aspect ratio α and Reynolds number Re.

The large amplification at short times, as seen in figure 4, is a typical feature of shear
flows (Ortiz & Chomaz 2011; Arratia et al. 2013; Garnaud et al. 2013a; Jimenez-Gonzalez
et al. 2015; Lopez-Zazueta et al. 2016; Jimenez-Gonzalez & Brancher 2017). The energy
growth during this initial period is essentially due to base flow shear conversion as can
be seen in figure 6 which presents the contributions to the temporal evolution of the
energy growth rate according to (2.14) for perturbations optimised at T = 1.5Ts from
m = 0 to m = 5. As shown in figure 4(b) for the mean optimal growth rate, the energy
growth is most efficient in the early times of the base flow evolution, i.e. t ≤ Ts. The
contribution of the base flow strain (term σE2 ) remains very weak and the energy growth
results essentially from the net balance between the base flow shear conversion σE1 and
the viscous dissipation σEΦ

. This is very similar to the results of Arratia et al. (2013) for
the E-type instability (see their figure 7a) whose growth relies on both Orr and lift-up
mechanisms. As detailed in the introduction, the Orr mechanism is a two-dimensional
mechanism associated with changes in the area of the support of azimuthal vorticity
patches under the action of the base flow mean shear. Given the constraint due to the
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Kelvin theorem that the circulation remains constant in the inviscid limit, any reduction in
the support area increases azimuthal vorticity. It stems from a pure azimuthal perturbation
vorticity ωθ and induces the amplification of both radial velocity ur and axial velocity uz.
On the other hand, the lift-up mechanism corresponds to the emergence of streaks of high
and low streamwise velocity under the action of the base flow mean shear onto an initial
perturbation made of an array of counter-rotating streamwise vortices. It is associated
with an initial perturbation of axial vorticity ωz which leads to large production of axial
velocity streaks uz. As explained by Farrell & Ioannou (1993), the growth of the optimal
perturbations in shear flows generally results from a synergistic combination of these two
mechanisms: the radial perturbation velocity, fed by the Orr mechanism, enhances the
streamwise rolls associated with streak production of the lift-up mechanism. The present
case is no exception and the steep increase in energy in the early development of the
perturbations observed in figure 6 is also due to this synergy. In this regard, we measure the
relative contribution of each mechanism to the energy growth of the perturbation through
the following ratios between the contribution of each component of velocity (vorticity) to
the perturbation kinetic energy (enstrophy) at the injection time t0:

fu2
i
=

∫
V

u2
i (t0) dV

E(t0)
, fω2

i
=

∫
V

ω2
i (t0) dV

Z(t0)
, (3.2a,b)

where the subscript i stands for the ith coordinate of the reference frame. Figure 7 shows
these ratios as a function of the azimuthal wavenumber m.

In the axisymmetric case, only the radial and axial velocity components have non-zero
value. The optimal perturbation thus takes advantage of a pure Orr mechanism ( fω2

θ
= 1

and fω2
r
= fω2

z
= 0). When the azimuthal wavenumber is increased, the contribution of the

azimuthal velocity becomes more significant (so does the radial velocity) and the optimal
perturbation gradually organises itself to benefit from both mechanisms. Figure 7(b) shows
that the two mechanisms contribute equally for m = 3 ( fω2

θ
∼ fω2

z
) and then the lift-up

becomes more efficient than the Orr mechanism for m > 3 ( fω2
θ
< fω2

z
). Therefore, the

combination of these two mechanisms ranges from a pure Orr-based growth for m = 0
(lift-up is not active in two dimensions) to a predominance of lift-up for m = 5.

https://doi.org/10.1017/jfm.2020.496
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Optimal perturbations in viscous round jets subject to KHI

As already observed by Arratia et al. (2013) and Lopez-Zazueta et al. (2016) in the
homogeneous free shear layer, postponing the injection time t0 does not change the physics
but only reduces the efficiency of Orr and lift-up mechanisms, since the initial period
during which these transient growth mechanisms are active is shorter. This is also the case
here for the round jet.

3.2. Influence of the Reynolds number Re
In this section we investigate the influence of the Reynolds number Re on the transient
energy growth of secondary three-dimensional perturbations. Figure 8 displays the
temporal evolution of the energy gain GE for optimal perturbations obtained at Re = 10 000
compared with those calculated at Re = 1000 for various horizon times and azimuthal
wavenumber m. Increasing the Reynolds number results in a substantial increase of
the energy gains for all perturbations. This is explained by two combined effects. First,
the base flow exhibits sharper velocity gradients associated with higher levels of shear
and the resulting energy production due to the base flow shear, i.e. term σE1 in (2.14), is
stronger. Second, the viscous dissipation σEΦ

is lowered with the increase of the Reynolds
number.

The temporal evolution from t = t0 to the horizon time T , corresponding to the base
flow saturation time Ts, of the spatial distribution of optimal perturbations kinetic energy is
illustrated in figure 9 for azimuthal wavenumbers up to m = 5. The optimal perturbations
at initial time are very similar to those obtained for Re = 1000, albeit the inclined layers
are thinner. Their evolution during the time interval [t0, Ts/2], i.e. during linear phase of
the KH mode growth in the base flow, results from shear induced deformation and the
associated energy growth due to Orr and lift-up mechanisms. At horizon time, the energy
is unevenly distributed between the core and the braid region of the KH vortex ring. With
increasing azimuthal wavenumber, the transition from an E-type instability to an H-type
instability is observed earlier versus the Re = 1000 case. For m ≥ 2, the energy growth lies
preferentially in the braid region and the occurrence of an E-type response is even absent
for m ≥ 5. The increase in Reynolds number yields a thinner braid promoting the growth
of perturbations with higher azimuthal wavenumbers. The scale selection underlying the
outcome of E-type and H-type instabilities with optimal energy growth is steeper for larger
Reynolds numbers.

We analyse the structure of the initial perturbation by measuring the relative
contribution fu2

i
of velocity components to the energy and fω2

i
of vorticity components to the

enstrophy in the optimal perturbation at t = t0 according to (3.2). Figure 10 displays the
evolution of the structure of the initial perturbation with growing azimuthal wavenumber
at Re = 10 000 together with those obtained for Re = 1000. In the two-dimensional
axisymmetric case, the optimal perturbation only takes advantage of the Orr mechanism,
and, as m increases, the Orr mechanism remains predominant over the lift-up mechanism,
since fω2

θ
> fω2

z
, at least up to m = 5. Finally, increasing the Reynolds number results in

larger energy gains and the promotion of higher azimuthal wavenumbers with no change
in the nature of the underlying physical mechanisms.

3.3. Round jet and free shear layer behaviours
Finally, we analyse the influence of the aspect ratio α on the optimal energy gain in order
to study the effect of steepness of the initial jet velocity profile on the transient growth of
secondary instabilities.
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FIGURE 8. Temporal evolution of the energy gain GE of optimal perturbations at Re = 10 000
(black lines) and Re = 1000 (grey lines) for various azimuthal wavenumbers: (a) m = 0;
(b) m = 1; (c) m = 2; (d) m = 3; (e) m = 4; and ( f ) m = 5. The thick continuous lines in panel
(a) represent the temporal evolution of the energy gain GE of the KH mode for the two cases.
The symbols denote the optimisation time of each curve.

We first consider the optimal perturbations developing in a round jet characterised by an
aspect ratio of α = 20. In this case the shear layer momentum thickness is twice smaller
than before compared with the jet radius, so that the cylindrical geometry does not have
much effect on the flow development, which results to be comparable to a plane free shear
layer. Figure 11(a) displays the final energy gain at horizon time GE as a function of the
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FIGURE 9. Temporal evolution of the field of kinetic energy E of optimal perturbations for
Re = 10 000 from t = t0 to t = T = Ts for various azimuthal wavenumbers. Same conventions
as in figure 5.

normalised horizon time T/Ts obtained up to T = 3Ts for the same values of azimuthal
wavenumber as in the previous subsections. The optimal energy gain of perturbations
growing over a diffusing unperturbed parallel jet has also been added in the background
for reference. All amplification curves follow the same trend at the beginning, although
perturbations characterised by higher azimuthal wavenumbers m present initial energy
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FIGURE 11. Optimal energy gain GE as a function of the normalised horizon time T/Ts for
different azimuthal wavenumbers at an injection time of t0 = 0 for a base flow characterised
by an aspect ratio of (a) α = 20 and (b) α = 5. Dashed black lines correspond to the temporal
evolution of the energy gain GE of the corresponding primary KH mode. Grey lines represent
the optimal energy gain of perturbations growing over a diffusing Michalke profile.

growths slightly higher. As is the case with α = 10, the essential part of the energy gain
lies within the period of the linear evolution of the primary KH vortex ring during which
the axisymmetric shear layer has not rolled-up yet. All disturbances developing during
the unsteady base flow evolution towards the KH vortex ring feature a local maximum
of the energy gain close to the saturation time Ts. For optimisation times larger than
Ts, the energy gain decreases for m ≤ 2 while it slightly increases for the other higher
azimuthal wavenumber modes. The double-helix perturbation (m = 2) remains the global
optimal until a little before twice the KH saturation time where it is superseded by an
m = 5 disturbance. After such horizon time T ≈ 2Ts, the flow would have bifurcated in
the nonlinear regime to another state, so the helical and double-helix perturbations are
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FIGURE 12. Contours of the velocity field of (upper half-plane) the optimal helical perturbation
optimised for T = 1.5Ts at a time of t = 2Ts and (lower half-plane) the primary KH helical mode
obtained by the linear stability analysis. In both cases, the initial jet profile has an aspect ratio of
α = 5. Contour levels are normalised by the maximal absolute value, solid (respectively, dashed)
contours correspond to positive (respectively, negative) values. The thick continuous line in each
panel represents the jet axis.

likely to be the ones growing in the round jet at Re = 1000. The increase in α associated
with a scale reduction in shear layer momentum thickness ϑ promotes the emergence
of a secondary mode of higher azimuthal periodicity, as is the case with the increase in
Reynolds number.

Now we consider the optimal perturbations developing in a round jet characterised by a
small aspect ratio, i.e. α = 5. Unlike in the previous case with α = 20, the axisymmetry
condition has a strong influence on the evolution of the base flow which forms a
low-aspect-ratio vortex ring. This case corresponds to the round jet behaviour where the
large scale geometry and the curvature of the shear layer are expected to make some
difference to the secondary behaviour of the plane shear layer. The final energy gain at
horizon time as a function of the horizon time is given in figure 11(b) for wavenumbers
up to 5, together with the final energy gain of perturbations growing over a diffusing
Michalke profile. After an initial phase of energy growth with similar trends as for larger
α, all perturbations see their energy decrease eventually with the horizon time. Only
the helical perturbation exhibits a sustained energy growth with the horizon time. The
m = 1 perturbation is the global optimal and reaches levels of energy gains three orders of
magnitude larger than the others for T = 3Ts. It should be noted that, for this aspect ratio,
the most unstable primary mode predicted by linear modal analysis is a helical KH mode
(Jimenez-Gonzalez et al. 2015) and the primary axisymmetric KH mode considered here
is not likely to arise naturally in the round jet, unless forced appropriately. Furthermore, its
energy growth is practically superimposed on the one of the optimal perturbation growing
over a diffusing Michalke profile, as shown in figure 11(b). This optimal perturbation for
m = 1 taken at t = 2Ts is thus compared with the primary KH helical mode given by the
modal stability analysis of Michalke profile in figure 12. The optimal helical perturbation
over a low-α round jet proves to be very similar to the helical KH modal instability of
the jet. This is confirmed by the correlation coefficients between the two fields which are
close to unity: 0.97 for the radial velocity component ur, 0.94 for the azimuthal velocity
component uθ and 0.87 for the axial velocity component uz. The axisymmetric KH vortex
ring resulting from the KH instability in the base flow remains nested in the cylindrical
shear layer during the nonlinear evolution of this low-Reynolds-number low-aspect-ratio
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FIGURE 13. Temporal evolution of the azimuthal vorticity Ωθ for a base flow corresponding to
an aspect ratio of α = 5 in the positive half-plane and α = 20 in the negative half-plane. The
azimuthal vorticity is normalised by its current time maximum value. Tick marks along the r
axis correspond to the jet radius �0(α) and the thick continuous line in each figure represents the
jet axis.
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FIGURE 14. Optimal energy gain GE in correspondence of a horizon time T = 1.5Ts as a
function of the aspect ratio α at Re = 1000 (black lines) and Re = 10 000 (grey lines), for
different azimuthal wavenumbers m. The dash-dotted line represents the value of aspect ratio
α = 9.5 below which the primary KH mode becomes helical.

jet. When compared with the α = 20 case, as illustrated in figure 13, it appears that the
overall structure of the α = 5 base flow still resembles the one of the unperturbed jet. The
small departure of this unsteady base flow from the parallel low aspect ratio one leaves it
prone to transient and modal growth of helical perturbations, both in the first phase and in
the long term.

This marked difference between the free shear layer and the pure round jet behaviours
also emerges from figure 14 which presents the optimal energy gain GE as a function of
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the aspect ratio α obtained for a horizon time T = 1.5Ts, which stands as an intermediate
horizon time in the nonlinear phase of the base flow. The influence of α is displayed
for the same values of azimuthal wavenumbers m, together with the results obtained for
Re = 10 000. The dash-dotted line indicates the transition value of the aspect ratio,
α = 9.5, below which the most amplified primary KH mode over the Michalke profile
is the helical one, while it is the axisymmetric one above. On the left of this threshold,
the gain values at 1.5Ts are spread over a wide range with a strong predominance of the
helical perturbation. For Re = 1000, the gain range between the helical perturbation and
the less amplified one, i.e. m = 5, broadens up to three orders of magnitude for α = 5. The
same behaviour can be observed at Re = 10 000, even though in this case the axisymmetric
perturbation is the least amplified of all optimal perturbations for all values of α. On the
other hand, the selection of the global optimal is less marked for higher aspect ratios
α > 10 with all the kinetic energy gains converging towards the same order of magnitude.
The collapse of all final energy gain at T = 1.5Ts on one threshold with increasing aspect
ratio is even more pronounced at Re = 10 000, with the sole exception of the axisymmetric
perturbation (m = 0). Therefore, the increase of the aspect ratio is associated with a
lower selectivity of the azimuthal periodicity of the global optimal. This can be related
to the experimental observation of Liepmann & Gharib (1992) which found that, when the
Reynolds number at the nozzle exit increases, i.e. when the shear layer thickness becomes
thinner and α increases, the azimuthal wavenumber of secondary structures increases but
the selection of the global optimal becomes weaker and less clear, as indicated by the error
bars in their figure 15.

4. Conclusions

In this paper we have investigated numerically the transient linear growth of secondary
three-dimensional perturbations in a time-evolving axisymmetric round jet subject to
KH primary instability. The base flow is obtained from a nonlinear direct numerical
simulation initialised with the velocity jet profile of Michalke (1971) perturbed by the
primary axisymmetric KH mode determined by a classical modal stability analysis.
A direct-adjoint technique is employed in order to identify the optimal perturbation
maximising the gain of kinetic energy over a prescribed time interval [t0, T]. We used
two values of the Reynolds number, i.e. Re = 1000 and Re = 10 000, and the aspect ratio
α of the base flow has been varied in the range [5, 20].

For a base flow corresponding to an aspect ratio of α = 10, the global optimal
corresponds to a helical perturbation up to horizon times of T ≈ 2.5Ts, beyond which the
double-helix perturbation (m = 2) presents a slightly higher energy gain. At the injection
time t0 = 0, all the optimal perturbations can be properly described as ‘OL’ perturbations
similar to those observed in plane shear layers by Arratia et al. (2013). They consist of two
elongated oblique layers aligned along the direction of maximal compression of the base
flow that are nearly similar regardless of the azimuthal wavenumber. They benefit from
a synergy of both the Orr (1907) and the lift-up (Ellingsen & Palm 1975) mechanisms,
going from pure Orr for m = 0 to a predominance of lift-up for m = 5. This results in an
efficient transient energy growth within the initial period [0, 0.5Ts] where the base flow
is still quasi-parallel, a feature common to all azimuthal wavenumbers as indicated by the
superimposition of all amplification curves. For larger horizon times, particularly after
the KH saturation time Ts, the optimal perturbations evolve with increasing azimuthal
wavenumber from an E-type perturbation centred in the core of the KH vortex ring to an
H-type perturbation localised along the braid near the saddle point.
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Increasing the Reynolds number yields larger energy gains for all perturbations without
altering the physical mechanisms at play. The substantial rise of energy results from a
higher base flow shear conversion due to the sharpening of KH roll-up velocity gradients
combined with a diminution of the viscous dissipation. The effect on the spatial structure
of the response is felt at high azimuthal wavenumber for which the energy is mostly, if not
completely, concentrated in the braid region where the length scales of the base flow are
much smaller.

Finally, we analysed the influence of the aspect ratio α which sets the influence of the
axisymmetry condition on the base flow shear layer turning the round jet at low aspect
ratios into a locally quasi-planar shear layer for large ones. In the latter case analysed for
α = 20, the cylindrical geometry does not bias the development of the perturbations which
are very similar to those of a plane free shear layer. The history of energy growth remains
similar to the case α = 10 where the essential part of the energy gain is produced before
the nonlinear roll-up of the primary KH wave into a vortex ring. The only difference lies in
the selection of the azimuthal wavenumber of the global optimal for large horizon times.
Indeed, the double-helix perturbation is the fastest growing until a little before twice the
KH saturation time where it is superseded by the m = 5 disturbance. Therefore, increasing
the aspect ratio also promotes the emergence of secondary modes with higher azimuthal
periodicity. For as low aspect ratio as α = 5, the base flow behaves as a pure round jet
in which the influence of the cylindrical geometry is strong. The optimal energy gains
exhibit an initial phase very similar to the one observed for large values of α, but beyond
T = 0.5Ts there is a clear separation of the gains for the different wavenumbers, and the
optimal helical perturbation displays gains up to three orders of magnitude higher. The
structure of the optimal perturbation proves to be very similar to the helical primary KH
instability of the parallel round jet. In this case, the low-aspect-ratio base flow only slightly
departs from the unperturbed parallel round jet which is more sensitive to the helical mode
than to the axisymmetric one (Jimenez-Gonzalez et al. 2015).

It would be interesting, for future work, to perform a similar global stability analysis
over a base flow where the primary KH instability is helical. The present approach could
be extended to the variable-density case, as done by Lopez-Zazueta et al. (2016) for the
plane shear layer, in order to investigate the features of the transient growth mechanism on
mixing in light jets and their ability to trigger side ejections, as observed by Monkewitz
et al. (1989, 1990). The work of Lopez-Zazueta et al. (2016) questioned the consensus on
the underlying mechanism that has been proposed by Monkewitz & Pfizenmaier (1991)
to explain side jets as the result of radial induction between pairs of counter-rotating
longitudinal vortices. Instead, Lopez-Zazueta et al. (2016) proposed that side ejections
result from the convergence of longitudinal velocity streaks near the braid saddle point.
Carrying out the present non-modal stability approach on variable-density round jets will
allow one to clarify this open question.
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Appendix A. The iterative optimisation algorithm

The outline of the iterative optimisation algorithm used to determine the optimal
perturbation is given here (see Lopez-Zazueta 2015, for a comprehensive description).

(1) A white noise perturbation q(i)(t0) is chosen as an initial condition for the direct
system (2.7). Its kinetic energy is given by

‖q(t0)‖u = E0, (A 1)

where the seminorm

‖q‖u = ‖u‖ = [q | W u · q] (A 2)

is associated with the inner product [
 | 
] defined by

[q1 | q2] =
∫ rmax

0

∫ 2π

0

∫ Lz

0
q∗

1 · q2r dr dθ dz + c.c., (A 3)

where the superscript ∗ stands for the complex conjugate and the matrix operator W u

is defined by

W u =
[

1 0
0 0

]
. (A 4)

If any value for the constant E0 is possible in practice, it was fixed here to E0 = 1 for
all cases.

(2) The direct system (2.7) is advanced in time from the injection time t0 up to the
horizon time T with the linearised version of the pseudo-spectral method used for
the simulation of the primary KH vortex ring.

(3) The energy gain G(i)
E of the direct perturbation is calculated as defined by (2.9). Then,

if the kinetic energy criterion

G(i)
E − G(i−1)

E

G(i−1)

E

≤ ε (A 5)

is below a chosen threshold, here ε = 0.005, the iterative method has converged
towards the optimal perturbation. Otherwise, we turn to the next step.

(4) The final state of the perturbation q(T) is used to compute the initial condition for
the adjoint system (2.13) as follows:

W u · q†(T) = W u · q(T). (A 6)

(5) The adjoint system (2.13) is integrated backward in time from T to t0 with the same
numerical pseudo-spectral method used for the direct equations.

(6) At the injection time t0, the new initial condition q(i+1)(t0) is obtained through the
optimality condition

ΛuW u · q(t0) − q†(t0) = 0, (A 7)

where the Lagrange multiplier Λu is chosen so as to rescale the velocity field with
respect to (A 1). Then we go back to step (2) until the convergence is reached.
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