
HAL Id: hal-02917660
https://hal.science/hal-02917660

Submitted on 19 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LSTM-based radiography for anomaly detection in
softwarized infrastructures

Alessio Diamanti, José Manuel Sanchez Vilchez, Stefano Secci

To cite this version:
Alessio Diamanti, José Manuel Sanchez Vilchez, Stefano Secci. LSTM-based radiography for anomaly
detection in softwarized infrastructures. International Teletraffic Congress, IEEE, Sep 2020, Osaka,
Japan. �10.1109/ITC3249928.2020.00012�. �hal-02917660�

https://hal.science/hal-02917660
https://hal.archives-ouvertes.fr

LSTM-based radiography for anomaly detection in
softwarized infrastructures

Alessio Diamanti∗†, José Manuel Sanchez Vilchez∗, Stefano Secci†
∗ Orange Labs, Orange, 92320 Châtillon, France. Email: firstname.lastname@orange.com,

† Cnam, Paris, 75003 Paris, France. Email: firstname.lastname@cnam.fr

Abstract—Legacy and novel network services are expected to
be migrated and designed to be deployed in fully virtualized
environments. Starting with 5G, NFV becomes a formally re-
quired brick in the specifications, for services integrated within
the infrastructure provider networks. This evolution leads to
deployment of virtual resources Virtual-Machine (VM)-based,
container-based and/or server-less platforms, all calling for a
deep virtualization of infrastructure components. Such a network
softwarization also unleashes further logical network virtualiza-
tion, easing multi-layered, multi-actor and multi-access services,
so as to be able to fulfill high availability, security, privacy and
resilience requirements. However, the derived increased compo-
nents heterogeneity makes the detection and the characterization
of anomalies difficult, hence the relationship between anomaly
detection and corresponding reconfiguration of the NFV stack to
mitigate anomalies. In this article we propose an unsupervised
machine-learning data-driven approach based on Long-Short-
Term-Memory (LSTM) autoencoders to detect and characterize
anomalies in virtualized networking services. With a radiography
visualization, this approach can spot and describe deviations from
nominal parameter values of any virtualized network service by
means of a lightweight and iterative mean-squared reconstruction
error analysis of LSTM-based autoencoders. We implement and
validate the proposed methodology through experimental tests
on a vIMS proof-of-concept deployed using Kubernetes.

I. INTRODUCTION

Network automation is a vibrant research area targeting the
deployment of novel solutions in operational networks in the
coming few years. Even though initial network automation
research actually dates back up to a few decades ago, true
network automation fueled by artificial intelligence (AI) and
machine learning (ML) has only recently become a tangible
possibility for operational services, thanks in particular to
novel technologies related to Software Defined Networking
(SDN) - with the specification of open configuration interfaces
- and Network Functions Virtualization (NFV) - breaking the
coupling between network functions and the hosting hardware.

In the past few decades, the community has addressed
challenges related to how to let distributed sets of agents
self-organize, automatically discover themselves the network
states, and operate necessary reconfiguration of the network.
This was for the focus of many research projects in the area
of autonomic networks [1]. We can also cite standardization
activities related to network automation, as for instance the
ones related to the autonomic signaling protocols among
distributed decision-making agents [2]. Nonetheless, these pio-
neering research activities did lack a stable reference technical

architecture on top of which a decision-making framework
could be developed and deployed at large scale, for instance
to solve routing or resource allocation optimization problems.
With the advent of network virtualization technologies, the
reference building blocks for 5G infrastructures, and beyond,
are today clearly specified and adopted. On the one hand,
the relative maturity of NFV-SDN systems has focused the
industry specification efforts on the interfaces required for
network automation, somehow meeting the expectation of
former autonomic networking research, but now with an
operational environment ready for their integration. The Zero-
Touch Network and Service Management and Experiential
Networked Intelligence groups at ETSI are addressing this
need and recently produced a set of specifications [3; 4].
On the other hand, network automation platforms recently
emerged, notably the Open Network Automation Platform,
chosen by many operators as a reference platform for network
automation [5; 6; 7]. More recently than for the core segment,
the radio one is undergoing an increasing softwarization, with
new platforms as the Open Radio Access Network one [8; 9].
These activities are opening the way to orchestration decisions
for which there is a critical need of automation algorithms and
methods to (i) determining how the state of a fully virtualized
and programmable infrastructure, composed of a variety of
software modules, should be modeled, (ii) inferred in runtime,
and (iii) to support automated network orchestration.

This paper presents a first brick in this direction and
proposes a methodology to detect anomalies in the rather
unidentified network state space composed of a very large
number of software components. These components can be
characterized of a large number of metrics, changing in num-
ber and behavior in time, that can be correlated or not to each
other, depending on network conditions. This undefined and
varying environment motivates us to propose a unsupervised
machine learning framework for anomaly detection of NFV
infrastructures. We run tests in a virtualized IP Multimedia
Subsystem (IMS) architecture, the legacy framework used for
voice-over-IP traffic routing and processing. Simulated call
distributions and used datasets are available at [42].

In Section II, we draw the background on anomaly detection
in softwarized networks. We present our framework, named
SYRROCA (SYstem Radiography and ROot Cause Analysis),
in Section III, and discuss experimental results in Section IV.
Section V concludes the paper.

II. BACKGROUND

Anomaly detection in SDN/NFV systems is particularly
challenging due to the reasons we summarize as follows:

Multi-layered nature of softwarized networks: On one hand,
SDN separates the control-plane from the forwarding plane,
which implies a three-layered architecture grouping devices,
controllers and service abstraction elements [10]. On the other
hand, NFV concerns the abstraction of the network function
itself from the physical hardware. This approach requires a
concrete NFV architecture composed of the NFV Infrastruc-
ture (NFVI) layer, the VNF layer, and the network service
layer [11] . The 5G architecture is multi-layered by design;
its specification formally requires a NFV system, which can
be completed for ease of deployment by SDN controllers.
Detecting anomalies and determining how they propagate
across the different logical layers become challenging tasks.

New faults and vulnerabilities: In SDN/NFV environment,
the decoupling of the physical hardware from the network
function opens the way for new types of faults that did not
exist in legacy hardware-based networks or had not a so
important impact to the communication infrastructure. New
vulnerabilites can be grouped in hypervisor-specific, VNF
application-specific, operating system vulnerabilities and bugs,
SDN controller bugs and novel SDN protocol vulnerabilities.
Furthermore, in both SDN and NFV architecture, as well
as IoT access and radio access architecture, we observe a
centralization of control, orchestration and configuration func-
tions that makes them critical points of failure and vectors of
large-scale attacks [12]. Detecting system-level faults due to
overload, attacks and changing network and service conditions
is therefore more important than in legacy systems.

Flexible network provisioning and reconfiguration: SDN
and NFV open the door to an elastic usage of the compute,
storage and networking resource stacks, such as for instance
scaling of VNFs to overcome faults at physical substrate
to continue delivering the expected service. The decision-
making related to the provisioning and reconfiguration of
already-provisioned service is therefore challenged in that the
dependencies of the delivered services from the underlying
resources continuously evolve (e.g., network and system state
changes) demanding an intelligent management of network
and system resources in a real-time or near-real-time fashion.

These factors depict a complex framework that, differently
from legacy single-operator, single-vendor, single-integrator,
and/or single-editor environment - or an environment locked
by few stakeholders having direct control of all components
- does evolve as a function of the conditions of a large set
of software components, edited and managed by a large and
varying set of stakeholders. The high heterogeneity deriving
from such a rich environment does call for a data-driven frame-
work rather than a model-based one, to scale with the multiple
dimensions of the virtualized infrastructure components. We
propose a possible learning framework for detecting anomalies
at each level composing virtualized infrastructure architec-
tures, hence spotting anomalies, with the goal of triggering

and fueling network (re-)orchestration logic. We also propose a
complete and compact representation to correlate faults among
layers, easing root cause analysis.

We summarize in the following the state of the art in
network resilience, anomaly detection and machine learning
that inspired our methodology.

A. Network Resilience

Resilience is the ability of the network to provide and main-
tain an acceptable level of service in presence of impairments
such as faults or attacks. Its modeling is challenging because
instead of being quantifiable with one or few metrics, re-
silience is rather a system-wide property that depends on many
factors. Authors in [13] deem that complexity in modelling
resilience come from the varied nature of provided services,
the numerous layers and corresponding parameters, and the
impairments threatening network stability.

Nevertheless, attempts to model and define network re-
silience do exist. Authors in [14] formalize the notion of
resilience for IP networks using three factors: dropped IP
traffic, QoS (Quality of Service) degradation, and network
recovery time under several attack scenarios; however, the
study only covers the IP layer and its security, leaving out
non-intentional scenarios impacting resilience. Authors in [15]
define resilience as the largest number of component failures
that do not impede the network to operate under normal
conditions. However, this definition does not allow to describe
how faults at a given layer or component propagate across
layers, which is essential in multi-layer architectures such
as SDN/NFV. Authors in [16] propose a way to measure
resilience based on the capability of the network to get back
to a normal state after a disruptive event. This definition is
rather more appropriate to quantify how fast a system is able
to get back to a normal state after a disruption: indeed, this
formulation focuses the recoverability dimension of resilience.

Authors in [18; 19; 20] model network resilience with a
multi-layer approach, referring to mobile ad-hoc networks as
application case. Network resilience is assessed as a function
of the network deviation between two network states caused
by anomalies. Identifying the states and their borders is a chal-
lenge that may be tackled using anomaly detection techniques.

B. Machine learning for anomaly detection

Machine learning techniques, and in particular unsupervised
ones, are appropriate for the detection and characterization of
anomalies in heterogeneous softwarized infrastructure environ-
ments, where labeled data are not available. Authors in [21]
advocate for leveraging SDN principles to conceive scalable
anomaly detection mechanisms. They developed a two-stage
anomaly detection algorithm based on feature selection and
Density Peak-Based Clustering to handle large-scale, high
dimensional, and unlabeled network data.

On the other hand, authors in [22] propose an anomaly
detection algorithm based on a probabilistic approach using
mixture models to target data leading to a few anomalies.

Fig. 1: Autoencoder (AE) basic architecture

The application domain concerns intrusion detection in UNIX
machines based on the analysis of process system calls.

Authors in [23] propose an unsupervised learning approach
based on correlation variation algorithm to predict perfor-
mance anomalies in VNF service chaining. It infers the service
health status by collecting metrics from multiple elements in
the VNF chain analyzing their correlation across time.

C. Deep LSTM-based Autoencoders

An autoencoder (AE) is a multi-layer Neural Network (NN),
composed of two blocks, an encoder and the decoder. The
typical architecture of an AE is shown in Fig. 1.

The encoder reduces the n dimensions of the input to s
dimensions (latent-space), while the decoder takes those s
dimensions to reconstruct back the input.

The AE is trained to learn how to reproduce the input vector
X of n features ∈ IRn by optimization of:

f, g minimize|I − g ◦ f(I)| (1)

where f : I ∈ IRn 7→ Y ∈ IRs with s < n is the function
representing the encoder, and g : Y ∈ IRs 7→ Z ∈ IRn

is the function representing the decoder. Thus, during the
learning phase, weights and biases are tuned to minimize
the reconstruction error on I . Composing several encoder and
decoder layers to build a Deep Autoencoder (DAE) allow to
effectively represent complex distributions over I [24].

AEs can be used to detect anomalies as the decoder block
compresses the data input dimensionality. Assuming that input
data has certain correlation level [23], it can be embedded
into a lower dimensional subspace, where anomalous samples
are perceived significantly different which makes the recon-
struction error increase significantly. AEs are considered as
auto-supervised NN, as the target value is the input itself,
so no labels are required in the training phase: for our
targeted virtualized network infrastructure environment, this
factor streamlines learning as labelling anomalies is at least
difficult, if not sometimes impossible, due to the great extent
of faults and threats that can affect NFV environments.

When analyzing multivariate time series, each variable tem-
poral dynamic and temporal variables cross-dependencies are
paramount and must be caught to effectively grasp knowledge
from the input data. When it comes to dealing with time
series problems accounting for the temporal dimension, Recur-
rent Neural Network (RNN) are generally used [25]. Unlike
Feed Forward (FF) NNs where each element is processed

independently of the others, RNNs apply a recurrent relation
at every time step to process a sequence in order to take
into account past inputs, like a sort of memory. Neverthe-
less, many studies as [26] report that RNNs suffer from the
vanish gradient problem, preventing long-term relations to be
learned. To solve this problem, authors in [27] propose the
use of Long Short Term (LSTM) RNN that enforce constant
error flow through the internal states of special units called
memory cells by employing multiplicative gates to learn long
term sequence correlations and to model complex multivariate
sequences [28]. In the context of network traffic and load
forecasting, LSTMs demonstrated to outperform non-ML and
other deep neural networks (DNN) approaches [29; 30; 31; 32]

In [33] authors propose a mechanism to scale 5G core
resources by anticipating traffic load changes through LSTM
and DNN forecasting. They show that LSTM-based detection
is more accurate than DNN one, thanks to the ability of LSTM
to store data pattern without degradation over time. Similarly,
authors in [34] propose to use CNN to extract traffic patterns
used by an LSTM NN to forecast traffic load. Simulations
show that it can allow reducing by 50% the duration of the
training phase of the LSTM NN. LSTM NNs have been used
to adapt network baseline estimation to changes in cloud
environments as well, as described in [35]. Authors propose
to create a network baseline through LSTM AEs, adapting
it when metric trend changes. They show that the proposed
adaptation improves prediction accuracy by 22%.

Our contribution: Motivated by the efficiency of LSTM
approaches in anomaly detection for time-series in general,
and the recent advances in the field of 5G systems from
preliminary applications in networks [35; 33], in this paper we
document our efforts towards the definition of an LSTM-based
autoencoder approach to detect and characterize anomalies
in softwarized network environments. Starting from metrics
collected at both physical and virtual (container) levels, we
propose a methodology to detect anomalies and make a
radiography, a complete and compact view, of the running state
of a virtualized network service. Through our methodology it
is not only possible to make a radiography of a whole service,
but also of their inner components (e.g. containers or VMs)
hence supporting root cause analysis to explain the network
state deviation.

III. SYRROCA (SYSTEM RADIOGRAPHY AND ROOT
CAUSE ANALYSIS) FRAMEWORK

We describe the SYRROCA framework to make real-time
radiographies of a virtualized network function service. Fig-
ure 2 draws a simplified diagram of the proposed framework,
we develop in the following.

A. Data collection and preprocessing
No matter which monitoring software is used to extract

metrics from a virtualized system, metrics can be grouped
in Counters and Gauges (terms commonly used in recent
opensource platforms) types. Gauges category groups metrics
whose numerical value arbitrarily go up and down, like for

Fig. 2: Representation of the proposed SYROCCA framework.

example memory consumption or CPU temperature. Counters-
like metrics instead represent monotonically increasing values,
such as number of sent/received packets, or total CPU time
used by a process. Thereby, concerning anomaly detection in
such a heterogeneous dataset composed of both metric types,
we must first pre-process those collected raw data to treat.
In counters-like metrics we retain the increment between two
time steps, as those can be characterized by their increments
rather than the cumulative values. In gauge-like metrics we
keep their real value. We propose then a divide-and-conquer
approach that groups the features by resource type. In our
experiments, we use CPU, network, memory and file system-
related metrics but additional sources of metrics can be safely
added to the framework with no restriction. In this way, we
can focus the analysis on a specific type of resource to get an
insight on the type of anomaly to ease root cause analysis.

Since some metrics values may have a relatively big mag-
nitude and others may have a small one, it is important to
re-scale the input data into a uniform range. This is especially
important for LSTMs, which are sensitive to the scale of the
input data when the (default) sigmoid or tanh activation
functions are used, but it is in general true for whatever
neural network trained with a gradient descend algorithm
[36]. In the state of the art two techniques are proposed to
re-scale data: standardization and normalization; the former
assumes that observations fit a Gaussian distribution (with a
well behaved mean and standard deviation) and consists in
shifting the distribution of each metric to have a mean of zero
and a standard deviation of one (unit variance), while the latter
consists in transforming the original metrics range so that all
values fall within the [0, 1] range.

For our use-case experiments, a quick analysis of each
metric distribution revealed that none of them has a Gaussian-
like distribution, thus normalization is selected as re-scaling
technique. To validate this assumption we also tried to apply
standardization and train our AEs, which confirms normaliza-
tion makes the analysis more accurate and stable.

B. Training

During the training phase, SYRROCA builds a model of
the system during the delivery of a virtualized service. AEs
are trained with a dataset built in nominal conditions and

without injected anomalies, so that they can learn an abstract
representation of what is considered to be a nominal state.
It is worth noting that both the quality and the extent of the
data used for the training phase greatly affect the extracted
representation. In fact, for the training, it is important to
provide to the AEs anomaly-free data and cover a sufficient
period of time to provide enough insights on the dynamics
to be learnt. In section IV we detail how we produced and
dimensioned this training dataset for the vIMS use-case. As
anticipated in the previous section, we split the training dataset
in several sub-datasets each of them fed to a dedicated deep
AE, whose architecture is detailed in section IV. While not
strictly required for the following analysis, per-group dataset
split makes AEs architecture design, training process and root
cause analysis easier. Indeed, learning on all features at once,
theoretically make the AE able to learn the inter-dependencies
between all the features, but it does also increase the input
dimensions making learning slow and hard.

C. System radiography and root cause analysis

Reconstruction capabilities of a trained AE can be evaluated
by means of the Mean Squared Error (MSE), defined as:

MSEg(t) =
1

n

n∑
i=1

[x̃g
i (t)− xg

i (t)]
2 (2)

where X̃g(t) = [x̃g
1(t), ..., x̃

g
n(t)] ∈ IRn and Xg(t) =

[xg
1(t), ..., x

g
n(t)] ∈ IRn are respectively the output and the

input of the AE working on group g. According to state of
the art, anomalies are recognized as those samples whose
MSE exceed a threshold value T g . We set the 99th-quantile
as threshold for each metrics group.

Using such a threshold to identify a deviation from the
nominal state is a widely used practice that unfortunately does
not allow neither to assess intensity of the deviation nor to
characterize it. Here, we address this issue by proposing a
measure of the features contribution to the MSE, we denote
as p(i, t); it is computed as the feature-wise reconstruction
Squared Error SE(i, t) = [Xi(t) − X̃i(t)]

2 over the sum of
the squared errors across all the features:

p(i, t) =
SE(i, t)∑n
i=1 SE(i, t)

(3)

Doing so, the closer p(i, t) is to 1, the stronger is the
contribution of feature Xi to the reconstruction error.

Let us define A = {p(1, t), ..., p(n, t)} and B = (A,<) =
{b1, b2, ..., bn} as the set of increasingly ordered p(i, t). Thus,
taking b1, ..., bs ∈ B with s ≤ n so that:

s∑
i=1

bi ≥ 0.9 (4)

the features corresponding to these first s values of p(i, t) ∈ B
are those that were reconstructed with the highest error and
jointly contribute to at least 90% of the reconstruction error.
Therefore the set of features:

Ft = {fj : SE(i, t) = bi ∀i = 1, ..., s} (5)

Fig. 3: Testbed

contains the ordered list of most representative features for the
deviation identified at time t.

Furthermore, we observed that the more metrics values and
dynamics deviate from the learned nominal state, the more
MSEg(t) increases. Hence, MSEg(t) can be also used to
assess relative intensities of different deviations detected in a
specific group g. Nevertheless, magnitudes of MSEg(t) for
different groups cannot be compared, as each MSEg(t) is
computed on a different group of features.

A deviation from the nominal state does not definitely imply
a degradation of provided service quality. To understand how
anomalies impact the service, we propose to combine the re-
construction error MSEg with a service metric to obtain a 2D
density plot, referred in the remainder of the paper as radiog-
raphy, given its visual similarity with common radiographies.
In statistics, the Kernel Density Estimation (KDE) is used to
estimate the probability density function of bi-variate random
variables. Here we use the same technique to estimate density
of the bi-variate functions fg(MSEg, < service metric >).
Those functions describe how each MSEg of a metrics group
is related to values of the selected service metric. Therefore,
computing the density of these functions, it is possible to
locate the most frequent groups of fg samples, that is the most
frequent couples (MSEg, < service metric >) occurred
during the considered time-window. A color scale mapping
density from high to low with colors from black to white,
is then used to visualize the computed KDE, obtaining the
so-called radiography. We propose this representation as a
compact view of the system state with reference to the quality
of the service delivered, through which rapidly identify metrics
group characterizing the detected deviation. For simplicity, we
consider as service metric the number of failed calls, whatever
is the reason causing the call failure. Therefore, it is possible
to build four radiographies respectively for gCPU , gmem, gnet
and gfs groups. Imaging a radiography showing a dark zone
for group gmem corresponding to several failed call, while the
remaining radiographies showing dark zones corresponding to
a negligible value of failed call, it is fairly intuitive to identify
the root cause to be somehow linked to an anomaly regarding
the memory.

IV. EXPERIMENTAL RESULTS

In this section we describe a proof of concept imple-
mentation of the aforementioned methodology applied to a
virtualized core IMS (IP Multimedia Subsystem).

A. Testbed

An IMS is a framework for delivering IP multimedia
services mainly composed of the following network functions:

• HSS (Home Subscriber Server): database containing sub-
scriber’s profiles performing authentication and autho-
rization;

• P-CSCF (Proxy Call Session Control Function): the SIP
proxy server that is the first point of contact for the users;

• S-CSCF (Serving-CSCF): SIP server and session con-
troller, it is the central node of the signaling plane;

• I-CSCF (Interrogating-CSCF): the SIP function located
at the edge of an administrative domain; it assigns an
S-CSCF to a user performing SIP registration.

We used the opensource OpenIMSCore IMS [37] functions,
deployed as separated containers managed by Kubernetes [38].
Kubernetes is an open-source container-orchestration system
that aims to provide a platform for automating deployment,
scaling, and operations of application containers across clus-
ters of hosts. From a network perspective, containers are some-
how equivalent to VMs, but have a relaxed isolation due to
operating system sharing among the applications. However, a
container has its own filesystem, CPU, memory, process space
and networking space that are reserved upon host resources
through kernel primitives. Kubernetes implements the pattern
of multiple cooperating processes which form a cohesive unit
of service through the ‘Pod’ abstraction; Pods are groups of
containers sharing storage and network. Figure 3 depicts vIMS
pods and containers location across both physical servers
composing our deployment. Those servers are equipped with
an Intel(R) Xeon(R) CPU E5-2620 v4 @2.10GHz with 384
GB of RAM, connected to the same network through a 1 Gbps
port physical switch. All the vIMS functions are deployed in
a single Pod located in first server, while Kubernetes core
components are deployed as a single pod in the second server.
The second server hosts the SIPP [40] traffic simulator used
to inject SIP and RTP traffic into the platform as two pods
representing the caller and the callee. The whole platform
is monitored through Prometheus node-exporters [41] for the
physical level, while Pods and container are monitored through
Kubernetes embedded CAdvisor [43] agent. Both exporters are
compliant with Prometheus data model and architecture so that
metrics can be exported through GET requests at a specific
polling frequency. Furthermore, collected metrics are explicitly
typed as counters or gauges, so that pre-processing becomes
easier. In our deployment metrics are directly collected from
both CAdvisor and NodeExporter with a Java script that stores
metrics in a column-like format every 5 s. Training SYROCCA
on a such fine grained frequency, could be very resource and
time consuming, thus we re-sampled to a 30 s frequency.

B. LSTM-based Autoencoder architecture

AE design and hyper-parameter tuning are milestones to
build an effective and performing ML model. It is important
that the chosen architecture is carefully adapted to the analyzed
dataset characteristics. In this section we report how we

(a) Virtual CPU group (b) Virtual network group

(c) Virtual memory group (d) Virtual file system group

Fig. 5: Training MSE for each metrics group.

Fig. 4: SYROCCA deep Autoencoder architecture.

calibrated the AEs architecture and hyper-parameters through
several experiments performed on different combinations.

Encoder and decoder layers depicted in Figure 4 are com-
posed of two LSTM cells and one dropout regularization level
that helps prevent over-fitting, which particularly affects Deep
NN [44]. According to the state of the art, over-fitting can
be reduced fitting all possible different NNs architectures on
the same dataset and then average the predictions from each
model [45]. However, this is not feasible in practice. With
dropout, during training, some of layer outputs are randomly
ignored (i.e. ”dropped out”). Therefore some layers look-like
one with a different number of nodes and connectivity to the
prior layer, mimicking different architectures.

It is worth noting that the batch size and the epochs are
particularly sensitive to training set length and time series
frequency. A widely accepted best practice is to set batch size
value proportional to the number of training samples.

C. Training on a nominal scenario
During the learning phase we want to learn an abstract

representation of a reference scenario to detect deviations from
that reference scenario during the test phase.

To do that, we simulate a nominal scenario where several
SIP clients get first registered to the vIMS core and then start
a call. SIPp traffic generation tool is used to generate SIP
traffic towards the IMS and make calls between simulated
users. Both RTP data traffic and SIP signaling traffic are
transported over UDP. To simulate realistic traffic, we used
real call traffic profiles extracted from a given LAC (Location
Area Code) from Orange 3G network. We injected two weeks
(March 16-29, 2020) of this traffic distribution onto the vIMS
containerized platform under test. We set the average call
duration to 3 min according to [46]. Moreover, the vIMS
containerized platform is tailored to correctly process this
traffic load. Figure 8 reports mean call distribution for the
first and the second week as well as an LAC distribution used
for testing purpose. Call distributions and obtained datasets
are available at [42]. Figure 6 depicts MSEg(t) for the four
AEs fed with the virtual CPU, network, memory and file
system metrics groups respectively. Note that it is not required
to have a MSE equal to zero for time-stamps representing
nominal conditions. Nonetheless, we are interested in MSE
differences between points to get an insight on the deviations.
Through the methodology proposed in section III-C, we found
out that in the memory metrics group MSE (6 (c)), 57.4%

(a) vCPU-related group (b) vnetwork-related group

(c) vmemory-related group (d) vfilesystem-related group

Fig. 6: vIMS system radiographies under packet loss injection.

(a) vCPU-related group (b) vnetwork-related group (c) vmemory-related group

Fig. 7: vIMS system radiographies under call overload injection.

of samples crossing the threshold are characterized by the
set of features F =[MEMORY FAILURES TOTAL{POD=HSS,
TYPE=PGFAULT, SCOPE=HIERARCHY}, MEMORY FAILURES
TOTAL {POD=HSS, TYPE=PGFAULT, SCOPE=CONTAINER}].
However, for CPU, network and file system groups there
is no predominant type of features F characterizing those
deviations. Therefore, we can conclude that the dynamics
of the memory usage of the HSS during normal activity is
characterized by a repeated fixed pattern. This pattern has to be
taken in consideration when analyzing test datasets as some-
thing somehow belonging to nominal operating conditions. It
is worth noting that the MSE trend for the virtual CPU group
clearly follows the call distribution (Figure 8), which confirms
our AEs being able to carefully characterize learning dataset.

D. Test phase on degraded conditions

We evaluate the SYROCCA ability to detect and character-
ize anomalies under three different degraded scenarios.

The first scenario consists in injecting packet loss in order
to generate calls failures. SIPP allows simulating packet
loss by simply blocking outgoing messages or discarding
received messages. In particular, we alter the call distribution
of March 16, 2020, blocking 50% of INVITE (SIP message)
acknowledgments, causing at least 50% of calls to fail. Figures
from 6a to 6c depict the obtained radiography for the test
case plotting only anomalous data points. The horizontal axis
is the MSE for the analyzed group of metrics while the
vertical one is the number of failed calls. Darker zones denote
high density regions (MSEg, failed calls) while colors from
green to white indicate less dense regions. It is worth recalling
that the values associated with the color scale correspond
to an estimate of the probability density function via KDE,
and therefore do not represent a physical density value but
only a measure proportional to density. Since Figures 6c, 6b
and 6d present high-density zones only for small values of
failed calls, one can conclude that CPU, memory and file

Fig. 8: VoIP call distributions emulated in the experiments.

system are not behind the service degradation. On the contrary,
Figure 6b clearly depicts two high density zones, one of them
corresponding to more than 250 failed calls, which clearly
indicates that anomalies detected from the network metrics
group directly impact vIMS service. Indeed, 90% of detected
network anomalies are only characterized by metrics related to
sent/received packets from/by SCSCF and PCSF. In fact, when
a call fails, the SCSCF generates a Failed call message that
is redirected to the PCSCF, and then to the user. Moreover
Figure 6a depicts a moderate density zone (light orange)
for more that 250 failed calls, highlighting that the anomaly
slightly impacts the CPU. Similarly, in Figures 6c and 6d
two slighter low density zones (light violet) corresponding to
more than 250 failed calls points out an even slighter impact
on memory and file system related metrics.

The second scenario we tested consists in stressing the
vIMS core services with a call profile exceeding the resources
available to the vIMS network functions. To do that, we in-
jected the call distribution of March 16, 2020, but from another
LAC than the one used for training, and that serves more users
(Figure 8). Actually, even though in our deployment each pod
can theoretically use as much memory as the physical server
has (best effort deployment), the scripts used to launch IMS
services impose a hard-coded memory limit. Nevertheless, we
observed that although this script-level limit is not reached, it
is possible to overload the vIMS core with a higher amount of
traffic as in the selected test LAC. As expected, radiographies
from Figures 7a to 7c show that the introduced anomaly evenly
impacts CPU, network and memory metric groups, mainly
seen as high density zones corresponding to at most 15 failed
calls. Furthermore, file system related metrics are nearly not
impacted as only few samples are recognized as anomaly
making impossible to produce a radiography.

In the third scenario we tested how stressing the phys-
ical CPU from inside the PCSCF container is perceived
as deviation by the AE trained for the virtual CPU-related
metrics group. This will give us an idea on how physical
faults can propagate to the container layer. We injected a
physical CPU stress which increases over time in increments
of 10% during one hour on all 32 CPUs, starting from 10%
up to 80% of single CPU capacity. Each CPU stress lasts
450 seconds. Fig. 9 shows that: (i) the AE for the virtual
CPU metrics group detects at all times those CPU stress at

Fig. 9: Time evolution of the MSE for virtual CPU-related
metrics group, under an increasing CPU stress.

physical level as deviations above the threshold at virtual
level, (ii) the MSEg=vCPU (t) increases according to the
injected increasing physical CPU load with the same trend.
This confirms that the AE can detect deviations at physical
and virtual layers and characterize relative intensities of those
deviations. This experiment is extensible to virtual network
and virtual memory, or other data sources groups. Furthermore,
when the 1 hour physical CPU stress ends, that MSE behaviour
falls back to the nominal region under the threshold (diamond
points).

Applying the methodology described in Section III-C to
get an insight on the features describing the anomaly, it
turns out that features characterizing anomalies correspond to
CPU group F =[CPU USER SECONDS TOTAL{POD=PCSCF},
CPU USAGE SECONDS TOTAL{POD=PCSCF}]. This confirms
SYROCCA’s ability to recognize sets of resources that most
deviate for any type of anomaly, which can so make the
radiography accurate.

V. CONCLUSIONS

In this article we propose a LSTM autoencoder-based
methodology to characterize network deviations in softwarized
environments by radiography representation and analysis. We
validated the proposal with a proof-of-concept based on a
vIMS deployed using Kubernetes. While the focus of the
presented proof-of-concept results was the virtualized layer,
it can be extended to physical layer metrics to characterize
possible cross-layer fault propagation. We plan to extend
SYROCCA application analysis to other VoIP platforms, such
as entreprise Telephone over IP infrastructures, and other NFV
use-cases such as the 4G and 5G function clusters, also using
more sophisticated NFV/SDN platforms such as OpenCord,
OMEC, OPNFV, OSM.

ACKNOWLEDGEMENT

This work was partially supported by the ANR CANCAN
project (ANR-18-CE25-0011).

REFERENCES

[1] J. Rubio-Loyola et al. Scalable service deployment
on software-defined networks. IEEE Communications
Magazine 49.12 (2011): 84-93.

[2] M. Behringer et al. A reference model for autonomic
networking. draft-ietf-anima-reference-model-07, IETF,
2018.

[3] ETSI GS ZSM 001 V1.1.1. Zero-touch network &
service management requirements, 2019.

[4] Experiential networked intelligence; terminology for
main concepts, ETSI gr ENI 004, 2019.

[5] A. Boubendir et al. Network slice life-cycle management
towards automation. IFIP/IEEE IM 2019.

[6] V.Q. Rodriguez, F. Guillemin, and A. Boubendir. 5G E2E
network slicing management with ONAP. ICIN 2020.

[7] A. Boubendir et al. 5G edge resource federation: Dy-
namic and cross-domain network slice deployment. IEEE
NetSoft 2018.

[8] The open radio access network (ORAN) alliance: https:
//www.o-ran.org.

[9] Open network automation platform (ONAP). https:
//www.onap.org.

[10] E Haleplidis et al. Software-defined networking: Layers
and architecture terminology. RFC 7426, IRTF 2015.

[11] B. Yi et al. A comprehensive survey of network function
virtualization. Computer Networks 133 (2018): 212-262.

[12] S. Secci, A. Diamanti, J. Sanchez Vilchez, and et al. Se-
curity and performance comparison of ONOS and ODL
controllers. Open Networking Foundation, Informational
Report 2019.

[13] P. Cholda et al. A survey of resilience differentiation
frameworks in communication networks. IEEE Commu-
nications Surveys Tutorials 9.4 (2007): 32-55.

[14] M. Ibrahim. A resiliency measure for communication
networks. ICIT 2017.

[15] I. B. Gertsbakh and Y. Shpungin. Network Reliability and
Resilience. Springer Briefs in Electrical and Computer
Engineering 2011.

[16] Y. Fang et al. Resilience-based component importance
measures for critical infrastructure network systems.
IEEE Trans. on Reliability 65.2 (2016): 502-512.

[17] Y. Fang and E. Zio. An adaptive robust framework
for the optimization of the resilience of interdependent
infrastructures under natural hazards. European Journal
of Operational Research 276.3 (2019): 1119-1136.

[18] J.P.G. Sterbenz et al. Resilience and survivability in com-
munication networks: Strategies, principles, and survey
of disciplines. Computer Networks 54.8 (2010): 1245-
1265.

[19] A. Jabbar. A Framework to Quantify Network Resilience
and Survivability. PhD thesis, University of Kansas,
USA, 2010.

[20] D. Zhang and J. P. G. Sterbenz. Measuring the resilience
of mobile ad hoc networks with human walk patterns.
RND 2015.

[21] D. He et al. Software-defined-networking-enabled traffic
anomaly detection and mitigation. IEEE Internet of
Things Journal 4.6 (2017): 1890-1898.

[22] E. Eskin. Anomaly detection over noisy data using
learned probability distributions. ICML 2000.

[23] D. Cotroneo, R. Natella, and S. Rosiello. A fault
correlation approach to detect performance anomalies in
virtual network function chains. IEEE ISSRE 2017.

[24] C. Zhou et al. Anomaly detection with robust deep
autoencoders. ACM SIGKDD KDD 2017.

[25] R. J. Williams. Learning representations by back-
propagating errors. Nature 323.6088 (1986): 533-536.

[26] Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE Trans. on Neural Networks 15.2 (1994): 157-166.

[27] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation 9.8 (1997): 1735-1780.

[28] P. Malhotra et al. Long short term memory networks for
anomaly detection in time series. Presses universitaires
de Louvain 2015.

[29] Z. Cui et al. Deep bidirectional and unidirectional lstm
recurrent neural network for network-wide traffic speed
prediction. arXiv preprint arXiv:1801.02143 2018.

[30] Z. Zhao et al. Lstm network: a deep learning approach
for short-term traffic forecast. IET Intelligent Transport
Systems 11.2 (2017): 68-75.

[31] X. Ma et al. Long short-term memory neural network for
traffic speed prediction using remote microwave sensor
data. Transportation Research Part C: Emerging Tech-
nologies 54 (2015): 187-197.

[32] A. Dalgkitsis, M. Louta, and G. T Karetsos. Traffic
forecasting in cellular networks using the lstm rnn. PCI
2018.

[33] I. Alawe et al. Improving traffic forecasting for 5g core
network scalability: A machine learning approach. IEEE
Network 32.6 (2018): 42-49.

[34] A. Imad et al. An efficient and lightweight load forecast-
ing for proactive scaling in 5g mobile networks. CSCN
2018.

[35] R. Mijumbi et al. Darn: Dynamic baselines for real-time
network monitoring. IEEE NetSoft 2018.

[36] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. http://deeplearningbook.org. MIT Press 2016.

[37] OpenIMScore: http://openimscore.sourceforge.net/.
[38] Kubernetes: http://github.com/kubernetes/kubernetes/.
[39] 3GPP release 15: http://3gpp.org/release-15.
[40] Sipp: http://sipp.sourceforge.net/.
[41] NodeExporter: http://github.com/prometheus/node

exporter.
[42] SYRROCA : http://github.com/SYRROCA.
[43] Cadvisor: http://github.com/google/cadvisor.
[44] G. Hinton et al. Improving neural networks by prevent-

ing co-adaptation of feature detectors. arXiv:1207.0580
2012.

[45] N. Srivastava et al. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research 15.1 (2014): 1929-1958.

[46] P. De Melo et al. Surprising patterns for the call duration
distribution of mobile phone users. ECML PKDD 2010.

